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Abstract: We revisit the fundamental notion of continuity in representation theory, with special
attention to the study of quantum physics. After studying the main theorem in the context of repre-
sentation theory, we draw attention to the significant aspect of continuity in the analytic foundations
of Wigner’s work. We conclude the paper by reviewing the connection between continuity, the
possibility of defining certain local groups, and their relation to projective representations.
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1. Introduction

Since the bygone days of the 1930s, Wigner has collected strong mathematical results
on mappings of continuous groups on a given Hilbert space [1]. From this time comes
the famous theorem that ensures that any symmetry operation (any operation preserving
probabilities) can be represented by either a linear and unitary or anti-linear and anti-
unitary operator (see Appendix A). The pursuit of Poincarè group representations on
Hilbert spaces, a program supported by Weyl [2], culminates in the profound and robust
work celebrated here [3].

It is a complicated, if not impossible, task to pick out the most effective results from
the wealth of excellent ones shown in [3]. Wigner introduced in this work the very
precise notion of particle, to mention only one of the main achievements. However,
the mathematical partial results collected on the way to such relevant insights are also
important. We would like to revisit one of these cornerstone results in the existence of
so-called admissible representatives, presenting its meaning based on continuous projective
representations. Let us introduce some standard notions.

The first idea to remember is the quantum mechanical ray representation of states,
which arises from the freedom that a complex field gives to states in the Hilbert space
inner product. The transition probability for a quantum state ψ to turn into φ is expressed
by P = |(φ, ψ)|2. This probability remains the same if we replace the states by rays, Ψ.
Each ray comprises an equivalence class of states containing all elements {αψ} (where α
is a unimodular complex phase), of which a given element αψ ∈ Ψ, where ψ is fixed, is a
representative. The inner product between two rays is defined as Φ ·Ψ = |(φ, ψ)|, where
φ ∈ Φ and ψ ∈ Ψ. In a manner akin to vector rays, Bargmann introduced the concept of
operator rays [4] U as the set comprising all elements αU with fixed U and a unimodular
complex α.

In the case where the symmetries of a physical system are described by a given
continuous group H, there exists an isomorphism between each element h ∈ H and an
operator ray Uh such that for h1, h2 ∈ H, the usual representation relation (although related
to operator rays) holds, i.e., Uh1Uh2 = Uh12 . These are the projective representations whose
continuity will be studied here. In physics, of course, continuous representations are of
great importance. In a prosaic context, for example, the regular textbooks of Quantum
Mechanics and Quantum Field Theory introduce the possibility of acting on quantum
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states (e.g., with differential operators) without regard to possible mathematical subtleties.
This and many others aspects are automatically taken as well-posed mathematically in a
standard exposition of quantum physics. Thanks to the work of Wigner, in particular the
aforementioned theorem, the approach presented in these textbooks is not wrong.

To justify our choice from a different framework, as as Wigner himself recognized [3],
part of the generality and novelty of his approach came from mathematical rigor, in
particular concerning continuity. Majorana [5] and Dirac [6] adopted continuity in several
aspects of their analysis (an approach which is certainly justifiable and entirely correct,
after all) but whose dubiety was completely removed by Wigner.

Now, back to the (projective) representations frame: from a mathematical point of view,
phases in representations of continuous groups have become quite a sophisticated tool
with the aid of algebraic topology [7,8] since the early presentation due to Bargmann. More
or less recently, the original line of research gained additional interest by generalizations of
the phase exponents (which enter the projective representations) involving the time (or the
spacetime) parameter(s) [9,10]. In this generalization of Bargmann’s theory, the selection of
admissible representatives is also an important issue.

This review is devoted to an appreciation of conditions related to the existing argument
of regular representatives, whose steps are also revisited. We begin in Section 2 with a
recapitulation of the theorem that ensures the selection of a strongly continuous set of
ray operators representatives in the Hilbert space, and discuss its standard proof (Wigner–
Bargmann) step by step. Important enough, the existence of such representatives is at
the very heart of our understanding of the quantum process, from spacetime evolution to
probability transitions. In Section 3, we call special attention to some relevant consequences
of continuity. Of course, we would not be so far saying, somewhat frivolously, that
everything comes from continuity. There are, nevertheless, profound concepts linked to
continuity that can be brought up in the analysis and whose full appreciation is usually
bypassed. In Section 3.1, we define and investigate the continuity of local factors and study
its implications to representation theory. Besides, in this section, we also place a theorem
related to one-parametric group representation quite relevant in the Wigner approach. In
Section 3.2, we explore how continuity also helps in the understanding of whether a given
representation is projective or genuine. In the final section, we conclude. To guarantee a
sequential reading of the paper we leave for the Appendix a step by step proof of Wigner’s
famous theorem about symmetric representations in the Hilbert space, as well as another
result, relevant for the action upon connected (sub)groups.

This work is a modest contribution to the subject. We do not present new results,
but give a technical appreciation to the foundations of representation theory, explicitly
presenting all the proof steps and highlighting the physical interest of the results when the
situation appears. Whenever possible, we follow Bargmann’s exposition [4] by its didactic
and far-reaching results connecting continuity to physical aspects. Throughout the paper,
operators will be taken as unitary (see Proposition A1 in the Appendix A) and vector states
are normalized to unity.

2. Selection of Continuous Representatives

We begin by defining standard tools for representations of continuous groups. Let
H be a complex Hilbert space. Let the distance, d(Ψ, Ψ′′), between two rays Ψ and
Ψ′′ belonging to H be given by the minimum value of ||ψ − ψ′′||, where double bar
stands for the usual vector norm ||ψ|| = (ψ, ψ)1/2, and ψ and ψ′′ are representatives of
Ψ and Ψ′′, respectively. This qualitative definition can be fully specified by noting that
||ψ− ψ′′||2 = 2(1− Re(ψ, ψ′′)), from which it may be proved that

d(Ψ, Ψ′′) = [2(1−Ψ ·Ψ′′)]
1
2 , (1)

where the definition of the inner product between two rays has already been defined
in the introduction. To see that Equation (1) holds, take Ψ = σψ and Ψ′′ = τψ′′, with
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|σ| = 1 = |τ|. It is always possible to find a unimodular complex number, say λ, such that
(ψ, ψ′′) = λ|(ψ, ψ′′)|. Therefore, it is clear that

||ψ− ψ′′||2 = 2(1− Re[σ∗τ(ψ, ψ′′)]), (2)

where σ∗ stands for the complex conjugation of σ. Note that

|(ψ, ψ′′)| = |σ||τ||(ψ, ψ′′)| = |σ∗||τ||(ψ, ψ′′)| = |σ∗τ(ψ, ψ′′)| = |(σψ, τψ′′)| = Ψ ·Ψ′′ (3)

and therefore we can set (ψ, ψ′′) = λΨ ·Ψ′′. Returning to (2), we are left with (Ψ ·Ψ′′ ∈ R)

||ψ− ψ′′||2 = 2(1− Re[σ∗τλ]Ψ ·Ψ′′). (4)

It is clear that ||ψ − ψ′′||2 reaches its minimum for Re[σ∗τλ]max = 1, from which
Equation (1) follows. As we will see in a moment, the definition of distance is crucial for
the very conception of (strong) continuity for ray representations.

Definition 1. A given ray representation of a (Lie) group H is said to be continuous if for any
element h ∈ H, any Ψ ∈ H, and any ε > 0, there exists a neighborhood N ⊂ H of h such that
d(UsΨ, UhΨ) < ε, if s ∈ N.

As an aside remark, we note that it suffices to consider the above definition for the
identity element. Moreover, in a complete (metric) space, A is said to be continuous with
respect to B if the set of nonzero values of A is bounded by B. In this sense, we can say that
the inner product in both terms is continuous with respect to the distance d(Ψ, Ψ′′). Here
is the proof: suppose four rays Ψ1, Ψ2, Φ1, and Φ2 belong toH. Then,

|Ψ1 ·Φ1 −Ψ2 ·Φ2| = |Ψ1 ·Φ1 −Ψ1 ·Φ2 + Ψ1 ·Φ2 −Ψ2 ·Φ2|
≤ |(ψ1, φ1)− (ψ1, φ2)|+ |(ψ1, φ2)− (ψ2, φ2)| (5)

= ||φ1 − φ2||+ ||ψ1 − ψ2||, (6)

and therefore (as the inequality always holds) we have

|Ψ1 ·Φ1 −Ψ2 ·Φ2| ≤ d(Φ1, Φ2) + d(Ψ1, Ψ2). (7)

Now, we will state and discuss in detail the theorem asserting the selection possibility
of admissible representatives.

Theorem 1. Let Ur be a continuous ray representation of a group G. For all r in a suitably
chosen neighborhood N0 of the unit element e of G, one can select a strongly continuous set of
representatives Ur ∈ Ur (i.e., for any vector ψ, any r ∈ N0 and any positive ε, there exists a
neighborhood N of r such that ||Usψ−Urψ|| < ε if s ∈ N).

The set of representatives {Ur} satisfying these conditions is called an admissible
set of representatives. From the concept of an admissible set of representatives derives a
wealth of important results in representation theory in physics (ultimately including the
particle concept itself). This set is indeed strongly continuous and probability transitions
taken from its representatives vary continuously with the group element s, in complete
agreement with the previous definition. We will discuss in detail the proof of Bargmann,
who in turn followed the Wigner steps.

Proof. Let Ψ be a fixed ray in H and ψ a given representative. Define gr = Ψ ·UrΨ for
r ∈ H, and as the inner product is continuous, gr is a continuous function of r. Therefore, it
is possible to choose a suitable neighborhood N ⊃ r such that α < gr ≤ 1 with α ∈ (0, 1).
Moreover, as a strategy for the proof, a certain representative Ur ∈ Ur is chosen such that
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gr = Ψ ·UrΨ = (ψ, Urψ). (8)

Note the absence of modulus1 in (8), which is contrary to the definition of the inner
product of vector rays. We will address this point after completing the standard proof.
Until then, we will only emphasize that e ∈ N, just as it is contained in the statement.

Let ψ ∈ Ψ, r, s ∈ N and define the quantities (partially preserving the Bargmann notation)

dr,s(ψ) = d(UrΨ, UsΨ), (9)

σr,s(ψ) = (Urψ, Usψ), (10)

Zr,s(ψ) = Usψ− σr,s(ψ)Urψ. (11)

These quantities will help the proof process. Note that Zr,s(ψ) is orthogonal to Urψ,
as can be easily seen from

(Urψ, Zr,s(ψ)) = (Urψ, Usψ)− σr,s(ψ), (12)

which vanishes by means of (10). From this, one can see that

||Zr,s(ψ)||2 = (Usψ− σr,s(ψ)Urψ, Usψ− σr,s(ψ)Urψ) = 1− σr,s(ψ)(Usψ, Urψ) (13)

and therefore (again using (10))

||Zr,s(ψ)||2 = 1− |σr,s(ψ)|2. (14)

It follows straightforwardly from Equation (1) that 1− |(ψ, φ)|2 ≤ d2, leading to

||Zr,s(ψ)||2 ≤ d2
r,s(ψ). (15)

Now, taking ψ = φ and calculating (φ, Zr,s(φ)), we have

σr,s(φ) =
1
gr
[gs − (φ, Zr,s(φ))]. (16)

Recalling that ||ψ− ψ′′||2 = 2(1− Re(ψ, ψ′′)) we have2 ||ψ− ψ′′||2 ≤ 2|1− (ψ, ψ′′)|.
Therefore,

||Usφ−Urφ||2 ≤ 2|1− (Urφ, Usφ)| = 2|1− σr,s(φ)| (17)

and by (16) we find

||Usφ−Urφ||2 ≤ 2
∣∣∣ 1

gr
[gr − gs + (φ, Zr,s(φ))]

∣∣∣. (18)

As gr > α, it is possible to rewrite the above equation as

||Usφ−Urφ||2 ≤ 2
α
|gr − gs + (φ, Zr,s(φ))| ≤

2
α
[|gr − gs|+ |(φ, Zr,s(φ))|]. (19)

As defined before, the functions gr give |gr − gs| = |(φ, Urφ)− (φ, Usφ)| = |(φ, Urφ−
Usφ)| ≤ ||Urφ−Usφ||. Therefore, |gr − gs| is less than (or equal to) any value of ||Urφ−
Usφ||; in particular the inequality holds for the minimum value of ||Urφ−Usφ||min = dr,s(φ).
Therefore |gr − gs| ≤ dr,s(φ). Moreover, |(φ, Zr,s(φ))| ≤ ||Zr,s(φ)|| and using (15) we have
|(φ, Zr,s(φ))| ≤ dr,s(φ). Collecting all these results, we finally get

||Usφ−Urφ||2 ≤ 4
α

dr,s(φ), (20)
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which ensures continuity for Urφ in the sense of the highlighted definition before the
theorem. The next step is to ensure continuity for a vector χ given by χ = (φ + ϕ)/

√
2,

where the normalized vector ϕ is assumed to be orthogonal3 to φ. Note that

(Urφ, Zr,s(χ)) = (Urφ, Usχ)− σr,s(χ)(Urφ, Urχ) (21)

now adding and subtracting (Ush, Usk) to (21), the result may be recast as

(Urφ, Zr,s(χ)) = (Urφ−Usφ, Usχ) + (Usφ, Usχ)− σr,s(χ)(Urφ, Urχ). (22)

In turn, (Umφ, Umχ) = (φ, U†
mUmχ) = (φ, 1√

2
[φ + ϕ]) = 1/

√
2 for every m ∈ H, in

particular for m ∈ N ⊂ H. Returning to (21), then we have

(Urφ, Zr,s(χ)) + (Usφ−Urφ, Usχ) =
1√
2
(1− σr,s(χ)). (23)

Now we can apply Equations (23) to (17) (suitable adequate to χ) and arrive at

||Usχ−Urχ||2 ≤ 22/3
{
|(Urφ, Zr,s(χ))|+ |(Usφ−Urφ, Usχ)|

}
. (24)

Both terms of the right-hand side of Equation (24) are bounded from above by Schwarz
inequality. Then, using Equation (15) in the first term, we have

||Usχ−Urχ||2 ≤ 22/3
{

dr,s(χ) + ||Usφ−Urφ||
}

(25)

and the continuity of Urφ implies the continuity of Urχ (and of course of Ur ϕ). Finally, if ψ
is a linear combination written in terms of φ and ϕ, as defined earlier, then Urψ is clearly
continuous.

As a final remark before going further, note that the first steps of the proof could
be repeated around any group element k ∈ H by simply adapting the neighborhood to
include k and starting with the definition of gr functions as gr = UkΨ ·Ur(UkΨ).

Additional Discussion

Apart from the comments on the proof inserted here and there, let us concentrate on
the determination of the gr functions. First, a fact: there is no loss of generality in choosing
a neighborhood of e ∈ H such that gr > α for α ∈ (0, 1) or even in setting the operator such
that gr = (ψ, Urψ) instead of |(ψ, Urψ)|. The continuity of the inner product with respect
to the distance ensures this last procedure. However, it is instructive, to see the effect of
such a device within the proof scheme when the necessity emerges, as it were, rather than
a priori.

Let us begin with functions g̃r = Ψ ·UrΨ = |(ψ, Urψ)| for which the group separability
condition g̃r > α for r ∈ N ⊂ H holds. Given this definition, part of the procedure used in
the previous proof is unhelpful. We first note that with Zr,s(φ), as defined in (11),

|(φ, Zr,s(φ))| = |(φ, Usφ)− σr,s(φ)(φ, Urφ)| ≥ |(φ, Usφ)| − |σr,s(φ)||(φ, Urφ)|, (26)

using the standard triangle inequality for complex numbers. In a more compact form

|(φ, Zr,s(φ))| ≥ g̃s − |σr,s(φ)|g̃r. (27)

From (27), we read

|1− |σr,s(φ)|| ≤
1
α

{
|g̃r − g̃s|+ |(φ, Zr,s(φ))|

}
. (28)
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Again, both terms in the right-hand side of (28) are bounded from above by the
distance in the Hilbert space. In the second term, Equation (15) will be used again, while
for the first term we have

|g̃r − g̃s| = ||(φ, Urφ)| − |(φ, Usφ)|| ≤ |gr − gs| (29)

and the discussion around (19) holds. Therefore,

|1− |σr,s(φ)|| ≤
2
α

dr,s(φ). (30)

Now recall that a direct computation leads to Equation (17), i.e.,

||Usφ−Urφ||2 ≤ 2|1− σr,s(φ)| (31)

and thus the procedure to ensure continuity of Urφ requires additional attention, since
|1− σr,s(φ)| ≥ |1− |σr,s(φ)||. Let us examine both cases.

In the case that |1− σr,s(φ)| > |1− |σr,s(φ)|| one is not able to compare ||Usφ−Urφ||2
and dr,s(φ) accurately. This situation then leads to an empty tautology: the selection
of continuous representatives is the one that choose Urφ respecting ||Usφ − Urφ||2 ≤
(4/α)dr,s(φ), i.e., the continuous one.

However, when |1− σr,s(φ)| = |1− |σr,s(φ)||, one can indeed claim continuity for Urφ
as can be easily seen. This condition (leading to the proof) is mathematically satisfied when-
ever Re(σr,s(φ)) ≥ 0 and Im(σr,s(φ)) vanishes. However, these conditions are precisely the
conditions studied when setting gr functions (without tilde). Indeed,

σr,s(φ) = (Urφ, Usφ) = (φ, U†
r Usφ) = (φ, Ur−1sφ), (32)

is nothing but a gm function for m = r−1s ∈ N. Therefore, given the conditions Re(gm(φ)) ≥ 0
and Im(gm(φ)) = 0 we have gm = g̃m leading to4 ||Usφ−Urφ||2 ≤ (4/α)dr,s(φ). Going
further, by calling Um = τU0

m, φ = δφ0 for fixed U0
m and φ0 and denoting (φ0, U0

mφ0) =
X + iY and τ = τ1 + iτ2 (X, Y, τ1, τ2 ∈ R), the conditions give.

Xτ1 −Yτ2 ≥ 0,

Xτ2 + Yτ1 = 0. (33)

It is not difficult to satisfy Equation (33) without any operator particularization. The
last additional remark is that in the absence of a phase in the representation, i.e., for genuine
(not projective) representations, continuity for the representatives is ultimately attainable
by continuity of the inner product.

3. Consequences of Continuity

We will here point out some direct consequences of continuity, relevant to the math-
ematical structure underlining the understanding of quantum physics, first examining
local factors and then investigating some consequences of the selection of continuous
representatives together with freedom in the selection procedure.

3.1. Continuous Local Factors

Let us assume implicitly in what follows that all group elements to be worked out in
this section belong to the same neighborhood N (or to suitable intersections of neighbor-
hoods), so that the group operations are locally well-defined. This requires e ∈ H to be an
element of the neighborhood. An admissible set of representatives engenders a continuous
ray representation in N and since UrUs and Urs belongs to the same ray, we have

UrUs = ω(r, s)Urs, (34)
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where |ω(r, s)| = 1 and clearly ω(r, e) = ω(e, s) = ω(e, e) = 1, as Ue = 1. Note that the
associative law of the group representation implies

ω(r, s)ω(rs, m) = ω(s, m)ω(r, sm). (35)

The functions ω(r, s) are the so-called local factors of a given ray representation
and the continuity of admissible representatives leads to the continuity of them. Let us
demonstrate this fact.

Lemma 1. For an admissible set of representatives, the local factors are continuous.

Proof. We start with a simple truism. Let ψ ∈ H, then obviously

[ω(r′, s′)−ω(r, s)]Ur′s′ψ = ω(r′, s′)Ur′s′ψ−ω(r, s)Ur′s′ψ. (36)

Now, adding and subtracting the terms Ur′Usψ and UrUsψ we obtain, using (34),

[ω(r′, s′)−ω(r, s)]Ur′s′ψ = ω(r, s)(Urs −Ur′s′)ψ + Ur′(Us′ −Us)ψ + (Ur′ −Ur)Usψ. (37)

Thus, we arrive at

||[ω(r′, s′)−ω(r, s)]Ur′s′ψ|| ≤ ||ω(r, s)(Urs −Ur′s′)ψ||+
+ ||Ur′(Us′ −Us)ψ||+ ||(Ur′ −Ur)Usψ||. (38)

The left-hand side of (38) simplifies5 to |ω(r′, s′)−ω(r, s)|. Moreover, since |ω(r, s)| =
1 and Ur is unitary, the terms of the right-hand side are easy to handle. Thus, calling
Us′ψ = ψ′, we have

|ω(r′, s′)−ω(r, s)| ≤ ||(Urs −Ur′s′)ψ||+ ||(Us −Us′)ψ||+ ||(Ur′ −Ur)ψ
′||, (39)

from which the local factors for admissible representatives are indeed continuous.

Continuity of phase factors can also be used to treat differentiability precisely [4]. We
will just note here that a multidimensional Lie group H has elements in bijective correspon-
dence with open balls containing N in an Euclidean space of same dimensionality [11].
To fix ideas, let us consider a fixed element s and think of r = r(r1, r2, . . . , rn), where
n = dim(H) and ri (i = 1, . . . , n), as the coordinates of r. The unity for the local factor may
be written as 1 = ω(e, s) and the unity element e ∈ H has coordinates given by (0, 0, . . . , 0).
It follows that

|ω(r, s)− 1| = |ω(0 + r1, 0 + r2, . . . , 0 + rn, s)−ω(0, 0, . . . , 0, s)| : N ⊂ Rn → R+. (40)

For the argument, if we take s′ = e = r′ in (39) and denote ||(1−Um)ψ|| ≤ κd1/2
e,m where κ

stands for a constant (a form certainly valid for admissible representatives), then (39) reads

|ω(0 + r1, 0 + r2, . . . , 0 + rn, s)−ω(0, 0, . . . , 0, s)| ≤ κ ∑
i=r,s,rs

d1/2
e,i (41)

and the continuity of admissible representatives naturally bounds the local factor from
above, in the sense just described.

So far we have said that the local factors are group elements dependent. It is easy to
see that there is no dependence of local factors with respect to the state on which the group
elements are represented [12]. Let ψi (i = 1, 2) be two linearly independent vectors inH
and assume a dependence of the local phases on the states; also assume ψ3 = ψ1 + ψ2. It
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follows that UrUsψ3 = ω3(r, s)Ursψ3. However (recall that the operators acting in H are
unitary and linear),

ω3(r, s)Urs(ψ1 + ψ2) = ω1(r, s)Ursψ1 + ω2(r, s)Ursψ2 (42)

and acting from the left in (42) with Us−1r−1 we have ω3(r, s) = ω1(r, s) = ω2(r, s), so no
state dependence at all.

Before further studying the local factors and their continuity, we make a parenthetical
but important remark about continuity in irreductible representations and one-parametric
Lie subgroups. A local one-parameter Lie subgroup is a continuous curve g = g(λ) in N

(λ takes values in an open real interval) with g(λ1)g(λ2) = g(λ1 + λ2) for λ1, λ2, λ1 + λ2
defined in the same open interval in R. In view of this remark, we can state the following
theorem [3].

Theorem 2. Let Ug(λ) be an infinitesimal operator of a continuous one-parametric subgroup. If
there exists a physical state, say Ψ, on which the application of Ug(λ) is well defined, then there
exists an everywhere dense set of such states for irreducible representations.

Proof. If there exists such a Ψ state, then the limit limλ→0 λ−1(Ug(λ) − 1)Ψ is clearly well
defined. Now, let S be a given operator of the representation. The one-parametric property
Ug(λ1)

Ug(λ2)
= Ug(λ1+λ2)

also holds for S−1Ug(λ)S and therefore the limit

lim
λ→0

1
λ
(S−1Ug(λ)S− 1)Ψ (43)

is also well defined. Taking 1 = S−1S in the above expression, we see that the following
limit is also well defined

lim
λ→0

1
λ
(Ug(λ) − 1)SΨ. (44)

This means that as far as the infinitesimal operator can be applied to Ψ, it can also
be applied to SΨ. Thus, for irreductible representations, the existence of Ψ ∈ H, which
implies (44), means that for every state on which infinitesimal Ug(λ) can act, every V ⊂ H
contains at least one SΨ that has exactly this property, giving rise to an everywhere dense
set of such states inH.

Just as an additional remark about the theorem just proved, if ψ does not belong to
an irreducible representation, then one cannot claim the existence of such an everywhere
dense set (see in [3] for further discussion). Finally, this theorem states that infinitesimal
operators in the Hilbert space can be treated in a somewhat ordinary way.

3.2. Exploring the Continuity of Representatives

The continuity of representatives and local factors proved so far can be summarized
in the expressions (25) and (39). It is now important to consider this strong continuity
property together with the dependence of local factors on the choice of representatives.
To begin with, consider |φ(r)| = 1 and select representatives in the same ray such that
U′(r) = φ(r)Ur, ∀r ∈ N ⊂ H. Of course, U′(r)U′(s) = ω′(r, s)U′(rs), which shows that
the ω(r, s) function depends on the selection of representatives, given that

ω′(r, s) = ω(r, s)
φ(r)φ(s)

φ(rs)
. (45)

This freedom in the representative selection is obviously inherited from the ray repre-
sentation and its systematic study is very informative as it reveals the deep relationship
between the representation itself and the group being represented. Before we begin to
explore this freedom however, let us specify the analysis to the case of interest. Let
{U′r = φ(r)Ur} be an admissible set of representatives defined in a suitable neighborhood
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of e. The strong continuity of U′r and Ur naturally implies that φ(r) is a continuous complex
unimodular function. On the other hand, starting from φ(r) continuous and Ur strongly
continuous, one arrives at U′r strongly continuous.6

Proposition 1. Let ω be a local factor defined in a given neighborhood N of e and let φ(r) be a
continuous unimodular complex function such that φ(e) = 1 and the function ω′ is given as in
(45). Then, the function ω′ is also a local factor.

Proof. As noted earlier, (1) the strong continuity of admissible representatives implies that
φ(r) is a continuous function. Therefore, ω′ also satisfies (39) for admissible U′r. Moreover,
(2) ω′(r, e) = ω′(e, s) = 1 = ω′(e, e) as can be easily seen. Finally, (3) using (45), it is
possible to write

ω′(r, s)ω′(rs, m) = ω(r, s)ω(rs, m)
φ(r)φ(s)φ(m)

φ(rsm)
(46)

and using (35) we have

ω′(r, s)ω′(rs, m) = ω(s, m)ω(r, sm)
φ(r)φ(s)φ(m)

φ(rsm)
. (47)

Multiplying the right-hand side of (47) by 1 = φ(sm)/φ(sm) and rearranging the
terms, we obtain

ω′(r, s)ω′(rs, m) = ω(s, m)
φ(s)φ(m)

φ(sm)
ω(r, sm)

φ(r)φ(sm)

φ(rsm)
, (48)

showing that (35) then holds also for ω′, leading to a local factor.

We will henceforth study the freedom in selecting admissible representatives on a
more comprehensive basis. To do so, it may be a good time to introduce a notation with
which the reader is probably more familiar. Let δ(r, s) be a strongly continuous real function
defined for every group element in a suitable chosen neighborhood, satisfying the condition
δ(e, e) = 0 and

δ(r, s) + δ(rs, m) = δ(s, m) + δ(r, sm). (49)

Then, it is possible to replace the local factors by the so-called local exponents by
ω(r, s) = eiδ(r,s) (note that (49) is the counterpart of the group associative law to the local
exponents).

Proposition 2. For every local exponent, the relations (1) δ(r, e) = 0 = δ(e, s) and (2) δ(r, r−1) =
δ(r−1, r) hold.

Proof. For (1) just take s = m = e (r = s = e) in (49) and recall that δ(e, e) = 0 to get
δ(r, e) = 0 (δ(e, s) = 0). For (2) take s = r−1 in (49) and obtain

δ(r, r−1) + δ(rr−1, m) = δ(r−1, m) + δ(r, r−1m) (50)

and then take m = r to obtain δ(r, r−1) = δ(r−1, r).

When studying of physical representations, it is relevant to understand when (and
how) projective representations may be discarded and one can work directly with genuine
representations. This is a subtle aspect, whose answer may go beyond non-trivial points of
mathematical theory. We will here appreciate only some of the aspects that are somehow
directly related to continuity. In any case, the following definition is crucial for a proper
exposition of this topic.
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Definition 2. Let x(r) be a continuous real function defined in a neighborhood K that includes
products of group elements, and let δ and δ′ be local exponents defined in N and N′, respectively.
Let it be assumed that K ⊂ (N ∩N′). The local exponents δ and δ′ will be called equivalent if
the relation

δ′(r, s) = δ(r, s) + ∆r,s[x], (51)

with

∆r,s[x] = x(r) + x(s)− x(rs) (52)

holds in K.

From Definition 2 above, it is easy to see that x(e) = 0 insofar as δ′(e, e) = δ(e, e).
The functional form of ∆r,s[x] may be, perhaps, better justified by noting from (45) that two
equivalent local exponents uniquely define two equivalent local factors with φ(r) = eix(r). By
slightly changing the order of exposition, it is possible to enunciate the following proposition.

Proposition 3. If δ is a local exponent defined in a given neighborhood, and x(r) a continuous real
function such that x(e) = 0 defined in a suitable neighborhood (see Definition 2), then δ′(r, s) as
defined by (51) and (52) is a local exponent.

Proof. First, note that the continuity of δ and x guarantees continuity for δ′. Moreover, as
x(e) = 0, then δ′(e) = 0 directly. Besides

δ′(r, s) + δ′(r, sm) = δ(r, s) + δ(rs, m) + ∆r,s[x] + ∆rs,m[x] (53)

and by means of (49)

δ′(r, s) + δ′(r, sm) = δ(s, m) + δ(r, sm) + ∆r,s[x] + ∆rs,m[x]. (54)

Using (51) we now arrive at

δ′(r, s) + δ′(r, sm) = δ′(s, m) + δ′(r, sm) + ∆r,s[x] + ∆rs,m[x]− ∆s,m[x]− ∆r,sm[x]. (55)

Finally, note that the sum of ∆’s vanishes identically.

Before proceeding to study the consequences of continuity, we will make some com-
plementary observations. Let us denote the equivalence between two local exponents by
δ′ ∼ δ. This equivalence relation is

(i) Symmetric: δ′ ∼ δ means δ′(r, s) = δ(r, s) + ∆r,s[x]. Therefore δ ∼ δ′ as x → −x;
(ii) Reflexive: obviously δ′ ∼ δ′;
(iii) Transitive: suppose δ1(r, s) = δ(r, s) + ∆r,s[x1] in N1 and δ2(r, s) = δ1(r, s) + ∆r,s[x2]

in N2. Then, δ2(r, s) = δ(r, s) + ∆r,s[x1 + x2] in some N ⊂ (N1 ∩N2), and thus δ2 ∼ δ.
Therefore, (51) and (52) set a formal equivalence class, a truly equivalence class indeed.

The observation of the last paragraph can be complemented by the following remark:
if δ1 and δ2 are local exponents in N1 and N2, respectively, then every linear combination
κ1δ1(r, s) + κ2δ2(r, s) with κi ∈ R (i = 1, 2) is also a local exponent in N ⊂ (N1 ∩N2).
Summarizing these observations, we can claim that the equivalence class of a linear combi-
nation depends only on the equivalence classes of local exponents entering in the linear
combination.

This is a good point to appreciate an important theorem due to Weyl [2].

Theorem 3. For a finite dimensional continuous ray representation Ur of a group H, every local
factor is equivalent to 1.



Universe 2021, 7, 285 11 of 19

Proof. Starting from UrUs = ω(r, s)Urs = eiδ(r,s)Urs, assuming that n is the dimension
of the representation space, and taking the determinant of the above expression, we are
left with

det Ur det Us = einδ(r,s) det Urs. (56)

Now, as Ur is strongly continuous, it follows that det Ur is a continuous function of
r. Furthermore, |det Ur| = 1 = det Ue. Thus in a suitable neighborhood, it is possible to
write det Ur ≡ eiΣ(r) with continuous real functions such that Σ(e) = 0. In this vein, we
have from (56) that

δ(r, s)− Σ(r)
n
− Σ(s)

n
+

Σ(rs)
n

= 0 (57)

and as we recognize x(r) = −Σ(r)/n we have δ(r, s) + ∆r,s[x = −∆/n] = 0 ∼ δ′(r, s),
from which ω(r, s) ∼ 1 follows.

This is a remarkable result, which makes it clear that continuity of representatives
acting in Hilbert spaces is not only a pleasant and desirable property but can also constrain
important aspects of the representation that would otherwise be unspecified. However,
two crucial limitations of the previous result should be noted: first, it is a local achievement,
which for this reason is valid in a given neighborhood N of e. To extend such claim to
all group manifold, we should be able to demonstrate it for N = H. Notably, this is
only possible if the zeroth and first homotopy groups of the manifold associated to H,
π0(H), and π1(H), are both trivial7 [14]. When these requirements are not satisfied, some
additional subtitles may appear, such as in the case of representations up to a sign for
SO(3) = SU(2)/Z2 rotations, which are of great impact in spinorial representations. The
second point to emphasize is that the last theorem deals with finite-dimensional represen-
tations. We will continue the analysis by lifting this restriction and further investigating
continuous representations on general basis.

As a typical representation, the operators of continuous operator rays form a group
under multiplication. This concept can be systematized by introducing of the so-called
local group L, which entails the freedom in selecting a given operator within a ray and
formalizes, so to speak, the observation with which we started this section. To introduce
this group, note that an operator belonging to an admissible set of representatives defined
in a suitable neighborhood is given by eiσUr, where the representation continuity fixes the
range of σ as the real numbers. Therefore,

(eiσ1Ur)(eiσ2Us) = ei(σ1+σ2)UrUs = ei(σ1+σ2)ω(r, s)Urs, (58)

or, in terms of local exponents,

(eiσ1Ur)(eiσ2Us) = ei(σ1+σ2+δ(r,s))Urs. (59)

We call N2 the neighborhood comprising the products of any two group elements
belonging to N, and require that N2 is a neighborhood of e, and define L to be the set of
elements of the form [σ, r] with σ ∈ R and r ∈ N.

Now define a product � : L× L→ L such that

[σ1, r] � [σ2, s] = [σ1 + σ2 + δ(r, s), rs], (60)

where δ(r, s) is a local exponent, in full agreement with (59) but bypassing any allusion to
a given representative (provided it is admissible).

Proposition 4. L is a group under �.

Proof. (1) As it can be readily seen, the unity element is simply given by [0, e]. (2) Note that

[σ1, r1] �
(
[σ2, r2] � [σ3, r3]

)
= [θ1 + θ2 + θ3 + δ(r2, r3) + δ(r1, r2r3), r1r2r3], (61)
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while (
[σ1, r1] � [σ2, r2]

)
� [σ3, r3] = [θ1 + θ2 + θ3 + δ(r1, r2) + δ(r1r2, r3), r1r2r3]. (62)

Thus, the associative aspect of the representation inherited by local factors (49) yields
an associative product. (3) For every element of L, the unity element is reachable by a
composition with [σ, r]−1 ≡ [−(σ + δ(r, r−1)), r−1], where r−1 ∈ N, for

[σ, r] � [σ, r]−1 = [σ, r] � [−(σ + δ(r, r−1)), r−1] (63)

= [σ− σ− δ(r, r−1) + δ(r, r−1), rr−1]

= [0, e] = [σ, r]−1 � [σ, r]. (64)

This concludes the proof.

Then, the group L has R×N2 as associated manifold and it is often said that L is
the local group constructed for the local exponent δ. Despite the apparent simplicity of
the local group, its structure is relevant enough to be analyzed further. Take elements of
the form [σ, e] of L. Of course, these elements form an one-parameter subgroup, say C, of
L. Let us present some properties of C that can be easily checked. First, C belongs to the
center of L. In fact [σ, e] � [α, r] = [σ + α + δ(e, r), er], but δ(e, r) = 0 = δ(r, e) as it is a local
exponent and of course er = re = r. Thus, [σ, e] � [α, r] = [α, r] � [σ, e], ∀ [α, r] ∈ L. Now, it
is not hard to prove that [σ, r] = [σ, e] � [0, r], and then every element of L can be written in
terms of an element belonging to C (something relevant in what follows) together with an
element of H.

The central group investigation is important to understand a relevant aspect between
the center of algebras and the local existence of projective representations. In fact, by
inspecting elements of C one sees that it comprises all the information about the freedom
in a ray selection. To see that the inspection of L (and therefore C) is indeed informative
about representations of H, let us show some relevant isomorphisms.

Lemma 2. The quotient group L/C is locally isomorphic to H.

Proof. As known, the group L/C has elements belonging to the set {κC|κ ∈ L}, while
H comprises elements r1, r2, . . .. Let ϕ be an application from L/C → H. Before setting
ϕ completely, we note that ϕ(κC) typically has ϕ([σ1, r] � [σ2, e]) as arguments. It turns
out that

[σ1, r] � [σ2, e] = [0, r] � [σ1, e] � [σ2, e] = [0, r] � [σ1 + σ2, e]. (65)

Then, calling σ1 + σ2 ≡ σ we have [σ1, r] � [σ2, e] = [0, r] � [σ, e]. The definition of ϕ is
thus completed by selecting the pure H element of its domain, that is ϕ([0, r] � [σ, e]) .

= r. In
view of this we see that (1) ϕ(e) = ϕ([0, e] � [0, e]) = ϕ([0, e]) and hence ϕ([0, e]) .

= e = ϕ(e).
Now, note that

ϕ
(
[0, r]−1 � [σ, e]−1

)
= ϕ

(
[−δ(r, r−1), r−1] � [−(σ + δ(e, e)), e]

)
, (66)

where we have used e−1 = e. As δ(e, r) = 0, ∀r locally, we have

ϕ
(
[0, r]−1 � [σ, e]−1

)
= ϕ

(
[−δ(r, r−1), r−1] � [−σ, e]

)
= ϕ

(
[−σ− δ(r, r−1), r−1]

) .
= r−1. (67)

Finally, since ϕ([0, r] � [σ, e]) = r, we arrive at ϕ(g−1) = ϕ−1(g) ∀g ∈ L/C.
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Incidentally, we might note that ϕ([σ1, e] � [0, r1] � [σ2, e] � [0, r2]) = ϕ([σ1 + σ2 +
δ(r1, r2), r1r2])

.
= r1r2. However, obviously, ϕ([σi, e] � [0, ri])

.
= ri (i = 1, 2) and then

ϕ(g1g2) = ϕ(g1)ϕ(g2), ∀g1, g2, g1g2 ∈ L/C.
Besides the important result just described in Lemma 2, it is also possible to locally

connect local groups with equivalent exponents. This is the content of the next lemma.

Lemma 3. Let δ and δ̃ be two equivalent local exponents in a given neighborhood, that is
δ̃(r, s) = δ(r, s) + ∆rs[x]. Then, the corresponding local groups L and L̃ are locally isomorphic.

Proof. Consider the mapping ϕ : L → L̃ such that ϕ([σ, r]) = [σ − x(r), r̃ = r]. It is
clear that

ϕ([σ1, r1]) � ϕ([σ2, r2]) = [σ1 − x(r1), r1] � [σ2 − x(r2), r2] (68)

= [σ1 + σ2 − x(r1)− x(r2) + δ̃(r1, r2), r1r2]. (69)

On the other hand, it can be readily verified that

ϕ([σ1, r1 � [σ2, r2]) = ϕ([σ1 + σ2 + δ(r1, r2), r1r2])

= [σ1 + σ2 + δ(r1, r2)− x(r1r2), r1r2]. (70)

Thus, the equality of (69) and (70) follows directly from the equivalence of the local
exponents.

For completeness, we mention another general result concerning local isomorphisms.
If z is a real nonzero constant and the local groups L and L′ are constructed for δ and δ′ = zδ,
respectively, then the mapping f : L → L′ such that f ([σ, r]) = [σ′ = zσ, r′ = r] defines
an isomorphism between L and L′. In fact, f ([σ1, r1]) � f ([σ2, r2]) = [zσ1, r1] � [zσ2, r2] =
[zσ1 + zσ2 + δ′(r1, r2), r1r2]. By its turn f ([σ1, r1] � [σ2, r2]) = f ([σ1 + σ2 + δ(r1, r2), r1r2]) =
[z(σ1 + σ2 + δ(r1, r2)), r1r2] and, as δ′ = zδ, L ' L′ locally.

Now, we can resume the discussion around Equation (64). As Lemma 3 asserts,
studying isomorphism between local groups is a way to study local exponents. Moreover,
Lemma 2 ensures that locally L/C ' H, that is L is the extension of H by C. Taken together,
these two results point to the center of L, the C group, as the really relevant group to
consider for the study of local exponents per se. The Lie algebra of the group L is at the
heart of the question of whether a given representation is projective or genuine [15]. With
effect, local exponents are (locally) equivalent to zero provided that a rearrangement of
algebra generators removes their central counterpart. The study of continuity allows us
to consider this result here from the group perspective: it is clear from the formulation
that removing local exponents is possible if the group C whose elements are given by
[σ, e] can be ruled out from the analysis. This observation ultimately leads to the famous
Bargmann’s theorem, which states that central charges of semi-simple Lie algebras can
always be excluded by redefining the algebra generators [4].

4. Final Remarks

We have discussed some aspects of Wigner’s approach to dealing with (irreducible)
representations of the Poincaré group. All the perspectives presented here focused on the
rigor that Wigner devoted to the concept of representation’s continuity itself. Indeed, this
formal aspect has of course profound implications for the foundations of representation
theory and, as we tried to make clear in the manuscript, its consequences are also relevant
to physics.

In revisiting the underlying concepts for constructing the representation, we made a
special effort to evoke all the relevant steps along with the proofs, and to provide a path
through the concepts whose fulcrum rested on the matter of continuity. In this way, we
were able to connect in advance (algebraic and topological) aspects of representation theory
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in physics, as well as some discussion about the projective or genuine representations issue,
to the primitive idea of selecting admissible representatives.

At the risk of exaggerating somewhat, we would say that the formal consideration
of some aspects of continuous representation in Hilbert spaces is perhaps one of the main
ingredients of Wigner’s success in finding a formal characterization of particles, along
with other equally relevant aspects in the formulation, such as the exploration of induced
representations [16,17] and finding of new representations.

The rigorous effort of Wigner’s approach to formalize aspects previously bypassed by
others is better explained by a well-known comment due to Wigner himself [18]:

The mathematical formulation of the physicist’s often crude experience leads in an un-
canny number of cases to an amazingly accurate description of a large class of phenomena.
This shows that the mathematical language has more to commend it than being the only
language which we can speak; it shows that it is, in a very real sense, the correct language.

Just over 80 years have passed since the work celebrated here and, as befits a well-
made work that survives the scrutiny of time, its fundamental concepts and approaches
are still precise, elegant, and capable of revealing insightful perspectives.
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Appendix A. Symmetry Representations

For completeness, we present here a step-by-step proof of the famous Wigner theorem
of 1931 on symmetry operations in Hilbert space [1]. More often than never, the proof
of this theorem is revisited in several contexts and with different levels of sophistication
(see in [19] for a complete list of references and two quite interesting different proofs).
Bargmann presented an elegant version of the proof [20], while a deep understanding
of the Wigner viewpoints, together with some discussion about other proofs, is given
in [21]. The presentation given here follows the steps performed by Weinberg [12] due to
its completeness. After that, we also prove that for an identity component subgroup, every
action is unitary. Let us start by contextualizing this rather important result.

We say that two descriptions of a given quantum mechanical system are isomorphic if
there is a one-to-one correspondence, Ψ↔ Ψ′, between the rays describing the physical
system preserving probabilities, i.e., Φ · Ψ = Φ′ · Ψ′. This is the desired situation for
the description of the quantum system in two inertial reference frames connected by
Lorentz transformations, for instance. Moreover, transformations that preserve the ray
internal product (and hence the probabilities) are called symmetry transformations. As
is well known, the Wigner theorem to be invoked here shows that every isomorphic ray
correspondence engenders a (also one-to-one) vector correspondence in Hilbert space as
ψ′ = Uψ and the general properties of U are listed in the theorem statement.
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Theorem A1. Every symmetry transformation in the Hilbert space of physical states can be
represented by an operator that is either linear and unitary or anti-linear and anti-unitary.

Proof. Let R1 ⊃ ψ1 and R2 ⊃ ψ2 be two rays in the Hilbert spaceH and, analogously, let
R′1 ⊃ ψ′1 and R′2 ⊃ ψ′2 for transformed rays (and corresponding elements). Let ϕ ∈ End(H)
transforming R into R′ be a symmetry transformation such that |(ψ1, ψ2)|2 = |(ψ′1, ψ′2)|2. In
addition, we will also require the existence of ϕ−1 as a symmetry transformation. Denoting
by {ψk} ∈ R a complete orthonormal set of states, it is easy to see that orthonormality is
inherited for {ψ′k} ∈ R′, obtained by means of ϕ. Indeed, since |(ψm, ψn)|2 = δmn, we have
|(ψ′m, ψ′n)|2 = δmn, from which

(ψ′m, ψ′n)(ψ
′
m, ψ′n)

∗ = δmn. (A1)

In this context, we note that although a notation tailored to the results for finite
dimensional spaces has been used, the adaptation to general cases is straightforward.
In accordance with more precise aspects (as completeness), the validation steps will be
performed with no concern to a particularization for finite dimensions.

Let us consider Equation (A1) for the m = n case. Let k be such that (ψ′m, ψ′m) = k. As
it is well known (a quantum mechanical postulate) 0 ≤ (ψ′m, ψ′m) ∈ R (the equality holding
for the null state). Therefore, Equation (A1) implies k2 = 1, from which (ψ′m, ψ′m) = 1
necessarily. Consider now the case m 6= n and take (ψ′m, ψ′n) = a + ib, where a, b ∈ R.
In this case Equation (A1) translates to a2 + b2 = 0, leading to a = 0 = b and thus
(ψ′m, ψ′n) = 0 for n 6= m. Therefore, (ψ′m, ψ′n) = δmn and the transformation ϕ does preserve
orthonormality.

In accounting for completeness, suppose {ψ′k} is not a complete set. Then, there must
exist a given state, say ψ̃′ which has not projection in the set (or a subset of) {ψ′k}, that
is (ψ̃′, ψ′k) = 0, ∀k. This fact would imply |(ψ̃′, ψ′k)|

2 = 0 and, via ϕ−1, this would lead
to |(ψ̃′, ψ′k)|

2 = |(ψ̃, ψk)| = 0, a clear contradiction as {ψk} is complete. Therefore, the set
{ψ′k} is also complete (and orthonormal) and a given basis of the original set is transformed
into a basis in the arriving set.

Take now an element of the set {ψk}, say ψk̄, and define φk =
1√
2
(ψk̄ + ψk) for k 6= k̄.

The element φk belongs to R. Notice, from the previous definition, that

|(ψk̄, φk)|2 =
1
2

∣∣(ψk̄, ψk̄) + (ψk̄, ψk)
∣∣2 =

1
2

. (A2)

Besides, as we showed the transformation to preserve completeness, any vector
belonging to R′ may be written as

φ′k = ∑
n

αknψ′n, (A3)

from which we have

|(ψ′k̄, φ′k)|
2 =

∣∣∣∑
n

αkn(ψ
′
k̄, ψ′n)

∣∣∣2 = |αkk̄|
2. (A4)

For a symmetry transformation, Equations (A2) and (A4) should be equal, leading
to |αkk̄| = 1√

2
. This reasoning may be repeated for |(ψk, φk)|2 and |(ψ′k, φ′k)|

2 resulting in

|αkk| = 1√
2
. Furthermore, again repeating the same procedure, a bit of simple algebra

shows that the coefficients αkm all vanish for k 6= k̄ and k 6= m (with m 6= k̄). The first
part of the demonstration is completed by choosing8 αkk̄ = 1/

√
2 = αkk and calling the

transformation engendering it by U, in such a way that

φ′k = Uφk =
1√
2
(Uψk̄ + Uψk). (A5)
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The task now is to extend the founded symmetry transformation to all Hilbert space.
Let us now take ψ = ∑m βmψm from which we have

|(ψk, ψ)|2 =
∣∣∣∑

m
βm(ψk, ψm)

∣∣∣2 = |βk|2. (A6)

For a U transformed vector ψ′ = ∑m β′mUψm it can be readily verified that
|(ψ′k, ψ′)|2 = |β′k|

2 and, therefore, |βk|2 = |β′k|
2 ∀ k. In particular, |βk̄|2 = |β′k̄|

2 and

thus |βk|2/|βk̄|2 = |β′k|
2/|β′k̄|

2 or simply9

∣∣∣∣∣ βk
βk̄

∣∣∣∣∣
2

=

∣∣∣∣∣ β′kβ′k̄

∣∣∣∣∣
2

. (A7)

Taking into account φk and ψ we have

|(φk, ψ)|2 =

∣∣∣∣∣
(

1√
2
[ψk̄ + ψk], ∑

m
βmψm

)∣∣∣∣∣
2

=
1
2
|βk̄ + βk|2. (A8)

Analogously

|(φ′k, ψ′)|2 =

∣∣∣∣∣
(

1√
2
[Uψk̄ + Uψk], ∑

m
β′mUψm

)∣∣∣∣∣
2

=
1
2
|β′k̄ + β′k|

2, (A9)

allowing one to write |βk̄ + βk|2 = |β′k̄ + β′k|
2. This last relation implies |β′k̄ + β′k|

2/|β′k̄|
2 =

|βk̄ + βk|2/|β′k̄|
2 and as |β1|2 = |β′1|2 we have |β′k̄ + β′k|

2/|β′k̄|
2 = |βk̄ + βk|2/|βk̄|2,

or equivalently ∣∣∣∣∣1 + β′k
β′k̄

∣∣∣∣∣
2

=

∣∣∣∣∣1 + βk
βk̄

∣∣∣∣∣
2

. (A10)

Calling for a moment βk/βk̄ = x + iy (and similarly β′k/β′k̄ = x′ + iy′), Equations (A7)
and (A10) provide, respectively,

x2 + y2 = x′2 + y′2 (A11)

and
(1 + x)2 + y2 = (1 + x′)2 + y′2 (A12)

whose combination demands x = x′ and y = ±y′, that is,

Re

(
β′k
β′k̄

)
= Re

(
βk
βk̄

)
,

Im

(
β′k
β′k̄

)
= ±Im

(
βk
βk̄

)
. (A13)

These are the constraints to be taken in extending the U operation to all Hilbert space.
By choosing the upper sign in Equation (A13) we have β′k/β′k̄ = βk/βk̄, while the down
sign implies β′k/β′k̄ = β∗k /β∗k̄ .

An important complement, due to Weinberg, to the original proof is the demonstration
that the choice β′k/β′k̄ = βk/βk̄ or β′k/β′k̄ = β∗k /β∗k̄ must be made for all cases. To see this
is indeed the case, suppose that for some k we have β′k/β′k̄ = βk/βk̄, while for m 6= k we
have instead β′∗m/β′∗k̄ = βm/βk̄. Define now a normalized χ such that

χ =
1√
3
(ψk̄ + ψk + ψm), (A14)
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for which, of course, χ′ = Uχ. Repeating again the previous procedure being used so far, it
is not difficult to see that

|(χ, ψ)|2 =

∣∣∣∣∣
(

1√
3
(ψk̄ + ψk + ψm), ∑

n
βnψn

)∣∣∣∣∣
2

=
1
3
|βk̄ + βk + βm|2, (A15)

while |(χ′, ψ′)|2 = |β′k̄ + β′k + β′m|2/3, leading to |βk̄ + βk + βm|2 = |β′k̄ + β′k + β′m|2. Re-
calling that |βk|2 = |β′k|

2, ∀ k, we have

|βk̄ + βk + βm|2
|βk̄|2

=
|β′k̄ + β′k + β′m|2

|β′k̄|
2 . (A16)

Taking into account the supposition assumed within this paragraph, Equation (A16)
may be recast in the form ∣∣∣∣∣1 + βk

βk̄
+

β∗m
β∗k̄

∣∣∣∣∣
2

=

∣∣∣∣∣1 + βk
βk̄

+
βm

βk̄

∣∣∣∣∣
2

. (A17)

A bit of algebra shows that the constraint presented in Equation (A17) translates to

βmβk
βk̄βk̄

+
β∗mβ∗k
β∗k̄ β∗k̄

=
β∗mβk
β∗k̄ βk̄

+
βmβ∗k
βk̄β∗k̄

, (A18)

or simply

Re

(
βkβ∗m
βk̄β∗k̄

)
= Re

(
βkβm

βk̄βk̄

)
. (A19)

Finally, calling βk/βk̄ ≡ u = u1 + iu2 and βm/βk̄ ≡ v = v1 + iv2, the above equation
(Re(uv∗) = Re(uv)) can only be satisfied if u2v2 = 0, that is

Im

(
βk
βk̄

)
Im

(
βm

βk̄

)
= 0, (A20)

a clear contradiction regarding a complex space of states. Therefore, one is left with either
β′k/β′k̄ = βk/βk̄ or β′k/β′k̄ = β∗k /β∗k̄ . In the case β′k = βk, ∀ k, then

U
(

∑
k

βkψk

)
= ∑

k
βkUψk, (A21)

or else (β′k = β∗k , ∀ k)

U
(

∑
k

βkψk

)
= ∑

k
β∗kUψk. (A22)

It is important to have a clear-cut of what was demonstrated. Equations (A21)
and (A22) show that a same choice must necessarily be made for element inside a given
vector state. The theorem demonstration is finalized by showing that it is impossible for
a given same transformation that a given vector state transform like (A21) and others
as (A22) dictates. Taking advantage of the finite dimension spaces notation, let V ⊂ H be
a Hilbert subspace spanned by {ψk} and k = 1, . . . , l, . . . , dimV. Suppose the existence
of ϕ for which ϕ′ = ∑k akUψk and η such that η′ = ∑k b∗k Uψk for the same operator U.
Within this context, a vector ρ = ∑l−1

k=1 akψk + ∑dimV
k=l bkψk would transform under U so as

to violate the result encoded in (A21) and (A22). The finalization of the proof now follows
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straightforwardly. Let ψ1 = ∑k αkψk and ψ2 = ∑k βkψk. Assuming U acting according
to (A21), i.e., linearly, we have

(Uψ1, Uψ2) = ∑
m,n

α∗mβn(Uψm, Uψn) = ∑
m,n

α∗mβnδmn = (ψ1, ψ2), (A23)

asserting U as unitary. By instead demanding (A22), its anti-linearity implies

(Uψ1, Uψ2) = ∑
m,n

αmβ∗n(Uψm, Uψn) = ∑
m,n

αmβ∗nδmn = (ψ2, ψ1) = (ψ1, ψ2)
∗, (A24)

from which an anti-unitary action may be read.

We finalize this appendix by recalling that for the largest connected subgroup (the iden-
tity subgroup), the orthochronous proper Lorentz subgroup, for example, every operator
ray is unitary.

Proposition A1. Let H be a connected group (or equivalently an identity10 (sub)group). Then,
Ur is unitary for all r ∈ H.

Proof. In a suitable neighborhood N ∈ H containing e, every group element r can be
written as r = s2 (s being, of course, another group element). By the theorem just exposed,
operators acting upon the Hilbert spaceH are either linear and unitary or anti-linear and
anti-unitary, and thus an isomorphic ray correspondence defines ray operators endowed
with the same properties. It turns out, however, that the square of a unitary or anti-unitary
operator is unitary. To see that, recall that if Us is anti-linear, then Ur = U2

s and for any
φ, ψ ∈ H it follows

(Urφ, Urψ) = (Us[Usφ], Us[Usψ]) = (Usψ, Usφ) = (φ, ψ). (A25)

In the case of Us the proof follows straightforwardly.11

As H is connected, every element r ∈ H equals a given finite product, say r = ∏n
i=1 ri,

of elements in N. Hence Ur = ∏n
i=1 Uri . Now, for every Uri take a partition, as before, in

such a way that

Ur =
n

∏
i=1

U2
si

. (A26)

Then, the ray operator Ur is given by the a finite product of unitary (ray) operators,
from which it is seen that Ur is itself unitary.

Notes
1 This choice was made by Wigner [3], p. 169.
2 In fact, calling (ψ, φ) = x + iy with x, y ∈ R, we see that [1− Re(ψ, φ)]max = (1− x)max ≤ [(1− x)2

max + y2]1/2 from which the
inequality follows.

3 The reader may here appreciate the inventiveness of Wigner’s approach: in general considerations about Quantum Mechanics
the dimension of the underling Hilbert space is not a priori specified. It is indeed so, as it is the quantum mechanical problem that
dictates the dimension. This simple observation reveals the finesse of Wigner’s procedure in proving the continuity for φ and χ.

4 The rest of the proof follows strictly the remaining steps of the proof performed in the preceding section.
5 In fact, for a complex A, (AUmψ, AUmψ)1/2 = |A|(Umψ, Umψ)1/2 = |A|(ψ, Um−1 Umψ)1/2 = |A| for normalized vectors.
6 Technically additional care should be take in the neighborhood’s definition. In fact, with N and N′ being the neighborhoods

of e where U′r and Ur are, respectively, defined, then the relation U′r = φ(r)Ur takes place in a neighborhood K of e such that
K ⊂ (N∩N′). Besides, for admissible representative sets, Equation (45) is valid for φ(r) defined in K also encompassing products
as rs.

7 It should be mentioned that in order to extrapolate local results for the whole group it is also necessary the group to be compact.
This characteristic is, however, fulfilled by every Lie group [13].

8 This choice, as it should be clear in the course of the proof, does not change the conclusions.
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9 In the case that β1 is null, one should particularize another k and perform the same analysis. Since the ψ state is assumed to
exists, eventually a given k would lead to a non vanishing coefficient.

10 A technicality should be mentioned here: in general, an identity component refers to the largest connected set in the manifold
associated to the group containing the identity element e of the group.

11 Note, in addition, that from the isometry condition U†
r Ur = 1 (and the coisometry condition UrU†

r = 1 as well) this property is
readily obtained.
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