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Abstract: Dirac bispinors belong to an irreducible representation of the complete Lorentz group,
which includes parity as a symmetry yielding two intrinsic discrete degrees of freedom: chirality and
spin. For massive particles, chirality is not dynamically conserved, which leads to chiral oscillations.
In this contribution, we describe the effects of this intrinsic structure of Dirac bispinors on the
quantum entanglement encoded in a lepton-antineutrino pair. We consider that the pair is generated
through weak interactions, which are intrinsically chiral, such that in the initial state the lepton
and the antineutrino have definite chirality but their spins are entangled. We show that chiral
oscillations induce spin entanglement oscillations and redistribute the spin entanglement to chirality-
spin correlations. Such a phenomenon is prominent if the momentum of the lepton is comparable
with or smaller than its mass. We further show that a Bell-like spin observable exhibits the same
behavior of the spin entanglement. Such correlations do not require the knowledge of the full density
matrix. Our results show novel effects of the intrinsic bispinor structure and can be used as a basis
for designing experiments to probe chiral oscillations via spin correlation measurements.

Keywords: entanglement; bispinors; chirality

1. Introduction

To ensure that transformations between inertial frames preserve probabilities, Wigner
proposed in his seminal work [1] that states describing particles should belong to unitary
irreducible representations (irreps) of the Poincaré group. In such a framework, the degrees
of freedom that a particle carries are defined by the particular irrep in question. Specifically,
the irreps of the Poincaré group are classified by its Casimir invariants: momentum (mass)
and the eigenvalues of the Pauli–Lubanski vector, related to the spin [2]. This description
of particle states in terms of irreps of the Poincaré group has been used not only in particle
and high energy physics [3] but also in connection with information theory for studying
transformation properties of quantum correlations [4–7] and for quantum protocols in
relativistic setups, such as clock synchronization [8,9] and teleportation [10].

Another prominent example in the context of relativistic quantum mechanics is the
Dirac bispinor, which belongs to an irrep of the complete Lorentz group. This group includes
parity as a symmetry [2], which connects the two irreps of the (proper) Lorentz group, given
in terms of the two-component Weyl spinors. The irreps of the complete Lorentz group are
given in terms of a SU(2)⊗ SU(2) group structure, associated with two discrete degrees
of freedom [2,11–13]: spin and chirality (or intrinsic parity). Since a state described by a
Dirac bispinor has two dichotomic degrees of freedom, it can be understood as a two-qubit
state [11,12]. In general, chirality and spin of a single particle can become entangled under
external potentials [14], as noticed for Dirac-like systems, such as bilayer graphene [15].

The intrinsic structure of the Dirac bispinor has also implications for the dynamics
of free particles. Helicity (the projection of spin in the direction of the momentum) is a
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conserved quantity, but chirality is not [16]. In fact, the different chiral components of a
bispinor are coupled via the mass term of the Dirac Hamiltonian. This generates chiral
oscillations [17], which can be related to the Zitterbewegung effect [18]. The dynamical
features of chiral oscillations are particularly relevant for dynamics of neutrinos [19–21].
Neutrinos and antineutrinos only interact via weak processes, which are inherently chi-
ral [22] and create such particles in states with definite chirality. Under free dynamics, such
massive (anti)neutrino states exhibit a finite probability of being in the opposite chirality.
The amplitude of these oscillations depends on the ratio between mass and energy and is
prominent in the non-relativistic dynamical regime [23]. Since only one chiral component
is measurable through weak processes, chiral oscillations can yield a depletion of the
measured flux of the cosmic neutrino background [24–26].

In this contribution, we show that chiral oscillations affect quantum correlations
shared between spins of a lepton-antineutrino pair. We consider a singlet state of a lepton
and a massive antineutrino propagating along opposite directions. Assuming that such
state is created by weak interactions (e.g., by the decay of a pion, as seen in the pion’s
rest frame), the massive antineutrino and the lepton have, at t = 0, definite chiralities,
modeled here by a chiral projection of the Dirac bispinors associated with the antineutrino
and with the lepton. The spins are in a perfect anticorrelated spin state, as depicted in
Figure 1. Under free evolution, chiral oscillations change the superposition form of the
initial state, inducing oscillations on the correlations shared by the spins. We compute such
oscillations both for the quantum entanglement encoded in the spins [27] and for Bell-type
spin correlations [28].
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Figure 1. Framework: (a) a lepton and an antineutrino propagate in opposite directions with
same momentum. Each is described by a Dirac bispinor, carrying spin and chirality degrees of
freedom. (b) At t = 0, the state is a superposition in which the lepton and the antineutrino have
definite chiralities. The coefficients A and B depend on the masses of the particles and on the
momentum. (c) Under free evolution, the chiralities oscillate, changing the initial superposition and
the correlations shared between the spins.

We show that chiral oscillations induce a redistribution of entanglement from spin-
spin to spin-chirality. As a consequence, the amount of entanglement encoded only on the
spins of the pair oscillates in time with a frequency that depends on the dynamical regime
of propagation of both particles. In fact, even in the configuration where the lepton mass
is much larger than the antineutrino mass, oscillations of the spin-spin entanglement are
still relevant provided that the lepton is in the non-relativistic dynamical regime. Such
entanglement oscillations exhibit a maximum amplitude for momenta of the order of the
antineutrino mass, a resonance-like behavior. The spin-spin Bell-type correlation exhibits
the same behavior of the spin-spin entanglement, but since its measurement requires only
specific spin-spin correlations (and not a full reconstruction of the density matrix), it is
more convenient for experiments.
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2. Chiral Oscillations and Spin-Spin Entanglement

We consider the dynamics of a state describing a lepton-antineutrino pair propagating
in opposite directions with the same momentum. We assume that the lepton (hereafter
indicated by the subscript l) with mass ml has momentum −pez, while the antineutrino
(indicated by the subscript ν̄) with mass mν̄ has momentum pez, as depicted in Figure 1.
As a toy model for the creation process, we assume the following superposition

|Φ〉 = |v↑(p, mν̄)〉 ⊗ |u↓(−p, ml)〉 − |v↓(p, mν̄)〉 ⊗ |u↑(−p, ml)〉√
2

(1)

where |u↑(↓)(p, m)〉 and |v↑(↓)(p, m)〉 denote the Dirac bispinors with parallel (↑) and
antiparallel (↓) spins polarized along ez. Those bispinors are the eigenstates of the free
Dirac Hamiltonian

Ĥ = p̂ · α̂ + mβ̂, (2)

with energies ±Ep,m = ±
√

p2 + m2, where neutral units c = h̄ = 1 have been considered,
boldface letters indicate vectors, and hats “ˆ” denote operators. The 4× 4 Dirac matrices
α̂ and β̂ satisfy the anti-commutation relations α̂iα̂j + α̂jα̂i = 2δij Î4, α̂i β̂ + β̂α̂i = 0, and
β̂2 = Î4, where ÎN denotes the N × N identity matrix. We adopt the chiral representation
of the Dirac matrices [29]

α̂i =

[
σ̂i 0
0 −σ̂i

]
, β̂ =

[
0 Î2
Î2 0

]
, (3)

with σ̂i denoting the Pauli matrices, which returns for the bispinors

|u↑(p, m)〉 = Np,m

[
f+(p, m)| ↑〉
f−(p, m)| ↑〉

]
, |u↓(p, m)〉 = Np,m

[
f−(p, m)| ↓〉
f+(p, m)| ↓〉

]
,

|v↑(p, m)〉 = Np,m

[
f+(p, m)| ↑〉
− f−(p, m)| ↑〉

]
, |v↓(p, m)〉 = Np,m

[
f−(p, m)| ↓〉
− f+(p, m)| ↓〉

]
,

(4)

where | ↑〉 and | ↓〉 are the eigenstates of σ̂z, and the short hand notation sets

Np,m =

√
Ep,m + m

4Ep,m

f±(p, m) = 1± p
Ep,m + m

.
(5)

Finally, the normalization of the bispinors is 〈us(p, m)|ul(p, m)〉 = 〈vs(p, m)|vl(p, m)〉 = δsl ,
and the orthogonality relations are 〈us(p, m)|vl(−p, m)〉 = 0.

The choice of the singlet state (1) is motivated by the decay of a pion into a lepton-
antineutrino pair in the center of mass of the pion [30–32], a process generated by weak
interactions. Since weak interactions are inherently chiral and select definite chiral com-
ponents of the bispinors, we model such an effect by projecting the state (1) into definite
chiralities: the antineutrino into right (positive) chirality and the lepton into left (negative)
chirality, such that, at t = 0, the state is given by

|Ψ(0)〉 = Π̂(ν̄)
R ⊗ Π̂(l)

L |Φ〉
〈Φ|Π̂(ν̄)

R ⊗ Π̂(l)
L |Φ〉

. (6)

The chirality projectors are given in terms of the chiral matrix γ̂5 = diag
[
Î2,− Î2

]
by

Π̂(A)
R(L) =

Î(A) + (−)γ̂(A)
5

2
, (A = ν̄, l) (7)
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such that

|Ψ(0)〉 = A(p, ml , mν̄)|ν̄↑(0)〉 ⊗ |l↓(0)〉 − B(p, ml , mν̄)|ν̄↓(0)〉 ⊗ |l↑(0)〉. (8)

The chirality projected states at t = 0 are

|ν̄↑(↓)(0)〉 =
[| ↑ (↓)〉

0

]
, |l↑(↓)(0)〉 =

[
0

| ↑ (↓)〉

]
, (9)

and the coefficients of the superposition are given by

A(p, ml , mν̄) = Np,ml Np,mν̄ f+(p, mν̄) f−(p, ml)

[
1
2
− p2

2Ep,ml Ep,mν̄

]− 1
2

,

B(p, ml , mν̄) = Np,ml Np,mν̄ f−(p, mν̄) f+(p, ml)

[
1
2
− p2

2Ep,ml Ep,mν̄

]− 1
2

.

(10)

If p � mν̄, then A � B, and the largest contribution to the superposition (8) is the
first term.

Dirac bispinors belong to an irreducible representation of the complete Lorentz group,
and as such they carry two intrinsic dichotomic degrees of freedom [2]: chirality (or
intrinsic parity) and spin. The former degree of freedom is related to the inclusion of
spatial parity as a symmetry. In this framework, we can understand each single particle
state as a two qubit state [11], and a bispinor state belongs to a composite Hilbert space
HS ⊗HC with dim[HC] = dim[HS] = 2. Here,HS(C) is associated with the spin (chirality)
degree of freedom. Therefore, a two particle state, such as (1), can be interpreted as a
four qubit state [13]. The quantum bits are chirality and spin of the antineutrino (Cν̄

and Sν̄, respectively) and chirality and spin of the lepton (Cl and Sl , respectively). The
state of the lepton-antineutrino pair is then described in the composite Hilbert space
HCν̄
⊗HSν̄

⊗HCl ⊗HSl .
The superposition (1) is an entangled state: it can not be written as the tensor product

of pure states |ψCν̄
〉 ⊗ |ψSν̄

〉 ⊗ |ψCl 〉 ⊗ |ψSl 〉, where |ψA〉 ∈ HA with A denoting the degrees
of freedom. The entanglement encoded in (1) involves all four degrees of freedom of
the state. On the other hand, the chiral projected state (8), describing the intrinsic chiral
character of weak interactions, encodes entanglement only between the spins. In fact,
we can readily write |Ψ(0)〉 = |+Cν̄

〉 ⊗ |−Cl 〉 ⊗ |ΨSν̄ ,Sl 〉, with |±A〉 denoting the positive
(negative) chirality of A = Cν̄,l , and

|ΨSν̄ ,Sl 〉 = A(p, ml , mν̄)| ↑Sν̄
〉 ⊗ | ↓Sl 〉 − B(p, ml , mν̄)| ↓Sν̄

〉 ⊗ | ↑Sl 〉 (11)

is the joint spin state at t = 0.
To compute the amount of entanglement shared between the spins, we adopt the

entanglement quantifier called negativity [33,34]. The Peres separability criterion [33] states
that the partial transposed density matrix of a separable state has only positive eigenvalues.
For a two-qubit state, partial transposition corresponds to the transformation |ij〉〈kl| →
|il〉〈kj|, i.e., it is a transposition on the subspace of only one of the subsystems. The criterion
allows the definition of the negativity as an entanglement quantifier for two-qubit states:
given a density matrix $ representing the state, it is defined asNSν̄ ,Sl [$] = ||$T || − 1, where
||$T || is the trace norm of the partial transposed matrix $T , given in terms of its eigenvalues
λi by ||$T || = ∑i |λi|. This entanglement quantifier is valid for both pure and mixed
states [27].
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We can now calculate the entanglement shared between the spins by first evaluating
the spin-reduced density matrix:

ρSν̄ ,Sl (0) = TrCl ,Cν̄ [|Ψ(0)〉〈Ψ(0)|] = |ΨSν̄ ,Sl 〉〈ΨSν̄ ,Sl |
= A2(p, ml , mν̄)| ↑ν̄↓l〉〈↑ν̄↓l |+ B2(p, ml , mν̄)| ↓ν̄↑l〉〈↓ν̄↑l |
− A(p, ml , mν̄)B(p, ml , mν̄)

[
| ↑ν̄↓l〉〈↓ν̄↑l |+ | ↓ν̄↑l〉〈↑ν̄↓l |

]
.

(12)

Partial transposition yields ρT
Sν̄ ,Sl

from which we obtain the spin-spin negativity for
the state at t = 0

NSν̄ ,Sl (0) ≡ N [ρSν̄ ,Sl (0)] = 2|A(p, ml , mν̄)B(p, ml , mν̄)|. (13)

Figure 2 depicts NSl ,Sν̄
(0) as a function of the momentum p and the lepton mass

ml in units of the antineutrino mass mν̄. The amount of entanglement depends both
on the dynamical regime and on the lepton-antineutrino mass ratio. For ml � mν̄ and
p � ml,ν̄, the spin-spin entanglement vanishes. In this limit, the antineutrino is ultra-
relativistic, and thus its chirality equals its helicity. In terms of (8), A � B in this limit,
and the state becomes separable. In a pion decay process, this is expected due to the
small mass of antineutrinos. One can also understand the separability of the state in terms
of conservation of angular momentum: the initial pion has zero spin; therefore, since
ultra-relativistic neutrinos have a definite helicity, the spin-polarization of the lepton is
fixed [30]. Furthermore, the entanglement between spins is more prominent for mν > p,
even if mν̄ � ml .
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Figure 2. (a) Entanglement between the lepton and the antineutrino spins in the initial state (8) as a
function of the momentum and of the lepton mass (in units of the antineutrino mass). (b) Same as
(a) but for specific lepton-antineutrino mass ratios as a function of the momentum (in log-log scale).

Since chirality is not a conserved quantity under the free Dirac equation, temporal
evolution can induce chiral oscillations [17,18]. For a two-particle state such as (8), this
yields a change in the form of the superposition that dynamically redistributes the quantum
correlations, encoded initially only between the spins, to other partitions of the system.
Thus, because both particles are massive and described by Dirac bispinors, time evolution
induces entanglement oscillations whose characteristics are intrinsically linked to those of
the chiral oscillations.

For any given bispinor |w(0)〉, its temporal evolution can be obtained by a decomposi-
tion into the Dirac bispinors as [29,35]

|w(t)〉 = ∑
s=↑,↓

Uw,se−iEp,mt|us(p, m)〉+ Vw,seiEp,mt|vs(−p, m)〉, (14)
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where Uw,s = 〈us(p, m)|w(0)〉 and Vw,s = 〈vs(−p, m)|w(0)〉. For the joint lepton-antineutrino
state, we obtain

|Ψ(t)〉 = A(p, ml , mν̄)|ν̄↑(t)〉 ⊗ |l↓(t)〉 − B(p, ml , mν̄)|ν̄↓(t)〉 ⊗ |l↑(t)〉, (15)

where the antineutrino components are given by

|ν̄↑(t)〉 = Np,mν̄

[
e−iEp,mν̄ t f+(p, mν̄)|u↑(p, mν̄)〉+ eiEp,mν̄ t f−(p, mν̄)|v↑(−p, mν̄)〉

]
,

|ν̄↓(t)〉 = Np,mν̄

[
e−iEp,mν̄ t f−(p, mν̄)|u↓(p, mν̄)〉+ eiEp,mν̄ t f+(p, mν̄)|v↓(−p, mν̄)〉

]
,

(16)

and the lepton components are

|l↑(t)〉 = Np,ml

[
e−iEp,ml t f+(p, ml)|u↑(−p, ml)〉 − eiEp,ml t f−(p, ml)|v↑(p, ml)〉

]
,

|l↓(t)〉 = Np,ml

[
e−iEp,ml t f−(p, ml)|u↓(−p, ml)〉 − eiEp,ml t f+(p, ml)|v↓(p, ml)〉

]
.

(17)

With the time-evolved state (15), we can now compute the quantities of interest: the
spin-spin entanglement and the average chiralities of the lepton and of the antineutrino.
Since 〈ν̄i(t)|ν̄j(t)〉 = 〈li(t)|lj(t)〉 = δij ({i, j} =↑, ↓), we obtain the reduced density matrices
for the antineutrino and the lepton by

ρν̄(t) = Trl [|Ψ(t)〉〈Ψ(t)|]
= A2(p, ml , mν̄)|ν̄↑(t)〉〈ν̄↑(t)|+ B2(p, ml , mν̄)|ν̄↓(t)〉〈ν̄↓(t)|,

ρl(t) = Trν̄[|Ψ(t)〉〈Ψ(t)|]
= A2(p, ml , mν̄)|l↓(t)〉〈l↓(t)|+ B2(p, ml , mν̄)|l↑(t)〉〈l↑(t)|.

(18)

We first notice that ρν̄,l(t) are mixed states:

Tr[ρ2
ν̄(t)] = Tr[ρ2

l (t)] = A4(p, ml , mν̄) + B4(p, ml , mν̄)

= 1−
N 2

Sν̄ ,Sl
(0)

2
< 1.

(19)

Since the evolution is unitary, the degree of mixedness Tr[ρ2
ν̄,l(t)] is time-independent. The

joint state (15) is pure at all times; therefore, (19) computes the total amount of entanglement
encoded in the bipartition (Cν̄, Sν̄); (Cl , Sl) [36], that is, the entanglement between all the
degrees of freedom of the antineutrino as a whole and all the degrees of freedom of the
lepton as a whole. Such entanglement is constant in time and given in terms of the initial
spin-spin entanglement via the term ∝ NSν̄ ,Sl (0) (see also Equation (13)). The average

chiralities of the antineutrino and lepton are given by 〈γ̂5〉A(t) = TrA[γ̂
(A)
5 ρA(t)] with

A = ν̄, l and read

〈γ̂5〉ν̄(t) = 1− m2
ν̄

E2
p,mν̄

[
1− cos

(
2Ep,mν̄ t

)]
,

〈γ̂5〉l(t) = −1 +
m2

l
E2

p,ml

[
1− cos

(
2Ep,ml t

)]
.

(20)

Different from (8), it is not possible to write |Ψ(t)〉 = |ψCν̄
(t)〉 ⊗ |ψCl (t)〉 ⊗ |ψSν̄ ,Sl (t)〉,

that is, the chiralities and the spins become entangled. The free evolution under the Dirac
equation induces oscillations between left- and right-handed chiralities for both antineu-
trino and lepton, which changes the initial superposition and redistributes the correlation
content carried by the state. The density matrix of the spins ρSν̄ ,Sl (t) = TrChirality[|Ψ(t)〉〈Ψ(t)|]
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is a mixed state with entanglement dynamics directly affected by chiral oscillations. The
entanglement between the spins is again evaluated in terms of the negativity:

NSν̄ ,Sl (t) ≡ N [ρSν̄ ,Sl (t)] = ||ρT
Sν̄ ,Sl

(t)|| − 1 = NSν̄ ,Sl (0)Γ(t) (21)

with the time-dependent factor given in terms of the chiralities (20) as

Γ(t) = ∑
j=ν̄,l

[
1− p2

m2
j

(
〈γ̂5〉j(t)− 1

)2
] 1

2

. (22)

The degree of mixedness of the spin density matrix reads

Tr[ρ2
Sν̄ ,Sl

(t)] = 1−
N 2

Sν̄ ,Sl
(0)(1− |Γ(t)|2)

2
, (23)

which quantifies the entanglement in the bipartition (Sν̄, Sl); (Cν̄, Cl), that is, the entan-
glement between spins and chiralities. The fact that Tr[ρ2

Sν̄ ,Sl
(t)] < 1 indicates that the

entanglement initially encoded only between the spins redistributes into spin-chirality
entanglement.

Figure 3 depicts the average chirality of the lepton (a), of the antineutrino (b), and the
spin-spin entanglement (c) as a function of the momentum p and of the time. The spin-
spin entanglement oscillations depend on the chiral oscillations of both antineutrino and
lepton. In the limit mν̄ � p, the spin-spin entanglement vanishes, since the antineutrino
has definite helicity and chirality. Furthermore, at intermediate dynamical regimes, the
entanglement exhibits two oscillation frequencies: one related to the chiral oscillations of the
antineutrino, and the other to the chiral oscillations of the lepton. For p < mν̄, the amplitude
of the entanglement oscillations is suppressed, and the spin-spin entanglement is robust
to the chiral oscillations. We therefore notice that the entanglement oscillations exhibit a
resonance-like behavior as a function of the momentum: the amplitude of entanglement
oscillations are enhanced in the dynamical regime p ∼ mν̄.
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Figure 3. (a) Average lepton chirality, (b) average antineutrino chirality, and (c) spin-spin entangle-
ment as a function of the momentum (in units of the antineutrino mass and in log scale) and of time.
In (a,b) for ml,ν̄ < p, chiral oscillations are suppressed. Correspondingly, the spin-spin entanglement
exhibits a behavior similar to the antineutrino chirality: for mν̄ � p, entanglement is suppressed.
Results for ml/mν̄ = 102.
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3. Chiral Oscillations on Spin Correlations

Chiral oscillations impact the spin-spin entanglement shared between the antineutrino
and the lepton. Nevertheless, the measurement of such correlations requires the full
knowledge of the density matrix of the state, a task only accomplished by a tomographic
reconstruction of the state.

A different approach to the problem consists of the measurement of Bell spin cor-
relations. Since the spin-spin entanglement is modified by chiral oscillations, we expect
that joint spin observables are also influenced by the chirality dynamics. In particular, we
consider the following quantity:

B[ρ(t)] = |〈Ŝν̄,1 ⊗ Ŝl,1〉+ 〈Ŝν̄,1 ⊗ Ŝl,2〉+ 〈Ŝν̄,2 ⊗ Ŝl,1〉 − 〈Ŝν̄,2 ⊗ Ŝl,2〉|, (24)

which is the Bell observable that was first proposed to investigate non-local correlations [28].
Considering

Ŝν̄,1 = Ŝν̄,x, Ŝl,1 = −
Ŝl,x + Sl,y√

2

Ŝν̄,2 = Ŝν̄,y, Ŝl,2 =
−Ŝl,x + Sl,y√

2
,

(25)

for pure states, B[ρ] > 2 indicates that the correlations shared between the spins are non-
local and that the state is entangled. We notice, however, that even though for t > 0, the
spin-spin reduced density matrix is not a pure state, B[ρ] still quantifies spin correlations
that are affected by chiral oscillations. To quantify the total amount of non-local correlations,
which does not coincide with entanglement for mixed states, one has to maximize the
quantity B over all possible sets of spin operators {Ŝν̄,i, Ŝl,i} [28]. We instead consider the
simpler framework of correlations measured with the set (25). Such a type of correlations
can be measured via, e.g., Stern–Gerlach apparatuses.

Figure 4 shows B[ρ(t)] for the time-evolved state (15) as a function of the momentum
and of time. The observable exhibits an oscillatory behavior similar to the spin-spin
entanglement (c.f. Figure 3). Nevertheless, we notice that at intermediate dynamical scales
(where the antineutrino is ultra-relativistic but the lepton is not), there are no clear beatings
as was observed for the entanglement. Nevertheless, the imprints of chiral oscillations in
B are still prominent. Additionally, the Bell observable exhibits the same enhancement
of oscillation amplitudes obtained for the spin-spin entanglement when the mass of the
antineutrino is comparable with the momentum.
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Figure 4. Bell observable (24) as a function of the momentum (in units of the antineutrino mass and
in log scale) and of time for ml/mν̄ = 102.

4. Conclusions

In summary, we have discussed the effects of chirality, a degree of freedom intrinsic
to massive fermions described by the Dirac equation, in the spin entanglement between a
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lepton and an antineutrino. We have considered a prototypical state modeling, for example,
the generation of the pair by a charged meson decay (for example, a pion). To take into
account the intrinsic chiral character of weak interactions, we have further considered a
chirality projection into the initial superposition.

While helicity is conserved under the Dirac equation dynamics, chirality is not. We
have shown that chiral oscillations change the form of the superposition of the pair and have
an imprint on the entanglement shared between the spin of the lepton and the spin of the
antineutrino. The entanglement dynamics is more prominent in the case where both particles
are non-relativistic, even though at intermediate dynamical regimes, the spin-spin entanglement
exhibits oscillations related to both antineutrino and lepton chiral oscillations. In fact, the
entanglement oscillations exhibit a resonance-like behavior with the mass of the antineutrino.
Finally, we have also described how chiral oscillations are present in spin-spin correlations
as measured by a Bell-like observable, where features due to chiral oscillations are present.
Although we considered here a simpler scenario in which only one generation of lepton is taken
into account, flavor mixing intrinsic to the dynamics of massive neutrinos can be included at the
level of Dirac bispinors by following [19,20]. In this case, we expect a further oscillation scale
related to the flavor oscillations [23] and the generation of correlations with the flavor degree of
freedom [37,38]. A further step is the inclusion of wave-packets, which also influence flavor
oscillations. Finally, the formalism adopted in this paper is that of single-particle relativistic
quantum mechanics. A correct description of neutrino dynamics and, in particular, the inclusion
of flavor oscillations requires quantum field theory [39,40].

Our results indicate a novel framework for measuring chiral oscillations, and thus the
intrinsic bispinor structure of fermions, through the dynamics of either quantum entanglement,
which requires a full tomography of the spin density matrix, or by spin correlations. It should
be noticed that in typical pion decay experiments (for example into a muon and a muon
antineutrino), the antineutrino is typically ultra-relativistic [30], and the effects reported here
should be very small. Another possibility is the generation of the entangled state via scattering
processes, allowing the observation of the pair in the intermediate dynamical regime, which
have more prominent imprints of chirality. Finally, even though here we considered the case of
an antineutrino entangled with a fermion, the framework can be readily adapted to describe
chiral oscillation effects on the dynamics of two-fermion states, including fermion-antifermion
pairs. This can be particularly relevant for the study of quantum correlations and entanglement
in particle physics, a growing research field [41–46].

This work is a testimony of the legacy of Wigner’s seminal work, which comprises
several topics of physics and mathematics: from group structures and their representations
to the consequences of describing quantum states with irreps of specific groups and their
possible effects in physical systems.
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