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Abstract: A new kind of quantum gates, higher braiding gates, as matrix solutions of the polyadic
braid equations (different from the generalized Yang–Baxter equations) is introduced. Such gates
lead to another special multiqubit entanglement that can speed up key distribution and accelerate
algorithms. Ternary braiding gates acting on three qubit states are studied in detail. We also consider
exotic non-invertible gates, which can be related with qubit loss, and define partial identities (which
can be orthogonal), partial unitarity, and partially bounded operators (which can be non-invertible).
We define two classes of matrices, star and circle ones, such that the magic matrices (connected with
the Cartan decomposition) belong to the star class. The general algebraic structure of the introduced
classes is described in terms of semigroups, ternary and 5-ary groups and modules. The higher braid
group and its representation by the higher braid operators are given. Finally, we show, that for each
multiqubit state, there exist higher braiding gates that are not entangling, and the concrete conditions
to be non-entangling are given for the obtained binary and ternary gates.

Keywords: Yang–Baxter equation; braid group; qubit; ternary; polyadic; braiding quantum gate

1. Introduction

The modern development of the quantum computing technique implies various ex-
tensions of its foundational concepts [1–3]. One of the main problems in the physical
realization of quantum computers is the presence of errors, which implies that it is desir-
able that quantum computations be provided with error correction, or that ways be found
to make the states more stable, which leads to the concept of topological quantum com-
putation (for reviews, see, e.g., [4–6], and references therein). In the Turaev approach [7],
link invariants can be obtained from the solutions of the constant Yang–Baxter equation
(the braid equation). It was realized that the topological entanglement of knots and links
is deeply connected with quantum entanglement [8,9]. Indeed, if the solutions to the
constant Yang–Baxter Equation [10] (Yang–Baxter operators/maps [11,12]) are interpreted
as a special class of quantum gate, namely braiding quantum gates [13,14], then the inclu-
sion of non-entangling gates does not change the relevant topological invariants [15,16].
For further properties and applications of braiding quantum gates, see [17–20].

In this paper, we obtain and study the solutions to the higher arity (polyadic) braid
equations introduced in [21,22], as a polyadic generalization of the constant Yang–Baxter
equation (which is considerably different from the generalized Yang–Baxter equation
of [23–26]). We introduce special classes of matrices (star and circle types), to which most
of the solutions belong, and find that the so-called magic matrices [18,27,28] belong to
the star class. We investigate their general non-trivial group properties and polyadic
generalizations. We then consider the invertible and non-invertible matrix solutions to
the higher braid equations as the corresponding higher braiding gates acting on multi-
qubit states. It is important that multi-qubit entanglement can speed up quantum key
distribution [29] and accelerate various algorithms [30]. As an example, we have made
detailed computations for the ternary braiding gates as solutions to the ternary braid
equations [21,22]. A particular solution to the n-ary braid equation is also presented. It
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is shown that for each multi-qubit state, there exist higher braiding gates that are not
entangling, and the concrete relations for those are obtained, which can allow us to build
non-entangling networks.

2. Yang–Baxter Operators

Recall here [9,13] the standard construction of the special kind of gates we will consider,
the braiding gates, in terms of solutions to the constant Yang–Baxter equation [10] (called
also algebraic Yang–Baxter equation [31]), or the (binary) braid equation [21].

2.1. Yang–Baxter Maps and Braid Group

First, we consider a general abstract construction of the (binary) braid equation. Let V
be a vector space over a field K and the mapping CV2 : V⊗V → V⊗V, where ⊗ = ⊗K
is the tensor product over K. A linear operator (braid operator) CV2 is called a Yang–Baxter
operator (denoted by R in [13] and by B in [10]) or Yang–Baxter map [12] (denoted by F
in [11]), if it satisfies the braid equation [32–34]

(CV2 ⊗ idV) ◦ (idV⊗CV2) ◦ (CV2 ⊗ idV) = (idV⊗CV2) ◦ (CV2 ⊗ idV) ◦ (idV⊗CV2), (1)

where idV : V→ V, is the identity operator in V. The connection of CV2 with the R-matrix
R is given by CV2 = τ ◦ R, where τ is the flip operation [10,11,32].

Let us introduce the operators A1,2 : V⊗V⊗V→ V⊗V⊗V by

A1 = CV2 ⊗ idV, A2 = idV⊗CV2 , (2)

Using Equation (2), it follows from Equation (1) that

A1 ◦A2 ◦A1 = A2 ◦A1 ◦A2. (3)

If CV2 is invertible, then C−1
V2 is also the Yang–Baxter map with A−1

1 and A−1
2 . There-

fore, the operators Ai represent the braid group B3 = {e, σ1, σ2 | σ1σ2σ1 = σ2σ1σ2} by the
mapping π3 as

B3
π3−→ End(V⊗V⊗V), σ1

π37→ A1, σ2
π37→ A2, e

π37→ idV . (4)

The representation πm of the braid group with m strands

Bm = {e, σ1, . . . , σm−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1, i = 1, . . . , m− 1,
σiσj = σjσi, |i− j| ≥ 2,

}
(5)

can be obtained using operators Ai(m) :V⊗m →V⊗m analogous to Equation (2)

Ai(m) =

i−1︷ ︸︸ ︷
idV⊗ . . .⊗ idV⊗CV2 ⊗

m−i−1︷ ︸︸ ︷
idV⊗ . . . idV, A0(m) = (idV)

⊗m, i = 1, . . . , m− 1, (6)

by the mapping πm : Bm → EndV⊗m in the following way

πm(σi) = Ai(m), πm(e) = A0(m). (7)

In this notation, Equation (2) is Ai = Ai(2), i = 1, 2, and so Equation (3) represents B3
by Equation (4).

2.2. Constant Matrix Solutions to the Yang–Baxter Equation

Consider next a concrete version of the vector space V that is used in the quantum
computation, a d-dimensional euclidean vector space Vd over complex numbers C with a basis
{ei}, i = 1, . . . , d. A linear operator Vd → Vd is given by a complex d× d matrix, the identity
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operator idV becomes the identity d× d matrix Id, and the Yang–Baxter map CV2 is a d2 × d2

matrix Cd2 (denoted by R in [31]) satisfying the matrix algebraic Yang–Baxter equation

(Cd2 ⊗ Id)(Id ⊗ Cd2)(Cd2 ⊗ Id) = (Id ⊗ Cd2)(Cd2 ⊗ Id)(Id ⊗ Cd2), (8)

being an equality between two matrices of size d3 × d3. We use the unified notations which
can be straightforwardly generalized for higher braid operators. In components

Cd2 ◦
(
ei1 ⊗ ei2

)
=

d

∑
j′1,j′2=1

c j′1 j′2
i1i2

· ej′1
⊗ ej′2

, (9)

the Yang–Baxter equation (8) has the shape (where summing is by primed indices)

d

∑
j′1,j′2,j′3=1

c j′1 j′2
i1i2

· c j′3k3
j′2i3

· c k1k2
j′1 j′3

=
d

∑
l′1,l′2,l′3=1

c l′2l′3
i2i3

· c k1l′1
i1l′2

· c k2k3
l′1l′3

≡ q k1k2k3
i1i2i3

. (10)

The system Equation (10) is highly overdetermined, because the matrix Cd2 contains
d4 unknown entries, while there are d6 cubic polynomial equations for them. So, for d = 2
we have 64 equations for 16 unknowns, while for d = 3 there are 729 equations for the
81 unknown entries of Cd2 . The unitarity of Cd2 imposes a further d2 quadratic equations,
and so for d = 2 we have in total 68 equations for 16 unknowns. This makes the direct
discovery of solutions for the matrix Yang–Baxter Equation (10) very cumbersome. Never-
theless, using a conjugation classes method, the unitary solutions and their classification
for d = 2 were presented in [31].

In the standard matrix form, Equation (9) can be presented by introducing the 4-
dimensional vector space Ṽ4 = V ⊗ V with the natural basis
ẽk̃ = {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}, where k̃ = 1, . . . , 8 is a cumulative index. The lin-
ear operator C̃4 : Ṽ4 → Ṽ4 corresponding to Equation (9) is given by 4× 4 matrix c̃ı̃ j̃ as

C̃4 ◦ ẽı̃ = ∑4
j̃=1 c̃ı̃ j̃ · ẽ j̃. The operators (2) become two 8× 8 matrices Ã1,2 as

Ã1 = c̃⊗K I2, Ã2 = I2 ⊗K c̃, (11)

where ⊗K is the Kronecker product of matrices and I2 is the 2× 2 identity matrix. In this
notation (which is universal and also used for higher braid equations) the operator binary
braid Equation (134) become a single matrix equation

Ã1 Ã2 Ã1 = Ã2 Ã1 Ã2, (12)

which we call the matrix binary braid equation (and also the constant Yang–Baxter Equation [31]).
In component form, Equation (12) is a highly overdetermined system of 64 cubic equations
for 16 unknowns, the entries of c̃.

The matrix Equation (12) has the following “gauge invariance”, which allows a clas-
sification of Yang–Baxter maps [35]. Introduce an invertible operator Q : V → V in the
two-dimensional vector space V ≡ Vd=2. In the basis {e1, e2} its 2× 2 matrix q is given by
Q ◦ ei = ∑2

j=1 qij · ej. In the natural 4-dimensional basis ẽk̃ the tensor product of operators
Q⊗Q is presented by the Kronecker product of matrices q̃4 = q⊗K q. If the 4× 4 matrix
c̃ is a fixed solution to the Yang–Baxter Equation (12), then the family of solutions c̃(q)
corresponding to the invertible 2× 2 matrix q is the conjugation of c̃ by q̃4 such that

c̃(q) = q̃4 c̃q̃−1
4 = (q⊗K q)c̃

(
q−1 ⊗K q−1

)
, (13)

which follows from conjugating Equation (12) by q⊗K q and using Equation (11). If we
include the obvious invariance of Equation (12) with respect to an overall factor t ∈ C,
the general family of solutions becomes (cf. the Yang–Baxter equation [35])
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c̃(q, t) = tq̃4 c̃q̃−1
4 = t(q⊗K q)c̃

(
q−1 ⊗K q−1

)
. (14)

It follows from Equation (13) that the matrix q ∈ GL(2,C) is defined up to a complex
non-zero factor. In this case, we can put

q =

(
a 1
c d

)
, (15)

and the manifest form of q̃4 is

q̃4 =


a2 a a 1
ac ad c d
ac c ad d
c2 cd cd d2

. (16)

The matrix q̃?4 q̃4 (where ? represents Hermitian conjugation) is diagonal (this case is
important in a further classification similar to the binary one [31]), when the condition

c = −a/d∗ (17)

holds, and so the matrix q takes the special form (depending on 2 complex parameters)

q =

(
a 1

−a/d∗ d

)
. (18)

We call two solutions c̃1 and c̃2 of the constant Yang–Baxter Equation (12) q-conjugated, if

c̃1q̃4 = q̃4 c̃2, (19)

and we will not distinguish between them. The q-conjugation in the form Equation (19) does
not require the invertibility of the matrix q, and therefore the solutions of different ranks (or
invertible and not invertible) can be q-conjugated (for the invertible case, see [35–38]).

The matrix Equation (12) does not imply the invertibility of solutions, i.e., matrices
c̃ being of full rank (in the binary Yang–Baxter case of rank 4 and d = 2). Therefore,
below we introduce in a unified way invertible and non-invertible solutions to the matrix
Yang–Baxter Equation (10) for any rank of the corresponding matrices.

2.3. Partial Identity and Unitarity

To be as close as possible to the invertible case, we introduce “non-invertible analogs”
of identity and unitarity. Let M be a diagonal n× n matrix of rank r ≤ n, and therefore
with n− r zeroes on the diagonal. If the other diagonal elements are units, such a diagonal
M can be reduced by row operations to a block matrix, being a direct sum of the identity
matrix Ir×r and the zero matrix Z(n−r)×(n−r). We call such a diagonal matrix a block r-partial

identity I(block)
n (r) = diag


r︷ ︸︸ ︷

1, . . . 1,

n−r︷ ︸︸ ︷
0, . . . , 0

, and without the block reduction—a shuffle

r-partial identity I(shu f f le)
n (r) (these are connected by conjugation). We will use the term

partial identity and In(r) to denote any matrix of this form. Obviously, with the full rank
r = n we have In(n) ≡ In, where In is the identity n× n matrix. As with the invertible
case and identities, the partial identities (of the corresponding form) are, obviously, trivial
solutions of the Yang–Baxter equation.
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If a matrix M = M(r) of size n× n and rank r satisfies the following r-partial unitar-
ity condition

M(r)?M(r) = I(1)n (r), (20)

M(r)M(r)? = I(2)n (r), (21)

where M(r)? is the conjugate-transposed matrix and I(1)n (r), I(2)n (r) are partial identities
(of any kind, they can be different), then M(r) is called a r-partial unitary matrix. In the case,
when I(1)n (r) = I(2)n (r), the matrix M(r) is called normal. If M(r)? = M(r), then it is called
r-partial self-adjoint. In the case of full rank r = n, the conditions Equations (20) and (21)
become ordinary unitarity, and M(n) becomes an unitary (and normal) matrix, while a
r-partial self-adjoint matrix becomes a self-adjoint matrix or Hermitian matrix.

As an example, we consider a 4× 4 matrix of rank 3

M(3) =


0 0 0 0
0 eiβ 0 0
0 0 0 eiγ

eiα 0 0 0

, α, β, γ ∈ R, (22)

which satisfies the 3-partial unitarity conditions Equations (20) and (21) with two different
3-partial identities on the r.h.s.

M(3)?M(3) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 = I(1)4 (3) 6= I(2)4 (3) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = M(3)M(3)?. (23)

For a non-invertible matrix M(r), one can define a pseudoinverse M(r)+ (or the Moore–
Penrose inverse, see, e.g., for a review [39]) by

M(r)M(r)+M(r) = M(r), M(r)+M(r)M(r)+ = M(r)+, (24)

and M(r)M(r)+, M(r)+M(r) are Hermitian. In the case of Equation (22) the partial unitary
matrix M(3) coincides with its pseudoinverse

M(3)? = M(3)+, (25)

which is similar to the standard unitarity M?
inv = M−1

inv for an invertible matrix Minv. It is
important that Equation (22) is a solution of the matrix Yang–Baxter Equation (12), and so
is an example of a non-invertible Yang–Baxter map.

If only the first (second) of the conditions Equations (20) and (21) holds, we call such
M(r) a left (right) r-partial unitary matrix. An example of such a non-invertible Yang–Baxter
map of rank 2 is the left 2-partial unitary matrix

M(2) =
1√
2


0 0 0 eiα

0 eiβ 0 0
0 eiβ 0 0
0 0 0 eiβ

, α, β ∈ R, (26)

which satisfies Equation (20), but not Equation (21), and so M(2) is not normal

M(2)?M(2) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 6=


1 0 0 ei(α−β)

0 1 1 0
0 1 1 0

ei(β−α) 0 0 1

 = M(2)M(2)?. (27)
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Nevertheless, the property Equation (25) still holds and M(2)? = M(2)+.

2.4. Permutation and Parameter-Permutation 4-Vertex Yang–Baxter Maps

The system Equation (12) with respect to all 16 variables is too cumbersome for direct
solutions. The classification of all solutions can only be accomplished in special cases,
e.g., for matrices over finite fields [35] or for fewer than 16 vertices. Here, we will start from
4-vertex permutation and parameter-permutation matrix solutions and investigate their
group structure. It was shown [13,31] that the special 8-vertex solutions to the Yang–Baxter
equation are most important for further applications including braiding gates. We will
therefore study the 8-vertex solutions in the most general way: over C and in various
configurations, invertible and not invertible, and also consider their group structure.

First, we introduce the permutation Yang–Baxter maps, which are presented by the
permutation matrices (binary matrices with a single 1 in each row and column), i.e., 4-vertex
solutions. In total, there are 64 permutation matrices of size 4× 4, while only 4 of them
have the full rank 4 and simultaneously satisfy the Yang–Baxter Equation (12). These are
the following

c̃perm
bisymm =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

, (28)

tr c̃ = 2, det c̃ = −1,
eigenvalues: {1}[2], {−1}[2],

(29)

c̃perm
90symm =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

,


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

, (30)

tr c̃ = 0, det c̃ = −1,
eigenvalues: 1, i,−1,−i.

(31)

Here and next we list eigenvalues to understand which matrices are conjugated, and
after that, if and only if the conjugation matrix is of the form Equation (16), then such
solutions to the Yang–Baxter Equation (12) coincide. The traces are important in the con-
struction of corresponding link invariants [7] and local invariants [40,41], and determinants
are connected with the concurrence [42,43]. Note that the first matrix in Equation (28) is
the SWAP quantum gate [1].

To understand symmetry properties of Equations (28)–(30), we introduce the so called
reverse matrix J ≡ Jn of size n× n by (Jn)ij = δi,n+1−i. For n = 4 it is

J4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. (32)

For any n × n matrix M ≡ Mn the matrix JM is the matrix M reflected vertically,
and the product MJ is M reflected horizontally. In addition to the standard symmetric
matrix satisfying M = MT (T is the transposition), one can introduce

M is persymmetric, if JM = (JM)T , (33)

M is 90◦-symmetric, if MT = JM. (34)

Thus, a persymmetric matrix is symmetric with respect to the minor diagonal, while a
90◦-symmetric matrix is symmetric under 90◦-rotations. A bisymmetric matrix is symmetric
and persymmetric simultaneously. In this notation, the first family of the permutation
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solutions Equation (28) are bisymmetric, but not 90◦-symmetric, while the second family
of the solutions Equation (30) are, oppositely, 90◦-symmetric, but not symmetric and not
persymmetric (which explains their notation).

In the next step, we define the corresponding parameter-permutation solutions replacing
the units in Equation (28) by parameters. We found the following four 4-vertex solutions to
the Yang–Baxter equation (12) over C

c̃perm,star
rank=4 (x, y, z, t) =


x 0 0 0
0 0 y 0
0 z 0 0
0 0 0 t

,


0 0 0 y
0 x 0 0
0 0 t 0
z 0 0 0

, (35)

tr c̃ = x + t,
det c̃ = −xyzt, x, y, z, t 6= 0,
eigenvalues: x, t,

√
yz,−√yz,

(36)

c̃perm,circ
rank=4 (x, y) =


0 0 x 0
y 0 0 0
0 0 0 x
0 y 0 0

,


0 x 0 0
0 0 0 x
y 0 0 0
0 0 y 0

, (37)

tr c̃ = 0,
det c̃ = −x2y2, x, y 6= 0,

eigenvalues:
√

xy,−√xy, i
√

xy,−i
√

xy.
(38)

The first pair of solutions Equation (35) correspond to the bi-symmetric permutation
matrices Equation (28), and we call them star-like solutions, while the second two solutions
Equation (37) correspond to the 90◦-symmetric matrices Equation (28), which are called
circle-like solutions.

The first (second) star-like solution in Equation (35) with y = z (x = t) becomes
symmetric (persymmetric), while on the other hand with x = t (y = z) it becomes per-
symmetric (symmetric). They become bisymmetric parameter-permutation solutions if
all the parameters are equal x = y = z = t. The circle-like solutions Equation (37) are
90◦-symmetric when x = y.

Using q-conjugation Equation (14) one can next get families of solutions depending
from the entries of q, the additional complex parameters in Equation (15).

2.5. Group Structure of 4-Vertex and 8-Vertex Matrices

Let us analyze the group structure of 4-vertex matrices Equations (35)–(37) with
respect to matrix multiplication, i.e., which kinds of subgroups in GL(4,C) they can form.
For this, we introduce four 4-vertex 4× 4 matrices over C: two star-like matrices

Nstar1 =


x 0 0 0
0 0 y 0
0 z 0 0
0 0 0 t

, Nstar2 =


0 0 0 y
0 x 0 0
0 0 t 0
z 0 0 0

,
tr N = x + t,

det N = −xyzt, x, y, z, t 6= 0,
eigenvalues: x, t,

√
yz,−√yz,

(39)

and two circle-like matrices

Ncirc1 =


0 0 x 0
y 0 0 0
0 0 0 z
0 t 0 0

, Ncirc2 =


0 x 0 0
0 0 0 y
z 0 0 0
0 0 t 0

, (40)

tr N = 0,
det N = −xyzt, x, y, z, t 6= 0,

eigenvalues: 4
√

xyzt,− 4
√

xyzt, i 4
√

xyzt,− 4
√

xyzt,
. (41)
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Denoting the corresponding sets by Nstar1,2 = {Nstar1,2} and Ncirc1,2 = {Ncirc1,2}, these
do not intersect and are closed with respect to the following multiplications

Nstar1Nstar1Nstar1 = Nstar1, (42)

Nstar2Nstar2Nstar2 = Nstar2, (43)

Ncirc1Ncirc1Ncirc1Ncirc1Ncirc1 = Ncirc1, (44)

Ncirc2Ncirc2Ncirc2Ncirc2Ncirc2 = Ncirc2. (45)

Note that there are no closed binary multiplications among the sets of 4-vertex matrices
Equations (39) and (40).

To give a proper group interpretation of Equations (42)–(45), we introduce a k-ary
(polyadic) general linear semigroup GLS[k](n,C) =

{
M f ull | µ[k]

}
, where M f ull = {Mn×n} is

the set of n× n matrices over C and µ[k] is an ordinary product of k matrices. The full
semigroup GLS[k](n,C) is derived in the sense that its product can be obtained by repeating
the binary products that are (binary) closed at each step. However, n× n matrices of special
shape can form k-ary subsemigroups of GLS[k](n,C), which can be closed with respect to
the product of at minimum k matrices, but not of 2 matrices, and we call such semigroups
k-non-derived. Moreover, we have for the sets Nstar1,2 and Ncirc1,2

M f ull = Nstar1 ∪Nstar2 ∪Ncirc1 ∪Ncirc2, Nstar1 ∩Nstar2 ∩Ncirc1 ∩Ncirc2 = ∅. (46)

A simple example of a 3-nonderived subsemigroup of the full semigroup GLS[k](n,C)
is the set of antidiagonal matrices Madiag =

{
Madiag

}
(having nonzero elements on the mi-

nor diagonal only): the product µ[3] of 3 matrices from Madiag is closed, and therefore Madiag

is a subsemigroup S [3]adiag =
{

Madiag | µ[3]
}

of the full ternary general linear semigroup

GLS[3](n,C) with the multiplication µ[3] as the ordinary triple matrix product.
In the theory of polyadic groups [44], an analog of the binary inverse M−1 is given by

the querelement, which is denoted by M̄ and in the matrix k-ary case is defined by

k−1︷ ︸︸ ︷
M . . . MM̄ = M, (47)

where M̄ can be on any place. If each element of the k-ary semigroup GLS[k](n,C) (or its
subsemigroup) has its querelement M̄, then this semigroup is a k-ary general linear group
GL[k](n,C).

In the set of n× n matrices, the binary (ordinary) product is defined (even it is not
closed), and for invertible matrices we formally determine the standard inverse M−1,
but for arity k ≥ 4 it does not coincide with the querelement M̄, because, as follows from
Equation (47) and cancellativity in C that

M̄ = M2−k. (48)

The k-ary (polyadic) identity I[k]n in GLS[k](n,C) is defined by

k−1︷ ︸︸ ︷
I[k]n . . . I[k]n M = M, (49)

which holds when M in the l.h.s. is on any place. If M is only on one or another side
(but not in the middle places) in Equation (49), I[k]n is called left (right) polyadic identity.
For instance, in the subsemigroup (in GLS[k](n,C)) of antidiagonal matrices S [3]adiag the

ternary identity I[3]n can be chosen as the n× n reverse matrix Equation (32) having units
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on the minor diagonal, while the ordinary n× n unit matrix In is not in S [3]adiag. It follows

from Equation (49) that for matrices over C the (left, right) polyadic identity I[k]n is(
I[k]n

)k−1
= In, (50)

which means that for the ordinary matrix product I[k]n is a (k− 1)-root of In (or I[k]n is a
reflection of (k− 1) degree), while both sides cannot belong to a subsemigroup S [k] of
GLS[k](n,C) under consideration (as in S [3]adiag). As the solutions of (50) are not unique,
there can be many k-ary identities in a k-ary matrix semigroup. We denote the set of k-ary
identities by I

[k]
n =

{
I[k]n

}
. In the case of S [3]adiag the ternary identity I[3]n can be chosen as any

of the n× n reverse matrices Equation (32) with unit complex numbers eiαj , j = 1, . . . , n on
the minor diagonal, where αj satisfy additional conditions depending on the semigroup.

In the concrete case of S [3]adiag the conditions, giving Equation (50), are (k− 1)αj = 1 + 2πrj,
rj ∈ Z, j = 1, . . . , n.

In the framework of the above definitions, we can interpret the closed products
Equations (42) and (43) as the multiplications µ[3] of the ternary semigroups S [3]star1,2(4,C) ={

Nstar1,2 | µ[3]
}

. The corresponding querelements are given by

N̄star1 = N−1
star1 =


1
x 0 0 0
0 0 1

z 0
0 1

y 0 0
0 0 0 1

t

, (51)

N̄star2 = N−1
star2 =


0 0 0 1

z
0 1

x 0 0
0 0 1

t 0
1
y 0 0 0

, x, y, z, t 6= 0. (52)

The ternary semigroups having querelements for each element (i.e., the additional op-
eration ( ) defined by Equation (52)) are the ternary groups G [3]star1,2(4,C) =

{
Nstar1,2 | µ[3], ( )

}
,

which are two (non-intersecting because Nstar1 ∩Nstar2 = ∅) subgroups of the ternary gen-
eral linear group GL[3](4,C). The ternary identities in G [3]star1,2(4,C) are the following

different continuous sets I
[3]
star1,2 =

{
I[3]star1,2

}
, where

I[3]star1 =


eiα1 0 0 0
0 0 eiα2 0
0 eiα3 0 0
0 0 0 eiα4

, e2iα1 = e2iα4 = ei(α2+α3) = 1, αj ∈ R, (53)

I[3]star2 =


0 0 0 eiα1

0 eiα2 0 0
0 0 eiα3 0

eiα4 0 0 0

, e2iα2 = e2iα3 = ei(α1+α4) = 1, αj ∈ R. (54)

In the particular case αj = 0, j = 1, 2, 3, 4, the ternary identities Equations (53) and (54)
coincide with the bisymmetric permutation matrices Equation (28).

Next we treat the closed set products Equations (44) and (45) as the multiplications
µ[5] of the 5-ary semigroups S [5]circ1,2(4,C) =

{
Ncirc1,2 | µ[5]

}
. The querelements are
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N̄circ1 = N−3
circ1 =


0 0 1

yzt 0
1

xzt 0 0 0
0 0 0 1

xyt
0 1

xyz 0 0

, N̄circ2 = N−3
circ2 =


0 1

yzt 0 0
0 0 0 1

xzt
1

xyt 0 0 0
0 0 1

xyz 0

, (55)

x, y, z, t 6= 0, and the corresponding 5-ary groups G [5]circ1,2(4,C) =
{

Ncirc1,2 | µ[5], ( )
}

which
are two (non-intersecting because Ncirc1 ∩Ncirc2 = ∅) subgroups of the 5-ary general linear
group GL[5](n,C). We have the following continuous sets of 5-ary identities
I
[3]
circ1,2 =

{
I[3]circ1,2

}
in G [5]circ1,2(4,C) satisfying

I[5]circ1 =


0 0 eiα1 0

eiα2 0 0 0
0 0 0 eiα3

0 eiα4 0 0

, ei(α1+α2+α3+α4) = 1, αj ∈ R, (56)

I[5]circ2 =


0 eiα1 0 0
0 0 0 eiα2

eiα3 0 0 0
0 0 eiα4 0

, ei(α1+α2+α3+α4) = 1, αj ∈ R. (57)

In the case αj = 0, j = 1, 2, 3, 4, the 5-ary identities Equations (56) and (57) coincide
with the 90◦-symmetric permutation matrices (30).

Thus, it follows from Equations (52)–(57) that the 4-vertex star-like (39) and circle-like
Equation (40) matrices form subgroups of the k-ary general linear group GL[k](4,C) with
significantly different properties: they have different querelements and (sets of) polyadic
identities, and even the arities of the subgroups G [3]star1,2(4,C) and G [5]circ1,2(4,C) do not co-
incide Equations (42)–(45). If we take into account that 4-vertex star-like Equation (39)
and circle-like Equation (40) matrices are (binary) additive and distributive, then they
form (with respect to the binary matrix addition (+) and the multiplications µ[3] and
µ[5]) the (2, 3)-ring R[3]

star1,2(4,C) =
{

Nstar1,2 | +, µ[3]
}

and (2, 5)-ring R[5]
circ1,2(4,C) ={

Nstar1,2 | +, µ[5]
}

.
Next we consider the “interaction” of the 4-vertex star-like Equation (39) and circle-

like Equation (40) matrix sets, i.e., their exotic module structure. For this, let us recall the
ternary (polyadic) module [45] and s-place action [46] definitions, which are suitable for
our case. An abelian group M is a ternary left (middle, right) R-module (or a module
over R), if there exists a ternary operation R × R ×M → M (R ×M× R → M,
M×R×R → M) which satisfies some compatibility conditions (associativity and dis-
tributivity) which hold in the matrix case under consideration (and where the module op-
eration is the triple ordinary matrix product) [45]. A 5-ary left (right) module M over
R is a 5-ary operationR×R×R×R×M→M (M×R×R×R×R →M) with anal-
ogous conditions (and where the module operation is the pentuple matrix product) [46].

First, we have the triple relations “inside” star and circle matrices

Nstar1(Nstar2)Nstar1 = (Nstar2), Ncirc1Ncirc2Ncirc1 = Ncirc1, (58)

Nstar1Nstar1(Nstar2) = (Nstar2), Ncirc1Ncirc1Ncirc2 = Ncirc1, (59)

(Nstar2)Nstar1Nstar1 = (Nstar2), Ncirc2Ncirc1Ncirc1 = Ncirc1, (60)

Nstar2Nstar2(Nstar1) = (Nstar1), Ncirc2Ncirc2Ncirc1 = Ncirc2, (61)

Nstar2(Nstar1)Nstar2 = (Nstar1), Ncirc2Ncirc1Ncirc2 = Ncirc2, (62)

(Nstar1)Nstar2Nstar2 = (Nstar1), Ncirc1Ncirc2Ncirc2 = Ncirc2. (63)
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We observe the following module structures on the left column above (elements of the
corresponding module are in brackets, and we informally denote modules by their sets):
(1) from Equations (58)–(60), the set Nstar2 is a middle, right and left module over Nstar1;
(2) from Equations (61)–(63), the set Nstar1 is a middle, right and left module over Nstar2;

Nstar1Ncirc1Nstar1 = Ncirc2, Nstar1Ncirc2Nstar1 = Ncirc1, (64)

Nstar2Ncirc1Nstar2 = Ncirc2, Nstar2Ncirc2Nstar2 = Ncirc1, (65)

Nstar1Nstar1(Ncirc1) = (Ncirc1), (Ncirc1)Nstar1Nstar1 = (Ncirc1), (66)

Nstar1Nstar1(Ncirc2) = (Ncirc2), (Ncirc2)Nstar1Nstar1 = (Ncirc2), (67)

Nstar2Nstar2(Ncirc1) = (Ncirc1), (Ncirc1)Nstar2Nstar2 = (Ncirc1), (68)

Nstar2Nstar2(Ncirc2) = (Ncirc2), (Ncirc2)Nstar2Nstar2 = (Ncirc2), (69)

(3) from Equations (66)–(69), the sets Ncirc1,2 are a right and left module over Nstar1,2;

Ncirc1(Nstar1)Ncirc1 = (Nstar1), Ncirc1(Nstar2)Ncirc1 = (Nstar2), (70)

Ncirc2(Nstar1)Ncirc2 = (Nstar1), Ncirc2(Nstar2)Ncirc2 = (Nstar2), (71)

Ncirc1Ncirc1Nstar1 = Nstar2, Nstar1Ncirc1Ncirc1 = Nstar2, (72)

Ncirc1Ncirc1Nstar2 = Nstar1, Nstar2Ncirc1Ncirc1 = Nstar1, (73)

Ncirc2Ncirc2Nstar1 = Nstar2, Nstar1Ncirc2Ncirc2 = Nstar2, (74)

Ncirc2Ncirc2Nstar2 = Nstar1, Nstar2Ncirc2Ncirc2 = Nstar1, (75)

(4) from Equations (70) and (71), the sets Nstar1,2 are a middle ternary module over Ncirc1,2;

Ncirc1Ncirc1Ncirc1Ncirc1(Nstar1) = (Nstar1), Ncirc1Ncirc1Ncirc1Ncirc1(Nstar2) = (Nstar2), (76)

(Nstar1)Ncirc1Ncirc1Ncirc1Ncirc1 = (Nstar1), (Nstar2)Ncirc1Ncirc1Ncirc1Ncirc1 = (Nstar2), (77)

Ncirc2Ncirc2Ncirc2Ncirc2(Nstar1) = (Nstar1), Ncirc2Ncirc2Ncirc2Ncirc2(Nstar2) = (Nstar2), (78)

(Nstar1)Ncirc2Ncirc2Ncirc2Ncirc2 = (Nstar1), (Nstar2)Ncirc2Ncirc2Ncirc2Ncirc2 = (Nstar2), (79)

Ncirc1Ncirc1Ncirc1Ncirc1(Ncirc2) = (Ncirc2), (Ncirc2)Ncirc1Ncirc1Ncirc1Ncirc1 = (Ncirc2), (80)

Ncirc2Ncirc2Ncirc2Ncirc2(Ncirc1) = (Ncirc1), (Ncirc1)Ncirc2Ncirc2Ncirc2Ncirc2 = (Ncirc1). (81)

(5) from Equations (76)–(81), the sets Ncirc1,2 are right and left 5-ary modules over
Ncirc2,1 and Nstar1,2.

Note that the sum of 4-vertex star solutions of the Yang–Baxter Equation (35) (with
different parameters) gives the shape of 8-vertex matrices, and the same with the 4-vertex
circle solutions Equation (37). Let us introduce two kinds of 8-vertex 4× 4 matrices over C:
an 8-vertex star matrix Mstar and an 8-vertex circle matrix Mcirc as

Mstar =


x 0 0 y
0 z s 0
0 t u 0
v 0 0 w

, det Mstar = (xw− yv)(st− uz), tr Mstar = x + z + u + w, (82)

Mcirc =


0 x y 0
z 0 0 s
t 0 0 u
0 vs. w 0

, det Mcirc = (xw− yv)(st− uz), tr Mcirc = 0. (83)

If Mstar and Mcirc are invertible (the determinants in Equations (82) and (83) are
non-vanishing), then
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M−1
star =


w

xw−yv 0 0 − v
xw−yv

0 − u
st−uz

t
st−uz 0

0 s
st−uz − z

st−uz 0
− y

xw−yv 0 0 x
xw−yv

, (84)

M−1
circ =


0 w

xw−yv − v
xw−yv 0

− u
st−uz 0 0 t

st−uz
s

st−uz 0 0 − z
st−uz

0 − y
xw−yv

x
xw−yv 0

, (85)

and therefore the parameter conditions for invertibility are the same in both Mstar and Mcirc

xw− yv 6= 0, st− uz 6= 0. (86)

The corresponding sets Mstar = {Mstar} and Mcirc = {Mcirc} are closed under the
following multiplications

MstarMstar = Mstar, (87)

MstarMcirc = Mcirc, McircMstar = Mcirc, (88)

McircMcirc = Mstar, (89)

and in terms of sets we can write Mstar = Nstar1 ∪Nstar2 and Mcirc = Ncirc1 ∪Ncirc2, while
Nstar1 ∩Nstar2 = ∅ and Ncirc1 ∩Ncirc2 = ∅ (see Equation (46)). Note that, if Mstar and Mcirc
are treated as elements of an algebra, then Equations (87)–(89) are reminiscent of the Cartan
decomposition (see, e.g., [47]), but we will consider them from a more general viewpoint,
which will treat such structures as semigroups, ternary groups and modules.

Thus, the set M8vertex = Mstar ∪Mcirc is closed, and because of the associativity of
matrix multiplication, M8vertex forms a non-commutative semigroup, which we call a
8-vertex matrix semigroup S8vertex(4,C), which contains the zero matrix Z ∈ S8vertex(4,C)
and is a subsemigroup of the (binary) general linear semigroup GLS(4,C). It follows
from Equation (87), that Mstar is its subsemigroup S star

8vertex(4,C). Moreover, the invertible
elements of S8vertex(4,C) form a 8-vertex matrix group G8vertex(4,C), because its identity is a
unit 4× 4 matrix I4 ∈ Mstar, and so Mstar is a subgroup Gstar

8vertex(4,C) of G8vertex(4,C) and
a subgroup of the (binary) general linear group GL(4,C). The structure of S8vertex(4,C)
Equation (87) is similar to that of block-diagonal and block-antidiagonal matrices (of the
necessary sizes). So the 8-vertex (binary) matrix semigroup S8vertex(4,C) in which the
parameters satisfy Equation (86) is a 8-vertex (binary) matrix group G8vertex(4,C), having a
subgroup Gstar

8vertex(4,C) = 〈Mstar | ·, I4〉, where (·) is an ordinary matrix product, and I4 is
its identity.

The group structure of the circle matrices Mcirc Equation (83) follows from

McircMcircMcirc = Mcirc, (90)

which means that Mcirc is closed with respect to the product of three matrices (the product
of two matrices from Mcirc is outside the set Equation (89)). We define a ternary multiplica-
tion ν[3] as the ordinary triple product of matrices, then S circ[3]

8vertex(4,C) =
〈

Mcirc | ν[3]
〉

is a ternary (3-nonderived) semigroup with the zero Z ∈ Mcirc which is a subsemi-
group of the ternary (derived) general linear semigroup GLS[3](4,C). Instead of the in-
verse, for each invertible element Mcirc ∈ Mcirc \ Z, we introduce the unique querelement
M̄circ [44] by Equation (47), and since the ternary product is the triple ordinary prod-
uct, we have M̄circ = M−1

circ from Equation (48). Thus, if the conditions of invertibility

Equation (86) hold valid, then the ternary semigroup S circ(3)
8vertex(4,C) becomes the ternary
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group Gcirc(3)
8vertex(4,C) =

〈
Mcirc | ν[3], ()

〉
, which does not contain the ordinary (binary) iden-

tity, since I4 /∈ Mcirc. Nevertheless, the ternary group of circle matrices Gcirc[3]
8vertex(4,C) has

the following set I
[3]
circ =

{
I[3]circ

}
of left-right 6-vertex and 8-vertex ternary identities (see

Equations (49) and (50))

I[3]circ =


0 1

a b 0
a 0 0 − ab

c
0 0 0 1

c
0 0 c 0

,


0 − ab

c
1
c 0

0 0 0 1
b

c 0 0 a
0 b 0 0

,


0 − ab

c
1−ad

c 0
− cd

b 0 0 1−ad
b

c 0 0 a
0 b d 0

, (91)

which (without additional conditions) depend upon the free parameters a, b, c, d ∈ C,

b, c 6= 0, and
(

I[3]circ

)2
= I4, I[3]circ ∈ Mcirc. In the binary sense, the matrices from Equation (91)

are mutually similar, but as ternary identities they are different.
If we consider the second operation for matrices (as elements of a general matrix

ring), the binary matrix addition (+), the structure of M8vertex = Mstar ∪Mcirc becomes
more exotic: the set Mstar is a (2, 2)-ringRstar[2,2]

8vertex = 〈Mstar | +, ·〉 with the binary addition
(+) and binary multiplication (·) from the semigroup S star

8vertex, while Mcirc is a (2, 3)-ring

Rcirc[2,3]
8vertex =

〈
Mcirc | +, ν[3]

〉
with the binary matrix addition (+), the ternary matrix multi-

plication ν[3] and the zero Z.
Moreover, because of the distributivity and associativity of binary matrix multiplica-

tion, the relations Equation (88) mean that the set Mcirc (being an abelian group under binary
addition) can be treated as a left and right binary moduleMcirc

8vertex over the ringRstar(2,2)
8vertex

with an operation (∗): the module action Mcirc ∗Mstar = Mcirc, Mstar ∗Mcirc = Mcirc (coin-
ciding with the ordinary matrix product Equation (88)). The left and right modules are com-
patible, since the associativity of ordinary matrix multiplication gives the compatibility con-
dition (Mcirc Mstar)M′circ = Mcirc

(
Mstar M′circ

)
, Mstar ∈ Rstar(2,2)

8vertex , Mcirc, M′circ ∈ R
circ(2,3)
8vertex ,

and therefore Mcirc (as an abelian group under the binary addition (+) and the module
action (∗)) is aRstar(2,2)

8vertex -bimoduleMcirc
8vertex. The last relation Equation (89) shows another

interpretation of Mcirc as a formal “square root” of Mstar (as sets).

2.6. Star 8-Vertex and Circle 8-Vertex Yang–Baxter Maps

Let us consider the star 8-vertex solutions c̃ to the Yang–Baxter Equation (12), having
the shape Equation (82), in the most general setting, over C and for different ranks (i.e.,
including noninvertible ones). In components they are determined by

vy(u− z) = 0, y
(
t2 − wz− x2 + xz

)
= 0,

y(s(x− z) + t(u− x)) = 0, y
(
u(w− x) + x2 − s2) = 0,

svy− tuz = 0, tvy− suz = 0, vwy + xz(x− z)− stz = 0,
uz(z− u) = 0, suz− tvy = 0, y

(
w2 − wz + xz− s2) = 0,

y(s(w− u) + t(z− w)) = 0, v
(
s2 − wz− x2 + xz

)
= 0,

tuz− svy = 0, stz− vxy + wz(z− w) = 0,
stu + u2x− ux2 − vwy = 0, v(s(z− w) + t(w− u)) = 0,
uz(u− z) = 0, y

(
t2 + u(w− x)− w2) = 0,

v(s(u− x) + t(x− z)) = 0, v
(
s2 + u(w− x)− w2) = 0,

vy(z− u) = 0, v
(
u(w− x) + x2 − t2) = 0,

uw2 + vxy− stu− u2w = 0, v
(
w2 − t2 − wz + xz

)
= 0.

(92)

Solutions from, e.g., [31,35,38], etc., should satisfy this overdetermined system of
24 cubic equations for 8 variables.

We search for the 8-vertex constant solutions to the Yang–Baxter equation over C
without additional conditions, unitarity, etc. (which will be considered in the next sections).
We will also need the matrix functions tr and det, which are related to link invariants,
as well as eigenvalues, which help to find similar matrices and q-conjugated solutions
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to braid equations. Take into account that the Yang–Baxter maps are determined up to a
general complex factor t ∈ C Equation (14). For eigenvalues (which are determined up to
the same factor t) we use the notation: {eigenvalue}[algebraic multiplicity].

We found the following 8-vertex solutions, classified by rank and number of parameters.

• Rank = 4 (invertible star Yang–Baxter maps) are

(1) quadratic in two parameters

c̃par=2
rank=4(x, y) =


xy 0 0 y2

0 xy ±xy 0
0 ∓xy xy 0
−x2 0 0 xy

, (93)

tr c̃ = 4xy,
det c̃ = 4x4y4, x 6= 0, y 6= 0,

eigenvalues: {(1 + i)xy}[2], {(1− i)xy}[2],
(94)

(2) quadratic in three parameters

c̃par=3
rank=4,1(x, y, z) =


xy 0 0 y2

0 zy ±xy 0
0 ±xy zy 0
z2 0 0 xy

, (95)

tr c̃ = 2y(x + z),
det c̃ = y4(z2 − x2)2, z 6= ±x, y 6= 0,

eigenvalues: y(x− z),−y(x− z), {y(x + z)}[2],
(96)

(3) irrational in three parameters

c̃par=3
rank=4(x, y, z) =


xy 0 0 y2

0 x+z
2 y ±y

√
x2+z2

2 0

0 ±y
√

x2+z2

2
x+z

2 y 0
(x+z)2

4 0 0 yz

, (97)

tr c̃ = 2y(x + z),
det c̃ = 1

16 y4(x− z)4, y 6= 0, z 6= x,
(98)

eigenvalues:
{

1
2

y
(

x + z−
√

2
√

x2 + z2
)}[2]

,
{

1
2

y
(

x + z +
√

2
√

x2 + z2
)}[2]

.

Note that only the first and the last cases are genuine 8-vertex Yang–Baxter maps,
because the three-parameter matrices Equation (95) are q-conjugated with the 4-vertex
parameter-permutation solutions Equation (35). Indeed,

xy 0 0 y2

0 zy xy 0
0 xy zy 0
z2 0 0 xy

 = (q⊗K q)


y(x + z) 0 0 0

0 0 y(x− z) 0
0 y(x− z) 0 0
0 0 0 y(x + z)

(q−1 ⊗K q−1
)

, (99)

q =

 ±√ y
z b

1 ∓b
√

z
y

, (100)

where b ∈ C is a free parameter. If b = y
z , two matrices q in Equation (100) are simi-

lar, and we have the unique q-conjugation (99). Another solution in Equation (95) is q-
conjugated to the second 4-vertex parameter-permutation solutions Equation (35) such that
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
xy 0 0 y2

0 zy −xy 0
0 −xy zy 0
z2 0 0 xy



= (q⊗K q)


0 0 0 y(x− z)
0 y(x + z) 0 0
0 0 y(x + z) 0

y(x− z) 0 0 0

(q−1 ⊗K q−1
)

, (101)

q =

(
i
√

y
z ±i

√
y
z

±1 1

)
,

(
−i
√

y
z ±i

√
y
z

±1 1

)
, (102)

where q’s are pairwise similar in Equation (102), and therefore we have 2 different q-
conjugations.

• Rank = 2 (noninvertible star Yang–Baxter maps) are quadratic in parameters

c̃par=2
rank=2(x, y) =


xy 0 0 y2

0 xy ±xy 0
0 ±xy xy 0
x2 0 0 xy

,
tr c̃ = 4xy,

eigenvalues: {2xy}[2], {0}[2].
(103)

There are no star 8-vertex solutions of rank 3. The above two solutions for c̃par=2
rank=4 with

different signs are q-conjugated (19) with the matrix q being one of the following

q =

(
0 1
±i x

y 0

)
. (104)

Further families of solutions can be obtained from Equations (93)–(103) by applying
the general q-conjugation Equation (14).

Particular cases of the star solutions are also called X-type operators [37] or magic
matrices [18] connected with the Cartan decomposition of SU(4) [27,28,48,49].

The circle 8-vertex solutions c̃ to the Yang–Baxter Equation (12) of the shape
Equation (83) are determined by the following system of 32 cubic equations for 8 un-
knowns over C

x(ty + z(u− y)− vx) = 0, tx2 + y2(v− z)− wx2 = 0,
y(−st + tx + wy− xz) = 0, su(x− y)− sxy + uxy = 0,
z(t(y− x)− sz + wx) = 0, v

(
sy + x2)− z

(
s2 + ux

)
= 0,

swy− s2v + xy(v− z) = 0, swx− s2w + yz(u− y) = 0,
st2 − t2x + z2(y− u) = 0, su(v− z) + x(xz− tu) = 0,
su(w− v) + xy(z− t) = 0, s(tu− uw + yz)− ty2 = 0,
s
(
tv + z2)− x

(
v2 + wz

)
= 0, svw− vwx + z(xz− wy) = 0,

sw(w− t) + yz(z− v) = 0, s(sz + u(v− w)− vy) = 0,
t(tu− vy + z(y− x)) = 0, tx(x− s) + u2v− uvy = 0,
xy(t− w) + u2w− uvx = 0, t

(
sy + u2)− w

(
ux + y2) = 0,

tz(s− x)− sv2 + tuv = 0, tz(x− y)− svw + uvw = 0,
u
(
w2 − tz

)
− swz + tyz = 0, s2(t− w) + u2(v− z) = 0,

tx(w− t) + uv(z− v) = 0, tvx− t2y− uvw + vwy = 0,
tvy− t2u + w(wy− uz) = 0, u(s(v− w)− tu + wx) = 0,
twz− tv(w + z) + vwz = 0, v(s(w− t)− uw + vx) = 0,
sw2 − uv2 + v2y− w2x = 0, w(sv + u(z− v)− wy) = 0.

(105)

We found the 8-vertex solutions, classified by rank and number of parameters.

• Rank = 4 (invertible circle Yang–Baxter map) are quadratic in parameters
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c̃par=3
rank=4(x, y, z) =


0 xy yz 0
z2 0 0 xy
xz 0 0 yz
0 z2 xz 0

, (106)

tr c̃ = 0,
det c̃ = y2z2(z2 − x2), y 6= 0, z 6= 0, z 6= ±x,

eigenvalues:
√−yz(x− z),−√−yz(x− z),

√
yz(x + z),−√yz(x + z).

(107)

• Rank = 2 (noninvertible circle Yang–Baxter map) are linear in parameters

c̃par=2
rank=2(x, y) =


0 −y −y 0
−x 0 0 y
−x 0 0 y
0 x x 0

, eigenvalues: 2
√

xy,−2
√

xy, {0}[2]. (108)

There are no circle 8-vertex solutions of rank 3. The corresponding families of solutions
can be derived from the above by using the q-conjugation Equation (14).

A particular case of the 8-vertex circle solution Equation (106) was considered in [50].

2.7. Triangle Invertible 9- and 10-Vertex Solutions

There are some higher vertex solutions to the Yang–Baxter equations that are not in
the above star/circle classification. They are determined by the following system of 15
cubic equations for 9 unknowns over C

y(−py− x(u + w− y) + v(y + z)) + s(v− x)(v + x) = 0,

x(−ty + vz + x(y− z)) = 0,

sx(t− v) + ty(w− z) + vz(y− u) = 0,

z(pz− t(y + z) + x(u + w− z)) + s
(

x2 − t2
)
= 0,

ps(−u + w− y + z) + s(−t(u + z) + x(u− w + y− z)

+ v(w + y)) + uwy− uwz− uyz + wyz = 0,

t(y(p− t) + u(x− v)) = 0, t(pz− t(u + z) + ux) = 0,

p2s + pu(−u + y + z)− t(st + u(u + w)) + u2x = 0,

t(z(p− v)− tw + wx) = 0,

ps(t− v) + tw(y− u) + uv(w− z) = 0, v(−py + v(w + y)− wx) = 0,

v(z(v− p) + tw− wx) = 0, v(y(t− p) + u(v− x)) = 0,

p2(−s) + pw(w− y− z) + sv2 + w(v(u + w)− wx) = 0,

p(p(w− u)− tw + uv) = 0, (109)

We found the following 9-vertex Yang–Baxter maps

c̃9−vert,1
rank=4 =


x y z s
0 0 x y
0 x 0 z
0 0 0 x

,


x y y z
0 0 −x −y
0 −x 0 −y
0 0 0 x

,


x y −y z
0 0 x − zx

y
0 x 0 zx

y
0 0 0 x

, (110)

tr c̃ = 2x, det c̃ = −x4, x 6= 0, eigenvalues: {x}[3],−x. (111)
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The third matrix in Equation (110) is conjugated with the 4-vertex parameter-permutation
solutions Equation (35) of the form (which has the same the same eigenvalues Equation (111))

c̃4−vert
rank=4(x) =


x 0 0 0
0 0 x 0
0 x 0 0
0 0 0 x

 (112)

by the conjugated matrix

U9to4 =


1 − y

2x
y

2x 0
0 1 0 − z

y
0 0 1 0
0 0 0 1

. (113)

The matrix Equation (113) cannot be presented as the Kronecker product q ⊗K q
Equation (16), and so the third matrix in Equations (110) and (112) are different solu-
tions of the Yang–Baxter Equation (12). Despite the first two matrices in Equation (110)
have the same eigenvalues (111), they are not similar, because they have different from
Equation (112) middle Jordan blocks.

Then, we have another 3-parameter solutions with fractions

c̃9−vert,2
rank=4 (x, y, z) =


x y y z
0 0 −x y− 2xz

y
0 −x 0 y− 2xz

y

0 0 0 x
(

4xz
y2 − 3

)
, (114)

tr c̃ = 2x 2xz−y2

y2 ,

det c̃ = x4
(

3− 4xz
y2

)
, x 6= 0, y 6= 0, z 6= 3y2

4x ,

eigenvalues: {x}[2],−x, x
(

4xz
y2 − 3

)
,

(115)

and

c̃9−vert,3
rank=4 (x, y, z) =


x y −y z
0 0 −x 2zx

y + y
0 3x 0 2zx

y − y

0 0 0 4zx2

y2 + x

, (116)

tr c̃ = 2x
(

1 + 2 xz
y2

)
det c̃ = 3x4

(
4zx
y2 + 1

)
, x 6= 0, y 6= 0, z 6= y2

4x

eigenvalues: x, i
√

3x,−i
√

3x, x
(

1 + 4zx
y2

) (117)

The 4-parameter 9-vertex solution is

c̃9−vert,par=4
rank=4 (x, y, z, s) =


x y z s
0 0 −x y− 2sx

z
0 x− 2xy

z 0 z− 2sx
z

0 0 0 x(4sx−z(2y+z))
z2

, (118)

tr c̃ = 2x 2sx−yz
z2

det c̃ = x4(2y−z)(z(2y+z)−4sx)
z3 , x 6= 0, y 6= z

2 , z 6= 0,
(119)

eigenvalues: x, x

√
2y
z
− 1,−x

√
2y
z
− 1,

x(4sx− z(2y + z))
z2 . (120)
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We also found 5-parameter, 9-vertex solution of the form

c̃9−vert,par=5
rank=4 (x, y, z, s, t) =


x y z s
0 0 t s(t−x)

z + y
0 y(t−x)

z + x 0 s(t−x)
z + z

0 0 0 s(t−x)2+tz(y+z)−xyz
z2

, (121)

tr c̃ =
st2 + sx2 + tz2 + xz2 − 2stx + tyz− xyz

z2 , (122)

det c̃ =
xt(x(y− z)− ty)

(
s(t− x)2 + tz(y + z)− xyz

)
z3 , (123)

eigenvalues: x,

√
t
z
(ty− xy + xz),−

√
t
z
(ty− xy + xz),

st2 − 2stx + tz2 + ytz + sx2 − yxz
z2 , x 6= 0, z 6= 0, t 6= 0.

Finally, we found the following 3-parameter 10-vertex solution

c̃10−vert
rank=4 (x, y, z) =


x y y y2

x
0 0 −x −y
0 −x 0 −y
z 0 0 x

, (124)

tr c̃ = 2x,
det c̃ = −x

(
x3 + zy2), x 6= 0,

eigenvalues: {x}[2],
√

x2 + zy2

x ,−
√

x2 + zy2

x .
(125)

This 10-vertex solution is conjugated with the 4-vertex parameter-permutation solu-
tions Equation (35) of the form (which has the same the same eigenvalues as Equation (124))

c̃4−vert
rank=4(x, y, z) =


x 0 0 0

0 0 x + y2z
x2 0

0 x 0 0
0 0 0 x

 (126)

by the conjugated matrix

U10to4 =


0 x

z − x
z 0

−1 − x2

yz
x2

yz − y
x

1 − x2

yz
x2

yz 0
0 0 1 1

. (127)

Because the matrix Equation (127) cannot be presented as the Kronecker product
q ⊗K q Equation (16), therefore Equations (124) and (126) are different solutions of the
Yang–Baxter Equation (12).

Further families of the higher vertex solutions to the constant Yang–Baxter Equation (12)
can be obtained from the above ones by using the q-conjugation Equation (14).

3. Polyadic Braid Operators and Higher Braid Equations

The polyadic version of the braid Equation (1) was introduced in [21]. Here, we define
higher analog of the Yang–Baxter operator and develop its connection with higher braid
groups and quantum computations.
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Let us consider a vector space V over a field K. A polyadic (n-ary) braid operator CVn is
defined as the mapping [21]

CVn :

n︷ ︸︸ ︷
V⊗ . . .⊗V→

n︷ ︸︸ ︷
V⊗ . . .⊗V. (128)

The polyadic analog of the braid Equation (1) was introduced in [21] using the asso-
ciative quiver technique [46].

Let us introduce n operators

Ap :

2n−1︷ ︸︸ ︷
V⊗ . . .⊗V→

2n−1︷ ︸︸ ︷
V⊗ . . .⊗V, (129)

Ap = id⊗(p−1)
V ⊗CVn ⊗ id⊗(n−p)

V , p = 1, . . . , n, (130)

i.e., p is a place of CVn instead of one idV in id⊗n
V . A system of (n− 1) polyadic (n-ary) braid

equations is defined by

A1 ◦A2 ◦A3 ◦A4 ◦ . . . ◦An−2 ◦An−1 ◦An ◦A1 (131)

= A2 ◦A3 ◦A4 ◦A5 ◦ . . . ◦An−1 ◦An ◦A1 ◦A2 (132)
...

= An ◦A1 ◦A2 ◦A3 ◦ . . . ◦An−3 ◦An−2 ◦An−1 ◦An. (133)

In the lowest non-binary case n = 3, we have the ternary braid operator CV3 : V⊗
V⊗V→ V⊗V⊗V and two ternary braid equations on V⊗5

(CV3 ⊗ idV⊗ idV) ◦ (idV⊗CV3 ⊗ idV) ◦ (idV⊗ idV⊗CV3) ◦ (CV3 ⊗ idV⊗ idV)

= (idV⊗CV3 ⊗ idV) ◦ (idV⊗ idV⊗CV3) ◦ (CV3 ⊗ idV⊗ idV) ◦ (idV⊗CV3 ⊗ idV)

= (idV⊗ idV⊗CV3) ◦ (CV3 ⊗ idV⊗ idV) ◦ (idV⊗CV3 ⊗ idV) ◦ (idV⊗ idV⊗CV3). (134)

Note that the higher braid equations presented above differ from the generalized
Yang–Baxter equations of [23,24,51].

The higher braid operators Equation (128) satisfying the higher braid Equations (131)–(133)
can represent the higher braid group [22] using Equations (6) and (130). By analogy with
Equation (6) we introduce m operators by

Bi(m) :

m+n−2︷ ︸︸ ︷
V⊗ . . .⊗V→

m+n−2︷ ︸︸ ︷
V⊗ . . .⊗V, B0(m) = (idV)

⊗(m+n−2), (135)

Bi(m) = id⊗(i−1)
V ⊗CVn ⊗ id⊗(m−i−1)

V , i = 1, . . . , m− 1. (136)

The representation π
[n]
m of the higher braid group B[n+1]

m (of (n + 1)-degree in the
notation of [22]) (having m− 1 generators σi and identity e) is given by

π
[n]
m : B[n+1]

m −→ End V⊗(m+n−2), (137)

π
[n]
m (σi) = Bi(m), i = 1, . . . , m− 1. (138)

In this way, the generators σi of the higher braid group B[n+1]
m satisfy the relations

• n higher braid relations
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n+1︷ ︸︸ ︷
σiσi+1 . . . σi+n−2σi+n−1σi (139)

= σi+1σi+2 . . . σi+n−1σiσi+1 (140)
...

= σi+n−1σiσi+1σi+2 . . . σiσi+1σi+n−1, (141)

i = 1, . . . , m− n, (142)

• n-ary far commutativity

n︷ ︸︸ ︷
σi1 σi2 . . . σin−2 σin−1 σin (143)
...

= στ(i1)στ(i2) . . . στ(in−2)στ(in−1)
στ(in), (144)

if all
∣∣ip − is

∣∣ ≥ n, p, s = 1, . . . , n, (145)

where τ is an element of the permutation symmetry group τ ∈ Sn. Note, that the relations
Equations (139)–(144) coincide with those from [22], obtained by another method, that is
via the polyadic-binary correspondence.

In the case m = 4 and n = 3, the higher braid group B[4]4 is represented by Equation (134)
and generated by 3 generators σ1, σ2, σ3, which satisfy two braid relations only (without
far commutativity)

σ1σ2σ3σ1 = σ2σ3σ1σ2 = σ3σ1σ2σ3. (146)

According to Equations (143) and (144), the far commutativity relations appear when
the number of elements of the higher braid groups satisfy

m ≥ mmin = n(n− 1) + 2, (147)

such that all conditions Equation (145) should hold. Thus, to have the far commutativity
relations in the ordinary (binary) braid group Equation (5), we need 3 generators and B4,
while for n = 3 we need at least 7 generators σi and B[4]8 (see Example 7.12 in [22]).

In the concrete realization of V as a d-dimensional euclidean vector space Vd over
the complex numbers C and basis {ei}, i = 1, . . . , d, the polyadic (n-ary) braid oper-
ator CVn becomes a matrix Cdn of size dn × dn, which satisfies the n − 1 higher braid
Equations (131)–(133) in matrix form. In the components, the matrix braid operator is

Cdn ◦
(
ei1 ⊗ ei2 ⊗ . . .⊗ ein

)
=

d

∑
j′1,j′2 ...j′n=1

c j′1 j′2 ...j′n
i1i2 ...in · ej′1

⊗ ej′2
⊗ . . .⊗ ej′n . (148)

Thus, we have d2n unknowns in Cdn satisfying (n− 1)d4n−2 Equations (131)–(133)
in components of polynomial power n + 1. In the minimal non-binary case n = 3, we
have 2d10 equations of power 4 for d6 unknowns, e.g., even for d = 2 we have 2048 for
64 components, and for d = 3 there are 118 098 equations for 729 components. Therefore,
solving the matrix higher braid equations directly is cumbersome, and only particular
cases are possible to investigate, for instance by using permutation matrices Equation (28),
or the star and circle matrices Equations (82) and (83).

4. Solutions to the Ternary Braid Equations

Here we consider some special solutions to the minimal ternary version (n = 3) of the
polyadic braid Equations (131)–(133), the ternary braid Equation (134).
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4.1. Constant Matrix Solutions

Let us consider the following two-dimensional vector space V ≡ Vd=2 (which is
important for quantum computations) and the component matrix realization Equation (148)
of the ternary braiding operator C8 : V ⊗V ⊗V → V ⊗V ⊗V as

C8 ◦
(
ei1 ⊗ ei2 ⊗ ei3

)
=

2

∑
j′1,j′2,j′3=1

c j′1 j′2 j′3
i1i2i3

· ej′1
⊗ ej′2

⊗ ej′3
, i1,2,3, j′1,2,3 = 1, 2. (149)

We now turn Equation (149) to the standard matrix form (just to fix notations) by
introducing the 8-dimensional vector space Ṽ8 = V ⊗ V ⊗ V with the natural basis
ẽk̃ = {e1 ⊗ e1 ⊗ e1, e1 ⊗ e1 ⊗ e2, . . . , e2 ⊗ e2 ⊗ e2}, where k̃ = 1, . . . , 8 is a cumulative in-
dex. The linear operator C̃8 : Ṽ8 → Ṽ8 corresponding to Equation (149) is given by the 8× 8
matrix c̃ı̃ j̃ as C̃8 ◦ ẽı̃ = ∑8

j̃=1 c̃ı̃ j̃ · ẽ j̃. The operators Equations (129) and (130) become three

32× 32 matrices Ã1,2,3 as

Ã1 = c̃⊗K I2 ⊗K I2, Ã2 = I2 ⊗K c̃⊗K I2, Ã3 = I2 ⊗K I2 ⊗K c̃, (150)

where ⊗K is the Kronecker product of matrices and I2 is the 2× 2 identity matrix. In this
notation the operator ternary braid Equations (134) become the matrix equations (cf.
Equations (131)–(133)) with n = 3)

Ã1 Ã2 Ã3 Ã1 = Ã2 Ã3 Ã1 Ã2 = Ã3 Ã1 Ã2 Ã3, (151)

which we call the total matrix ternary braid equations. Some weaker versions of ternary
braiding are described by the partial braid equations

partial 12-braid Equation Ã1 Ã2 Ã3 Ã1 = Ã2 Ã3 Ã1 Ã2, (152)

partial 13-braid Equation Ã1 Ã2 Ã3 Ã1 = Ã3 Ã1 Ã2 Ã3, (153)

partial 23-braid Equation Ã2 Ã3 Ã1 Ã2 = Ã3 Ã1 Ã2 Ã3, (154)

where, obviously, two of them are independent. It follows from Equations (131)–(133) that
the weaker versions of braiding are possible for n ≥ 3, only, so for higher than binary
braiding (the Yang–Baxter Equation (8)).

Thus, comparing Equations (151) and (146), we conclude that (for each invertible
matrix c̃ in Equation (150) satisfying Equation (151)) the isomorphism π̃

[4]
4 : σi 7→ Ãi,

i = 1, 2, 3 gives a representation of the braid group B[4]4 by 32× 32 matrices over C.
Now, we can generate families of solutions corresponding to Equations (150) and (151)

in the following way. Consider an invertible operator Q : V → V in the two-dimensional
vector space V ≡ Vd=2. In the basis {e1, e2} its 2 × 2 matrix q is given by Q ◦ ei =

∑2
j=1 qij · ej. In the natural 8-dimensional basis ẽk̃, the tensor product of operators Q⊗Q⊗Q

is presented by the Kronecker product of matrices q̃8 = q⊗K q⊗K q. Let the 8× 8 matrix c̃
be a fixed solution to the ternary braid matrix Equation (151). Then, the family of solutions
c̃(q) corresponding to the invertible 2× 2 matrix q is the conjugation of c̃ by q̃8 so that

c̃(q) = q̃8 c̃q̃−1
8 = (q⊗K q⊗K q)c̃

(
q−1 ⊗K q−1 ⊗K q−1

)
. (155)

This also follows directly from the conjugation of the braid Equations (151)–(154) by
q ⊗K q ⊗K q ⊗K q ⊗K q and Equation (150). If we include the obvious invariance of the
braid equations with the respect of an overall factor t ∈ C, the general family of solutions
becomes (cf. the Yang–Baxter Equation [35])

c̃(q, t) = tq̃8 c̃q̃−1
8 = t(q⊗K q⊗K q)c̃

(
q−1 ⊗K q−1 ⊗K q−1

)
. (156)
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Let

q =

(
a b
c d

)
∈ GL(2,C), (157)

and then the manifest form of q̃8 is

q̃8 =



a3 a2b a2b ab2 a2b ab2 ab2 b3

a2c a2d abc abd abc abd b2c b2d
a2c abc a2d abd abc b2c abd b2d
ac2 acd acd ad2 bc2 bcd bcd bd2

a2c abc abc b2c a2d abd abd b2d
ac2 acd bc2 bcd acd ad2 bcd bd2

ac2 bc2 acd bcd acd bcd ad2 bd2

c3 c2d c2d cd2 c2d cd2 cd2 d3


. (158)

It is important that not every conjugation matrix has this very special form Equation (158),
and that therefore, in general, conjugated matrices are different solutions of the ternary braid
Equation (151). The matrix q̃?8 q̃8 (? being the Hermitian conjugation) is diagonal (this case is
important for further classification similar to the binary one [31]), when the conditions

ab∗ + cd∗ = 0 (159)

hold, and so the matrix q has the special form (depending of 3 complex parameters,
for d 6= 0)

q =

(
a b
−a b∗

d∗ d

)
. (160)

We can present the families Equation (155) for different ranks, because the conjuga-
tion by an invertible matrix does not change rank. To avoid demanding Equation (159),
due to the cumbersome calculations involved, we restrict ourselves to a triangle matrix
for q Equation (157).

In general, there are 8× 8 = 64 unknowns (elements of the matrix c̃), and each partial
braid Equations (152)–(154) gives 32× 32 = 1024 conditions (of power 4) for the elements
of c̃, while the total braid Equation (151) gives twice as many conditions 1024× 2 = 2048
(cf. the binary case: 64 cubic equations for 16 unknowns Equation (8)). This means that
even in the ternary case, the higher braid system of equations is hugely overdetermined,
and finding even the simplest solutions is a non-trivial task.

4.2. Permutation and Parameter-Permutation 8-Vertex Solutions

First, we consider the case when c̃ is a binary (or logical) matrix consisting of {0, 1}
only, and, moreover, it is a permutation matrix (see Section 2.4). In the latter case, c̃ can be
considered as a matrix over the field F2 (Galois field GF(2)). In total, there are 8! = 40, 320
permutation matrices of the size 8× 8. All of them are invertible of full rank 8, because they
are obtained from the identity matrix by permutation of rows and columns.

We have found the following four invertible 8-vertex permutation matrix solutions to
the ternary braid Equation (151)

c̃bisymm1
rank=8 =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1


, c̃bisymm2

rank=8 =



0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0


, (161)

tr c̃ = 4,
det c̃ = 1,

eigenvalues:{1}[4], {−1}[4],
(162)
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and

c̃symm1
rank=8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0


, c̃symm2

rank=8 =



0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


, (163)

tr c̃ = 4,
det c̃ = 1,

eigenvalues:{1}[4], {−1}[4].
(164)

The first two solutions Equation (161) are given by bisymmetric permutation matrices
(see Equation (33)), and we call them 8-vertex bisymm1 and bisymm2, respectively. The sec-
ond two solutions Equation (163) are symmetric matrices only (we call them 8-vertex symm1
and symm2), but one matrix is a reflection of the other with respect to the minor diagonal
(making them mutually persymmetric). No 90◦-symmetric (see Equation (34)) solution for
the ternary braid Equations (151) was found. The bisymmetric and symmetric matrices
have the same eigenvalues, and are therefore pairwise conjugate, but not q-conjugate,
because the conjugation matrices do not have the form Equation (158). Thus, they are 4
different permutation solutions to the ternary braid Equations (151). Note that the bisymm1
solution Equation (161) coincides with the three-qubit swap operator introduced in [18].

All the permutation solutions are reflections (or involutions) c̃2 = I8 having det c̃ = +1,
eigenvalues {1,−1}, and are semi-magic squares (the sums in rows and columns are 1,
but not the sums in both diagonals). The 8-vertex permutation matrix solutions do not
form a binary or ternary group, because they are not closed with respect to multiplication.

By analogy with Equations (35)–(37), we obtain the 8-vertex parameter-permutation
solutions from Equations (161)–(163) by replacing units with parameters and then solv-
ing the ternary braid Equations (151). Each type of the permutation solutions bisymm1, 2
and symm1, 2 from Equations (161)–(163) will give a corresponding series of parameter-
permutation solutions over C. The ternary braid maps are determined up to a general
complex factor (see Equation (14) for the Yang–Baxter maps and Equation (156)), and there-
fore we can present all the parameter-permutation solutions in polynomial form.

• The bisymm1 series consists of 2 two-parameter matrices with and 2 two-parameter
matrices

c̃bisymm1,1
rank=8 (x, y) =



xy 0 0 0 0 0 0 0
0 0 0 0 0 0 ±y2 0
0 0 xy 0 0 0 0 0
0 0 0 0 ±x2 0 0 0
0 0 0 ±y2 0 0 0 0
0 0 0 0 0 xy 0 0
0 ±x2 0 0 0 0 0 0
0 0 0 0 0 0 0 xy


, (165)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[6], {−xy}[2],
(166)
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and

c̃bisymm1,2
rank=8 (x, y) =



xy 0 0 0 0 0 0 0
0 0 0 0 0 0 ±y2 0
0 0 xy 0 0 0 0 0
0 0 0 0 ±x2 0 0 0
0 0 0 ∓y2 0 0 0 0
0 0 0 0 0 xy 0 0
0 ∓x2 0 0 0 0 0 0
0 0 0 0 0 0 0 xy


, (167)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[4], {ixy}[2], {−ixy}[2].
(168)

• The bisymm2 series consists of 4 two-parameter matrices

c̃bisymm2,1
rank=8 (x, y) =



0 0 0 0 0 0 0 x6

0 ±x3y3 0 0 0 0 0 0
0 0 0 0 0 x4y2 0 0
0 0 0 ±x3y3 0 0 0 0
0 0 0 0 ±x3y3 0 0 0
0 0 x2y4 0 0 0 0 0
0 0 0 0 0 0 ±x3y3 0
y6 0 0 0 0 0 0 0


, (169)

tr c̃ = ±4x3y3,
det c̃bisymm2

rank=8 (x, y) = x24y24, x, y 6= 0,
(170)

eigenvalues:
{

x3y3
}[2]

,
{
−x3y3

}[2]
,
{
±x3y3

}[4]
,

and

c̃bisymm2,2
rank=8 (x, y) =



0 0 0 0 0 0 0 x6

0 ±x3y3 0 0 0 0 0 0
0 0 0 0 0 x4y2 0 0
0 0 0 ±x3y3 0 0 0 0
0 0 0 0 ±x3y3 0 0 0
0 0 −x2y4 0 0 0 0 0
0 0 0 0 0 0 ±x3y3 0
−y6 0 0 0 0 0 0 0


, (171)

tr c̃ = ±4x3y3

det c̃bisymm2
rank=8 (x, y) = x24y24, x, y 6= 0,

(172)

eigenvalues:
{

ix3y3
}[2]

,
{
−ix3y3

}[2]
,
{
±x3y3

}[4]
.

• The symm1 series consists of 4 two-parameter matrices
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c̃symm1,1
rank=8 (x, y) =



xy 0 0 0 0 0 0 0
0 0 0 0 ±xy 0 0 0
0 0 0 0 0 0 0 y2

0 0 0 xy 0 0 0 0
0 ±xy 0 0 0 0 0 0
0 0 0 0 0 xy 0 0
0 0 0 0 0 0 xy 0
0 0 x2 0 0 0 0 0


, (173)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[6], {−xy}[2],
(174)

and

c̃symm1,2
rank=8 (x, y) =



xy 0 0 0 0 0 0 0
0 0 0 0 ±xy 0 0 0
0 0 0 0 0 0 0 y2

0 0 0 xy 0 0 0 0
0 ∓xy 0 0 0 0 0 0
0 0 0 0 0 xy 0 0
0 0 0 0 0 0 xy 0
0 0 −x2 0 0 0 0 0


, (175)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[6], {−xy}[2],
(176)

• The symm2 series consists of 4 two-parameter matrices

c̃symm2,1
rank=8 (x, y) =



0 0 0 0 0 y2 0 0
0 xy 0 0 0 0 0 0
0 0 xy 0 0 0 0 0
0 0 0 0 0 0 ±xy 0
0 0 0 0 xy 0 0 0
x2 0 0 0 0 0 0 0
0 0 0 ±xy 0 0 0 0
0 0 0 0 0 0 0 xy


, (177)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[4], {ixy}[2], {−ixy}[2].
(178)

and

c̃symm2,2
rank=8 (x, y) =



0 0 0 0 0 y2 0 0
0 xy 0 0 0 0 0 0
0 0 xy 0 0 0 0 0
0 0 0 0 0 0 ±xy 0
0 0 0 0 xy 0 0 0
−x2 0 0 0 0 0 0 0

0 0 0 ∓xy 0 0 0 0
0 0 0 0 0 0 0 xy


, (179)

tr c̃ = 4xy,
det c̃ = x8y8, x, y 6= 0,

eigenvalues: {xy}[4], {ixy}[2], {−ixy}[2].
(180)
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The above matrices with the same eigenvalues are similar, but their conjugation
matrices do not have the form of the triple Kronecker product Equation (158), and therefore
all of them together are 16 different two-parameter invertible solutions to the ternary braid
Equation (151). Further families of solutions can be obtained using ternary q-conjugation
Equation (156).

4.3. Group Structure of the Star and Circle 8-Vertex Matrices

Here, we investigate the group structure of 8× 8 matrices by analogy with the star-like
Equation (39) and circle-like Equation (40) 4× 4 matrices, which are connected with our
8-vertex constant solutions Equations (165)–(179) to the ternary braid Equations (151).

Let us introduce the star-like 8× 8 matrices (see their 4× 4 analog Equation (39)), which
correspond to the bisymm series Equations (165)–(171)

N′star1 =



x 0 0 0 0 0 0 0
0 0 0 0 0 0 y 0
0 0 z 0 0 0 0 0
0 0 0 0 s 0 0 0
0 0 0 t 0 0 0 0
0 0 0 0 0 u 0 0
0 vs. 0 0 0 0 0 0
0 0 0 0 0 0 0 w


, N′star2 =



0 0 0 0 0 0 0 y
0 x 0 0 0 0 0 0
0 0 0 0 0 s 0 0
0 0 0 z 0 0 0 0
0 0 0 0 u 0 0 0
0 0 t 0 0 0 0 0
0 0 0 0 0 0 w 0
v 0 0 0 0 0 0 0


, (181)

tr N′ = x + z + u + w, det N′ = stuvwxyz, s, t, u, v, w, x, y, z 6= 0,
eigenvalues: x, z, u, w,−√yv,

√
yv,−

√
st,
√

st,

and the circle-like 8× 8 matrices (see their 4× 4 analog Equation (40)) which correspond to
the symm series (173)–(179)

N′circ1 =



x 0 0 0 0 0 0 0
0 0 0 0 y 0 0 0
0 0 0 0 0 0 0 z
0 0 0 s 0 0 0 0
0 t 0 0 0 0 0 0
0 0 0 0 0 u 0 0
0 0 0 0 0 0 vs. 0
0 0 w 0 0 0 0 0


, N′circ2 =



0 0 0 0 0 y 0 0
0 x 0 0 0 0 0 0
0 0 s 0 0 0 0 0
0 0 0 0 0 0 z 0
0 0 0 0 u 0 0 0
t 0 0 0 0 0 0 0
0 0 0 w 0 0 0 0
0 0 0 0 0 0 0 v


, (182)

tr N′ = x + s + u + v, det N′ = stuvwxyz, s, t, u, v, w, x, y, z 6= 0,
eigenvalues: x, s, u, v,−√ty,

√
ty,−

√
wz,
√

wz.
(183)

Denote the corresponding sets by N′star1,2 =
{

N′star1,2

}
and N′circ1,2 =

{
N′circ1,2

}
, then

we have for them (which differs from 4× 4 matrix sets Equation (46))

M′f ull = N′star1 ∪N′star2 ∪N′circ1 ∪N′circ2, N′star1 ∩N′star2 ∩N′circ1 ∩N′circ2 = D, (184)

where D is the set of diagonal 8 × 8 matrices. As for 4 × 4 star-like and circle-like
matrices, there are no closed binary multiplications for the sets of 8-vertex matrices
Equations (181) and (182). Nevertheless, we have the following triple set products

N′star1N′star1N′star1 = N′star1, (185)

N′star2N′star2N′star2 = N′star2, (186)

N′circ1N′circ1N′circ1 = N′circ1, (187)

N′circ2N′circ2N′circ2 = N′circ2, (188)

which should be compared with the analogous 4× 4 matrices Equations (44) and (45): note
that now we do not have pentuple products.



Universe 2021, 7, 301 27 of 47

Using the definitions Equations (47)–(50), we interpret the closed products
Equations (185)–(188) as the multiplications µ[3] (being the ordinary triple matrix product)
of the ternary semigroups S [3]star1,2(8,C) =

{
N′star1,2 | µ[3]

}
and S [3]circ1,2(8,C) =

{
N′circ1,2 | µ[3]

}
,

respectively. The corresponding querelements Equation (47) are given by

N̄′star1 = N′−1
star1 =



1
x 0 0 0 0 0 0 0
0 0 0 0 0 0 1

v 0
0 0 1

z 0 0 0 0 0
0 0 0 0 1

t 0 0 0
0 0 0 1

s 0 0 0 0
0 0 0 0 0 1

u 0 0
0 1

y 0 0 0 0 0 0
0 0 0 0 0 0 0 1

w


, (189)

N̄′star2 = N′−1
star2 =



0 0 0 0 0 0 0 1
v

0 1
x 0 0 0 0 0 0

0 0 0 0 0 1
t 0 0

0 0 0 1
z 0 0 0 0

0 0 0 0 1
u 0 0 0

0 0 1
s 0 0 0 0 0

0 0 0 0 0 0 1
w 0

1
y 0 0 0 0 0 0 0


, s, t, u, v, w, x, y, z 6= 0, (190)

and

N̄′circ1 = N′−1
circ1 =



1
x 0 0 0 0 0 0 0
0 0 0 0 1

t 0 0 0
0 0 0 0 0 0 0 1

w
0 0 0 1

s 0 0 0 0
0 1

y 0 0 0 0 0 0
0 0 0 0 0 1

u 0 0
0 0 0 0 0 0 1

v 0
0 0 1

z 0 0 0 0 0


, (191)

N̄′circ2 = N′−1
circ2 =



0 0 0 0 0 1
t 0 0

0 1
x 0 0 0 0 0 0

0 0 1
s 0 0 0 0 0

0 0 0 0 0 0 1
w 0

0 0 0 0 1
u 0 0 0

1
y 0 0 0 0 0 0 0
0 0 0 1

z 0 0 0 0
0 0 0 0 0 0 0 1

v


, s, t, u, v, w, x, y, z 6= 0. (192)

The ternary semigroups S [3]star1,2(8,C) =
{

N′star1,2 | µ[3]
}

and S [3]circ1,2(8,C) ={
N′circ1,2 | µ[3]

}
in which every element has its querelement given by Equations (189)–(191)

become the ternary groups G [3]star1,2(8,C) =
{

N′star1,2 | µ[3], ( )
}

and G [3]circ1,2(8,C) ={
N′circ1,2 | µ[3], ( )

}
, which are four different (3-nonderived) ternary subgroups of the de-

rived ternary general linear group GL[3](8,C). The ternary identities in G [3]star1,2(8,C) and
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G [3]circ1,2(8,C) are the following different continuous sets I
′[3]
star1,2 =

{
I′[3]star1,2

}
and I

′[3]
circ1,2 ={

I′[3]circ1,2

}
, where

I′[3]star1 =



eiα1 0 0 0 0 0 0 0
0 0 0 0 0 0 eiα2 0
0 0 eiα3 0 0 0 0 0
0 0 0 0 eiα4 0 0 0
0 0 0 eiα5 0 0 0 0
0 0 0 0 0 eiα6 0 0
0 eiα7 0 0 0 0 0 0
0 0 0 0 0 0 0 eiα8


,

I′[3]star2 =



0 0 0 0 0 0 0 eiα2

0 eiα1 0 0 0 0 0 0
0 0 0 0 0 eiα4 0 0
0 0 0 eiα3 0 0 0 0
0 0 0 0 eiα6 0 0 0
0 0 eiα5 0 0 0 0 0
0 0 0 0 0 0 eiα8 0

eiα7 0 0 0 0 0 0 0


,

e2iα1 = e2iα3 = e2iα6 = e2iα8 = ei(α2+α7) = ei(α4+α5) = 1, α1, . . . , α8 ∈ R, (193)

and

I′[3]circ1 =



eiα1 0 0 0 0 0 0 0
0 0 0 0 eiα2 0 0 0
0 0 0 0 0 0 0 eiα3

0 0 0 eiα4 0 0 0 0
0 eiα5 0 0 0 0 0 0
0 0 0 0 0 eiα6 0 0
0 0 0 0 0 0 eiα7 0
0 0 eiα8 0 0 0 0 0


,

I′[3]circ2 =



0 0 0 0 0 eiα2 0 0
0 eiα1 0 0 0 0 0 0
0 0 eiα4 0 0 0 0 0
0 0 0 0 0 0 eiα3 0
0 0 0 0 eiα6 0 0 0

eiα5 0 0 0 0 0 0 0
0 0 0 eiα8 0 0 0 0
0 0 0 0 0 0 0 eiα7


,

e2iα1 = e2iα4 = e2iα6 = e2iα7 = ei(α3+α8) = ei(α2+α5) = 1, α1, . . . , α8 ∈ R, (194)

such that all the identities are the 8× 8 matrix reflections
(

I′[3]
)2

= I8 (see Equations (50)).
If αj = 0, j = 1, . . . , 8, the ternary identities Equations (193) and (194) coincide with the
8× 8 permutation matrices Equations (161)–(163), which are solutions to the ternary braid
Equation (151).

The module structure of the 8-vertex star-like Equation (181) and circle-like (182) 8× 8
matrix sets differs from the 4× 4 matrix sets Equations (58)–(81). Firstly, because of the
absence of pentuple matrix products Equations (76)–(81), and secondly through some
differences in the ternary closed products of sets.
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We have the following triple relations between star and circle matrices separately (the sets
corresponding to modules are in brackets, and we informally denote modules by their sets)

N′star1
(
N′star2

)
N′star1 =

(
N′star2

)
, N′circ1

(
N′circ2

)
N′circ1 =

(
N′circ2

)
, (195)

N′star1N′star1
(
N′star2

)
=
(
N′star2

)
, N′circ1N′circ1

(
N′circ2

)
= N′circ2, (196)(

N′star2
)
N′star1N′star1 =

(
N′star2

)
,
(
N′circ2

)
N′circ1N′circ1 =

(
N′circ2

)
, (197)

N′star2N′star2
(
N′star1

)
=
(
N′star1

)
, N′circ2N′circ2

(
N′circ1

)
=
(
N′circ1

)
, (198)

N′star2
(
N′star1

)
N′star2 =

(
N′star1

)
, N′circ2

(
N′circ1

)
N′circ2 =

(
N′circ1

)
, (199)(

N′star1
)
N′star2N′star2 =

(
N′star1

)
,
(
N′circ1

)
N′circ2N′circ2 =

(
N′circ1

)
. (200)

So we may observe the following module structures:
(1) from Equations (195)–(197), the sets N′star2 (N′circ2) are the middle, right and left

ternary modules over N′star1 (N′circ1);
(2) from Equations (198)–(200), the sets N′star1 (N′circ1) are middle, right and left ternary

modules over N′star2 (N′circ2);

N′star1N′star1
(
N′circ1

)
=
(
N′circ1

)
,
(
N′circ1

)
N′star1N′star1 =

(
N′circ1

)
, (201)

N′star1N′star1
(
N′circ2

)
=
(
N′circ2

)
,
(
N′circ2

)
N′star1N′star1 =

(
N′circ2

)
, (202)

N′star2N′star2
(
N′circ1

)
=
(
N′circ1

)
,
(
N′circ1

)
N′star2N′star2 =

(
N′circ1

)
, (203)

N′star2N′star2
(
N′circ2

)
=
(
N′circ2

)
,
(
N′circ2

)
N′star2N′star2 =

(
N′circ2

)
, (204)

(3) from Equations (201)–(204), the sets N′circ1,2 are right and left ternary modules
over N′star1,2;

N′circ1N′circ1
(
N′star1

)
=
(
N′star1

)
,
(
N′star1

)
N′circ1N′circ1 =

(
N′star1

)
, (205)

N′circ1N′circ1
(
N′star2

)
=
(
N′star2

)
,
(
N′star2

)
N′circ1N′circ1 =

(
N′star2

)
, (206)

N′circ2N′circ2
(
N′star1

)
=
(
N′star1

)
,
(
N′star1

)
N′circ2N′circ2 =

(
N′star1

)
, (207)

N′circ2N′circ2
(
N′star2

)
=
(
N′star2

)
,
(
N′star2

)
N′circ2N′circ2 =

(
N′star2

)
, (208)

(4) from Equations (205)–(208), the sets N′star1,2 are right and left ternary modules
over N′circ1,2.

4.4. Group Structure of the Star and Circle 16-Vertex Matrices

Next, we will introduce 8× 8 matrices of a special form similar to the star 8-vertex
matrices Equation (82) and the circle 8-vertex matrices (83), analyze their group structure
and establish which ones could be 16-vertex solutions to the ternary braid Equation (151).
We will derive the solutions in the opposite way to that for the 8-vertex Yang–Baxter maps,
following the note after Equation (37). The sum of the bisymm solutions Equation (161)
gives the shape of the 8× 8 star matrix M′star (as in Equation (82)), while the sum of symm
solutions Equation (163) gives the 8× 8 circle matrix M′circ (as in Equation (83))
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M′star =



x 0 0 0 0 0 0 y
0 z 0 0 0 0 s 0
0 0 t 0 0 u 0 0
0 0 0 vs. w 0 0 0
0 0 0 a b 0 0 0
0 0 c 0 0 d 0 0
0 f 0 0 0 0 g 0
h 0 0 0 0 0 0 p


, (209)

M′circ =



x 0 0 0 0 y 0 0
0 z 0 0 s 0 0 0
0 0 t 0 0 0 0 u
0 0 0 vs. 0 0 w 0
0 f 0 0 g 0 0 0
h 0 0 0 0 p 0 0
0 0 0 a 0 0 b 0
0 0 c 0 0 0 0 d


, (210)

tr M′ = x + z + t + v + b + d + g + p,

detM′ = (bv− aw)(cu− dt)( f s− gz)(px− hy),

eigenvalues:
1
2

(
d + t−

√
4cu + (d− t)2

)
,

1
2

(
d + t +

√
4cu + (d− t)2

)
,

1
2

(
b + v−

√
4aw + (b− v)2

)
,

1
2

(
b + v +

√
4aw + (b− v)2

)
,

1
2

(
p + x−

√
4hy + (p− x)2

)
,

1
2

(
p + x +

√
4hy + (p− x)2

)
,

1
2

(
g + z−

√
4 f s + (g− z)2

)
,

1
2

(
g + z +

√
4 f s + (g− z)2

)
. (211)

The 16-vertex matrices are invertible, if det M′star 6= 0 and det M′circ 6= 0, which give
the following joint conditions on the parameters (cf. Equation (86))

bv− aw 6= 0, cu− dt 6= 0, f s− gz 6= 0, px− hy 6= 0. (212)

Only in this concrete parametrization Equations (209) and (210) do the matrices M′star
and M′circ have the same trace, determinant and eigenvalues, and they are diagonalizable
and conjugate via

U′ =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


. (213)

The matrix U′ cannot be presented in the form of a triple Kronecker product
Equation (158), and so two matrices M′star and M′circ are not q-conjugate in the parametriza-
tion Equations (209) and (210), and can lead to different solutions to the ternary braid
Equation (151). It follows from Equation (212) that 16-vertex matrices with all nonzero
entries equal to 1 are non-invertible, having vanishing determinant and rank 4. In the case
all the conditions Equation (212) holding, the inverse matrices become



Universe 2021, 7, 301 31 of 47

(
M′star

)−1
=



p
px−hy 0 0 0 0 0 0 − y

px−hy
0 − g

f s−gz 0 0 0 0 s
f s−gz 0

0 0 − d
cu−dt 0 0 u

cu−dt 0 0
0 0 0 b

bv−aw − w
bv−aw 0 0 0

0 0 0 − a
bv−aw

v
bv−aw 0 0 0

0 0 c
cu−dt 0 0 − t

cu−dt 0 0
0 f

f s−gz 0 0 0 0 − z
f s−gz 0

− h
px−hy 0 0 0 0 0 0 x

px−hy


, (214)

(
M′circ

)−1
=



p
px−hy 0 0 0 0 − y

px−hy 0 0
0 − g

f s−gz 0 0 s
f s−gz 0 0 0

0 0 − d
cu−dt 0 0 0 0 u

cu−dt
0 0 0 b

bv−aw 0 0 − w
bv−aw 0

0 f
f s−gz 0 0 − z

f s−gz 0 0 0
− h

px−hy 0 0 0 0 x
px−hy 0 0

0 0 0 − a
bv−aw 0 0 v

bv−aw 0
0 0 c

cu−dt 0 0 0 0 − t
cu−dt


. (215)

Denoting the sets of matrices corresponding to Equations (209) and (210) by M′star and
M′circ, their multiplications are

M′starM′star = M′star, M′circM′circ = M′circ, (216)

and in term of sets M′star = N′star1 ∪N′star2 and M′circ = N′circ1 ∪N′circ2, and N′star1 ∩N′star2 = D
and N′circ1 ∩N′circ2 = D (see (184)). Note that the structure Equation (216) is considerably
different from the binary case Equations (87)–(89), and therefore it may not necessarily be
related to the Cartan decomposition.

The products Equation (216) mean that both M′star and M′circ are separately closed
with respect to binary matrix multiplication (·), and therefore S star

16vert = 〈M′star | ·〉 and

S circ
16vert =

〈
M′circ | ·

〉
are semigroups. We denote their intersection by Sdiag

8vert = S star
16vert ∩

S circ
16vert, which is a semigroup of diagonal 8-vertex matrices. In case the invertibility con-

ditions Equation (212) are fulfilled, the sets M′star and M′circ form subgroups Gstar
16vert =〈

M′star | ·, (_)
−1, I8

〉
and Gcirc

16vert =
〈

M′circ | ·, (_)
−1, I8

〉
(where I8 is the 8× 8 identity ma-

trix) of GL(8,C) with the inverse elements given explicitly by Equations (214) and (215).
Because the elements M′star and M′circ in Equations (209) and (210) are conjugates by the
invertible matrix U′ Equation (213), the subgroups Gstar

16vert and Gcirc
16vert (as well as the semi-

groups S star
16vert and S circ

16vert) are isomorphic by the obvious isomorphism

M′star 7→ U′M′circU′−1, (217)

where U′ is in Equation (213).

The “interaction” between M′star and M′circ also differs from the binary case Equation (88),
because

M′starM′circ = M′quad, M′circM′star = M′quad, (218)

M′quadM′quad = M′quad, (219)
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where M′quad is a set of 32-vertex so called quad-matrices of the form

M′quad =



x1 0 y1 0 0 z1 0 s1
0 t1 0 u1 v1 0 w1 0
a1 0 b1 0 0 c1 0 d1
0 f1 0 g1 h1 0 p1 0
0 x2 0 y2 z2 0 s2 0
t2 0 u2 0 0 v2 0 w2
0 a2 0 b2 c2 0 d2 0
f2 0 g2 0 0 h2 0 p2


. (220)

Because of Equation (219), the set M′quad is closed with respect to matrix multiplication,

and therefore (for invertible matrices M′quad) the group Gquad
32vert =

〈
M′quad | ·, (_)

−1, I8

〉
is a

subgroup of GL(8,C). So, in trying to find higher 32-vertex solutions (having at most half
as many unknown variables as a general 8× 8 matrix) to the ternary braid Equation (151)
it is worthwhile to search within the class of quad-matrices Equation (220).

Thus, the group structure of the above 16-vertex 8× 8 matrices Equations (216)–(219)
is considerably different to that of 8-vertex 4 × 4 matrices Equations (82) and (83) as
the former contains two isomorphic binary subgroups Gstar

16vert and Gcirc
16vert of GL(8,C) (cf.

Equations (87)–(89) and Equation (216)).
The sets M′star, M′circ and M′quad are closed with respect to matrix addition as well,

and therefore (because of the distributivity of C) they are the matrix ringsRstar
16vert,Rcirc

16vert

and Rquad
32vert, respectively. In the invertible case (212) and det M′quad 6= 0, these become

matrix fields.

4.5. Pauli Matrix Presentation of the Star and Circle 16-Vertex Constant Matrices

The main peculiarity of the 16-vertex 8× 8 matrices Equations (216)–(219) is the fact
that they can be expressed as special tensor (Kronecker) products of the Pauli matrices (see,
also, [18,27]). Indeed, let

Σijk = ρi ⊗K ρj ⊗K ρk, i, j, k = 1, 2, 3, 4, (221)

where ρi are Pauli matrices (we have already used the letter “σ” for the braid group
generators Equation (5))

ρ1 =

(
0 1
1 0

)
, ρ2 =

(
0 −i
i 0

)
, ρ3 =

(
1 0
0 −1

)
, ρ4 = I2 =

(
1 0
0 1

)
. (222)

Among the total of 64 8× 8 matrices Σijk Equation (221) there are 24, which generate
the matrices M′star Equation (209) and M′circ Equation (210):

• 8 diagonal matrices:
Σdiag = {Σ333, Σ334, Σ343, Σ344, Σ433, Σ434, Σ443, Σ444};

• 8 anti-diagonal matrices:
Σadiag = {Σ111, Σ112, Σ121, Σ122, Σ211, Σ212, Σ221, Σ222};

• 8 circle-like matrices (M′circ with 0’s on diagonal):
Σcirc = {Σ131, Σ132, Σ141, Σ142, Σ231, Σ232, Σ241, Σ242}.
Thus, in general, we have the following set structure for the star and circle 16-vertex

matrices Equations (209) and (210):

M′star = Σdiag ∪Σadiag, (223)

M′circ = Σdiag ∪Σcirc, (224)

M′star ∩M′circ = Σdiag. (225)
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In particular, for the 8-vertex permutation solutions Equations (161)–(163) of the
ternary braid Equation (151), we have

c̃bisymm1,2
rank=8 =

1
2
(Σ111 + Σ444 ± Σ212 ± Σ343), (226)

c̃symm1,2
rank=8 =

1
2
(Σ141 + Σ444 ± Σ232 ± Σ333). (227)

The non-invertible 16-vertex solutionsM′star Equation (209) and M′circ Equation (210)
having 1’s on nonzero places are of rank = 4 and can be presented by Equation (221)
as follows:

M′star(1) =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


= Σ111 + Σ444, (228)

M′circ(1) =



1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1


= Σ141 + Σ444. (229)

Similarly, one can obtain the Pauli matrix presentation for the general star and circle
16-vertex matrices Equations (209) and (210), which will contain linear combinations of the
16 parameters as coefficients before the Σ’s.

4.6. Invertible and Non-Invertible 16-Vertex Solutions to the Ternary Braid Equations

First, consider the 16-vertex solutions to Equation (151) having the star matrix shape
Equation (209). We found the following 2 one-parameter invertible solutions:

c̃16−vert,star
rank=8 (x) =



x3 0 0 0 0 0 0 −1
0 x3 0 0 0 0 ∓x2 0
0 0 x3 0 0 −x2 0 0
0 0 0 x3 ∓x4 0 0 0
0 0 0 ±x2 x3 0 0 0
0 0 x4 0 0 x3 0 0
0 ±x4 0 0 0 0 x3 0
x6 0 0 0 0 0 0 x3


, (230)

tr c̃ = 8x3,
det c̃ = 16x24, x 6= 0,

eigenvalues:
{
(1 + i)x3}[4], {(1− i)x3}[4]. (231)
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Both matrices in Equation (230) are diagonalizable and are conjugates via

Ustar =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (232)

which cannot be presented in the form of a triple Kronecker product (158). Therefore,
the two solutions in Equation (230) are not q-conjugate and become different 16-vertex
one-parameter invertible solutions of the braid Equation (151).

In search of 16-vertex solutions to the total braid Equations (151) of the circle matrix
shape Equation (210), we found that only non-invertible ones exist. They are the following
two 2-parameter solutions of rank 4

c̃16−vert,circ
rank=4 (x, y) =



±xy 0 0 0 0 y2 0 0
0 ±xy 0 0 xy 0 0 0
0 0 ±xy 0 0 0 0 y2

0 0 0 ±xy 0 0 xy 0
0 xy 0 0 ±xy 0 0 0
x2 0 0 0 0 ±xy 0 0
0 0 0 xy 0 0 ±xy 0
0 0 x2 0 0 0 0 ±xy


, (233)

tr c̃ = ±8xy,
eigenvalues: {2xy}[4], {0}[4].

(234)

Two matrices in Equation (233) are not even conjugates in the standard way, and so they
are different 16-vertex two-parameter non-invertible solutions to the braid Equation (151).

For the only partial 13-braid Equation (153), there are 4 polynomial 16-vertex two-
parameter invertible solutions

c̃16−vert,13circ
rank=8 (x, y) =



x 0 0 0 0 y2 0 0
0 xy 0 0 x 0 0 0
0 0 x 0 0 0 0 ±y2

0 0 0 xy 0 0 ±x 0
0 x 0 0 xy 0 0 0
x2 0 0 0 0 x 0 0
0 0 0 ±x 0 0 xy 0
0 0 ±x2 0 0 0 0 x


, (235)



x 0 0 0 0 y2 0 0
0 xy 0 0 −x 0 0 0
0 0 x 0 0 0 0 ±y2

0 0 0 xy 0 0 ∓x 0
0 −x 0 0 xy 0 0 0
x2 0 0 0 0 x 0 0
0 0 0 ∓x 0 0 xy 0
0 0 ±x2 0 0 0 0 x


, (236)

tr c̃ = 4x(y + 1), det c̃ = x8
(

y2 − 1
)4

, x 6= 0, y 6= 1, (237)

eigenvalues:{x(y + 1)}[4], {x(y− 1)}[2], {−x(y− 1)}[2].
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Furthermore, for the partial 13-braid Equation (153), we found 4 exotic irrational
(an analog of Equation (97) for the Yang–Baxter Equation (12)) 16-vertex, two-parameter
invertible solutions of rank 8 of the form

c̃16−vert,13circ,1
rank=8 (x, y)

=



x(2y− 1) 0 0 0 0 y2 0 0
0 xy 0 0 x

√
2(y− 1)y + 1 0 0 0

0 0 x(2y− 1) 0 0 0 0 ±y2

0 0 0 xy 0 0 ±x
√

2(y− 1)y + 1 0
0 x

√
2(y− 1)y + 1 0 0 xy 0 0 0

x2 0 0 0 0 x 0 0
0 0 0 ±x

√
2(y− 1)y + 1 0 0 xy 0

0 0 ±x2 0 0 0 0 x


, (238)

and

c̃16−vert,13circ,2
rank=8 (x, y)

=



x(2y− 1) 0 0 0 0 y2 0 0
0 xy 0 0 −x

√
2(y− 1)y + 1 0 0 0

0 0 x(2y− 1) 0 0 0 0 ±y2

0 0 0 xy 0 0 ∓x
√

2(y− 1)y + 1 0
0 −x

√
2(y− 1)y + 1 0 0 xy 0 0 0

x2 0 0 0 0 x 0 0
0 0 0 ∓x

√
2(y− 1)y + 1 0 0 xy 0

0 0 ±x2 0 0 0 0 x


, (239)

tr c̃ = 8xy, det c̃ = x8(y− 1)8, x 6= 0, y 6= 1, (240)

eigenvalues:
{

x
(

y +
√

2(y− 1)y + 1
)}[4]

,
{

x
(

y−
√

2(y− 1)y + 1
)}[4]

. (241)

The matrices in Equations (235)–(239) are diagonalizable, have the same eigenvalues
Equation (241) and are pairwise conjugate by

Ucirc =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (242)

Because Ucirc cannot be presented in the form Equation (158), all solutions in
Equations (235)–(239) are not mutually q-conjugate and become 8 different 16-vertex
two-parameter invertible solutions to the partial 13-braid Equation (153). If y = 1,
then the matrices Equations (235)–(239) become of rank 4 with vanishing determinants
Equations (237) and (240), and therefore in this case they are a 16-vertex one-parameter
circle of non-invertible solutions to the total braid Equation (151).

Further families of solutions could be constructed using additional parameters: the scaling
parameter t in Equation (156) and the complex elements of the matrix q Equation (157).
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4.7. Higher 2n-Vertex Constant Solutions to n-Ary Braid Equations

Next, we considered the 4-ary constant braid Equations (131)–(133) and found the
following 32-vertex star solution

c̃16 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (243)

We may compare Equation (243) with particular cases of the star solutions to the
Yang–Baxter Equation (93) and the ternary braid Equation (230)

c̃4 =


1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1

, c̃8 =



1 0 0 0 0 0 0 −1
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


. (244)

Informally, we call such solutions the “Minkowski” star solutions, since their legs have
the “Minkowski signature”. Thus, we assume that in the general case for the n-ary braid
equation, there exist 2n+1-vertex 2n × 2n matrix “Minkowski” star invertible solutions of
the above form

c̃2n =



1 0 0 0 0 −1

0
. . . 0 0 . . .

0
0 0 1 −1 0 0
0 0 1 1 0 0

0 . . .
0 0

. . . 0
1 0 0 0 0 1


. (245)

This allows us to use the general solution Equation (245) as n-ary braiding quantum
gates with an arbitrary number of qubits.

5. Invertible and Noninvertible Quantum Gates

Informally, quantum computing consists of preparation (setting up an initial quantum
state), evolution (by a quantum circuit) and measurement (projection onto the final state).
Mathematically (in the computational basis), the initial state is a vector in a Hilbert space
(multi-qubit state), the evolution is governed by successive (quantum circuit) invertible
linear transformations (unitary matrices called quantum gates) and the measurement is
made by non-invertible projection matrices to leave only one final quantum (multi-qubit)
state. So, quantum computing is non-invertible overall, and we may consider non-invertible
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transformations at each step. It was then realized that one can “invite” the Yang–Baxter
operators (solutions of the constant Yang–Baxter equation) into quantum gates, providing
a means of entangling otherwise non-entangled states. This insight uncovered a deep
connection between quantum and topological computation (see for details, e.g., [9,13]).

Here, we propose extending the above picture in two directions. First, we can treat
higher braided operators as higher braiding gates. Second, we will analyze the possible
role of non-invertible linear transformations (described by the partial unitary matrices
introduced in Equations (20) and (21)), which can be interpreted as a property of some
hypothetical quantum circuit (for instance, with specific “loss” of information, some kind
of “dissipativity” or “vagueness”). This can be considered as an intermediate case between
standard unitary computing and the measurement only computing of [52].

To establish notation recall [1], that in the computational basis (vector representation)
and Dirac notation, a (pure) one-qubit state is described by a vector in two-dimensional
Hilbert space V = C2

|ψ〉 ≡
∣∣∣ψ(1)

〉
= a0|0〉+ a1|1〉, |0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (246)

|a0|2 + |a1|2 = 1, ai ∈ C, , i = 1, 2, (247)

where ai is a probability amplitude of |i〉. Sometimes, for a one-qubit state, it is convenient
to use the Bloch unit sphere representation (normalized up to a general unimportant and
unmeasurable phase)

|ψ(θ, γ)〉 = cos
θ

2
|0〉+ eiγ sin

θ

2
|1〉, 0 ≤ θ ≤ π, 0 ≤ γ ≤ 2π. (248)

A (pure) state of L-qubits
∣∣∣ψ(L)

〉
is described by 2L amplitudes, and so is a vector

in 2L-dimensional Hilbert space. If
∣∣∣ψ(L)

〉
cannot be presented as a tensor product of L

one-qubit states Equation (246), it is called entangled. For instance, a two-qubit pure state∣∣∣ψ(2)
〉
= a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉, (249)

|a00|2 + |a01|2 + |a10|2 + |a11|2 = 1, aij ∈ C, , i, j = 1, 2, (250)

is entangled, if det
(
aij
)
6= 0, and the concurrence

C(2) ≡ C(2)
(∣∣∣ψ(2)

〉)
= 2

∣∣det
(
aij
)∣∣ (251)

is the measure of entanglement 0 ≤ C(2) ≤ 1. It follows from Equation (246), that
the tensor product of states has vanishing concurrence C(2)(|ψ1〉 ⊗ |ψ2〉) = 0. An ex-
ample of the maximally entangled (C(2) = 1) two-qubit states is the (first) Bell state∣∣∣ψ(2)

〉
Bell

= (|00〉+ |11〉)/
√

2.
The concurrence of the three-qubit state

∣∣∣ψ(3)
〉
=

1

∑
i,j,k=0

aijk|ijk〉,
1

∑
i,j,k=0

∣∣∣aijk

∣∣∣2 = 1, aijk ∈ C, (252)

is determined by the Cayley’s 2× 2× 2 hyperdeterminant

C(3) = 4
∣∣∣h det

(
aijk

)∣∣∣, 0 ≤ C(3) ≤ 1, (253)
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h det
(

aijk

)
= a2

000a2
111 + a2

001a2
110 + a2

010a2
101 + a2

100a2
011 − 2a000a001a110a111

− 2a000a010a101a111 − 2a000a011a100a111 − 2a001a010a101a111 − 2a001a011a100a110

− 2a010a011a100a101 + 4a000a011a101a110 + 4a001a010a100a111. (254)

Thus, if the three-qubit state Equation (252) is not entangled, then C(3) = 0 (for the
tensor product of one-qubit states). One of the maximally entangled (C(3) = 1) three-qubit
states is the GHZ state

∣∣∣ψ(3)
〉

GHZ
= (|000〉+ |111〉)/

√
2.

A quantum L-qubit gate is a linear transformation of 2L-dimensional Hilbert space(
C2)⊗L →

(
C2)⊗L, which in the computational basis (246) is described of the 2L × 2L

matrix U(L) such that the L-qubit state transforms as
∣∣∣ψ′(L)

〉
= U(L)

∣∣∣ψ(L)
〉

. In this way,
a quantum circuit is described as the successive application of elementary gates to an initial
quantum state, that is the product of the corresponding matrices (for details, see, e.g., [1]).
It is a standard assumption that each elementary L-qubit transformation is unitary, which
implies the following strong restriction on the corresponding matrix U ≡ U(L) as

U?U = UU? = I ≡ I2L×2L , (255)

where I is the 2L× 2L identity matrix for L-qubit state and the operation (?) is the conjugate-
transposition. The first equality in Equation (255) means that the matrix U(L) is normal
(cf. Equations (20) and (21)). The Equations (255) follow from the definition of the adjoint
operator 〈

Uψ(L) | Iϕ(L)
〉
=
〈

Iψ(L) | U?ϕ(L)
〉

(256)

applied to this simplest example of L-qubits in the 2L-dimensional Hilbert space
(
C2)⊗L

(for the general case the derivation almost literally coincides), which we write in the
following special form (in Dirac notation with bra- and ket-vectors) with explicitly added
identities. Then, Equation (255) follows from Equation (256) as〈

U?Uψ(L) | Iϕ(L)
〉
=
〈

Iψ(L) | UU?ϕ(L)
〉
=
〈

Iψ(L) | Iϕ(L)
〉

, (257)

and any unitary matrix preserves the inner product〈
Uψ(L) | Uϕ(L)

〉
=
〈

Iψ(L) | Iϕ(L)
〉

, (258)

which means that unitary operators satisfying Equation (255) are bounded operators
(bounded matrices in our case) and invertible with the inverse U−1 = U?.

Let us consider a possibility of non-invertible intermediate transformations of L-
qubit states, i.e., non-invertible gates, which are described by the 2L × 2L matrices U(r) of
(possibly) less than full rank 1 ≤ r ≤ 2L. This can be related to the production of “degen-
erate” states (see, e.g., [43]), “particle loss” [53–55], and the role of ranks in multiparticle
entanglement [56,57].

In the limited cases U
(
r = 2L) ≡ U = U(L), and U(1) corresponds to the measurement

matrix being the projection to one final vector
∣∣∣i f inal

〉
. In this case, for non-invertible

transformations with r < 2L instead of unitarity Equation (255) we consider partial unitarity
Equations (20) and (21) as

U(r)?U(r) = I1(r), (259)

U(r)U(r)? = I2(r), (260)
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where I1(r) and I2(r) are (or may be) different partial shuffle identities having r units on
the diagonal. There is an exotic limiting case, which is impossible for the identity I: we call
two partial identities orthogonal, if

I1(r)I2(r) = Z, (261)

where Z = Z2L×2L is the zero 2L × 2L matrix.
We propose corresponding non-invertible analogs of Equations (256)–(258) as follows.

The partial adjoint operator U(r)? in the 2L-dimensional Hilbert space
(
C2)⊗L is defined by〈

U(r)ψ(L) | I2(r)ϕ(L)
〉
=
〈

I1(r)ψ(L) | U(r)?ϕ(L)
〉

, (262)

such that (see Equations (259) and (260))〈
U(r)?U(r)ψ(L) | I2(r)ϕ(L)

〉
=
〈

I1(r)ψ(L) | U(r)U(r)?ϕ(L)
〉
=
〈

I1(r)ψ(L) | I2(r)ϕ(L)
〉

. (263)

We call the r.h.s. of Equation (263) the partial inner product. So instead of
Equation (258) we define U(r) as the partially bounded operator〈

U(r)ψ(L) | U(r)ϕ(L)
〉
=
〈

I1(r)ψ(L) | I2(r)ϕ(L)
〉

. (264)

Thus, if the partial identities are orthogonal Equation (261), then the partial inner
product vanishes identically, and the operator U(r) becomes a zero norm operator in the
sense of Equation (264), although Equations (259) and (260) are not zero.

In case the rank r is fixed, there can be
(
2L!/r!

(
2L − r

)
!
)2 partial unitary matrices U(r)

satisfying Equations (259) and (260).
We define a general unitary semigroup as a semigroup of matrices U(r) of rank r satisfying

partial regularity Equations (259) and (260) (in the “symmetric” case I1(r) = I2(r) ≡ I(r)).
As an example, we consider two 2-qubit states Equation (250)

∣∣∣ψ(2)
〉

and
∣∣∣ϕ(2)

〉
(with

a′ij and |i′ j′〉) and the non-invertible transformation described by three-parameter 4× 4
matrices of rank 3 (but which are not nilpotent)

U(3) = U(L=2)(r = 3) =


0 0 0 0
0 eiβ 0 0
0 0 0 eiγ

eiα 0 0 0

, α, β, γ ∈ R. (265)

The partial unitarity Equations (259) and (260) and partial identities now become

U(3)?U(3) = I1(3) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

, (266)

U(3)U(3)? = I2(3) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (267)

The partial identities Equations (266) and (267) are not orthogonal Equation (261),
because

I1(3)I2(3) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 6= Z, (268)
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which directly gives the signature of the partial inner product Equation (263), in our case
of the Hilbert space

(
C2)⊗2.

The definition of a partial adjoint operator Equation (262) is satisfied with both sides
being equal to a00a′11eiα〈00 | 1′1′〉 + a01a′01eiβ〈01 | 0′1′〉 + a11a′10eiγ〈11 | 1′0′〉. The partial
boundedness condition Equation (264) holds with the partial inner product Equation (263)
becoming a01a′01〈01 | 0′1′〉+ a11a′11〈11 | 1′1′〉, thus U(3) Equation (265), which is a bounded
partial unitary operator.

An example of a zero norm (in our sense Equation (264)) operator is the two-parameter
partial unitary rank 2 matrix

Unil(2) = U(L=2)(r = 2) =


0 0 0 0
0 0 0 eiβ

eiα 0 0 0
0 0 0 0

, α, β ∈ R. (269)

The partial unitarity relations for Unil(2) have the form

Unil(2)
?Unil(2) = Inil,1(2) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, (270)

Unil(2)Unil(2)
? = Inil,2(2) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

. (271)

It is seen that the partial identities Inil,1(2) and Inil,2(2) are orthogonal Equation (261),
and the partial inner product Equation (263) vanishes identically, and also the boundedness
condition (264) holds with the r.h.s. vanishing, despite Unil(2) being a nonzero nilpotent
matrix Equation (269).

6. Binary Braiding Quantum Gates

Let us consider those Yang–Baxter maps that could be linear transformations of two-
qubit spaces. We will pay attention to the most general 8-vertex solutions to the Yang–Baxter
Equations (93)–(103) and (106)–(108), which are unitary (and invertible) or partial unitary
Equations (20) and (21) (and non-invertible).

Consider the unitary version of the invertible star 8-vertex solutions Equations (93)–(97)
to the matrix Yang–Baxter Equation (12). We use the exponential form of the parameters

x = rxeiα, y = ryeiβ, z = rzeiγ, rx,y,z, α, β, γ ∈ R, rx,y,z ≥ 0, |α|, |β|, |γ| ≤ 2π. (272)

For Equation (93), exploiting unitarity Equation (255), we obtain

U8−vert,star
rank=4 (α, β) =

1√
2


ei(α+β) 0 0 e2iβ

0 ei(α+β) ±ei(α+β) 0
0 ∓ei(α+β) ei(α+β) 0
−e2iα 0 0 ei(α+β)

,
tr U = 2

√
2ei(α+β),

det U = e4i(α+β),
(273)

eigenvalues:
{
−(−1)3/4ei(α+β)

}[2]
,
{
(−1)1/4ei(α+β)

}[2]
. (274)

With the choice of parameters α = β = 0 and lower signs, the solution Equation (273)
coincides with the 8-vertex braiding gate of [13].

Next, we search for unitary solutions among the invertible circle of 8-vertex traceless
solutions Equation (106) to the matrix Yang–Baxter Equation (12) with parameters in the
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exponential form Equation (272). The unitarity conditions Equation (255) give the following
equations on the parameters Equation (272):

r = ry = rz, r2
(

r2
x + r2

)
= 1, r8 + r6 − 2r4 + 1 = r2 (275)

α− β =
π

2
. (276)

The system of Equation (275) has two real positive (or zero) solutions

1) rx = 1, r =

√√
5− 1
2

, (277)

2) rx = 0, r = 1. (278)

Thus, only the first solution leads to an 8-vertex two-parameter unitary braiding
quantum gate of the form (we put γ 7→ β in Equation (272))

U8−vert,circ
rank=4 (α, β) =

√√
5− 1
2


0 ei(α+β) iei(α+β)

√√
5−1
2 0

−e2iα
√√

5−1
2 0 0 ei(α+β)

ie2iα 0 0 iei(α+β)
√√

5−1
2

0 −e2iα
√√

5−1
2 ie2iα 0

, (279)

det U = e2i(3α+β). (280)

The second solution Equation (278) gives 4-vertex two-parameter unitary braiding
quantum gate (we also put γ 7→ β in Equation (272))

U4−vert,circ
rank=4 (α, β) =


0 0 ei(α+β) 0

e2iα 0 0 0
0 0 0 ei(α+β)

0 e2iα 0 0

, det U = −e2i(3α+β). (281)

The non-invertible 8-vertex circle solution Equation (108) to the Yang–Baxter Equation (12)
cannot be partial unitary Equations (259) and (260) with any values of its parameters.

7. Higher Braiding Quantum Gates

In general, only special linear transformations of 2L-dimensional Hilbert space can
be treated as elementary quantum gates for an L-qubit state [1]. First, in the invert-
ible case, the transformations should be unitary Equation (255), and in the hypotheti-
cal non-invertible case they can satisfy partial unitarity Equations (259) and (260). Sec-
ond, the braiding gates have to be 2L × 2L matrix solutions to the constant Yang–Baxter
Equation [13] or higher braid Equations (131)–(133). Here, we consider (as a lowest case
higher example) the ternary braiding gates acting on 3-qubit quantum states, i.e., 8× 8
matrix solutions to the ternary braid Equation (151), which satisfy unitarity (255) or partial
unitarity Equations (259) and (260).

Note that all the permutation solutions Equations (161)–(163) are by definition unitary,
and are therefore ternary braiding gates “automatically”, and we call them permutation
8-vertex ternary braiding quantum gates U8−vertex

perm . By the same reasoning, the unitary version
of the invertible star 8-vertex parameter-permutation solutions Equations (165)–(179) to
the ternary braid Equations (151) will contain the complex numbers of unit magnitude
as parameters.

Indeed, for the bisymmetric series Equations (165)–(167) of star-like solutions, we have
4 two real parameter unitary ternary braiding quantum gates (κ = ±1)
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U8−vertex
bisymm1 (α, β) =



ei(α+β) 0 0 0 0 0 0 0
0 0 0 0 0 0 κe2iβ 0
0 0 ei(α+β) 0 0 0 0 0
0 0 0 0 κe2iα 0 0 0
0 0 0 ±κe2iβ 0 0 0 0
0 0 0 0 0 ei(α+β) 0 0
0 ±κe2iα 0 0 0 0 0 0
0 0 0 0 0 0 0 ei(α+β)


, (282)

α, β ∈ R, |α|, |β| ≤ 2π, (283)

which is a ternary analog of the first parameter-permutation solution to the Yang–Baxter
equation from Equation (35). The ternary analog of the second star solution is the following
unitary version of the bisymmetric series Equations (169)–(171)

U8−vertex
bisymm2 (α, β) =



0 0 0 0 0 0 0 e6iα

0 κe3i(α+β) 0 0 0 0 0 0
0 0 0 0 0 e2i(2α+β) 0 0
0 0 0 κe3i(α+β) 0 0 0 0
0 0 0 0 κe3i(α+β) 0 0 0
0 0 ±e2i(α+2β) 0 0 0 0 0
0 0 0 0 0 0 κe3i(α+β) 0
±e6iβ 0 0 0 0 0 0 0


. (284)

The same unitary ternary analogs of the symmetric series Equations (173)–(179) for
the first and the second circle-like solutions from Equation (37) are

U8−vertex
symm1 (α, β) =



ei(α+β) 0 0 0 0 0 0 0
0 0 0 0 κei(α+β) 0 0 0
0 0 0 0 0 0 0 e2iβ

0 0 0 ei(α+β) 0 0 0 0
0 ±κei(α+β) 0 0 0 0 0 0
0 0 0 0 0 ei(α+β) 0 0
0 0 0 0 0 0 ei(α+β) 0
0 0 ±e2iα 0 0 0 0 0


, (285)

and

U8−vertex
symm2 (α, β) =



0 0 0 0 0 e2iβ 0 0
0 ei(α+β) 0 0 0 0 0 0
0 0 ei(α+β) 0 0 0 0 0
0 0 0 0 0 0 κei(α+β) 0
0 0 0 0 ei(α+β) 0 0 0
±e2iα 0 0 0 0 0 0 0

0 0 0 ±κei(α+β) 0 0 0 0
0 0 0 0 0 0 0 ei(α+β)


, (286)

respectively.
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The invertible 16-vertex star-like solutions Equation (230) to the ternary braid Equation (151)
lead to the following two unitary one-parameter ternary braiding quantum gates (cf. the binary
case Equation (273))

U16−vertex
3−qubits±(α) =

1√
2



e3iα 0 0 0 0 0 0 −1
0 e3iα 0 0 0 0 ∓e2iα 0
0 0 e3iα 0 0 −e2iα 0 0
0 0 0 e3iα ∓e4iα 0 0 0
0 0 0 ±e2iα e3iα 0 0 0
0 0 e4iα 0 0 e3iα 0 0
0 ±e4iα 0 0 0 0 e3iα 0

e6iα 0 0 0 0 0 0 e3iα


. (287)

The braiding gate Equation (287) is a ternary analog of Equation (273), and therefore
with α = 0 it can be treated as a ternary analog of the 8-vertex braiding gate considered
in [13]. Note that the solution U16−vertex

3−qubits+(0) is transpose to the so-called generalized Bell
matrix [23]. Comparing Equations (209) and (287), we observe that the ternary braiding
quantum gates (acting on 3 qubits) are those elements of the 16-vertex star semigroup
Gstar

16vert Equation (216), which satisfy unitarity Equation (255).
In the same way, the 32-vertex analog the 8-vertex binary braiding gate of [13] (now

acting on 4 qubits) is the following constant 4-ary braiding unitary quantum gate

U32−vertex
4−qubits =

1√
2



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (288)

Thus, in general, the “Minkowski” star solutions for n-ary braid equations correspond
to 2n-vertex braiding unitary quantum gates as 2L × 2L matrices acting on L = n qubits

U2L−vertex
L−qubits =

1√
2



1 0 0 0 0 −1

0
. . . 0 0 . . .

0
0 0 1 −1 0 0
0 0 1 1 0 0

0 . . .
0 0

. . . 0
1 0 0 0 0 1


. (289)

The braiding gate Equation (289) can be treated as a polyadic (n-ary) generalization of
the GHZ generator (see, e.g., [18,23]) acting on L = n qubits.

8. Entangling Braiding Gates

Entangled quantum states are obtained from separable states by acting with special
quantum gates on two-qubit states and multi-qubit states [42,43]. Here, we consider
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the concrete form of braiding gates, which can be entangling or not entangling. There
are general considerations on these subjects for the Yang–Baxter maps [13,37,40] and
generalized Yang–Baxter maps [23,25,26,51]. We present the solutions for the binary and
ternary braid maps introduced above, which connect the parameters of the gate and
the state.

8.1. Entangling Binary Braiding Gates

Let us first examine, how the 8-vertex star binary braiding gate
Us(α, β) ≡ U8−vert,star

rank=4 (α, β) Equation (273) acts on the product of one-qubit states con-
cretely. We use the Bloch representation Equation (248) to obtain the expression for the
transformed concurrence Equation (251)

C(2)
s± (Us(α, β)|ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉) (290)

=

∣∣∣∣(ei(β+2γ1) sin2 θ1

2
± eiα cos2 θ1

2

)(
ei(β+2γ2) sin2 θ2

2
∓ eiα cos2 θ2

2

)∣∣∣∣.
In general, a braiding gate is entangling if the transformed concurrence Equation (290)

does not vanish, and its roots give the values of the gate parameters U(α, β) for which
the gate is not entangling for a given two-qubit state. In search of the solutions for the
transformed concurrence C(2)

s± = 0, we observe that one of the qubits has to be on the Bloch
sphere equator θ1 = π

2 (or θ2 = π
2 ). Only in this case can the first (or second) bracket in

Equation (290) vanish, and we obtain

(1) C(2)
s+ = 0, if θ1 =

π

2
and α− β = 2γ1 − π, or θ2 =

π

2
and α− β = 2γ2; (291)

(2) C(2)
s− = 0, if θ1 =

π

2
and α− β = 2γ1, or θ2 =

π

2
and α− β = 2γ2 − π. (292)

Therefore, the 8-vertex star binary braiding gates Equation (273) with the parameters
fixed by Equations (291) and (292) are not entangling.

For the 8-vertex circle binary braiding gate Uc(α, β) ≡ U8−vert,circ
rank=4 (α, β) (279) we obtain

C(2)
c (Uc(α, β)|ψ(θ1, γ1)〉 ⊗ |ψ(θ1, γ1)〉) (293)

= W
∣∣∣∣(ei(β+2γ1) sin2 θ1

2
− ieiα cos2 θ1

2

)(
ei(β+2γ2) sin2 θ2

2
− ieiα cos2 θ2

2

)∣∣∣∣,
W =

(√
5− 1

) 3
2

√
2

= 0.971 74. (294)

Analogously to Equations (291) and (292), the concurrence of the states transformed
by the 8-vertex circle binary braiding gate Equation (279) can vanish if

C(2)
c = 0, if θ1 =

π

2
and α− β = 2γ1 −

π

2
, or θ2 =

π

2
and α− β = 2γ2 −

π

2
. (295)

Thus, the 8-vertex circle binary braiding gates Equation (279) are not entangling if the
parameters satisfy Equation (295).

In the case of the 4-vertex circle binary braiding gate Equation (281), the transformed
concurrence vanishes identically, and therefore this gate is not entangling for any values of
its parameters.

8.2. Entangling Ternary Braiding Gates

Let us consider the tensor product of three qubit pure states |ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉 ⊗
|ψ(θ3, γ3)〉 (in the Bloch representation Equation (248)), which obviously has zero concur-
rence C(3) Equation (253), because of the vanishing of the hyperdeterminant Equation (254).
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After transforming by the 16-vertex star ternary braiding gates U16(α) ≡ U16−vertex
3−qubits (α)

Equation (287) the concurrence becomes

C(3)
16±(U16(α)|ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉 ⊗ |ψ(θ3, γ3)〉)

=
1
64

∣∣∣∣(e2iα ± e2iγ1 + (e2iα ∓ e2iγ1) cos θ1

)2(
e2iα − e2iγ2 + (e2iα + e2iγ2) cos θ2

)2

×
(

e2iα ∓ e2iγ3 + (e2iα ± e2iγ3) cos θ3

)2
∣∣∣∣. (296)

We observe that the ternary concurrence Equation (296) vanishes if any of the brackets
are equal to zero. Because the domain of all angles is R, we have solutions only for fixed
discrete θk = π,−π, π/2, k = 1, 2, 3, which means that on the Bloch sphere the quantum
states should be on the equator (as in the binary case), or additionally at the poles. In this
case, eiα = ±eiγk , and

α =

{
γk

γk + π
, k = 1, 2, 3. (297)

Thus, for a fixed three-qubit product state one (or more) of which is at a pole or
the equator of the Bloch sphere, those ternary braiding gates U16(α) satisfying the con-
ditions Equation (297) are not entangling C(3)

16± = 0, whereas in other cases they are

entangling C(3)
16± 6= 0.

By analogy, a similar action of the 8-vertex bisymmetric (star-like) ternary braiding
gates U8b1,2(α, β) ≡ U8−vertex

bisymm1,2(α, β) Equations (282)–(284) gives

C(3)
8b1(U8b1(α, β)|ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉 ⊗ |ψ(θ3, γ3)〉)

=

∣∣∣∣∣sin2 θ1 sin2 θ3

(
e2i(β+γ2) sin2 θ2

2
− e2iα cos2 θ2

2

)2
∣∣∣∣∣, (298)

C(3)
8b2(U8b2(α, β)|ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉 ⊗ |ψ(θ3, γ3)〉)

=

∣∣∣∣∣sin2 θ1 sin2 θ3

(
e2i(α+γ2) sin2 θ2

2
− e2iβ cos2 θ2

2

)2
∣∣∣∣∣. (299)

Their solutions coincide with the binary case Equations (291) and (292) applied to the
middle qubit |ψ(θ2, γ2)〉 and γ2 → 2γ2.

The action of the 8-vertex symmetric (circle-like) ternary braiding gates U8s(α, β) ≡
U8−vertex

symm1,2 (α, β) Equations (285) and (286) leads to the transformed concurrence

C(3)
8s (U8s(α, β)|ψ(θ1, γ1)〉 ⊗ |ψ(θ2, γ2)〉 ⊗ |ψ(θ3, γ3)〉)

=

∣∣∣∣sin2 θ2

(
ei(β+2γ1) sin2 θ1

2
− eiα cos2 θ1

2

)(
ei(β+2γ3) sin2 θ3

2
− eiα cos2 θ3

2

)∣∣∣∣. (300)

The conditions for this to vanish (i.e., when the gate U8s(α, β) becomes not entangling)
coincide with those for the binary case Equations (291) and (292), applied here to the first
or the third qubit.

Thus, we have shown that the braiding binary and ternary quantum gates can be
either entangling or not entangling, depending on how their parameters are related to
the concrete quantum state on which they act. The constructions presented here could be
used, e.g., in the entanglement-free protocols [58,59] and some experiments [60,61]. This
can also allow us to build quantum networks without any entangling at all (non-entangling
networks), when the next gate depends upon the previous state in such a way that at each
step there is no entangling, as the separable, but different, final state is received from a
separable initial state.
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9. Conclusions

Thus, we have found and classified the constant matrix solutions to the Yang–Baxter
equation and its polyadic generalization, the higher braid equations. The corresponding
classes of matrices are described in terms of semigroups, groups, polyadic groups and
modules. We have then treated the unitary solutions as quantum gates acting on multiqubit
states. Finally, we have found the conditions for gates to become non-entangling, which
can be applied to the corresponding networks.
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