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Abstract: In this review, we revisit our approach to constructing an effective theory for Abelian and
Non-Abelian gauge theories in 4D. Our goal is to have an effective theory that provides a simple
classical picture of the main qualitatively important features of these theories. We set out to ensure
the presence of the massless photons—Goldstone bosons in Abelian theory and their disappearance
in the Non-Abelian case—accompanied by the formation of confining strings between charged states.
Our formulation avoids using vector fields and instead operates with the basic degrees of freedom
that are the scalar fields of a nonlinear σ-model. The Mark 1 model we study turns out to have a large
global symmetry group-the 2D diffeomorphism invariance in the Abelian limit, which is isomorphic
to the group of all canonical transformations in the classical two dimensional phase space. This
symmetry is not present in QED, and we eliminate it by “gauging” this infinite dimensional global
group. Introducing additional modifications to the model (Mark 2), we are able to prove that the
“Abelian” version is equivalent to the theory of a free photon. Achieving the desired property in the
“Non-Abelian” regime turns out to be tricky. We are able to introduce a perturbation that leads to the
formation of confining strings in our Mark 1 model. These strings have somewhat unusual properties,
in that their profile does not decay exponentially away from the center of the string. In addition,
the perturbation explicitly breaks the diffeomorphism invariance. Preserving this invariance in the
gauged model as well as achieving confining strings in Mark 2 model remains an open question.

Keywords: confinement; higher order theories; gauge theory; effective field theory; magnetic
flux symmetry

1. Introduction

Understanding confinement in Non-Abelian gauge theories is a long standing the-
oretical problem. There is very little doubt that QCD is confining. One has very strong
indications of that from lattice gauge theory as well as from a variety of theoretical consider-
ations. Nevertheless, a satisfactory simple understanding of the confinement phenomenon
in 3 + 1 dimensional theories is still missing. By such an understanding, we mean a simple
qualitative picture that relies on universal concepts.

In 2 + 1 dimensions, such a picture does exist. In this low dimensionality, one is able
to directly relate confinement with a universal phenomenon of spontaneous symmetry
breaking. The symmetry in question is a discrete symmetry generated by the magnetic
flux [1–3]. The equivalence between confinement and a spontaneous breaking of magnetic
symmetry provides a simple classical picture of the formation of a confining string.

There is an additional feature of gauge theories in 2 + 1 dimensions that very much
facilitates their qualitative understanding. Namely, the effective description of confining
Non-Abelian gauge theories and Abelian nonconfining differs only by simple magnetic
symmetry breaking deformation. The magnetic symmetry in the Abelian case is a continu-
ous U(1) group but is a discrete group ZN in SU(N) gauge theories (without fundamental
matter). This reduction of symmetry is affected in the effective Lagrangian by the presence
of a simple deformation. The presence of this deformation, together with the spontaneous
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breaking of the discreet ZN group, unambiguously ensures an area law for Wilson loops
and thereby a confining potential at long distances [2–4].

This review is devoted to a recent work that aims at constructing an analogous
effective theory description in 3 + 1 dimensions. The goal here is to “guess” an effec-
tive description that would display features similar to the 2 + 1 dimensional case [5,6].
We design a model that embodies features of the transition between the Abelian and
Non-Abelian regimes, similar to 2 + 1 dimensions. Although it is not derived from QCD
per se and therefore is not a bona fide QCD effective theory, amusingly, it does have some
properties that have appeared before in the QCD context. In particular, the model has clear
similarities with the Faddeev–Niemi model, which has been proposed as an effective theory
of glueballs [7–11]. We note, however, that our perspective here is completely different,
and we are not concentrating on the interpretation of knots as glueballs [7–11].

Prior to introducing our effective model, we will give a short recap of the confining
physics in 2 + 1 dimensional gauge theories. Consider the simplest Abelian gauge theory—
QED with scalar Higgs fields. In addition to electric charge, it has a continuous magnetic
global symmetry. The generator of this Uµ(1) group is the total magnetic flux through
2D, Φ =

∫
d2xB(x). As any proper global symmetry, Uµ(1) has an order parameter.

In the present case, this is a complex field V, whose physical meaning is a field associated
with creation and annihilation of point-like magnetic vortices. In the Coulomb phase, its
expectation value does not vanish, 〈V〉 = v 6= 0, and thus, the magnetic symmetry is
spontaneously broken. One can easily write down an effective low energy theory that
fits this simple symmetry breaking pattern and describes the low energy dynamics. The
relevant model is defined by the Lagrangian

L = −∂µV∂µV∗ − λ(V∗V − e2

8π
)2 (1)

The phase of the field V appears in Equation (1) as a Goldstone boson associated
with the spontaneous breaking of Uµ(1). This is nothing but the massless photon of
QED. Interestingly, although the electric charge did not figure prominently in constructing
Equation (1), it is indeed present in this description in the shape of the topological charge—
the winding number of the field V

Jµ =
1
e

εµνλ∂νV∗∂λV (2)

A charged state of QED in the low energy description appears as a topological soli-
ton of V: V(x) = veiθ(x), with θ = tan−1 y/x. This description is frequently called a
“dual” description as the basic fields used here are dual of the fields in the original QED
Lagrangian, but a more physical view is that the Lagrangian Equation (1) is merely an
effective low-energy long-distance Lagrangian of QED with scalar fields.

Equation (1) is a good starting point for understanding the confinement in Non-
Abelian gauge theories. Recall that in 2 + 1 dimensions, confining theories have a weakly
coupled regime. For example, the SU(N) Higgs model at weak coupling is confining in
the weakly coupled case. The appropriate low energy description for this theory is almost
identical to Equation (1), with one important difference, i.e., an additional perturbation
that breaks the magnetic Uµ(1) symmetry down to ZN

L = −∂µV∂µV∗ − λ(V∗V − e2

8π
)2 + µ(VN + V∗N) (3)

The presence of this additional potential has the effect of reducing the number of
degenerate vacua of the Abelian theory (which is infinite) to a finite number of states
connected by the ZN symmetry transformations. The effect of this reduction on the energy
of a charged state is profound. A rotationally invariant “hedgehog” configuration now
has an infinite energy proportional to the volume of the system. The lowest state with the
nonvanishing winding number (“color charge”) is not rotationally invariant anymore but
instead has the winding concentrated within a quasi one-dimensional “flux tube” [2,3]. Its
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energy is proportional to the length of the flux tube and thus leads to linear confinement
of charges.

The identification of electric (or “color”) charges with topological defects in the effec-
tive theory is intuitively very appealing. Topological defects naturally have long range
interactions due to their inherently nonlocal nature, which, in conjunction with sponta-
neous symmetry breaking, leads directly to linear confinement. Additionally, the identifica-
tion of photons with Goldstone bosons in the Abelian limit furnishes a natural universal
explanation for the fact that the photon is strictly massless.

The question arises if a similar description can be achieved in 3 + 1 dimensions. One
would like this description to encompass the Goldstone boson nature of photons in QED
as well as an interpretation of confinement in terms of topological charges in Non-Abelian
theories. Of course, life in 3 + 1 dimensions is not at all that simple. First off, photons
now are vector particles and thus, their interpretation as Goldstone bosons in the standard
sense is questionable. Even if one successfully argues in favor of this, identification of
the relevant conserved current that breaks spontaneously is far from straightforward.
Clearly, this current has to be intimately tied with the dual field strength F̃µν since the
photon is a spin one particle [12]. The identification of photons as Goldstone bosons of
this higher form symmetry was achieved a while ago in [12] and was revived recently
in [13]. The dual field strength, however, is an object of a very different nature than
an ordinary vector current since no local order parameter that carries its charge can be
defined even in principle. One might hope that a more conventional picture of symmetry
breaking coexists with the “generalized symmetry” explanation, and it would be useful
to clarify this. Another significant stumbling block is that we do not know of weakly
coupled confining theories in 3 + 1 dimensions. QCD is certainly strongly interacting while
a classical effective description of the type described before is directly applicable only for a
weakly interacting theory.

These are hard problems to solve, much too hard for the present modest attempt.
Instead of addressing them head on here, we will largely ignore them and instead will
simply try to construct a model that encompasses the basic properties described above:

1. The degrees of freedom of the model must be scalar fields, and no fundamental
gauge fields should be involved.

2. A well-defined “Abelian regime” should be clearly definable. In this regime, two
massless degrees of freedom should exist. These massless particles should be Goldstone
bosons and as far as possible must have the properties of photons.

3. The Abelian regime should allow for the existence of classical topological solitons
associated with the nontrivial topology of the manifold of vacua. These solitons represent
electrically charged particles. More precisely, we would like the topological charge of the
solitons to be associated with the mapping of the spatial infinity onto the manifold of
vacua and thus be identified with Π2(M). Charged particles in QED are excitations of
finite energy, and thus, the classical energy of the solitons must be infrared finite, and more
precisely, the energy density of a soliton solution away from the position of the soliton
must decrease as the fourth power of the distance. This is nontrivial in 3 + 1 dimensions
since our model has no gauge fields, while scalar fields that contribute to Π2 have to be
long range.

4. A “Non-Abelian regime” of the model is achieved by adding a perturbation that
breaks explicitly the symmetry, which leads to the appearance of Goldstone bosons in
the Abelian case. The Goldstone bosons now disappear from the spectrum or, more
precisely, acquire a finite mass. In addition, in this Non-Abelian situation, the solitons do
not disappear on small spatial scales, but they must become confined by a linear potential.
The linear potential should arise due to the formation of a “string” or “flux tube” with
finite linear energy density between the solitons.

In the first part of this review, we discuss a model (Mark 1) that exhibits all the above
features. The Abelian version of the model has, in fact, been studied some years ago
from a completely different perspective in [14] as a possible variation of Maxwell’s theory.



Universe 2021, 7, 291 4 of 26

The properties of this model turn out to be a little unusual. In particular, as we will see,
requiring the energy of a soliton in the Abelian regime to be finite puts a very strong
restriction on possible forms of the kinetic term for the scalar fields. This noncanonical
kinetic term results in rather unusual properties of confining strings once the symmetry
breaking perturbation is introduced. In particular, the “Non-Abelian string” is forced into
having an infinite number of zero modes. This infinite degeneracy can be avoided, but the
price one has to pay is adding another perturbation that does not have a natural place in
the paradigm described above.

Although the model has many nice features, it does not perfectly emulate many
properties of gauge theories. Most importantly, in the Abelian regime, it has more classical
solutions than allowed by the structure of Abelian gauge theories; in particular, some of
them carry nonvanishing magnetic charge density. Thus, the field playing the role of the
dual field strength tensor is not conserved in Mark1. A related problem is that we are not
able to find classical solutions that can represent arbitrary multiphoton states. Although
solutions of equations of motion that behave as single photons can be constructed, we
show that there are no solutions that correspond to a two-photon state with arbitrary
photon polarization.

This is partly due to the fact that the global symmetry group of the model turns
out to be much larger than naively anticipated. The global symmetry group turns out to
be isomorphic to diffeomorphism symmetry in two dimensions. These diffeomorphism
transformations act nontrivially on the Hilbert space even though the fields that we identify
with the electric and magnetic fields of QED are invariant under their action. QED does
not possess such a large global symmetry.

We then discuss an approach devised to eliminate this global symmetry, which
amounts to “gauging” it. The framework we work in is very different from the usual
gauge theories, where “gauging” amounts to eliminating a set of local degrees of freedom.
In our case, gauging applies only to global group of transformations and therefore does
not change the number of local degrees of freedom.

Unfortunately, although we are able to eliminate the global diffeomorphisms from
the model, it turns out not to be enough to bring it into full conformity with QED. We,
therefore, take a different track and discuss a modification (Mark 2), which circumvents this
obstacle. We show that the the model Mark 2, which shares many features with Mark 1, is
indeed equivalent to the theory of a free Maxwell field in 3 + 1 dimensions. However, even
though we are able to reproduce the Abelian limit, introducing a reasonable Non-Abelian
perturbation turns out to be quite tricky. We make some comments on how this can be
achieved, but the implementation is left for the future.

2. The Abelian Model: Mark 1
2.1. The Field Space and the Lagrangian

As explained in the introduction, our aim is to devise a model containing scalar fields
only with two massless degrees of freedom, which allows for finite energy solitons. We,
thus, zero in on a theory of two scalar fields. In order to have a chance to get Goldstone
bosons, we endow it with SU(2) symmetry. The simplest option open for us is an O(3)
nonlinear σ-model.

φa, a = 1, 2, 3; φ2 = 1 (4)

This moduli space allows for a nontrivial topology Π2(S2). We will identify the
corresponding topological charge with the electric charge of QED

Q =
e

4π2

∫
d3xεabcεijk∂iφa∂jφ

b∂kφc (5)

This identification when extended to current density suggests the following repre-
sentation of the electric current and, by extension, of the electromagnetic field in the
effective description:

Jµ =
e

4π2 εabcεµνλσ∂νφa∂λφb∂σφc (6)
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Fµν = εabcεµνλσφa∂λφb∂σφc (7)

Our initial challenge is the following potential problem. A standard two derivative
kinetic term would lead to infrared divergent energy of a soliton carrying a nonvanish-
ing topological charge of Equation (5). Consider the simplest topologically nontrivial
field configuration:

φa
h(x) =

ra

|r| f (|r|); f (|r|)→r→∞ 1 (8)

The derivatives of the field decrease as the first power of the distance away from the
soliton core, and therefore, the standard two derivative kinetic term gives energy, which
diverges linearly in the infrared. The only way to cure this divergence is to not allow a two
derivative kinetic term but instead consider a kinetic term with more than two derivatives.

Some reflection shows that there is a unique four derivative term that would do the
job, which is also the most natural choice from another point of view. Since our goal is to
approach the QED as close as possible, the natural choice for the kinetic term is the square
of the field strength tensor in Equation (7). When written in terms of the scalar field φa,
this is just the well-known Skyrme term.

We, thus, consider a somewhat unusual nonlinear σ-model, which is defined by
the Lagrangian:

L =
1

16e2 FµνFµν + λ(φ2 − 1)2 (9)

with Fµν defined in Equation (7).
At first sight, it may seem strange that the sign of the F2 term in the Lagrangian

Equation (9) is positive, while in QED, the same term enters with the negative sign. The
sign in Equation (9) is determined by the requirement of positive definiteness of the
Hamiltonian and is thus nonnegotiable. However, the reversal of the sign of the kinetic
term is a staple of dual models. The 2 + 1 dimensional models described in the introduction
exhibit the same feature. In the Lagrangian of the effective theory, the kinetic term is the
standard |∂µV|2, while in QED, it is of course −F̃2

µ . With the identification of V∗∂µV ∝ F̃µ,
the signs of the two kinetic terms are again opposite. The reason for this inversion is that,
while in QED, the electric field is proportional to the time derivative of the basic field (in
this case, Aµ). In the effective dual description, it is the magnetic field that contains the
time derivative of the vertex field V. Thus, in order for the Hamiltonian of the two models
to be the same, the kinetic terms in the respective Lagrangians must have opposite signs.

In Equation (9), we have introduced a coupling λ. The role of this coupling is easy to
understand. In the strong coupling limit λ → ∞, the isovector φ is forced to have a unit
length, and we are back to Equation (4). In this limit, the field strength is trivially conserved

∂νFµν = 0 (10)

which means that electric current vanishes. Therefore, the strong coupling limit should
correspond to the pure Maxwell theory: the energy of the soliton Equation (8) at strong
coupling diverges linearly in the ultraviolet. At finite λ, the radial component of the field
φa can vary in space and vanishes in the soliton core. This eliminates the UV divergence of
the energy, and the soliton has a finite mass. The finite value λ, therefore, corresponds to
an Abelian theory with charged matter of finite mass. We again stress that the energy of
the soliton is also finite in the infrared, thanks to our choice of the four derivative action.
For the hedgehog configuration in Equation (8), the “electric field” decreases as Ei(x) ∝ r̂i

r2 ,
and the energy density away from the soliton core decreases as 1/r4. This is the same as
the behavior of the Coulomb energy of a static electric charge in the electrodynamics.

Interestingly, the same model was discussed a while ago in [14] with an entirely
different motivation.
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2.2. The Equations of Motion

Given the Lagrangian, we can now write down equations of motion for our effective
theory. We work in the strong coupling limit and define two independent degrees of
freedom as

φ3 = z, ψ = φ1 + iφ2 =
√

1− z2eiχ (11)

With this definition, we have

Fµν = εµναβεabcφa∂αφb∂βφc = −2εµναβ∂αz∂βχ (12)

The Lagrangian becomes

L =
1

4e2 (∂µz∂νχ− ∂µχ∂νz)2 (13)

and the equations of motion are

∂µ
[ 1

e2 ∂νχ
(
∂µz∂νχ− ∂νz∂µχ

)]
= 0

∂µ
[ 1

e2 ∂νz
(
∂µz∂νχ− ∂νz∂µχ

)]
= 0 (14)

Interestingly, these equations can be written as

1
e2 ∂νG(z, χ)∂µ

(
∂µz∂νχ− ∂νz∂µχ

)
=

1
e2 ∂ν

[
G(z, χ)∂µ

(
∂µz∂νχ− ∂νz∂µχ

)]
= 0 (15)

with G(z, χ) being an arbitrary function of two variables. These can be thought of as an
infinite number of conservation equations, where the conserved current corresponding to a
given function G(z, χ) is defined as

JG
ν = G(z, χ)∂µ

(
∂µz∂νχ− ∂νz∂µχ

)
(16)

We will see later that the existence of an infinite number of conserved currents is a
very important feature.

2.3. The Symmetries of the Model and Correspondence to Electrodynamics

Given that we have identified and infinite number of conserved currents from Equa-
tion (16), we see that the choice of the Skyrme term as the kinetic term in the Lagrangian
allows a very large global symmetry group of the model. The global symmetry group of
Equation (9) is not just the SO(3) group that we required from the outset but is isomorphic
to the group of diffeomorphisms in two dimensions.

This is easy to understand. The field strength in Equation (7) is related to an infinitesi-
mal area element on a configuration space. A given field configuration φa(x) defines a map
from space-time to a sphere S2. Consider a given component, such as the field strength
tensor, say F12 at some point x. To express it in terms of φ, we consider three infinitesimally
close points A ≡ xµ, B ≡ xµ + δµ1a, and C ≡ xµ + δµ2a. These three points in space-time
map into three infinitesimally close points on the sphere φa(A), φa(B), φa(C). The field
strength F12 is proportional (up to the factor a−2) to the area of the infinitesimal triangle
on S2 defined by these three points. Since our Lagrangian depends only on Fµν, clearly an
arbitrary area preserving reparametrization of the sphere leaves our action unchanged.

The original SO(3) global symmetry is only a small subgroup of the area preserving
diffeomorphisms of S2—the group we will denote Sdi f f (S2) [15]. As an aside, we note
that this group is also isomorphic to the group of canonical transformations on a classical
two-dimensional phase space. The infinitesimal Sdi f f (S2) transformation when acting on
z and χ is written as

z→ z +
∂G
∂χ

; χ→ χ− ∂G
∂z

(17)
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The Noether currents are those given by Equation (16), and the equations of motion
are equivalent to conservation equations of these currents.

An intriguing point is that the symmetry Equation (17) is reminiscent of the world
sheet diffeomorphism invariance of the Nambu-Gotto string. Indeed, if the fields z and
χ are thought as the world sheet string coordinates, the world sheet diffeomorphism
invariance is precisely Equation (17) . The model discussed here is not motivated by a string
theory and a priori has nothing to do with a string theory. Nevertheless, the similarities
may run deeper than just a coincidence since the fundamental “order parameters” of the
magnetic symmetry in 3 + 1 dimensions are indeed magnetic vortex strings [12]. The S2

topology of the world sheet would then ask for closed string loops. The analogy is indeed
intriguing and would be worthwhile pursuing further, but since this is not the goal of
our exploratory efforts here, we will return to the field theoretical approach in the rest of
this review.

The fact that the global symmetry group of the model is so large means that the moduli
space (space of all vacuum configurations) is much larger than S2, which corresponds to
a symmetry breaking pattern SO(3)→ SO(2). Consider an arbitrary field configuration
φa(x) that maps the configuration space into any one-dimensional curve on S2. Such a
configuration has a vanishing action and therefore is a classical vacuum. The full moduli
space is, therefore, the union of maps φa(x) that map R4 to L, where L is an arbitrary point
or a one-dimensional curve on S2.

Still the important question for us is whether the topology of this moduli space is
right to support classically quantized topological charge. Indeed, from its definition, it is
clear that the topological charge Q is quantized on any smooth classical configuration of
fields φ(x). The catch is that there are many more degenerate soliton configurations than
just the rotationally invariant hedgehog of Equation (8). Any Sdi f f (S2) transformation
with an arbitrary (regular) function G of Equation (17) applied to Equation (8) generates
a configuration φaG

h (x), which carries the same charge Q as φa
h(x) and is degenerate with

it in energy. However, although these are different field configurations, they all have the
same electric field Ei = εijkεabcφa∂jφ

b∂kφc since the field strength is invariant under the
action of Sdi f f (S2). Thus, if one is physically only allowed to measure electromagnetic
fields, all these solitons look identical.

2.4. The Photon States-a.k.a. Plane Waves

We have constructed the Lagrangian Equation (9) so that it has the maximal similarity
to QED when written in terms of the putative electromagnetic fields. This does not yet
ensure that the content of the theory is the same as that of electrodynamics. We do know
that the field strength Fµν identified in Equation (7) satisfies half of Maxwell’s equations—
the Coulomb law and the evolution equations for electric field. The other half of Maxwell’s
equations (dynamics of magnetic fields) have to follow from the equations of motions
of our model. Indeed, there is clear similarity between Equation (15) and the Maxwell’s
equations. Equation (15) can be rewritten in terms of Fµν as

[∂νG(z, χ)]∂µ F̃µν = 0 (18)

This ensures that for any configuration of the fields z, the χ that satisfies ∂µ F̃µν = 0
also satisfies the equations of motion of our model. However, the converse is not assured.
In Appendix A, we give an example of a solution of Equation (15) that does not satisfy the
equations of motion of electrodynamics.

Thus, there is no full equivalence between the model Equation (9) and electrodynamics.
Nevertheless, we can ask to what extent the spectrum of solutions of Equation (9) contains
basic excitations of QED. The excitations of particular interest in the present context are of
course the photons. (Although we are dealing with a classical theory and not a quantum
theory, we will, with a slight abuse of language, refer to plane wave configurations of Fµν

with light-like momentum as photons).
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We aim now to show that free wave excitations are indeed solutions of Equation (15).
Consider the following configuration

χ(x) = Aεµxµ; z(x) = sin kµxµ (19)

where the vector εµ is normalized as εµεµ = −1. Calculating the field strength, we find

F̃µν = A(εµkν − ενkµ) cos k · x (20)

Thus,
∂µ F̃µν = −A

[
(ε · k)kν − k2εν

]
sin k · x (21)

If the momentum vector is light-like and the polarization vector ε is perpendicular to
k, this vanishes:

k2 = 0; ε · k = 0 (22)

For a fixed light-like momentum kµ, Equation (22) has three independent solutions for
εµ, one of which is proportional to kµ. For εµ ∝ kµ, the field strength tensor Equation (19)
vanishes, and so, there are two independent polarization vectors ε

µ
λ, λ = 1, 2 that yield

plane wave solutions for Fµν. We can always choose the polarization vectors so that their
zeroth component vanishes ε

µ
λ = (0, εi

λ), just like in electrodynamics. The square of the
overall amplitude of wave A in the quantum case is proportional to the number of photons
with a given momentum and a given polarization vector.

Note that the freedom in the choice of the independent polarization vectors is exactly
the same as in electrodynamics

εµ → εµ + akµ (23)

This change of polarization vector is generated by the transformation

χ→ χ + a arcsin z (24)

which is a particular element of the Sdi f f (S2) group from Equation (17). More generally,
the field configuration in Equation (19) can be transformed by any element of Sdi f f (S2)
without causing a change in Fµν.

The solution Equations (19)–(22) describe a state that in all respects is equivalent to
the freely propagating photon, and we will refer to it as such. The solution Equation (19)
suggests an intuitive interpretation for the properties of the photon states in terms of the
effective theory. The momentum of the photon is simply the momentum associated with
the variation of the third component of the isovector φa, while the direction of the photon
polarization vector is the direction of the spatial variation of the phase χ.

We again note that the present formulation is easier to interpret in terms of quantities
dual to those normally used in QED. One usually introduces the vector potential Aµ via
Fµν = ∂µ Aν − ∂ν Aµ, which potentiates the homogeneous Maxwell’s equation ∂µ F̃µν = 0.
However, in the absence of electric charges, one can alternatively potentiate the other half
of Maxwell’s equation by introducing the dual vector potential via F̃µν = ∂µ Ãν − ∂ν Ãµ. In
the absence of charges, the dynamics of the dual vector potential Ãµ is identical to that
of Aµ, and it can be expanded in exactly the same polarization basis as Aµ. In this dual
formulation, QED possesses a dual gauge symmetry Ãµ → Ãµ + ∂µλ(x).

To make the correspondence to our model more obvious, we can introduce a “dual
vector potential” by

Ãµ = z∂µχ (25)

As opposed to the field strength tensor itself, this object is not invariant under the
Sdi f f (S2) group transformation from Equation (17):

Ãµ → Ãµ + ∂µ[G− z
∂G
∂z

] (26)
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This is similar to the dual gauge transformation in electrodynamics with the gauge
function λ(x) = G− z ∂G

∂z .
The analogy of Equation (25) is suggestive, but one has to keep in mind that this is not

at all an equivalence. First, the transformation Equation (26) is not a gauge transformation
but rather the action of a global symmetry transformation of the Lagrangian on Ãµ of
Equation (25). More importantly, an arbitrary vector field cannot be expressed in terms
of two scalars by a relation of the type Equation (25), even allowing for a possible gauge
ambiguity. Thus, Equation (25) cannot be considered merely a convenient parametrization
of the dual potential of electrodynamics. For this reason, the variation of the Lagrangian
Equation (9) with respect to such a constrained vector potential does not lead to directly to
homogeneous Maxwell’s equations but instead to Equation (18).

We have thus determined that monochromatic plane wave F̃µν solves the equations of
motion of our effective model. In QED, which is a linear theory of Fµν, the immediate conse-
quence is that a superposition of such waves is a solution as well. However, Equation (18)
is not linear in the basic field variables, and thus, a superposition of two such solutions is
not assured to be a solution as well. Let us try to construct a “two photon state” by slightly
extending the ansatz Equation (19).

χ = λµxµ; z = a sin kµxµ + b sin pµxµ (27)

with kµ and pµ—both light-like vectors, λµkµ = λµ pµ = 0 and λµλµ = −1. The latter two
conditions can be satisfied by taking

λµ = α
[
εµ − ε · k

k · p pµ −
ε · p
k · p kµ

]
(28)

with an arbitrary vector εµ and an appropriate normalization constant α.
The dual field strength tensor is now:

F̃µν = a(kµεk
ν − kνεk

µ) cos k · x + b(pµε
p
ν − pνε

p
µ) cos p · x (29)

with
εk

µ = λµ −
λ0

k0
kµ; ε

p
µ = λµ −

λ0

p0
pµ; (30)

This looks like a bona fide two-photon state. However, our ansatz does not yield a
generic two-photon state with arbitrary polarization vectors: both the polarization vectors
εk and εp above have equal components in the perpendicular direction to the plane spanned
by pi; ki. Thus, we are one degree of freedom short and cannot construct a two-photon
state with arbitrary polarizations of both photons. Although this might look merely like
a limitation of our particular ansatz, we show in Appendix A that this problem is not
restricted to the ansatz Equation (27) but is unfortunately a genuine limitation of our
effective model.

3. Going Non-Abelian: The “Confining String”

Our main goal in this project is to have a model representation of the confinement phe-
nomenon in Non-Abelian theories. We, therefore, take the same trek as in 2 + 1 dimensions.
Namely, we will add to the Lagrangian Equation (9) a simple perturbation that explicitly breaks
the global symmetry of the model. This modification of low energy description is meant to get
rid of the multiple vacuum structure inherent to spontaneous symmetry breaking and therefore
eliminate massless excitations. For convenience, we will choose a potential that (classically) sets
the vacuum expectation value of the field z to unity.

With the above considerations, we are led to consider the Lagrangian

L =
1

16e2 FµνFµν −
2
e2 Λ2(z− 1)2 (31)
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The potential we have added of course breaks the SO(3) symmetry, but in addition, it
is also not invariant under a general Sdi f f (S2) transformation. However, the Sdi f f (S2) is
not broken completely but only up to the subgroup

χ→ χ− dG(z)
dz

(32)

We keep this in mind throughout the discussion of this section.
The equations of motion of the perturbed model are

∂µ
[ 1

e2 ∂νχ
(
∂µz∂νχ− ∂νz∂µχ

)]
=

4
e2 Λ2(z− 1)

∂µ
[ 1

e2 ∂νz
(
∂µz∂νχ− ∂νz∂µχ

)]
= 0 (33)

These equations do not have static topologically stable solutions of finite energy. How-
ever, one can still ask what is the energy of a configuration of a soliton and antisoliton
separated far in space. As the answer to this question, we expect to find a (approximately)
translationally invariant string-like configuration that connects the soliton and the anti-
soliton and produces a linear confining potential between the two. Consider a static field
configuration translationally invariant in the third direction. The only components of Fµν

that do not vanish then are:

F03 = 2εij∂iz∂jχ (34)

Let us take the following ansatz, which preserves rotational symmetry in the x1− x2 plane:

χ(x) = θ(x); z(x) = z(r) (35)

Here, r and θ are the polar coordinates in the x1, x2 plane. This ansatz parametrizes
a configuration with a unit winding in the x1, x2 plane, which should be the case for a
string connecting a soliton and an antisoliton. The soliton partner of the pair is located
at a very large negative value of x3. At even more negative x3, the field must relax
into the vacuum φ1 = φ2 = 0; z = 1. Therefore, the topological charge calculated on
a surface enclosing the soliton (but not its antisoliton partner) should be given by the
two dimensional topological charge—the winding number of the phase χ on any surface
crossed by the string. The same argument applies for the antisoliton, which resides at large
positive value of x3. Our ansatz, therefore, describes a confining string connecting a widely
separated soliton–antisoliton pair.

Interestingly, the equation of motion for the field χ is automatically satisfied for
Equation (35). The only nontrivial equation is that for z:

4z′′ = 4Λ2(z− 1) (36)

with z′ ≡ dz
d(r2)

In order for the solution to have finite linear energy density, z must satisfy the bound-
ary conditions:

z(0) = −1, z(∞) = 1 (37)

The solution with these boundary conditions is

z(r2) = 1− 2 exp{−Λr2} (38)

Some of the properties of this solution are intuitively appealing. It has a finite width
governed by the only dimensional parameter Λ. Outside of this width, the fields relax to
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vacuum. Inside the string, the potential energy is finite, and thus, the string carries finite
linear energy density. The string tension is found to be

σ = 8π
Λ
e2 (39)

One feature of the solution, however, is rather peculiar. Away from the string core, the
fields do not approach the vacuum configuration exponentially but rather as a Gaussian in
transverse distance. The string profile is, therefore, unusual as it has a very sharp boundary,
outside of which the vacuum is reached very quickly. Such a behavior is unusual and, in
fact, is not possible in a local field theory with a finite mass gap and a finite number of
massive excitations. We can trace the origins of this behavior back to the non canonical
kinetic term in Equation (9), which has four derivatives. For simple dimensional reasons,
the kinetic energy for a rotationally invariant configuration is given by the second derivative
with respect to r2 rather than r, which results in a Gaussian rather than exponential decay
of the solution fields.

4. The ZN Preserving Perturbation

The potential of Equation (31) breaks the SO(3) as well as the Sdi f f (S2) symmetries
but leaves an O(2) subgroup of SO(3) and a large subgroup Sdi f f (S2) (Equation (32))
unbroken. On the other hand, if we follow a direct analogy with 2 + 1 dimensions, we
expect the effective theory in the Non-Abelian regime to preserve only a ZN subgroup of
SO(3). We can easily implement such a perturbation in the effective theory. Let us modify
the Lagrangian to

L =
1

16e2 F2 − 2
e2 Λ2(z− 1)2

[
1− µ(ψN + ψ?N)

]
=

1
16e2 F2 − 2

e2 Λ2(z− 1)2
[
1− 2µ(1− z2)N/2 cos Nχ

]
(40)

For large enough µ, the additional perturbation shifts the lowest energy value away
from z = 1. For simplicity, we will only consider values

µ <
1
2

(41)

for which the vacuum configuration remains at z = 1.
We will now study the effect of the additional perturbation on the structure of the

“confining string”.
Assuming a long string in the direction x3, the energy per unit length can be written as

E =
∫

d2x
1

2e2 (εij∂iz∂jχ)
2 +

2
e2 Λ2(z− 1)2

[
1− 2µ(1− z2)N/2 cos Nχ

]
(42)

4.1. Perturbative Solution

For small values µ� 1, we can find corrections to the string solution perturbatively.
Let us take the following ansatz for the perturbative solution:

z(r, θ) = z(r); χ = θ + χ1(r, θ) = θ + f (r) sin Nθ (43)

where z(r) is given by Equation (38). Although this is not the most general possible
form of the perturbative correction, it nevertheless yields a solution to first order in µ, as
we now show.

The leading order perturbative equation for f is

1
e2 8N2(z′)2 f sin Nθ =

1
e2 NµΛ2(z− 1)2(1− z2)N/2 sin Nθ (44)

which is solved by

f (r2) =
µ

N

[
2e−Λr2

(1− e−Λr2
)
]N/2

(45)
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In principle, we have to consider also the minimization equation for z(r). It reads

1
e2 8N

[
2z′′ f + z′ f ′

]
=

1
e2 4µΛ

[
2(z− 1)(1− z2)N/2 − Nz(z− 1)2(1− z2)N/2−1

]
(46)

One can explicitly check that this equation is satisfied by the perturbative expression
of Equation (45) and z(r) of Equation (38).

The longitudinal electric field inside the string is given by

F03 = −4Λe−Λr2
[
1 + µ

(
2e−Λr2

(1− e−Λr2
)
)N/2

cos Nθ
]

(47)

As before, the electric field is concentrated within the radius Λ1/2 in the transverse
plane, with an angular modulation of the transverse profile due to the additional ZN
invariant potential.

4.2. General Solution

We now demonstrate the string solution beyond the simple perturbative approxima-
tion discussed above. Minimizing the energy functional Equation (42) yields the equations:

1
e2 εij∂jχ∂iF =

∂U
∂z

1
e2 εij∂jz∂iF = −∂U

∂χ
(48)

with
F ≡ 1

2
F03 = εij∂iz∂jχ , (49)

where U is the potential of Equation (42).
These equations can be combined into:

1
2e2 ∂k(F2) = ∂kU (50)

Requiring that the electric field vanishes at transverse infinity, as should be the case
for any finite energy density configuration, we find

F2 = 2e2U; F =
√

2e2U (51)

Let us work in the modified polar coordinates (τ = r2, θ). We then have

∂τz∂θχ− ∂θz∂τχ =

√
1
2

e2U (52)

This equation has infinite number of solutions. This infinite degeneracy results from
an unusual symmetry of the energy functional Equation (42). Consider the group of
area-preserving diffeomorphisms on a plane SDi f f (R2)

(z(x), χ(x))→ (z(x′), χ(x′));
∂(x′1, x′2)
∂(x1, x2)

= 1 (53)

These transformations leave the energy functional Equation (42) invariant. Therefore,
any string solution can be transformed by a transformation Equation (53), generating an
infinite number of degenerate solutions. Note that the longitudinal electric field is itself
invariant under Equation (53), and thus, all the degenerate solutions have identical electric
field and energy density profiles.

Interestingly, the transformations SDi f f (R2) of Equation (53) are diffeomorphisms on
the coordinate space rather than on the field space. Thus, this is a different diffeomorphisms
than Sdi f f (S2), which we discussed in the previous section and is explicitly broken by
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the potential U. The symmetry SDi f f (R2) is in a sense accidental since it only exists for
configurations translationally invariant in one direction.

Let us now discuss two solutions related by SDi f f (R2). We can utilize the large
symmetry by prescribing a simple dependence of χ on the angle : χ = θ. The equation for
z then follows from Equation (52).

∂τz =

√
1
2

e2U =

√
Λ2(z− 1)2

[
1− 2µ(1− z2)N/2 cos Nθ

]
(54)

The coordinate θ enters here as a parameter, and for a given value of θ, the solution is

τ =
∫ z(τ)

−1
dz

1√
Λ2(z− 1)2

[
1− 2µ(1− z2)N/2 cos Nθ

] (55)

This has correct large distance asymptotic behavior since as τ → ∞, the function z has
to approach unity for the right hand side to diverge. It is easy to find the large distance
asymptotics of the solution. When z is close to unity, the term proportional to µ in the
denominator can be neglected, and we have

τ =
∫ z(τ)

−1
dz

1√
Λ2(z− 1)2

(56)

which is solved by
z(τ → ∞) = 1− 2e−Λτ (57)

This is identical to Equation (38), and thus, the IR asymptotics of the solution is not
sensitive to the ZN perturbation.

As an example of another solution, we assume that z has no angular dependence. We
then have:

∂τz∂θχ =

√
Λ2(z− 1)2

[
1− 2µ(1− z2)N/2 cos Nχ

]
(58)

This determines θ as a function of r:

θ =
∫ χ(r,θ)

0

z′dχ√
Λ2(z− 1)2

[
1− 2µ(1− z2)N/2 cos Nχ

] (59)

The explicit solution is

θ =
2
N

z′√
Λ2(z− 1)2(1− 2µ(1− z2)N/2)

F(
Nχ

2
,

4µ(1− z2)N/2

2µ(1− z2)N/2 − 1
) (60)

where F(φ, m) is the incomplete elliptic integral of the first kind:

F(φ, m) =
∫ φ

0
(1−m sin θ2)−1/2dθ (61)

Imposing on the solution the boundary condition

χ(θ + 2π) = χ(θ) + 2π (62)

and using F( kπ
2 , m) = kK(m), with K(m)—the complete elliptic integral of the first kind, gives

2π =
4z′√

Λ2(z− 1)2(1− 2µ(1− z2)N/2)
K(

4µ(1− z2)N/2

2µ(1− z2)N/2 − 1
) (63)
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It is easy to check that for z→ 1, this reduces to

z′ = Λ(1− z) (64)

and thus, the IR asymptotics again is the same as in Equation (38).

5. Discussion of the Model Mark 1

In constructing our model, we have tried to follow the guide of 2 + 1 dimensional
gauge theories and, based on several requirements, “guess” a theory of scalar fields that
may emulate the effective theory of 3 + 1 dimensional gauge theories. The model we were
led to is not quite satisfactory, but it does have several interesting and intriguing features.

First off, already in the Abelian limit, it is quite peculiar. It possesses an infinite
dimensional global symmetry group, which is spontaneously broken by classical solutions
of lowest energy. On the other hand, the observables that we would like to identify
with physical quantities in QED turn out to be invariant under this symmetry. This
may seem problematic; however, we note that a somewhat similar situation occurs in
2 + 1 dimensions and, in general, in dual type descriptions. In 2 + 1 dimensional gauge
theories, the electromagnetic field is invariant under the action of the magnetic U(1)
symmetry, which does act nontrivially on the magnetic vortex field—the basic degree
of freedom in the effective/‘dual” description. In the present 3 + 1 dimensional model,
likewise, the electromagnetic field does not feel the action of the (infinite) global symmetry
group Sdi f f (S2), which does act nontrivially on the “fundamental” scalar fields of the
effective theory.

The global Sdi f f (S2) symmetry is classically broken by the lowest energy configurations.
This is similar to 2 + 1 dimensions, but the situation is more involved. In 2 + 1 dimensions,
we had to deal with a standard symmetry breaking pattern of symmetry with a finite number
of generators. In our 3 + 1 dimensional model, on the other hand, the symmetry group is
infinitely dimensional, and thus, the space of vacuum configurations is very large. It includes
not only translationally invariant field configurations but also configurations with nontrivial
spatial dependence. These configurations break translational invariance in addition to the global
Sdi f f (S2) symmetry. This is not a unique situation, and in fact, such a situation is ubiquitous
in condensed matter systems, but in relativistic field theories, it is quite rare. As a result, since
the vacuum set has large entropy, it could well be that classical analysis fails in this model
quite badly. Many of the classical vacua differ from each other only in the finite region of space.
Generically in cases like this, upon quantization, these configurations become connected by
tunneling transitions of finite probability. One, therefore, may expect that the quantum portrait
of moduli space is very different from the classical one. This question is worth investigating on
its own, but this goes far beyond the scope of the present work.

With a symmetry breaking perturbation, our model exhibits a simple classical mecha-
nism of confinement of topological defects, such as in 2 + 1 dimensions. However, some
peculiarities are present again. We have discovered that string solutions are infinitely
degenerate. The static energy of configurations translationally invariant in one direction
has an additional diffeomorphism invariance. This is not the same invariance as in the
Abelian limit, as the diffeomorphisms in question are transformations in coordinate space
and not in the field space. Nonetheless, this symmetry leads to degeneracy between an
infinite number of solutions, all of which have the same electric field. As far as the electric
field profile is concerned, the solution, as far as we can ascertain, is unique. This infinite
degeneracy makes one wonder about the fate of such strings in a quantum theory, given
that they carry large entropy associated with the degeneracy.

All the peculiar features of the model stem from the nonconventional, higher deriva-
tive kinetic term required to have finite energy of a soliton in the absence of the poten-
tial. One could add the standard two derivative kinetic term ∂µφa∂µφa as a perturbation.
Although we have not explored this possibility in detail, it is clear that this would lift the
degeneracy between the different string solutions. With this additional kinetic term, our
model becomes identical with the model proposed by Faddeev and Niemi in [7–11] as an
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effective theory of QCD. Note, however, that our proposed picture of confinement is very
different from and in a way complementary to that of [7–11]. The authors of [7–11] are
mostly interested in closed string solutions meant to represent the glueballs, while in our
way of thinking, it is the open strings, with the endpoints representing “constituent gluons”
that play the main role in analogy with 2 + 1 dimensions [2,3,16]. In the Faddeev–Niemi
model, stability of closed string solutions is ensured by nontrivial twisting of the phase
of the scalar field along the string. Open strings, on the other hand, are not associated
with twist and in principle can break into shorter strings, which is the case in QCD. The
stability of classical strings solutions in a quantum theory is not absolute but is rather an
approximate feature that arises dynamically provided the string endpoints are sufficiently
heavy [17]. This endpoint mass suppresses quantum tunneling, which is responsible for
the decay of long strings.

Finally, it is worthwhile noting that the addition of the two derivative kinetic term
makes our model similar to the CP1 model, which has been recently discussed in the
literature in relation to effective models of confinement [18].

The large global symmetry of our model in the Abelian, which has no obvious parallel
in QED, is worrisome. One can wonder if it is responsible at least partially for the absence
of an arbitrary “two-photon state”, as we have found here. It is, therefore, natural to try
and eliminate this symmetry from the model. In the next section, we describe an approach
to doing so by “gauging” this global symmetry. This amounts to restricting the Hilbert
space of the model to states that are invariant under Sdi f f (S2).

6. Gauging Sdi f f (S2)

In this section, we show how the global Sdi f f (2) symmetry can be eliminated from
the theory. The standard way of going about such a task is to “gauge” the symmetry, i.e., to
impose the vanishment of the appropriate charge. It is usually employed to eliminate local
symmetries; however, as a matter of principle, it can also be done for global symmetries.
We will now describe this procedure.

Recall that the symmetry in question is

z→ z +
∂G(z, χ)

∂χ
, χ→ χ− ∂G

∂z
(65)

with G being an arbitrary function of the two variables z and χ but does not explicitly
depend on space-time coordinates.

This symmetry is associated with the conserved currents

JG
ν = G(z, χ)Jν = G(z, χ)∂µ(∂µz∂νχ− ∂µχ∂νz). (66)

where
Jν = ∂µ(∂µz∂νχ− ∂µχ∂νz) (67)

The corresponding charges are

QG =
∫

d3xG(z, χ)J0 =
∫

d3xG(z, χ)∂µ(∂µz∂0χ− ∂µχ∂0z) (68)

We note for future use that the symmetry transformation can be written as a canonical
transformation on a phase space spanned by z and χ.

δz = {z, G}; δχ = {χ, G}; {A, B} ≡ ∂A
∂z

∂B
∂χ
− ∂A

∂χ

∂B
∂z

(69)

To gauge this symmetry, we first introduce the analog of the zeroth component of
vector potential Λ(z, χ, t). Note that Λ is not an arbitrary function of space-time coordinates
but only a function of the field variables z and χ and time t.
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We now change our definition of the “magnetic field” to

Bk = 2(∂kχ∂0z− ∂0χ∂kz)− ∂kΛ = 2(∂kχ∂0z− ∂0χ∂kz)− ∂Λ
∂z

∂kz− ∂Λ
∂χ

∂kχ (70)

Defining “covariant derivative” as

∇0χ = ∂0χ +
1
2

∂Λ
∂z

∇0z = ∂0z− 1
2

∂Λ
∂χ

(71)

we can write this as
Bk = 2(∂kχ∇0z−∇0χ∂kz) (72)

Note that this definition of covariant derivative implies for any function of z and χ

∇0Φ(z, χ) =
d
dt

Φ− 1
2
{Φ, Λ} (73)

With this altered definition of the magnetic field, and the electric field is still defined as

Ei = 2εijk∂jz∂kχ (74)

we now write the Lagrangian

L = −1
2
(~E2 − ~B2) (75)

As we show now, this Lagrangian is gauge invariant. First, let us consider time
independent transformations from Equation (69). Under this transformation, we define the
transformation of Λ as

δΛ = −{Λ, G} = −
[

∂Λ
∂z

∂G
∂χ
− ∂Λ

∂χ

∂G
∂z

]
(76)

Note, that this equation should be understood as the change in the functional form of
Λ as a function of z and χ. With this definition and taking into account that the values of z
and χ change according to Equation (69), we find

Λ′(z′, χ′) = Λ(z, χ) (77)

Thus, it is easy to see that both Ei and Bi are invariant under the time-independent
transformations Equations (69) and (76).

Now, consider time-dependent transformations, G(z, χ, t). The electric field is in-
variant under the time-dependent transformations as well. For the magnetic field, a
straightforward calculation gives

2(∂kχ∂0z− ∂0χ∂kz)→2
[

∂k

(
χ− ∂G

∂z

)
∂0

(
z +

∂G
∂χ

)
− ∂0

(
χ− ∂G

∂z

)
∂k

(
z +

∂G
∂χ

)]
=2(∂kχ∂0z− ∂0χ∂kz) + 2∂i∂0G + O(G2)

(78)

Thus, if we define the transformation of Λ as

δΛ = 2∂0G− {Λ, G} (79)

we find that the magnetic field in Equation (72) is invariant.
To summarize, we have now constructed the Lagrangian, which is invariant under

arbitrary time-dependent Sdi f f (S2) transformations. Physically, this gauge invariance
means that the Sdi f f (S2) charges are required to vanish on physical configurations. Indeed,
we can see that the equation of motion for Λ is indeed equivalent to this constraint. We note
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that variation with respect to Λ should be done with care since Λ is not an independent
field. One cannot vary space-time dependence of Λ arbitrarily; instead, one has to vary the
functional form of the dependence on the field z and χ.

Let us derive equations of motion for Lagrangian Equation (75). Varying with respect
to z and χ, we obtain

∂iχ
[
∂0Bi + εijk∂jEk

]
− ∂iBi∇0χ = 0 (80)

∂iz
[
∂0Bi + εijk∂jEk

]
− ∂iBi∇0z = 0

or in relativistic notation

∇νχ∂µ F̃µν = 0; ∇νz∂µ F̃µν = 0 (81)

These can be combined into a covariant conservation equation

∇µ JG
µ = 0 (82)

with the current
JG
µ ≡ G(z, χ)∂ν F̃νµ = 0 (83)

with arbitrary function G.
In addition, there is an equation obtained by differentiation with respect to Λ. To

understand how to derive this equation, we can expand Λ(z, χ) in a complete basis of func-
tions on a two-dimensional space, for example, by writing Λ(z, χ) =

∫
dpdqeipz+iqχΛ̃(p, q)

and substituting it into the action, then differentiate with respect to Λ̃. The resulting
equations are ∫

d3xJG
0 =

∫
d3xG(z, χ)∂iBi = 0 (84)

This equations are rather interesting. They put a large number of constraints on the
divergence of the magnetic field. Unfortunately, the number of constraints is not large
enough to ensure that magnetic monopole charge vanishes, as G is only a function of two
variables (at any given time), while the coordinate space is obviously three-dimensional.

One could ask whether the modification we made can help us find arbitrary two gluon
states in the spectrum. Unfortunately, the answer is negative. The simplest way to see
it is to realize that one can gauge fix the “vector potential” Λ to zero—the Hamiltonian
gauge of sorts. In this gauge, the dynamical equations of the model are identical with
the equations of Mark 1. Thus, we do not have new solutions to the equations of motion.
The gauging does eliminate those solutions that do not satisfy the constraint Equation (84),
but it does not generate any new solutions to the equations of motion.

Thus, although it feels like gauging Sdi f f (S2) may be a step in the right direction, it
is not sufficient. In the next section, we discuss a further modification of the model-Mark 2,
which starts from the same premise but successfully reproduces the theory of free photon.

7. The Model Mark 2

The model of [5], despite having some interesting properties, fails to describe ad-
equately the low energy dynamics of the Abelian limit. As we have learned from the
previous section, gauging the Sdi f f (S2) symmetry does not solve the main problems
of [5], i.e., on one hand, the constraints it imposes are not sufficient to ensure vanishing of
magnetic charge density, and on the other hand, it does not allow for additional solutions
of equations of motion that can be identified with multiphoton states of arbitrary polar-
ization. Both of these deficiencies are associated with the fact that the “vector potential”
Λ is not a bona fide local degree of freedom but only a function of two variables z and χ.
Let us extend our approach by allowing Λ to become an independent function of space
time. We, therefore, change our definition of magnetic field to [6]

Fµν = εµναβ[εabcφa∂αφb∂βφc + (n · ∂)nα∂βΦ] (85)
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Here, n = (1, 0, 0, 0) is a time-like vector of unit length and Φ is a scalar field [19].
This is a generalization of Equation (70) with Λ→ ∂0Φ.

We stress that, as opposed to the discussion in the previous section, Φ(x) is now a
bona fide field that has a general dependence on space-time coordinates.

The Lagrangian, as before, is

L =
1
4

FµνFµν = −1
2
(~E2 − ~B2) (86)

One may worry that since n is chosen to be a time-like vector, the model is not a
Lorentz invariant. Nevertheless, we will show below that the model possesses a Lorentz
invariant super selection sector, and it is this sector that will turn out to be equivalent
to QED.

We now have to understand what effect the modification has on the Abelian limit of
the model. We will analyze its canonical structure and will demonstrate that it is identical
to that of free electrodynamics. This applies to the commutators between the “electric”
and “magnetic” fields and the Hamiltonian. We, thereby, demonstrate that the model is
equivalent to the theory of a free noninteracting photon, even though it is not formulated
in terms of a covariant vector potential field. We also derive the Lorentz transformation
properties on the degrees of freedom of the model. We demonstrate that the fields φi are
not covariant scalar fields but instead transform nontrivially and noncovariantly under
the Lorentz group. We confirm that due to these modified transformation properties, the
model retains Lorentz invariance.

8. Equations of Motion and Canonical Structure
8.1. Equations of Motion

As before, we use the following parametrization of the basic fields χ and z via φ3 = z
and φ1 + iφ2 =

√
1− z2eiχ. The electromagnetic field can now be written as:

Fµν = εµναβ[−2∂βχ∂αz + nα∂β∂0Φ] (87)

or explicitly
Ei = 2εijk∂jz∂kχ (88)

Bk = [2(∂kχ∂0z− ∂0χ∂kz)− ∂k∂0Φ] (89)

Varying the action, Equation (86) yields the following equations of motion

∂0∂k

[
Fijε

ij0k
]
= 0 = ∂0∂kBk (90)

∂βχ∂α(Fµνεµναβ) = 0 = ∂kχ∂α(Fµνεµναk) = ∂kχ(∂0Bk + (∂× E)k) (91)

∂βz∂α(Fµνεµναβ) = 0 = ∂kz∂α(Fµνεµναk) = ∂kz(∂0Bk + (∂× E)k) (92)

The main difference with our previous attempt is Equation (90). This equation now
means that the “magnetic charge density” ∂kBk is locally conserved. In the current model,
therefore, the magnetic charge density is time independent at any space point. Equation (90)
imposes the existence of “super selection sectors” characterized by the value of the magnetic
charge density at all spatial coordinates. Clearly, most of these sectors are not translationally
invariant. In order to preserve translational invariance, we limit our consideration to the
trivial sector with ∂kBk = 0. The rest of our discussion pertains exclusively to this super
selection sector.

Using this constraint on the magnetic field, we can invert Equations (91) and (92).
(One has to be careful since there is an ambiguity in the inversion of Equations (91) and (92).
In general, we find ∂0Bk + (∂× E)k = αEk, where α is an arbitrary constant. Nonetheless,
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since B and ∂× E are pseudovectors, while E is a vector, a nonvanishing value of α would
violate parity. Imposing parity invariance on the solution sets α = 0.)

∂0Bk + (∂× E)k = 0 (93)

Recall that with the field strength components given by Equation (87), the “electric”
equation

∂µFµν = 0 (94)

is satisfied identically. Thus, the equations of motion of the model Mark 2 are the full set of
Maxwell’s equations.

8.2. The Hamiltonian

Let us now turn to the Hamiltonian description of the model. The canonical momenta
as calculated from Equation (87) are given by :

pz =
δL

δ∂0z
= Fijε

ij0k∂kχ = 2Bk∂kχ = 2∂kχ[2(∂kχ∂0z− ∂0χ∂kz)− ∂k∂0Φ] (95)

pχ =
δL

δ∂0χ
= Fijε

ijk0∂kz = −2Bk∂kz = −2∂kz[2(∂kχ∂0z− ∂0χ∂kz)− ∂k∂0Φ] (96)

pΦ =
δL

δ∂0Φ
=

1
2

∂k(Fijε
ij0k) = ∂kBk = ∂k[2(∂kχ∂0z− ∂0χ∂kz)− ∂k∂0Φ] (97)

The time derivatives of the fields can be expressed as:

χ̇ =
1

E2 [pz(zχ) + pχχ2 + εijkΦ̇iEjχk] (98)

ż =
1

E2 [pzz2 + pχ(zχ) + εijkΦ̇iEjzk] (99)

Using these equations, we express pΦ as:

pΦ = ∂k

[
1

E2 εklmEl(pzzm + pχχm)−
1

E2 EkEiΦ̇i

]
(100)

or in terms of a “vector potential”

Dk =
1

E2 εklmEl(pzzm + pχχm) (101)

as
pΦ = ∂k

(
Dk − ÊkÊiΦ̇i

)
(102)

The Hamiltonian is then calculated as:

H =
∫

d3x
[
pz ż + pχχ̇ + pΦΦ̇− L

]
=
∫

d3x
1
2

(
E2 + B2

)
(103)

In arriving at this expression, we have neglected a boundary term
∫

d3x∂k
(

BkΦ̇
)
.

8.3. Canonical Structure

In order to prove the equivalence between Mark 2 and QED, we have to show that the
canonical commutation relations of Ei and Bi are identical in the two theories. We do this
in the present section.

Since all components of the electric field in Mark 2l are functions only of coordinates
and not canonical momenta, they clearly commute with each other[

Ei(x), Ej(y)
]
= 0 (104)
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In order to calculate the commutation relations between electric and magnetic fields,
we restrict ourselves explicitly to the zero magnetic charge density super selection sector
and set pΦ = 0. Equation (102) then becomes

∂kDk
E

= Êk∂k

(
ÊiΦ̇i

E

)
(105)

where we have used ∂kEk = 0.
Formally, the solution is written as

ÊiΦ̇i = E(x)
∫ x

−∞
dlC

∂kDk
E

(106)

In this expression, the integration contour C starts at x and ends at some point at
spatial infinity. The direction along the contour at every point is parallel to the direction of
the electric field at this point.

Using the definition of D, we have:

Bk = Dk − Ek

∫ x

−∞
dlC

∂mDm

E
(107)

Consider first the following auxiliary quantity

[Ei(x), Dk(y)] = 2i
El(y)
E2(y)

εiabεklm[∂
x
a δ(x− y)χb(x)zm(y) + ∂x

b δ(x− y)za(x)χm(y)]

= 2i
El(y)
E2(y)

εiabεklm∂x
a δ(x− y)[χb(y)zm(y)− zb(y)χm(y)]

= iÊl(y)Êc(y)εiabεklmεcmb∂x
a δ(x− y) = i

[
εiak − Êb(y)Êk(y)εiab

]
∂x

a δ(x− y)

(108)

Using this, we calculate

[Ei(x), Bk(y)] = [Ei(x), Dk(y)]− Ek(y)
∫ y

−∞
dlC

∂t
m[Ei(x), Dm(t)]

E(t)

= [Ei(x), Dk(y)]− Ek(y)
∫ y

−∞
dlC

1
E(t)

∂t
m
[(

εiam − Êb(t)Êm(t)εiab
)
∂x

a δ(x− t)
]

= [Ei(x), Dk(y)] + Ek(y)
∫ y

∞
dlC Êm(t)∂t

m

(
Êb(t)
E(t)

εiab∂x
a δ(x− t)

)
= iεiak∂x

a δ(x− y)

(109)

Here, it was important that the integration contour C is parallel to the electric field
everywhere. In addition, we have assumed that all the fields vanish at the spatial boundary.

The commutator Equation (109) is identical to the commutator of corresponding
quantities in QED.

We now consider the commutator of the magnetic fields.
It is easy to see that [Bi(x), Ba(y)] = 0 as long as the curve Cx that enters the definition

of Bi(x) in Equation (107) does not pass through the point y, and Cy does not pass through
x. If this condition is not satisfied, direct evaluation of the commutator is not easy. Instead,
we argue indirectly. One can straightforwardly obtain a number of relations involving the
commutator of interest. Consider, for instance,

[Bi(x)∂iχ(x), Bj(y)∂jz(y)] = [pz(x), pχ(y)] = 0 (110)

Trivially:
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Bi(x)∂jz(y)[∂iχ(x), Bj(y)] + Bj(y)∂iχ(x)[Bi(x), ∂jz(y)] + ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] =(
Bi(x)∂jz(y)∂

(x)
i

∂Dj(y)
∂pχ(x)

− Bj(y)∂iχ(x)∂(y)j
∂Di(x)
∂pz(y)

)
+ ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] = (111)

(Bi(y)∂
(x)
i δ(x− y) + Bi(x)∂(y)i δ(x− y)) + ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] =

∂iχ(x)∂jz(y)[Bi(x), Bj(y)] = 0

Similarly,

∂iz(x)∂jz(y)[Bi(x), Bj(y)] = ∂iχ(x)∂jχ(y)[Bi(x), Bj(y)] = 0 (112)

Using ∂kBk = 0, we obtain:

∂iz(x)∂y
j [Bi(x), Bj(y)] = ∂iχ(x)∂y

j [Bi(x), Bj(y)] = ∂x
i ∂

y
j [Bi(x), Bj(y)] = 0 (113)

Defining the matrix Mij(x, y) ≡ [Bi(x), Bj(y)], we, therefore, find that it is antisym-
metric under the exchange (i, x)↔ (j, y) and satisfies the set of equations (Equations (111)–
(113)). The general solution for these constraints can be written as

Mij(x, y) = Ei(x)Fj(y)− Ej(y)Fi(x) (114)

with Fi(x) being an arbitrary vector function. However, we already saw that when x does
not belong to Cy and y does not belong to Cx, then Mij(x, y) = 0. This determines Fi(x) = 0,
so that finally:

[Bi(x), Bj(y)] = 0 (115)

for all x, y.

9. Lorentz Transformations of the Fields

We now wish to discuss the properties of the fields z and χ under Lorentz transforma-
tions. The rotational transformation properties of z and χ are clearly those of a scalar field.
This is obvious since the rotational invariance is represented in our model in the standard
linear manner. This is not the situation with Lorentz boosts. The electric and magnetic
fields are components of a covariant Lorentz tensor, and therefore, it is clear that z and χ
cannot be covariant scalar fields.

We take the following parametrization of infinitesimal Lorentz transformations:

z(x)→ z(Λ−1x) = (1 + β∆)z(x) + a

χ(x)→ χ(Λ−1x) = (1 + β∆)χ(x) + b

Θ(x) ≡ ∂0Φ→ Θ(Λ−1x) = Θ(x) + c

(116)

Here, β is the boost parameter and ∆ ≡ ωµ
νxν∂µ with ω

µ
ν —an antisymmetric generator

of Lorentz transformation. The boost in the direction of a unit vector n̂ is generated by
ωi

0 = n̂i. The terms involving a, b, and c are not canonical, and we will determine them
requiring that Fµν transforms as a covariant tensor.

Let us consider first a boost in the direction of the first axis, n̂ = (1, 0, 0).
The components of the field strength tensor transform as

E2(x)→ E2(Λ−1x)− βB3(Λ−1x) (117)

Writing this in terms of z, χ, and Θ and using Equation (116), we have:

E2(x) = 2[∂3z(x)∂1χ(x)− ∂1z(x)∂3(x)]→ 2[∂3z(Λ−1x)∂1χ(Λ−1x)− ∂1z(Λ−1x)∂3(Λ−1x)] (118)
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Comparing the two we obtain:

− β∂3Θ + 2[∂3z∂1b + ∂3a∂1χ− ∂1z∂3b− ∂1a∂3χ] = 0 (119)

Similarly, the transformation of E1 yields

2(∂2z∂3b + ∂2a∂3χ− ∂3z∂2b− ∂3a∂2χ) = 0 (120)

and that of E3:
β∂2Θ + 2[∂1z∂2b + ∂1a∂2χ− ∂2z∂1b− ∂2a∂1χ] = 0 (121)

Introducing fi = 2(a∂iχ − b∂iz), and ui = (0, β∂3Θ,−β∂2Θ), the above equations
combine into

εijk∂j fk = ui (122)

The general solution for f is:

fi = −
εijk∂juk

∂2 + ∂iλ̃

= βn̂iΘ + ∂iλ

(123)

where
λ̃− β

n̂i∂i
∂2 Θ = λ (124)

with λ still to be determined.
Noting that Equations (123) and (89) become the same under the substitution,

Equation (123) for a and b can be solved as

∂0z→ a

∂0χ→ b

∂0Φ→ λ

Bk → βΘn̂k

(125)

Using Equations (98) and (99), we find:

a =
1

E2 (βΘn̂i + λi)εijkEjzk

b =
1

E2 (βΘn̂i + λi)εijkEjχk

(126)

Now, Equation (123) becomes an equation for λ:

Ei(βΘn̂i + ∂iλ) = 0 (127)

which yields:

λ(x) = −β
∫ x

∞
dlC Êin̂iΘ (128)

where as before, the contour C is locally parallel to the vector Ei.
The function c can similarly be determined by considering the transformation of the

magnetic field.

B1(x)→ B1(Λ−1x) = 2[∂1χ(Λ−1x)∂0(Λ−1x)− ∂0χ(Λ−1x)∂1z(Λ−1x)]− ∂1Θ(Λ−1x) (129)

yields
2[∂1χ∂0a + ∂1b∂0z− ∂0χ∂1a− ∂0b∂1z]− ∂1c + β∆∂1Θ = 0 (130)
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Similarly, the transformation of B2 and B3 gives

2[∂2χ∂0a + ∂0z∂2b− ∂0χ∂2a− ∂2z∂0b]− ∂2c + β∆∂2Θ = 0

2[∂3χ∂0a + ∂0z∂3b− ∂0χ∂3b− ∂3z∂0b]− ∂3c + β∆∂3Θ = 0
(131)

These can be combined into a single vector equation

∂0 fi − ∂i f0 − ∂ic + β∆∂iΘ = 0 (132)

Using Equation (123), we write this:

∂i[∂0λ− f0 − c + β∆Θ] = 0 (133)

yielding

c = 2(a∂0χ− b∂0z)− ∂0λ− β∆Θ

= β

[
2

E2 εijkEj(∂0χzk − ∂0zχk)

[
Θn̂i − ∂i

∫ x

∞
dlC Êl n̂lΘ

]
+ ∂0

∫ x

∞
dlC Êin̂iΘ− ∆Θ

] (134)

To summarize, the fields z, χ, and Φ under Lorentz boost transform according to
Equation (116) with a,b, and c given in Equations (126), (128), and (134). These somewhat
complicated transformation properties ensure that electromagnetic fields are components
of the covariant Lorentz tensor.

10. Discussion of Model MARK 2

Our amended model (Mark 2) is equivalent to the theory of a free photon. We were
led to this model by our wish to eliminate the global Sdi f f (S2) symmetry but had to go
further from the original model in order to achieve equivalence with QED. What is the fate
of Sdi f f (S2) in Mark 2? It is indeed easy to see that this symmetry is gauged. In order to
see that, let us write

∂0Φ = Λ(z, χ, t) + ∂0Φ̄ (135)

Assigning to Λ the same transformation properties under Sdi f f (S2) as before and
requiring Φ̄ to be invariant, we see that the Lagrangian Equation (86) is indeed invari-
ant under the Sdi f f (S2) global gauge transformation. Note that the decomposition
Equation (135) is always possible, given that Φ is an arbitrary function of space-time
coordinates. It is important that we have been able to obtain the theory of a free photon.
Our main goal, however, was (and remains) to understand confinement in the Non-Abelian
case. Here, the road is still very long and winding, and at this point, there are mainly
questions. We need to generalize our model in several directions. First, charged states have
not been included in the model. This should be relatively straightforward to mitigate. As
suggested in [5], we should relax the constraint of constant length of the sigma model field
φa and instead endow the modulus field φ2 with nontrivial dynamics. This will soften
the classical behavior of the model in UV and will lead to UV finite energy of charged
states. The configuration space of our model is SO(3) × R, with the SO(3) symmetry
broken spontaneously to O(2). The moduli space should, therefore, have a nontrivial
homotopy group Π2(M) = Z and allow for a nontrivial topological charge, which is
identified with the electric charge. (There may be some subtlety in this argument related to
the fact that the global gauge group Sdi f f (S2) has to be modded out. However, since the
gauge transformation is global, we do not anticipate any problems.)

The more complicated question is how to extend this model into the Non-Abelian
regime. Following the logic of [5], we should add a perturbation thats explicitly breaks the
global symmetry of the model and via this breaking generates a linear potential between
the charges. Here, first of all, we need to understand whether this perturbation should
preserve the Sdi f f (S2) gauge symmetry or should break it explicitly. Such a global gauge
symmetry was not present in 2 + 1 dimensional models [2,3], and we lack guidance on
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this question from 2 + 1 d. It seems likely that the Sdi f f (S2) should be preserved by
the perturbation. If that is the case, the type of perturbations considered in [5] do not fit
the bill. Perhaps one should deal directly with the breaking of the generalized magnetic
symmetry—the symmetry generated by the magnetic flux [12,13] in terms of its order
parameter—the t Hooft loop [1].

A rough idea of how this can work is the following. Let us try to define an operator
that breaks the generalized magnetic symmetry. This should be an analog of a t Hooft loop
operator, except it should have end points, so rather a t Hooft line operator. We write the
following bilocal expression

V(x, y) = exp
(

i
∫ t=0

t=−∞
dtA0(x, t)

)
exp

(
i
∫ y

x
Ai(z, t = 0)dzi

)
exp

(
i
∫ t=−∞

t=0
dtA0(y, t)

)
(136)

Here, the components of dual vector potential are chosen as Ai = z∂iχ and
A0 = z∂0χ + 1

2 ∂0Φ(x). Given the Sdi f f (S2) transformation properties of the various
operators, we have

Ai → Ai + ∂i

[
G− z

∂G
∂z

]
(137)

A0 → A0 +
d
dt

[
G(z, χ; t)− z

∂G
∂z

]
(138)

Under the assumption that the fields vanish at infinity, it is easy to see that the operator
Equation (136) is invariant under Sdi f f (S2). In terms of its quantum numbers, this operator
essentially creates a monopole–antimonopole pair at points x and y. For infinitesimally
close points y = x + ε, this becomes

V(x, εi) = 1 + iεi

[
z∂iχ− ∂iΦ− ∂i

∫ 0

−∞
dtz∂0χ

]
+ εiεj

[
z∂iχ−

1
2

∂iΦ− ∂i

∫ 0

−∞
dtz∂0χ

][
z∂jχ−

1
2

∂iΦ− ∂j

∫ 0

−∞
dtz∂0χ

]
(139)

We could contemplate averaging this operator over the direction of the point splitting
vector ε, which would kill the linear in ε term and would result in a term reminiscent of
the gauge invariant Stueckelberg mass for the dual vector potential [20]. Adding an n-th
power of such an operator as a perturbation to the Lagrangian would seem a reasonable
way to proceed in order to break the generalized magnetic symmetry to the ZN subgroup.

Unfortunately, Equation (139) contains a term that is nonlocal in time. Thus, adding it
to the Lagrangian would lead to nonlocal in time theory, which amounts to adding extra
degrees of freedom in disguise. Although this may turn out to be necessary, it is clearly
outside the rather tight framework that we have set out to ourselves from the beginning.
Thus, before taking this route, a better understanding is necessary. We hope to be able to
make progress in this approach in the future.
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Appendix A

In this appendix, we show that the model considered in this paper does not admit
two-photon solutions with arbitrary polarizations. We are looking for two-photon solutions
for which the electromagnetic tensor is of the form:

F̃µν = ∂[µz∂ν]χ = A(kµε1
ν − kνε1

µ) cos kx + B(pµε2
ν − pνε2

µ) cos px (A1)

For simplicity, we choose the case when the first photon has momentum k in
x-direction and polarization a in y-direction, while the second photon has momentum
p in y-direction and polarization b in z-direction. Note that this case is not covered by our
construction of two-photon states in the body of the paper.

Now, for components of F̃µν, we have:

∂[0z∂1]χ = 0 = ∂[1z∂3]χ = 0 (A2)

∂[0z∂2]χ = ka cos kx = −∂[1z∂2]χ (A3)

∂[0z∂3]χ = pb cos px = −∂[2z∂3]χ (A4)

Introducing new coordinates (x, y, z, t) → (x̄ = t − x, ȳ = t − y, t̄ = t, z̄ = z) and
using unbarred symbols for notational simplicity, we have:

∂[tz∂y]χ = ∂[tz∂z]χ = ∂[xz∂z]χ = 0 (A5)

∂[tz∂x]χ = ∂[xz∂y]χ = −ka cos kx (A6)

∂[yz∂z]χ = pb cos py (A7)

These equations have no solutions. Assuming ∂tz 6= 0, the first two equations in
Equation (A5) imply ∂yz∂zχ− ∂zz∂yχ = 0, which contradicts Equation (A7). Alternatively,
assuming ∂tz = 0, implies vanishing of either ∂tχ or two other partial derivatives of z .
It is then easy to see that both these options are in conflict with the rest of the equations.
The result is that a two-photon state with this polarization pattern cannot be constructed in
this model.

The model also contains solutions that do not satisfy the homogeneous Maxwell
equation. As an example of such a solution consider the configuration

χ = sin p · x; z = sin k · x (A8)

It is easy to see that this configuration satisfies equations of motion provided

(p · k)2 − p2k2 = 0 (A9)

A simple example is a light-like momentum kµ and a space-like momentum pµ satis-
fying p · k = 0. This yields the dual field strength

F̃µν ∝ (kµ pν − kν pµ)[cos(p + k) · x + cos(p− k) · x] (A10)

which is not conserved

∂µ F̃µν ∝ p2kν[sin(p + k) · x + sin(p− k) · x] (A11)

In fact, both momenta k + p and k− p are space-like, and thus, F̃µν looks tachyonic.
However, as mentioned in the Discussion, since the model classically has many degenerate
vacua with broken translational invariance, the interpretation of classical solutions as
excitations is not so clear.
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