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Abstract: A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious
compact objects in the universe, with a radius of the order of 10 km and masses that can reach two
solar masses. In fact, neutron stars are star remnants, a kind of stellar zombie (they die, but do not
disappear). In the last decades, astronomical observations yielded various contraints for neutron
star masses, and finally, in 2017, a gravitational wave was detected (GW170817). Its source was
identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light
years away from us. The very same event was detected in γ-ray, X-ray, UV, IR, radio frequency and
even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger
astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies
bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints
to determine it. On the other hand, magnetars are the same sort of compact object, but bearing much
stronger magnetic fields that can reach up to 1015 G on the surface as compared with the usual 1012 G
present in ordinary pulsars. While the description of ordinary pulsars is not completely established,
describing magnetars poses extra challenges. In this paper, I give an overview on the history of
neutron stars and on the development of nuclear models and show how the description of the tiny
world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars.

Keywords: neutron stars; equations of state; relativistic models; gravitational waves

1. Introduction

Two of the known existing interactions that determine all the conditions of our Uni-
verse are of nuclear origin: the strong and the weak nuclear forces. It is not possible to
talk about neutron stars without understanding them, and especially the strong nuclear
interaction, which is well described by the Quantum Chromodynamics (QCD). However,
note that a good description through a Lagrangian density does not mean that the solutions
are known for all possible systems subject to the strong nuclear force.

Based on the discovery of asymptotic freedom [1], which predicts that strongly in-
teracting matter undergoes a phase transition from hadrons to the quark–gluon plasma
(QGP) and on the possibility that a QGP could be formed in heavy-ion collisions, the QCD
phase diagram has been slowly revealed. While asymptotic freedom is expected to take
place at both high temperatures, as in the early universe and high densities, as in neutron
star interiors, heavy-ion collisions can be experimentally tested with different energies at
still relatively low densities but generally quite high temperatures. If one examines the
QCD phase diagram shown in Figure 1, it is possible to see that the nuclei occupy a small
part of the diagram at low densities and low temperatures for different asymmetries. One
should notice the temperature log scale, chosen to emphasize the region where nuclei exist.
Neutron stars, on the other hand, are compact objects with a density that can reach 10 times
the nuclear saturation density, which discussed later on along this paper. While heavy
ion collisions probe experimentally some regions of the diagram, lattice QCD (LQCD)
calculations explain only the low density region close to zero baryonic chemical potential.
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Hence, we rely on effective models to advance our understanding, and they are the main
subject of this paper.

Since the beginning of the last century, many nuclear models have been proposed. In
Section 2.1, the first models are mentioned and the notion of nuclear matter discussed. The
formalisms that followed, either non-relativistic Skyrme-type models [2] or relativistic ones
that gave rise to the quantum hadrodynamics model, were based on some basic features
described by the early models, the liquid drop model [3] and the semi-empirical mass
formula [4]. Once the nuclear physics is established, the very idea of a neutron star can
be tackled. However, it is very important to have in mind the model extrapolations that
may be necessary when one moves from the nuclei region shown in Figure 1 to the neutron
star (NS) region. A simple treatment of the relation between these two regions and the
construction of the QCD phase transition line can be seen in [5].

Figure 1. QCD phase diagram. On the left of the transition region stands hadronic matter and on the
right side, the quark gluon plasma. Quarkyonic phases represent a region where chiral symmetry
has been restored but matter is still confined. Figure taken and adapted from [6].

The exact constitution of these compact objects, also commonly named pulsars due to
their precise rotation period, is still unknown, and all the information we have depends
on the confrontation of theory with astrophysical observations. As the density increases
towards their center, it is believed that there is an outer crust, an inner crust, an outer core
and an inner core. The inner core constitution is the most controversial: it can be matter
composed of deconfined quarks or perhaps a mixed phase of hadrons and quarks. I will
try to comment and describe every one of the possible layers inside a NS along this text.

NASA’s Neutron Star Interior Composition Explorer (NICER), an X-ray telescope [7]
launched in 2017, has already sent some news [8]: by monitoring the X-ray emission of gas
surrounding the heaviest known pulsar, PSR J0740 + 6620 with a mass of 2.08± 0.07, it
has measured its size, and it is larger than previously expected, a diameter of around 25 to
27 km, with consequences on the possible composition of the NS core.

In this paper, I present a comprehensive review of the main nuclear physics prop-
erties that should be satisfied by equations of states aimed to describe nuclear matter,
the consequences arising from the extrapolation necessary to describe objects with such
high densities as neutron stars, and how they can be tuned according to observational
constraints. At the end, a short discussion on quark and hybrid stars is presented and the
existence of magnetars is rapidly outlined. Not all important aspects related to neutron
stars are treated in the present work, rotation being the most important one that is disre-
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garded, but the interested reader can certainly use it as an initiation to the physics of these
compact objects.

2. Historical Perspectives

I divide this section, which concentrates all necessary information for the development
of the physics of neutron stars, into two parts. In the first one, I discuss the development of
the nuclear physics models based on known experimental properties and introduce the
very simple Fermi gas model, whose calculation is later used in more realistic relativistic
models. The second part is devoted to the history of compact objects from the astrophysical
point of view.

2.1. From the Nuclear Physics Point of View

The history of nuclear physics modeling started with two very simple models: the
liquid drop model, introduced in 1929 [3], and the semi-empirical mass formula, proposed
in 1935 by Bethe and Weizsäcker [4].

The liquid drop model idea came from the observation that the nucleus has behavior
and properties that resemble the ones of an incompressible fluid, such as the following:
(a) the nucleus has low compressibility due to its almost constant internal density; (b) it
presents a well-defined surface; (c) the nucleus radius varies with the number of nucleons
as R = R0 A1/3, where R0 ' 1.2× 10−15 m; and (d) the nuclear force is isospin-independent
and saturates.

Typical nuclear density profiles are shown in Figure 2, in which one can observe some
of the features mentioned above; e.g., the density is almost constant up to a certain point
and then it drops rapidly close to the surface, determining the nucleus radius. The mean
square radius is usually defined as

R2
i =

∫
d3r r2ρi(r)∫
d3r ρi(r)

, i = p, n (1)

where ρp is the number density of protons and ρn the number density of neutrons.
A nucleus with an equal number of protons and neutrons has a slightly larger proton

radius because they repel each other due to the Coulomb interaction. A nucleus with more
neutrons than protons (as most of the stable ones) has a larger neutron radius than its
proton counterpart and the small difference between both radii is known as neutron skin
thickness, given by [9–12]:

θ = Rn − Rp. (2)

For the last two decades, a precise measurement of both charge and neutron radii
of the 208Pb nucleus has been tried at the parity radius experiment (PREX) at the Jef-
ferson National Accelerator Facility [13] using polarized electron scattering. The latest
experimental results [12] point to θ = 0.283± 0.071 fm and to the interior baryon density
ρ0 = 0.1480± 0.0036(exp)± 0.0013(theo) fm−3. These quantities have been shown to be
important for the understanding of some of the properties of the neutron star. I will go
back to this discussion later on.

The binding energy B of a nucleus A
Z XN is given by the difference between its mass

and the mass of its constituents (Z protons and N neutrons):

B = (Zmp + Nmn − (m(A
Z X)− Zme))c2 = (Zm(1H) + Nmn −m(A

Z X))c2, (3)

where m(A
Z X) is the mass of the chemical element A

Z X and is given in atomic mass units.
The binding energy per nucleon B

A is shown in Figure 3, from where it is seen that the curve
is relatively constant and of the order of 8.5 MeV except for light nuclei. The semi-empirical
mass formula, which is a parameter-dependent expression was used to fit the experimental
results successfully and it reads:
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B(Z, A) = av A− as A
2
3 − ace2 Z(Z− 1)

A
1
3

− ai
(N − Z)2

A
+ δ(A). (4)

Figure 2. Schematic representation of the nuclear densities with equal number of protons and
neutrons (left) and a larger number of neutrons than protons (right). The proton and neutron
densities depend on the number of nucleons such that heavier elements present larger densities.
Typical theoretical densities for 208Pb are of the order of 0.09 fm−3 for neutrons and 0.06–0.07 fm−3

for protons [10].

Figure 3. Binding energy per nucleon as a function of the number of nucleons.

In this equation, from left to right, the quantities refer to a volume term, a surface
term, a Coulomb term, an energy symmetry term and a pairing interaction term [14,15].
Of course, with so many parameters, other parameterisations can be obtained from the
fitting of the data. One possible set is av = 15.68 MeV, as = 18.56 MeV, ac × e2 = 0.72 MeV,
ai = 18.1 MeV and

δ =


34 A−3/4MeV, even-even nuclei,
0, even-odd nuclei,
−34 A−3/4MeV, odd-odd nuclei.

(5)

Although quite naive, these two models combined can explain many important
nuclear physics properties, such as nuclear fission [15].

Parameter-dependent nuclear models can also explain the fusion of the elements in
the stars and the primordial nucleosynthesis with the abundance of chemical elements in
the observable universe, which is roughly the following: 71% is hydrogen, 27% is helium,
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1.8% is carbon to neon elements, 0.2% is neon to titanium, 0.02% is lead and only 0.0001%
is elements with atomic number larger than 60. By observing Figure 3, one easily identifies
the element with the largest binding energy, 56Fe. Hence, it is possible to explain why
elements with atomic numbers A ≤ 56 are synthesised in the stars by nuclear fusion that
are exothermic reactions, and heavier elements are expected to be synthesized in other
astrophysical processes, such as supernova explosions and more recently also simulated in
the mergers of compact objects. For a simplistic and naive but didactic idea of the stellar
fusion chains, I show the possible synthesized chemical elements in Figure 4.

Figure 4. Naive schematic representation of the possible chemical elements synthesized in stellar
fusion. Heavier elements are produced in dense stellar matter. Notice that these elements are
produced in normal stars, not neutron stars.

After a star is born, it takes some time to fuse all the chemical elements in its interior,
until its death, which is more or less spectacular depending on its mass. One of the most
useful diagrams in the study of stellar evolution is the Hertzsprung and Russel (HR)
diagram [16], developed by Ejnar Hertzsprung and Norris Russel independently in the
early 1900s. According to the HR diagram, displayed in Figure 5, the star spends most of
its life time in the central line of the diagram, the main sequence. Our Sun will become
a white dwarf after its death, the kind of objectt shown at lower luminosities and higher
temperatures, towards the left corner of the diagram. More massive stars, with masses
higher than eight solar masses (M�) become either a neutron star or a black hole, and
these compact objects are not shown in the HR Diagram since they do not emit visible light
waves. Moreover, neutron stars were only detected much later, as discussed in Section 2.2.
For a better comprehension of the HR diagram, please refer to [17].
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Figure 5. Hertzspring and Russel diagram: luminosity (in terms of the Sun luminosity) as a function
of the star temperature. Notice that the temperature increases from right to left. The yellow, orange,
and red big dots on the right top represent red giants, the blueish sequence on the bottom left
represents white dwarfs, and the central line is the main sequence, where the red stars are red dwarfs
and the blue ones are blue giants.

The main idea underlying nuclear models is to satisfy experimental values and nuclear
properties, and to achieve this purpose, in almost one century of research, they became more
and more sophisticated. The most important of these properties are the binding energy,
the saturation density, the symmetry energy, its derivatives, and the incompressibility, all
of them already explored in the semi-empirical mass formula given in Equation (4). An
important question to be answered is what happens when one moves to higher densities
or to finite temperature in the QCD phase diagram shown in Figure 1.

To better understand this point, let us discuss the concept of nuclear matter. This is a
common denomination for an infinite matter characterized by properties of a symmetric
nucleus in its ground state and without the effects of the Coulomb interaction. If one
divides Equation (4) by the number of nucleons A, one can see that under the conditions
just mentioned, the third and forth term disappear. If one assumes an infinite radius,
A → ∞ and no surface effects exist. The pairing interaction would be an unnecessary
correction. Hence, the binding energy per nucleon becomes approximately

B(Z, A)

A
= av ' 16 MeV, (6)

which is what one gets for a two-nucleon system if compared with the average value shown
in Figure 3. However, the deuteron binding energy is much smaller, around only 2 MeV.
This means that nuclear matter is not an appropriate concept if one wants to describe the
properties of a specific nucleus, but it is rather useful to study, for instance, the interior
of a neutron star. Normally, it is described by an equation of state, which consists of a
set of correlated equations, such as pressure, energy, and density. The equation of state
that describes the ground state of nuclear matter is calculated at zero temperature and
is a function of the proton and the neutron densities, which are the same in symmetric
matter. Useful definitions are the proton fraction yp =

ρp
ρ and the asymmetry δ =

ρn−ρp
ρ ,

which are respectively 0.5 and 0 in the case of symmetric nuclear matter. In these equations,
ρ = ρp + ρn is the total nuclear (or baryonic) density. The macroscopic nuclear energy can
be obtained from the microscopic equation of state if one assumes that

EN =
∫
E(ρ, δ)d3r, (7)
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where E(ρ, δ) is the energy density. Thus,

B(Z, A)

A
=

EN
A
−mn =

E
ρ
−mn, (8)

where mn = 939 MeV is the neutron mass (c = 1). The binding energy as a function of
the density is shown in Figure 6. We will see how it can be obtained later in the text. The
minimum corresponds to what is generally called saturation density, and the value inferred
from experiments ranges between ρ0 = 0.148− 0.17 fm−3, as mentioned earlier when the
PREX results were given.
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Figure 6. Nuclear matter binding energy per nucleon.

The pressure can be easily obtained from thermodynamics

− PV = EN − TS− µ A, (9)

or, dividing by the volume,

− P = E − TS − µ ρ = Ω, (10)

where T is the temperature, S is the entropy density, µ is the chemical potential, and Ω the
thermodynamical potential. When we take T = 0, the expression becomes even simpler
because the term TS vanishes.

To demonstrate how a simple equation of state (EOS) can be obtained from a relativistic
model, we use the free Fermi gas and assume that h̄ = c = 1, known as natural units.
Within this model, the fermions can be either neutrons or nucleons, but I would like to
emphasize that it is not adequate to describe nuclear matter properties, as will be obvious
later. Its Lagrangian density reads:

L0 = ψ̄(iγµ∂µ −m)ψ. (11)

From the Euler–Lagrange equations

∂µ

(
∂L

∂(∂µψ)

)
− ∂L

∂ψ
= 0, (12)

the Dirac equation is obtained:
(iγµ∂µ −m)ψ = 0. (13)
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Its well known solution has the form ψ = Ψ(k, λ)ei(k·~r−E(k)t), where Ψ(k, λ) is a
four-component spinor and λ labels the spin. The energy can be calculated from

(~α · k + βM)2Ψ(k, λ) = E(k)2Ψ(k, λ), (14)

where α = γ0~γ or
(k)2 + M2 = E(k)2, E(k) = ±

√
k2 + M2. (15)

Moreover, one gets

< Ψ|Ψ >= γ
∫ d3k

(2π)3 ( f+ − f−) = ρ, (16)

where f± represents the Fermi–Dirac distribution for particles and antiparticles [18] . For
T = 0, f+ is simply the step function, and there are no antiparticles in the system. In
this case,

< Ψ|Ψ >= γ
∫ d3k

(2π)3 θ(k2
F − k2) =

γ

2π2

∫ kF

0
k2dk =

γ k3
F

6π2 = ρ, (17)

with kF being the Fermi momentum and γ the degeneracy of the particle. If one considers
only a gas of neutrons, the degeneracy is 2 due to the spin degeneracy. However, if one
considers a gas of nucleons, i.e., symmetric matter with the same amount of protons and
neutrons, it is 4 because it accounts for the isospin degeneracy as well.

One can then write

< Ψ|~α · k + βM|Ψ >=
∫ d3k

(2π)3

√
k2 + M2( f+ + f−) (18)

or
E =

γ

2π2

∫
k2dk

√
k2 + M2( f+ + f−). (19)

For T = 0, it becomes

E =
γ

2π2

∫ kF

0
k2dk

√
k2 + M2. (20)

As we still do not know the value of the chemical potential in Equation (10), the
pressure can be obtained from the energy momentum tensor:

Tµν = −gµνL+ ∂νψ

(
∂L

∂(∂µψ)

)
, (21)

having in mind that

E =< T00 >, P =
1
3
< Tii > (22)

and is given by

P =
1
3

ψ†(−i~α · ∇)ψ. (23)

From Equation (18), one can write

< Ψ|~α · k|Ψ >= k
∂

∂k
< Ψ|~α · k + βM|Ψ >= k

∂

∂k
< Ψ|E(k)|Ψ > (24)

and finally

ψ†(−i~α · ∇)ψ =
γ

(2π)3

∫
d3kk

∂E
∂k

=
γ

2π2

∫
k2dk · k2

√
k2 + M2

,
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P =
γ

6π2

∫
dk

k4
√

k2 + M2
( f+ + f−), (25)

and for T = 0,

P =
γ

6π2

∫ kF

0
dk

k4
√

k2 + M2
. (26)

The entropy density of a free Fermi gas is given by

S = −γ
∫ d3 p

(2π)3 ( f+ln
(

f+
1− f+

)
+ ln(1− f+) (27)

+ f−ln
(

f−
1− f−

)
+ ln(1− f−)) , (28)

By minimizing Equation (10), the distribution functions are obtained:

∂Ω
∂ f+

= 0→ f+ =
1

1 + e(E−µ)/T
(29)

and
∂Ω
∂ f−

= 0→ f− =
1

1 + e(E+µ)/T
. (30)

On the other hand, the minimization of the thermodynamical potential with respect
to the density yields the chemical potential, i.e.,

∂Ω
∂ρ

= 0→ µ. (31)

For T = 0,
∂Ω
∂kF

= 0→ µ =
√

k2
F + M2. (32)

In order to go back to the discussion of nuclear matter, we are lacking exactly the
nuclear interaction and its introduction will be seen in Section 3.

2.2. From the Compact Objects Point of View

I have already discussed the evolution process of a star while it remains in the main
sequence of Figure 5. When the fusion ends, it is believed that one of the possible remnants
is a neutron star. We see next how it was first predicted and then observed.

In fact, the history of neutron stars started with the observation of a white dwarf
and its description with a degenerate free Fermi gas equation of state, as the one just
introduced, but with the fermions being electrons instead of neutrons. In 1844, Frederich
Bessel observed a very bright star that described an elliptical orbit [19], known as Sirius.
He proposed that Sirius was part of a binary system, whose companion was not possible
to see. In 1862, it was observed by Alvan Clark Jr. This companion, named Sirius B, had
a luminosity many orders of magnitude lower than Sirius, but approximately the same
mass, of the order of the solar mass (1 M�). In 1914 Walter Adams concluded, through
spectroscopy studies, that the temperature at the surface of both stars should be similar, but
the density of one of them should be much higher than the density of the companion. This
high-density star was called a white dwarf, and its properties were explained only in 1926
by Ralph Fowler [20] with the help of quantum mechanics. He claimed that the internal
constituents of the white dwarf should be responsible for a degeneracy pressure that would
compensate the gravitational force. This hypothesis was possible since the electrons are
fermions and hence obey the Pauli Principle. In 1930, Subrahmanyan Chandrasekhar
calculated the maximum densities of a white dwarf [21] and subsequently its maximum
mass [22] that he thought should be 0.91 M� due to an incorrect value of the atomic mass to
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charge number ratio. It is interesting to note that the correct Chandrasekhar limit, 1.44 M�,
was actually obtained by Landau [23].

Concomitantly, Lev Landau reached the same conclusion as Chandrasekhar and went
further: he proposed that even denser objects could exist, and in this case, the atomic nuclei
would overlap and the star would become a gigantic nucleus [24]. Landau’s hypothesis
is considered the first forecast of a neutron star, although the neutrons had not been
detected yet. Landau’s paper was written in the beginning of 1931 but published one year
later, just when the neutron was discovered by James Chadwick [25]. The first explicit
proposition of the existence of neutron stars was made by Baade and Zwick [26], soon after
Chadwick’s discovery.

In 1939, Toman and, independently, Oppenheimer and Volkoff (TOV) [27,28] used
special and general relativity to correct Newton’s equations that described the properties
of a perfect isotropic fluid, which they considered could be the interior of compact objects
(white dwarfs and neutron stars). While Tolman proposed eight different solutions for the
system of equations, Oppenheimer and Volkoff used the equation of state of a free neutron
gas (exactly the one introduced in the previous section) and obtained a maximum mass
of 0.7 M� for the neutron star, which was very disappointing because it was lower than
the Chandrasekhar limit. However, soon, the limitations of this EOS were noticed: the
inclusion of the nuclear interaction could make it harder and then generate higher masses.
These calculations will be shown in the next section.

In 1940, Mario Shenberg and George Gamow proposed the Urca process [29], respon-
sible for cooling down the stars by emitting neutrinos, which can carry a large amount of
energy with very little interaction.

In 1967, the first neutron star (NS) was detected by Jocelyn Bell and Anthony Hewish [30].
At first, they believed they were capturing signals from an extraterrestrial civilization and
the booklet The Little Green Men really existed. However, they soon realised that the radio
signals were coming from a compact object with a very stable frequency (pulse) and the
object was called a pulsar.

It is worth pointing out that white dwarfs and neutron stars bear very different
internal constituents and densities. Neutron stars are much denser. This means that general
relativity is a very important component in the study of NS, but this is not true for white
dwarfs. Hence, it would be expected that only relativistic models, as the ones introduced in
the present text, could be used to describe neutron star macroscopic properties. However,
there are non-relativistic models, known as Skyrme models, which can be used to describe
NS, as far as they do not violate causality. Moreover, some non-relativistic models lead to
symmetry energies that decrease too much after three times saturation density, which is a
very serious problem if we want to apply them to the study of neutron stars, which are
highly asymmetric systems. These problems can be solved with the inclusion of three-body
forces, which makes the calculations much more complicated. For a review of Skyrme
models, please see Reference [2]. On the other hand, relativistic models are generally causal
and always Lorentz invariant and when extended to finite temperature, anti-particles
appear naturally. Thus, only relativistic models are discussed in the present work.

Let us go back to history because it continues. In 1974, Russel Hulse and Joseph
Taylor identified the first binary pulsar PSR1913+16 [31] with a radio-telescope in Arecibo
and proposed that the system was losing energy in the form of gravitational waves (GW),
the same kind of waves foreseen by relativistic theories. Note that they did not detect
gravitational waves directly but instead proved their existence via pulsar timing and were
laureated with the Nobel prize for this discovery. In 2015, the first GW produced by two
colliding black holes was finally detected directly by LIGO [32], and in 2017, GW170817,
produced by the merger of two NS [33], initiated the era of multi-messenger astronomy [34].
These gravitational waves have become an excellent source of constraints to the EOS used
to describe neutron stars, as will be discussed in a future section.



Universe 2021, 7, 267 11 of 41

3. Relativistic Models for Astrophysical Studies

In Section 2.1, the EOS of a free Fermi gas was introducedl and in Section 2.2, I men-
tioned that the EOS can satisfactorily describe a white dwarf, as shown by Chandrasekhar,
if the free Fermi gas is a gas of electrons. However, if the fermions are neutrons, it cannot
describe neutron stars. One important ingredient, besides the already mentioned relativis-
tic effects, is still missing in the recipe: the nuclear interaction. Therefore, let us go back to
nuclear matter.

3.1. The σ−ω Model

This model, also known as the Walecka model [35] or quantum hadrodynamics
(QHD-1), is based on the fact that the interaction inside the nucleus has two contributions:
an attractive contribution at large distances and a repulsive one at short distances, and both
can be reasonably well described by Yukawa-type potentials and represented by fields
generated, respectively, by scalar and vector mesons. This idea was first proposed by Hans
Peter Durr in his Ph.D. thesis in 1956, supervised by Edward Teller, who, in 1955, also
proposed a version of the model based on classical field theory [36]. However, the quantum
version proposed by Walecka was the one that gained the most popularity, and until now,
it is largely applied with different versions and extensions. This simplified model does not
take pions into account because, as will be seen next, it is usually solved in a mean field
approximation and in this case, the pion contribution disappears. As the σ−ω model is
a relativistic model, this simpler and more common approximation is always known as
relativistic Mean Field Theory (RMF) or relativistic Hartree approximation.

As the name suggests, the σ−ω model considers that the central effective potential
for the nucleon–nucleon interaction is given by

V(r) =
g2

ω

4π

e−mωr

r
− g2

σ

4π

e−mσr

r
,

where r is the modulus of the vector that defines the relative distance between two nucleons,
the two constants gσ and gω are adjusted to reproduce the nucleon–nucleon interaction
and the meson masses are, respectively, mσ = 550 MeV and mω = 783 MeV. The interested
reader can look at the potential V(r) obtained with the coupling constants and masses used
in this section in [15]. To obtain the binding energy that corresponds to this potential in
RMF, a Lorentz invariant Lagrangian density is necessary, and it reads:

L = ψ̄
[
γµ(i∂µ − gωωµ)− (M− gσσ)

]
ψ

+
1
2
(∂µσ∂µσ−m2

σσ2) +
1
2

m2
ωωµωµ − 1

4
FµνFµν, (33)

where
Fµν = ∂µων − ∂νωµ, (34)

ψ represents the baryonic field (nucleons), σ and ωµ represent the fields associated with
the scalar and vector mesons and M is the nucleon mass, generally taken as 939 MeV. By
comparing Equations (11) and (33), one can see that besides the Fermi gas representing the
nucleons, the latter contains two interaction terms and kinetic and mass terms for both
mesons. The usual prescription is to use the Euler–Lagrange Equation (12) for each field to
obtain the equations of motion. They read:(

∂µ∂µ + m2
σ

)
σ = gσψ̄ψ, (35)

∂µFµν + m2
ωων = gωψ̄γνψ (36)

and [
γµ(i∂µ − gωωµ)− (M− gσσ)

]
ψ = 0. (37)
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Note that Equation (35) is a Klein–Gordon equation with a scalar source, Equation (36)
is analogous to quantum electrodynamics with a conserved baryonic current (ψ̄γνψ), in-
stead of the electromagnetic current, and Equation (37) is a Dirac equation for an interacting
(not free) gas.

In an RMF approximation, the meson fields are replaced by their expectation values
that behave as classical fields:

σ→ 〈σ〉 ≡ σ0 (38)

and
ωµ → 〈ω0〉 ≡ ω0, 〈ωk〉 = 0. (39)

The equations of motion can then be easily solved and they read:

σ0 =
gσ

m2
σ
< ψ̄ψ >=

gσ

m2
σ

ρs (40)

and

ω0 =
gω

m2
ω

< ψ†ψ >=
gω

m2
ω

ρ, (41)

where ρs is a scalar density and ρ is a baryonic number density. The Dirac equation
becomes simply [

(iγµ∂µ − gωγ0ω0)− (M− gσσ0)
]
ψ = 0, (42)

and

M∗ = M− gσσ0, (43)

is the effective mass. To obtain the EOS, the recipe is the same as already shown for the
free Fermi gas, which leads to expressions for the energy density and pressure. Assuming
C2

s = g2
σ(M2/m2

σ) = 267.1 and C2
v = g2

ω(M2/m2
ω) = 195.9, the binding energy E/N−M =

−15.75 MeV at the saturation density ρ = 0.19 fm−3, a little bit too high.
Other important quantities directly related with nuclear matter EOS are the symmetry

energy, its derivatives and the incompressibility. The symmetry energy is roughly the
necessary energy to transform symmetric matter into a pure neutron matter, as shown in
Figure 7, i.e.,

E(ρ, δ) ' E(ρ, δ = 0) + Esym(ρ)δ
2. (44)

Its value can be inferred from experiments and it is of the order of 30–35 MeV and it
can be written as

Esym =
1
8

(
∂2(E/ρ)

∂y2
p

)
yp=0.5

=
1
2

(
∂2(E/ρ)

∂δ2

)
δ=0

. (45)

It is common to expand the symmetry energy around the saturation density in a Taylor
series as

Esym = J + L0(
ρ− ρ0

3ρ0
) +

Ksym

2
(

ρ− ρ0

3ρ0
)2 +O(3), (46)

where J is the symmetry energy at the saturation point and L0 and Ksym represent, respec-
tively, its slope and curvature:

L0 = 3ρ0

(
∂Esym(ρ)

∂ρ

)
ρ=ρ0

, (47)
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and

Ksym = 9ρ2
0

(
∂2Esym(ρ)

∂ρ2

)
ρ=ρ0

. (48)
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Figure 7. Schematic representation of the nuclear matter symmetry energy.

Experimental data for the symmetry energy can be inferred from heavy-ion collisions,
giant monopole (GMR) and giant dipole (GDR) resonances, pygmy dipole resonances and
isobaric analog states. Accepted values for the slope until very recently lay in between 30.6
and 86.8 MeV [37,38] and for the curvature, in between −400 and 100 MeV [39,40]. These
two quantities are correlated with macroscopic properties of neutron stars, as will be seen
later on in this manuscript. Based on 28 experimental and observational data, restricted
bands for the values of J (25 < J < 35 MeV) and L0 (25 < L0 < 115 MeV) were given
in [41] . More recently, results obtained by the PREX2 experiment [12] point to a different
band, given by L0 = 106± 37 MeV [42]. If confirmed, this result rehabilitates many of the
EOS already ruled out and points to a neutron star radius much larger than previously
expected, as also discussed later on in the present paper.

Another important quantity is the incompressibility, already mentioned when the
liquid drop model idea was introduced. It is a measure of the stiffness of the EOS; i.e., it
defines how much pressure a system can support and it is calculated from the relation

K0 = 9
(

∂P
∂ρ

)
ρ=ρ0, yp=0.5

(49)

and ranges between 190 and 270 MeV [37,38]. These values can be inferred from both
theory and experiments.

I will go back to the importance of these nuclear matter bulk properties and their
connection with neutron star properties later on.

3.2. Extended Relativistic Hadronic Models

I next present one example of a complete Lagrangian density that describes baryons
interacting among each other by exchanging scalar-isoscalar (σ) , vector-isoscalar (ω),
vector-isovector (ρ), and scalar-isovector (δ) mesons:

L = Lnm + Lσ + Lω + Lρ + Lδ + Lσωρ, (50)
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where [43]

Lnm = ψ(iγµ∂µ −M)ψ + gσσψψ− gωψγµωµψ−
gρ

2
ψγµ~ρµ ·~τψ + gδψ~δ ·~τψ, (51)

Lσ =
1
2
(∂µσ∂µσ−m2

σσ2)− A
3

σ3 − B
4

σ4, (52)

Lω = −1
4

FµνFµν +
1
2

m2
ωωµωµ +

C
4
(g2

ωωµωµ)2, (53)

Lρ = −1
4
~Bµν~Bµν +

1
2

m2
ρ~ρµ ·~ρµ, (54)

Lδ =
1
2
(∂µ~δ∂µ~δ−m2

δ
~δ2), (55)

and

Lσωρ = gσg2
ωσωµωµ

(
α1 +

1
2

α1
′gσσ

)
+ gσg2

ρσ~ρµ ·~ρµ

(
α2 +

1
2

α2
′gσσ

)
+

1
2

α3
′g2

ωg2
ρωµωµ~ρµ ·~ρµ. (56)

In this Lagrangian density, Lnm represents the kinetic part of the nucleons plus the
terms standing for the interaction between them and mesons σ, δ, ω, and ρ. The term
Lj represents the free and self-interacting terms of the meson j, where j = σ, δ, ω, and
ρ. The σ self-interaction terms were the first ones to be introduced [44] to correct some
of the values of the nuclear bulk properties. The last term, Lσωρ, accounts for crossing
interactions between the meson fields. The antisymmetric field tensors Fµν and ~Bµν are
given by Fµν = ∂νωµ − ∂µων and ~Bµν = ∂ν~ρµ − ∂µ~ρν − gρ(~ρµ ×~ρν). The nucleon mass is
M and the meson masses are mj.

In a mean field approximation, the meson fields are treated as classical fields and
the equations of motion are obtained via Euler–Lagrange equations. Translational and
rotational invariance are assumed. The equations of motion are then solved self-consistently
and the energy momentum tensor, Equation (21), is used in the calculation of the EOS.
The calculations follow the steps shown in Sections 2.1 and 3.1. The interested reader
can also check them, for instance, in [35,37]. Nevertheless, some of the important steps
are mentioned in what follows. Within a RMF approximation, the common substitution
mentioned below is again performed:

σ→ 〈σ〉 ≡ σ0, ωµ → 〈ω0〉 ≡ ω0, ~ρµ → 〈~ρ0〉 ≡ ρ̄0(3), ~δ→ < ~δ >≡ δ(3), (57)

and the equations of motion read:

m2
σσ0 = gσρs − Aσ2

0 − Bσ3
0 + gσg2

ωω2
0(α1 + α1

′gσσ) + gσg2
ρρ̄2

0(3)(α2 + α2
′gσσ) , (58)

m2
ωω0 = gωρ− Cgω(gωω0)

3 − gσg2
ωσ0ω0(2α1 + α1

′gσσ0)− α3
′g2

ωg2
ρρ̄2

0(3)ω0, (59)

m2
ρρ̄0(3) =

gρ

2 ρ3 − gσg2
ρσ0ρ̄0(3)(2α2 + α2

′gσσ0)− α3
′g2

ωg2
ρρ̄0(3)ω

2
0, (60)

m2
δδ(3) = gδρs3, (61)

and
[iγµ∂µ − γ0Vτ − (M + Sτ)]ψ = 0, (62)

where
ρs =

〈
ψψ
〉
= ρs p + ρsn, ρs3 =

〈
ψτ3ψ

〉
= ρs p − ρsn, (63)

ρ =
〈

ψγ0ψ
〉
= ρp + ρn, ρ3 =

〈
ψγ0τ3ψ

〉
= ρp − ρn = (2yp − 1)ρ, (64)

with

ρs p,n =
γM∗p,n

2π2

∫ kF p,n

0

k2dk√
k2 + M∗2p,n

, (65)
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ρp,n =
γ

2π2

∫ kF p,n

0
k2dk =

γ

6π2 k3
F p,n, (66)

Vτ = gωω0 +
gρ

2
ρ̄0(3)τ3, Sτ = −gσσ0 − gδδ(3)τ3, (67)

with τ3 = 1 and −1 for protons and neutrons respectively and γ = 2 to account for the
spin degeneracy. The proton and neutron effective masses read:

M∗p = M− gσσ0 − gδδ(3) and M∗n = M− gσσ0 + gδδ(3). (68)

Due to translational and rotational invariance, only the zero components of quadrivec-
tors remain. From the energy-momentum tensor, the following expressions are obtained:

E =
1
2

m2
σσ2

0 +
A
3

σ3
0 +

B
4

σ4
0 −

1
2

m2
ωω2

0 −
C
4
(g2

ωω2
0)

2 − 1
2

m2
ρρ̄2

0(3) + gωω0ρ +
gρ

2
ρ̄0(3)ρ3

+
1
2

m2
δδ2

(3) − gσg2
ωσω2

0

(
α1 +

1
2

α1
′gσσ0

)
− gσg2

ρσρ̄2
0(3)

(
α2 +

1
2

α2
′gσσ0

)
− 1

2
α3
′g2

ωg2
ρω2

0 ρ̄2
0(3) + E

p
kin + En

kin, (69)

with

E p,n
kin =

γ

2π2

∫ kF p,n

0
k2(k2 + M∗2p,n)

1/2dk (70)

and

P = −1
2

m2
σσ2

0 −
A
3

σ3
0 −

B
4

σ4
0 +

1
2

m2
ωω2

0 +
C
4
(g2

ωω2
0)

2 +
1
2

m2
ρρ̄2

0(3) +
1
2

α3
′g2

ωg2
ρω2

0 ρ̄2
0(3)

− 1
2

m2
δδ2

(3) + gσg2
ωσ0ω2

0

(
α1 +

1
2

α1
′gσσ0

)
+ gσg2

ρσρ̄2
0(3)

(
α2 +

1
2

α2
′gσσ

)
+ Pp

kin + Pn
kin, (71)

with

Pp,n
kin =

γ

6π2

∫ kF p,n

0

k4dk
(k2 + M∗2p,n)

1/2 . (72)

3.3. Too Many Relativistic Models

In [37], a large number of relativistic models were confronted with two sets of nuclear
bulk properties, one more and one less restrictive. The interested reader should check the
chosen ranges of properties in both sets and the respective values of 363 models. In what
follows, I will restrict myself to three parameter sets: NL3 [45], NL3ωρ [46], which is an
extension of the NL3 parameter set with the introduction of a vector–isovector interaction,
and IUFSU [47]. These models are chosen because they are frequently used in various
applications in the literature. Moreover, NL3ωρ and IUFSU satisfy all nuclear matter bulk
properties, but it will be seen throughout the text that recent astrophysical observations are
not completely satisfied by them. The inclusion of NL3 and its comparison with NL3ωρ
help the understanding of the importance of the ω− ρ interaction. Other parameter sets
shown along the next sections are GM1 [48], GM3 [49], TM1 [50], and FSUGZ03 [51]. All
of them are contemplated in [37], and the interested reader can check their successes and
failures in satisfying the main nuclear bulk properties. Notice that none of the parameter
sets explicitly mentioned in the present work includes the δ meson, which distinguishes
protons and neutrons, and consequently, the effective masses given in Equation (68) are
identical. The mesonic crossing terms weighted by the parameters α1, α1

′, α2, α2
′ are not

included either. In Table 1, the parameter values for the three parametrizations mostly
used are presented and in Table 2, their main nuclear properties are shown.
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Table 1. Parameter sets used in this section-all meson masses and A are given in MeV, Λv = α3
′/2 and M = 939 MeV.

Model mσ mω mρ gσ gω gρ A B C Λv

NL3 508.194 782.501 763 10.217 12.868 8.948 2.055 ×10−3 −2.65 ×10−3 0 0
NL3ωρ 508.194 782.501 763 2.192 12.868 11.276 2.055 ×10−3 −2.65 ×10−3 0 0.03
IUFSU 491.5 782.5 763 9.971 13.032 13.590 1.80 ×10−3 4.9 ×10−5 0.18 0.046

In Figure 8 left, I plot the binding energy per nucleon for the three parameter sets, and
one can clearly see the slightly different saturation densities and binding energy values.
Notice that the ω− ρ channel does not influence the binding energy of symmetric nuclear
matter but plays an important role in asymmetric matter. In Figure 8 right, the symmetry
energy is depicted, and it is easy to see that they are very similar at sub-saturation densities
but completely different at larger densities. As a consequence of what is seen in Figure 8,
the incompressibility, the slope, and the curvature of the three models are different, as
shown in Table 2.
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Figure 8. (Left) Binding energy and (right) symmetry energy as a function of the baryonic density
for the three parameter sets used in this section.

Table 2. Saturation and stellar properties. These values are commented along the text.

Model ρ0 B/A K0 M∗/M J L Mmax/M�
R1.4M�

fm−3 MeV MeV MeV MeV km

NL3 0.148 −16.24 271.53 0.60 37.40 118.53 2.78 14.7
NL3ωρ 0.148 −16.24 271.60 0.60 31.70 55.50 2.76 13.7
IUFSU 0.155 −16.40 231.33 0.61 31.30 47.21 1.94 12.5

4. Stellar Matter

The idea of this section is to show how the relativistic models presented so far can
be applied to describe stellar matter, and, in this case, we refer specifically to neutron
stars. Looking back at the QCD phase diagram presented in the Introduction, one can see
that neutron stars have internal densities that are 6 to 10 times higher than the nuclear
saturation density and that their temperature is low. Actually, if we compare their thermal
energy with the Fermi energy of the system, the assumption of zero temperature is indeed
reasonable. At these very high densities, the onset of hyperons is expected because their
appearance is energetically favorable as compared with the inclusion of more nucleons in
the system. To deal with this fact, the first term in the Lagrangian density of Equation (51)
has to be modified to take into account, at least, the eight lightest baryons, and it becomes:

LBm = ∑
B

ψB(iγµ∂µ −MB)ψB + gσBσψBψB − gωBψBγµωµψB −
gρB

2
ψBγµ~ρµ~τψB. (73)
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The meson-baryon coupling constants are given by

gjB = χBjgj, (74)

where gj is the coupling of the meson with the nucleon and χjB is a value obtained accord-
ing to symmetry groups or by satisfying hyperon potential values. These are important
quantities when hyperons are included in the system [49,52]. We come back to the discus-
sion of these quantities below. If we perform once again an RMF approximation and use
the Euler–Lagrange equations to obtain the equations of motion, we find:

σ0 = ∑
B

gσB

m2
σ

ρsB −
1

m2
σ

(
Aσ2

0 − Bσ3
0

)
, (75)

ω0 = ∑
B

gωB

m2
ω

ρB −
1

m2
ω

(
2Λvg2

ωg2
ρρ̄2

0(3)ω0

)
, (76)

ρ̄0(3) = ∑
B

gρB

m2
ρ

τ3

2
ρB −

1
m2

ρ

(
2Λvg2

ωg2
ρω2

0 ρ̄0(3)

)
, (77)

where ρsB is the scalar density and ρB is the baryon B density, given by:

ρsB =
γ

2π2

∫ k f B

0

M∗B√
k2 + M∗2B

k2dk, (78)

ρB =
γ

6π2 k3
f B, and ρ = ∑

B
ρB, (79)

where k f B is the Fermi momentum of baryon B. The terms E p
kin and En

kin that appear in
Equation (69), must now be substituted by

EB =
γ

2π2 ∑
B

∫ k f B

0

√
k2 + M∗2B k2dk (80)

and
M∗B = MB − gσσ0. (81)

Whenever stellar matter is considered, β-equilibrium and charge neutrality-conditions
have to be imposed, and hence, the inclusion of leptons (generally electrons and muons) is
necessary. These conditions read:

µB = µn − qBµe, µe = µµ, ∑
B

qBρB + ∑
l

qlρl = 0, (82)

where µB and qB are the chemical potential and the electrical charge of the baryons, ql
is the electrical charge of the leptons, ρB, and ρl are the number densities of the baryons
and leptons.

After the supernova explosion, the remnant is, at first, a protoneutron star. Before
deleptonisation takes place, neutrinos are also present in the system and in this case, the
chemical stability condition becomes

µB = µn − qB(µe − µνe), µe = µµ. (83)

In this process, entropy is usually fixed at values compatible with simulations of
neutron star cooling, and the lepton fractions reach values of the order of 0.3–0.4. This
scenario is not considered in the present paper, but examples of this calculation can be seen
in [53].
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To satisfy the above conditions of chemical equilibrium and charge neutrality, leptons
must be incorporated in the system, and this is done with the introduction of a free Fermi
gas, i.e.,

Llep = ∑
l

ψ̄l [iγµ∂µ −ml ]ψl , (84)

where the sum runs over the electron and the muon and their eigenenergies are

El =
√

k2 + m2
l , (85)

so that their energy density becomes

El =
γ

2π2 ∑
l

∫ k f l

0

√
k2 + m2

l k2dk. (86)

The total pression of the system can be either obtained separately for its baryonic and
leptonic parts as in the previous section or by thermodynamics:

P = ∑
f

µ f ρ f − E f , (87)

where f stands for all fermions in the system and it is common to define the particle fraction
(including leptons) as Yf =

ρ f
ρ .

As already mentioned, an important point is how to fix the meson–hyperon coupling
constants giB, i = σ, ω, ρ. There are two methods generally used in the literature. The first
one is phenomenological and is based on the fitting of the hyperon potentials [49]:

UY = gωBω0 − gσBσ0, (88)

which, unfortunately, are not completely established. The only well-known potential is
the Λ potential depth UΛ = −28 MeV [48]. Common values for the Σ and Ξ potentials
are UΣ = +30 MeV and UΞ = −18 MeV [54,55], but their real values remain uncertain.
According to [48], appropriate values for the meson–hyperon coupling constants defined
in Equation (74) are obtained if χBσ = 0.7 and χBω = χBρ is given by 0.772 for NL3 and
0.783 if another common parametrization, the GM1, is used. However, in these cases, the
value of χBρ remains completely arbitrary. We have mentioned GM1 here because it is very
often used in the description of neutron star matter since it was one of the first parameter
sets with a high effective mass at the saturation density (M∗/M = 0.7) as compared with
0.6 given by NL3, for instance (see Table 2). This high effective mass helps the convergence
of the codes when the hyperons are introduced because Equation (81) accounts for a large
contribution of the σ0 field, which in turn, carries the information of the scalar densities
of eight baryons. The situation is very different from the one in nuclear matter, where
the effective mass only carries the σ0 field coming from the nucleonic scalar density. This
means that whenever the eight lightest baryons are included, the negative contribution in
Equation (81) can make the nucleon mass reach zero very rapidly if the effective mass is
too low.

Other examples of how to fit these couplings based on phenomenological potentials
can be seen in [56,57]. The second possibility to choose the meson–hyperon couplings is
based on the relations established among them by different group symmetries, the most
common being SU(3) [52,58] and SU(6) [59].

In the present work, we have used the following sets of couplings, for which
UΛ = −28 MeV, UΣ = +30 MeV and UΞ = −18 MeV:

• for NL3 and NL3ωρ: χΛσ = 0.613, χΣσ = 0.460, χΞσ = 0.317,
• for IUFSU: χΛσ = 0.611, χΣσ = 0.454, χΞσ = 0.316,

and χΛω = χΣω = 0.667, χΞω = 0.333 in all cases due to the SU(6) symmetry and
χBρ = 1 for all hyperons in all cases.
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In Figure 9, six different EOSs are shown, for the three parameter sets identified
above, with and without the inclusion of the hyperons. The EOSs for the IUFSU with and
without hyperons are reproduced with different units (fm−4) instead of the more intuitive
(MeV/fm3) because those are common units used in stellar matter studies. Notice that
h̄c = 197.326 MeV.fm and Natural units are used in these calculations.
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Figure 9. (Left) Stellar matter EOS obtained with different parametrizations. Thick solid lines show
EOS with nucleons only and thin lines represent EOS with the eight lightest baryons and (right)
the same EOS for IUFSU with and without hyperons but with different units for pressure and
energy density.

In Figure 10, the particle fractions obtained with IUFSU are displayed for the two cases
shown in Figure 9 right. Notice that when the hyperons are included, these particle fractions
depend on the meson–hyperon couplings discussed above. A different choice for these
couplings would generate different particle fractions for the same nuclear parametrisation.
One can see that the constituents of the neutron stars change with the increase in the
density, making their core richer in terms of particles than the region near the crust. From
these plots, the conditions of charge neutrality and chemical equilibrium become clear.
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Figure 10. Particle fractions obtained with IUFSU for an EOS with (left) nucleons only and (right)
lightest eight baryons.

4.1. The Tolman–Oppenheimer–Volkoff Equations

As it was just seen, essential nuclear physics ingredients for astrophysical calculations
are appropriate equations of state (EOS). After the EOSs are chosen, they enter as input to
the Tolman–Oppenheimer–Volkoff equations (TOV) [27,28], which in turn give as output
some macroscopic stellar properties: radii, masses, and central energy densities. Static
properties, as the moment of inertia and rotation rate can be obtained as well. The EOSs
are also necessary in calculations involving the dynamical evolution of supernova, pro-
toneutron star evolution and cooling, conditions for nucleosynthesis and stellar chemical
composition, and transport properties, for instance.
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The TOV equations were obtained by Tolman [27] and independently by Oppenheimer
and Volkoff [28], as already mentioned, and they read:

dP
dr

= −G
(E + P)(M(r) + 4πPr3)

r2 − 2M(r)r
,

= −GEM(r)
r2

[
1 +

P
E

][
1 +

4πr3P
M(r)

][
1− 2GM(r)

r

]−1

(89)

dM
dr

= 4πEr2,

dMBaryonic

dr
= 4πmnr2ρ(r)

[
1− 2M(r)

r

]−1/2

,

where M is the gravitational mass, MBaryonic is the baryonic mass, mn is the nucleon mass,
and r is the radial coordinate and also the circumferential radius. Be aware that MBaryonic
refers to the baryonic mass of the star, and it is not the same as the MB, the individual
baryonic masses used to compute the EOS.

The first differential equation is also shown in such a way that the corrections obtained
from special and general relativity are clearly separated.

The EOSs shown on the r.h.s. of Figure 9 are then used as input to the above TOV
equations and the corresponding mass-radius diagram is shown in Figure 11. Each curve
represents a family of stars, being the maximum point of the curves related to the maximum
stellar mass of the family. By comparing the curves shown in Figures 9 and 11, one can
clearly see that the harder EOS yields higher maximum mass. Hence, the inclusion of
hyperons makes the EOS softer, as expected, but results in lower maximum masses. As
there is no reason to believe that the hyperons are not present, this connection of softer
EOS with lower neutron star mass gave rise to what is known as the hyperon puzzle. I will
go back to this debate in the next section.
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Figure 11. Mass–radius diagram obtained with the IUFSU parametrization for hadronic matter with
(8b) and without hyperons.

I would like to call the attention of the reader for the values of the symmetry energy
slope (L0), which has been extensively discussed in the last years. Although its true value
is still a matter of debate, most studies indicate that it has non-negligible implications on
the neutron star macroscopic properties [38,60–66]. The slope can be controlled by the
inclusion of the ω− ρ interaction, as can be seen in Table 2. In general, the larger the value
of the interaction, the lower the values of the symmetry energy and its slope [60]. As a
general trend, it is also true that the lower the value of the slope, the lower the radius
of the canonical star, the one with 1.4 M�. In Table 2, the values of the maximum stellar
masses obtained without the inclusion of hyperons and the radii of the canonical stars are
displayed. Notice, however, that the value of the radius of the canonical stars depends on
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the EOS of the crust. To obtain the values shown in Table 2, I used the BPS EOS [67] for the
outer crust and interpolated the inner crust. As far as the maximum mass is concerned, the
crust barely affects it, since the involved densities are too low. I will discuss this subject
further when discussing the pasta phase in Section 4.3. Another interesting correlation
noticed in [68] is that the onset of the charged (neutral) hyperons takes place at lower
(larger) densities for smaller values of the slope.

4.2. Structure of Neutron Stars and Observational Constraints

Although the internal constitution of a neutron star cannot be directly tested, it is
reasonably well understood. A famous picture of the NS internal structure was drawn by
Dany Page and can be seen in [69]. Close to the surface of the star, there is an outer and an
inner crust, and towards the center, an outer and an inner core are believed to exist. The
solid crust is expected to be formed by nonuniform neutron-rich matter in β-equilibrium.
This inhomogeneous phase is known as pasta phase, and calculations predict that it exists at
densities lower than 0.1 fm−3, where nuclei can coexist with a gas of electrons and neutrons
that have dripped out. The center of the star is composed of hadronic matter, and the true
constituents are still a matter of debate, as one can conclude from the results presented
in the last section. The fact that the core should contain hyperons is widely accepted,
although this possibility excludes many EOS that become too soft to explain the existing
massive stars, namely, MSP J0740+6620, whose mass range lies at 2.07± 0.08 M� [8,70],
PSR J0348+0432 with mass of 2.01± 0.04 M� [71] and PSR J1614-2230, which is also a
massive neutron star [72]. Until around 2005, these massive NS had not been detected and
practically all EOS could satisfy a maximum 1.4 M� star.

Since the appearance of hyperons is energetically favorable, different possibilities
were considered in the literature such that the EOS would be stiffer, such as the tuning of
the unknown meson–hyperon coupling constants. Another mechanism that increases the
maximum mass of neutron stars with hyperons in their core is the inclusion of an additional
vector meson that mediates the hyperon–hyperon interaction [52,58]. In Figure 12, mass–
radius curves are shown for different hyperon–meson coupling constants of the GM1
parametrization [52]. One can see that all choices produce results with high maximum
masses, satisfying the new massive star constraints. I refer the reader to [52] and references
therein for explanations of the introduction of the strange meson channel on the Lagrangian
density and the corresponding strange meson–hyperon couplings.
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Figure 12. Mass–radius curve for the GM1 parametrisation based on [52].

As already mentioned in Section 2.2, the observation of the binary neutron star system
GW170817 [33] by the LIGO-Virgo scientific collaboration and also in the X-ray, ultra-
violet, optical, infrared, and radio bands gave rise to the new era of multi-messenger
astronomy [34]. The detection of the corresponding gravitational wave helped the estab-
lishment of additional constraints to the physics of neutron stars. This subject is discussed
in more detail below, but at this point, I would like to mention that a series of papers based
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on the these constraints imposed restricted values for the neutron star radius [73–77], not
always compatible among themselves.

The dimensionless tidal deformability, also called tidal polarisability and its associated
Love number, are related to the induced deformation that a neutron star undergoes by the
influence of the tidal field of its neutron star companion in the binary system. The idea is
analogous to the tidal response of our seas on Earth as a result of the Moon’s gravitational
field. The theory of Love numbers emerges naturally from the theory of tidal deformation,
and the first model was proposed in 1909 by Augustus Love [78] based on Newtonian
theory. The relativistic theory of tidal effects was deduced in 2009 [79,80], and since then
the computing of Love numbers of neutron stars has become a field of intense investigation.

As different neutron star EOS and related composition have different responses to the
tidal field, the tidal polarizability can be used to discriminate between different equations
of state. A complete overview on the theory of Love numbers in both Newtonian and
General Relativity theories can be found in [81]. Here, I show next only the main equations
for the understanding of the constraints on NS.

The second order Love number k2 is given by

k2 =
8C5

5
(1− 2C)2[2 + C(yR − 1)− yR]

×
{

2C[6− 3yR + 3C(5yR − 8)]

+ 4C3[13− 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1− 2C2)[2− yR + 2C(yR − 1)]ln(1− 2C)
}−1

. (90)

where C = M/R is the star compactness, M and R are the total mass and total circumferen-
tial radius of the star, respectively, and yR = y(r = R), which is obtained from

r
dy
dr

+ y2 + yF(r) + r2Q(r) = 0. (91)

Here, the coefficients are given by

F(r) = [1− 4πr2(E − P)]/E (92)

and

Q(r) =4π

[
5E + 9P + (E + P)

(
∂P
∂E

)
− 6

4πr2

]
/E

− 4
[

m + 4πr3P
r2E

]2

, (93)

where E = 1− 2m/r, E , and P are the energy density and pressure profiles inside the star.
Notice that Equation (91) has to be solved coupled to the TOV equations.

Finally, one can obtain the dimensionless tidal deformability Λ, which is connected to
the compactness parameter C through

Λ =
2k2

3C5 . (94)

In Figure 13, the second-order Love number as a function of the compactness is shown
for the three equations of state discussed in Section 3.2, as well as the corresponding tidal
deformabilities (Λ1, Λ2) for the binary system (M1, M2), with M1 > M2. The plots are
calculated from the equation for the chirp mass

Mchirp = (M1M2)
3/5(M1 + M2)

−1/5, (95)
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and the diagonal dotted line corresponds to the case M1 = M2. The lower and upper
dashed lines correspond to LIGO/Virgo collaboration 50% and 90% confidence limits,
respectively, which are obtained from the GW170817 event. The EOS used to obtain these
curves do not include hyperons to avoid the uncertainties related to the meson–hyperon
couplings. It is important to mention the matching procedure used to compute the Love
number and the tidal polarizabilities. The outer crust is a BPS EOS, the inner crust is a
polytropic function, which interpolates between the outer crust and the core. A detailed
explanation is given in [82], Section 2.2. More advanced crustal EOSs are available [83,84],
and I discuss the sensitivity of some results on the crust model later on. One can see from
these figures that the Love numbers are very different for the three models and so are the
tidal polarisabilities, the NL3 and NL3ωρ not being able to reproduce the GW170817 data
satisfactorily. Actually, this behavior of the NL3 and NL3ωρ had already been observed in
[85], but one should notice that in [85], the confidence lines were taken from a preliminary
version of the LIGO/Virgo data [33], while in the present paper, they are taken from [86],
where the consideration of massive stars was neglected.
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Figure 13. (Left) Love number as a function of the compactness and (Right) tidal deformabilities of
both NS in the binary system before the merger.

Another important constraint concerns the radii of the canonical stars, the ones with
M = 1.4 M�. According to the LIGO/Virgo collaboration, the tidal polarizability of
canonical stars should lie in the range 70 ≤ Λ1.4 ≤ 580 [86], a restriction that imposed a
constraint to the radii of the corresponding stars, which should lie in the range 10.5 km
≤ R1.4M� ≤ 13.4 km. This constraint, which does not take into account a maximum stellar
mass of 1.97 M�, only excludes the NL3 parameter set from the ones we are analyzing
(see Table 2), exactly the one that was shown not to describe nuclear bulk properties well
enough. However, the history has become more complicated: a recently published paper
concludes that the canonical neutron star radius cannot be larger than 11.9 km [77]. If this
small radius is confirmed, it could imply a revision of the EOSs or of the gravity theory
itself, as done in [87]. Notice, however, that this small radius is in line with older works
that predicted that the maximum mass of a canonical star should be 13.6 km [73,74], whose
authors claimed that any NS, independently of its mass, should bear a radius smaller than
13 km. Moreover, the new information sent by NICER [8] supports the evidence that the
detected massive PSR J0740+6620 has a radius of the order of 12.35± 0.75 km and that a
star with a mass compatible with a canonical star, J0030+0451, has a radius of the order
of 12.45± 0.65 km [88], or 12.71+1.14

1.19 km [75] or even 13.02+1.24
1.06 km [76], depending on the

analysis performed. These recent detections point to the fact that the radii of canonical and
massive stars are of the same order, and this feature is not easily reproduced by most EOSs.
On the other hand, one of the analyses of the results from the PREX experiment implies
that 13.25 km ≤ R1.4M� ≤ 14.26 km corresponding to a tidal polarizability in the range
642 ≤ Λ1.4M� ≤ 955 [42], also much higher than the above mentioned value obtained from
GW170817 data. Notice, however, that the recent PREX results seem to contradict previous
understandings on the softness of the symmetry energy [89]. Hence, the sizes of these
objects are still a source of debate. One of the conclusions in [42] is that a precise knowledge
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of the crust of these compact objects may help to minimize the systematic uncertainties of
these results.

A detailed analysis of the relativistic mean field models shown to be consistent with all
nuclear bulk properties in [37] according to the masses and radii they yield when applied to
describe NS can be found in [90]. Thirty four models were analyzed, and only twelve were
shown to describe massive stars with maximum masses in the range 1.93 ≤ M/M� ≤ 2.05
without the inclusion of hyperons. In another paper [91], the very same models were
confronted with the constraints imposed by the LIGO/Virgo collaboration. In this case,
24 models were shown to satisfy them. However, only five models could, at the same
time, describe massive stars and constraints from GW170817. These studies did not use
EOSs with hyperons, what poses an extra degree of complication due to the uncertainties
on the meson–hyperon coupling constants. Looking at the three sets used in the present
work, one can clearly see the difficulty. The two models that can describe massive stars are
outside the range of validity of the GW170817 tidal deformabilities. On the other hand,
IUFSU gives a mass a bit lower than desired, a deficiency that can be made correct with
some tuning.

Another aspect that deserves to be mentioned refers to the inclusion of ∆ baryons in
the EOS. If they are considered as a possible constituent of neutron stars, at least with the
parametrisations studied (GM1 and GM1ωρ), no “∆ puzzle” is observed [92].

4.3. The Importance of the Inner and Outer Crusts

When examining neutron star merger, the coalescence time is determined by the tidal
polarizability, which as already explained, is a direct response of the tidal field of the
companion that induces a mass quadrupole. This scenario suggests that the neutron star
crust should play a role in this picture. If one looks at the famous figure drawn by Dany
Page [69], one can see that the crust is divided into two pieces, the outer and the inner crust,
the latter being the motive for the present section. It may include a pasta phase, the result of
a frustrated system in which there is a unique competition between the Coulomb and the
nuclear interactions, possible at very low baryonic densities. In the simplest interpretation
of the geometries present in the pasta phase, they are known as droplets (3D), rods (2D),
and slabs (1D) and their counterparts (bubbles, tubes, and slabs) are also possible. Much
more sophisticated geometries such as waffles, parking garages and triple periodic minimal
surface have been proposed [93–95], but I next describe only the more traditional picture.

The pasta phase is the dominant matter configuration if its free energy (binding energy
at T = 0) is lower than its corresponding homogeneous phase. Depending on the model,
the used parametrization and the temperature [96], typical pasta densities lie between 0.01
and 0.1 fm−3. Different approaches are used to compute the pasta phase structures: the
coexisting phases (CP) method, the Thomas–Fermi approximation, numerical simulations,
etc. For detailed calculations, one can look at [96–98], for instance. In what follows, I only
show the main equations used to build the pasta phase with the CP method.

According to the Gibbs conditions, both pasta phases have the same pressure and
chemical potentials for proton and neutron and, at a fixed temperature, the following
equations must be solved simultaneously:

PI = PI I , (96)

µI
p = µI I

p , (97)

µI
n = µI I

n , (98)

f (ρI
p − ρe) + (1− f )(ρI I

p − ρe) = 0. (99)
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where I (I I) represents the high (low) density region, ρp is the global proton density, ρe is
the electron density taken as constant in both phases and f is the volume fraction of the
phase I, which reads

f =
ρ− ρI I

ρI − ρI I . (100)

The total hadronic matter energy reads:

Ematter = fE I + (1− f )E I I + Ee, (101)

where E I and E I I are the energy densities of phases I and I I, respectively, and Ee is
the energy density of the electrons, included to account for charge neutrality. The total
energy can be obtained by adding the surface and Coulomb terms to the matter energy in
Equation (101),

E = Ematter + Esur f + ECoul . (102)

Minimizing Esur f + ECoul with respect to the size of the droplet/bubble, cylinder/tube
or slabs, we obtain [97] Esur f = 2ECoul where

ECoul =
2α

42/3 (e
2πΦ)1/3

[
σsur f D(ρI

p − ρI I
p )
]2/3

, (103)

with α = f for droplets, rods and slabs, and α = 1− f for tubes and bubbles. The quantity
Φ is given by

Φ =

{ (
2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1, 3

α−1−ln α
D+2 , D = 2

(104)

where σsur f is the surface tension, which measures the energy per area necessary to create
a planar interface between the two regions. The surface tension is a crucial quantity in
the pasta calculation, and it is normally parametrized with the help of more sophisticated
formalisms. Another important aspect is that the pasta phase is only present at the low-
density regions of the neutron stars, and in this region, muons are not present, although
they are present in the EOS that describes the homogeneous region.

In Figure 14, I plot the binding energy of the homogeneous matter (dashed line) as
compared with the pasta phase binding energy (solid line with different colours repre-
senting the different structures). One can see that the pasta-phase binding energy is lower
up to a certain density, when the homogeneous phase becomes the preferential state. In
Figure 15, I show various phase diagrams obtained with the CP and TF methods for fixed
proton fractions at different temperatures. As the temperature increases, the pasta phase
shrinks. Here I have mentioned the TM1 parameter set [50], not used before in the present
work but also quite common in the literature. The purpose is only to show that different
approximations and different parametrizations result in different internal structures with
different transition densities from one phase to another.
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Figure 14. npe matter binding energy obtained with the CP method and NL3 parametrisation [45].
Figure taken from [96].
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Figure 15. Phase diagrams obtained with (Left) NL3 parametrisation and CP method for Yp = 0.5.
From bottom to top, the colors represent homogeneous phase (T = 5 and 10 MeV only), droplets,
rods, and homogeneous phase. (Right) NL3 and TM1 parametrizations with CP and TF methods for
Yp = 0.3 and T = 0. Figures taken from [96].

However, what is the influence of the pasta phase on the calculation of the tidal
polarizability, and if this structure is not well determined, how much does its uncertainty
contribute to the final calculations? This problem was tackled in [99], and, as the model
used in that paper is quite different from the RMF models we use in the present work,
we do not include any figures, but it is fair to say that the contribution is indeed minor.
In [99], the BPS EOS was used for the outer crust. For the inner crust, two possibilities were
considered: the existence of the pasta phase and a simple interpolation between the outer
crust and the core. It was observed that, although the explicit inclusion of the pasta phase
affected the Love number in a visible way, it almost did not change the tidal polarizabilities,
a result that corroborated the findings in [100]. These results can be explained by the
fact that, for a fixed compactness, even if the Love number is sensitive to the inner crust
structure, the tidal polarizability scales with the fifth power of C, and hence, the influence
is small.

Furthermore, what about the outer crust? Indeed, in this case, the tidal effects should
be even more sensitive. In what follows, I test how much the use of a modern EOS for
the outer crust, which we call reliable [84], changes the results as compared with the BPS
generally used and mentioned below. A modified version of the IUFSU model known
as FSUGZ03 [51] was used to plot Figure 16, and we trust that the qualitative results
would be the same for any other parametrisation. In this Figure, the outer crust is linked
directly to the core EOS, as seen on the top figure. Log-scale is used because the differences
cannot be seen in linear scale. Then, the different prescriptions are used to compute the
tidal polarisabilities shown on the bottom. Once again, one can see that the influence is
very small.

Although we have seen that neither the outer nor the inner crust significantly alter
the tidal polarizabilities, they do have an impact, which was quantified in [101,102]. The
authors of these works concluded that the impact of the crust EOS is not larger than 2%, but
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the matching procedure (crust-core) can account for a 5% difference in the determination of
the low mass NS radii and up to 8% on the tidal deformability. In another recent work [103],
the inner crust was parametrised in terms of a polytropic-like EOS and the sound velocity
and canonical star radii were computed. EOS for the inner crust with different sound
velocities produced radii with up to 8% difference when the same EOS was used for
the core.
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Figure 16. (Top) EOSs obtained with the outer crust described by BPS and by a reliable model [84];
(Bottom) tidal polarizabilities for both NSs with the EOSs shown on the right.

Despite the fact that present results show that the inclusion of the pasta phase is not
essential when the above discussed macroscopic properties of NSs are computed, it may
indeed be important for the thermal [104] , magnetic evolution [105,106], and neutrino
diffusion of NS [107,108], processes that take place at different epochs. This means it is
able to handle properly the pasta phase structure is still a matter or concern. The first
issue worth discussing is the possible existence of baryons that are more massive than
nucleons and carry strangeness in the pasta phase. In [109], it was verified that the Λ
hyperons can indeed be present, although in small amounts, as seen in Figure 17, where the
Λ fraction is shown as a function of temperature in phases I (clusters) and I I (gas). For the
parametrization used, NL3ωρ, the pasta phase disappears at T = 14.45 MeV, the Λs being
present for electron fractions ranging from 0.1 to 0.5 and in quantities larger than 10−11 for
T > 7 MeV. The Ξ− can also be found, but in much smaller amounts, on the order of 10−12.
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Figure 17. Λ fraction as a function of temperature in the cluster and gas phases with the NL3ωρ

parametrization [46]. Figure taken from [109].

The second important point refers to the fact that the CP method just presented and
also another commonly used method, the Thomas–Fermi approximation [110], can only
provide one specific geometry for each density, temperature, and proton (or electron)
fraction, but it is well known that this picture is very naive. In fact, different geometries
can coexist at thermal equilibrium [98,111,112]. The problem with these more sophisticated
approaches is that the computational cost is tremendous, making them inadequate to
be joined to other expensive computational methods that may be necessary to calculate
neutrino opacities and transport properties, for instance. In a recent paper, a prescription
with a very low computational cost was presented [113]. In that paper, fluctuations are
taken into account in a reasonably simple way by the introduction of a rearrangement term
in the free energy density of the cluster. A simple result can be seen in Figure 18, where
one can see that different geometries can coexist at a certain temperature for a fixed density.
If different proton fractions are considered, the dominant geometry changes as in the CP or
TF method, but the other geometries can still be present. The complete formalism has been
revised and extended to asymmetric matter and can be found in [114].
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Figure 18. 3D probability distribution as a function of the pasta linear dimension and the normalized
cluster density with different geometries obtained with the IUFSU parametrization for different
proton fractions. Notice the vertical scale differences.

5. Hybrid Stars

So far, I have discussed the possibility that hadronic matter exist in the core of a
neutron star and that nuclear physics underlies the models that describe it. The idea of a
hybrid star containing a hadronic outer core that has a different composition than the inner
core, which could be composed of deconfined quarks, was first proposed by Ivanenko
and Kurdgelaidze [115] in the late 1960s. In their papers, they have even foreseen that a
transition to a superconducting phase would be possible. This idea has gained credibility
lately. A model-independent analysis based on the sound velocity in hadronic and quark
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matter points to the fact that the existence of quark cores inside massive stars should be
considered the standard picture [116]. In this case, one would be dealing with what is
known as hybrid star, and, from the theoretical point of view, its description requires a
sophisticated recipe: a reliable model for the outer hadronic core and another model for
the inner quark core. The ideal picture would be a chiral model that could describe both
matters as density increases, but those models are still rarely used [117–120]. Generally,
what we find in the literature are Walecka-type models such as the ones presented in
Section 3.2 or density-dependent models, whose density dependence is introduced on the
meson–baryon couplings as in [121,122] for the hadronic matter and the MIT bag model
[123] or the Nambu–Jona–Lasinio (NJL) model [124] for the quark matter. While the MIT
bag model is very simplistic, the NJL model is more robust and accounts for the expected
chiral symmetry but cannot satisfy the condition of absolutely stable strange matter that
will be discussed next. The MIT bag model EOS is simply the EOS calculated for a free
Fermi gas in Section 2.1, where the masses are the ones of the u, d, s quarks, generally taken
as mu = md = 5 MeV and ms varying from around 80 to 150 MeV and the inclusion of a
bag constant B of arbitrary value, which is responsible for confining the quarks inside a
certain surface. B enters with a negative sign in the pressure equation and consequently a
positive one in the energy density equation. The NJL EOS is more complicated and, besides
accounting for chiral symmetry breaking/restoration, also depends on a cut-off parameter.
The derivation of the EOS can be obtained in the original papers [124] in an excellent review
article [125] or in one of the papers I have co-authored, [126], for instance, and I will refrain
from copying the equations here. Contrary to the MIT bag model, the NJL model does
not offer the possibility of free parameters. All of them are adjusted to fit the pion mass,
its decay constant, the kaon mass, and the quark condensates in the vacuum. There are
different sets of parameters for describing the SU(2) (only considers u and d quarks) and
the SU(3) versions of the model.

When building the EOS to describe hybrid stars, two constructions are commonly
made: one with a mixed phase (MP) and another without it, where the hadron and quark
phases are in direct contact. In the first case, neutron and electron chemical potentials are
continuous throughout the stellar matter, based on the standard thermodynamical rules
for phase coexistence known as Gibbs conditions. In the second case, the electron chemical
potential suffers a discontinuity, and only the neutron chemical potential is continuous. This
condition is known as Maxwell construction. The differences between stellar structures
obtained with both constructions were discussed in many papers [127–129], and I just
reproduce the main ideas next.

In the mixed phase, constituted of hadrons and quarks, charge neutrality is not
imposed locally but only globally, meaning that quark and hadron phases are not neutral
separately. Instead, the system rearranges itself so that

χρQP
c + (1− χ)ρHP

c + ρl
c = 0,

where ρiP
c is the charge density of the phase i = H, Q; χ is the volume fraction occupied by

the quark phase; and ρl
c is the electric charge density of leptons. The Gibbs conditions for

phase coexistence impose that [49]:

µHP
n = µQP

n , µHP
e = µQP

e and PHP = PQP,

and consequently,
〈E〉 = χEQP + (1− χ)EHP + E l (105)

and
〈ρ〉 = χρQP + (1− χ)ρHP. (106)
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The Maxwell construction is much simpler than the case above and it is only necessary
to find the transition point where

µHP
n = µQP

n and PHP = PQP,

and then construct the EoS.
In Figure 19, different EOS are built with both constructions, and the respective

mass radius curves are also shown. In all cases, the hadronic matter was described with
either GM1 [48] or GM3 parametrizations [49] and the quark phase with the two most
common parametrizations for the NJL model (HK [130] and RKH [131]). On the left, one
can see that under the Maxwell construction, the EOS presents a step at fixed pressure,
and under the Gibbs construction, the EOS is continuous. It is then easy to see that
for both constructions, the mass radius curves are indeed very similar and yield almost
indistinguishable results for gravitational masses and radii. In these cases, the differences
in the hadronic EOSs dominate over the differences in quark EOSs. Hence, the maximum
mass is mostly determined by the hadronic part. It is also important to stress that the quark
core is not always present in the star even if the quark matter EOS is included in the EOS.
This fact is noticed when one compares the density where the onset of quarks takes place
with the star central density. If the star-central density is lower than the quark onset, no
quark core exists.
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Figure 19. (Left) EOS built with Maxwell (without MP) and Gibbs (with MP) constructions; (Right) corresponding
mass–radius diagram. Figure based on the results presented in [129].

A more recent analysis of the dependence of the macroscopic properties of hybrid
stars on meson–hyperon coupling constants and on the vector channel added to the NJL
model can be seen in [59].

In 2019, the LIGO/Virgo collaboration detected yet another gravitational wave, the
GW190814 [132], resulting from the merger of a 23 M� black hole and another object with
2.59+0.08

−0.09M�, which falls in the mass-gap category, i.e., too light to be a black hole and too
massive to be a NS. In [118], a chirally invariant model was used to describe hybrid stars
with a variety of different vector interactions, and this compact object could be explained
as a massive, rapidly rotating NS. A comprehensive discussion on ultra-heavy NS (masses
larger than 2.5 M�) and the possibility that they are hybrid objects can be found in [133].

If the reader is interested in understanding the effects of different quark cores that
also include trapped neutrinos at fixed entropies, reference [53] can be consulted.

6. Quark Stars

All experiments that can be realized in laboratories show that hadrons are the ground
state of the strong interaction. Around 50 years ago, Itoh [134] and Bodmer [135], in
separate studies, proposed that under specific circumstances, such as the ones existing in
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the cores of neutron stars, strange quark matter (SQM) may be the real ground state. This
hypothesis, later on also investigated by Witten, became known as the Bodmer–Witten
conjecture, and it is theoretically tested with the search of a stability window, defined for
different models in such a way that a two- flavor quark matter (2QM) must be unstable
(i.e., its energy per baryon must be larger than 930 MeV, which is the iron-binding energy)
and SQM (three-flavour quark matter) must be stable, i.e., its energy per baryon must be
lower than 930 MeV [135,136]. As shown in the previous section, although the Nambu–
Jona–Lasinio (NJL) model [124] can be used to describe the core of a hybrid star [120,126],
it cannot be used in the description of absolutely stable SQM as shown in [137–140]. The
most common model, the MIT bag model [123] satisfies the Bodmer–Witten conjecture, but
cannot explain massive stars J0348+0432 [71], J1614-2230 [72] and J0740+6620) [8,70], as
can be seen in Figure 20, from where one can observe that the maximum attained mass is
1.94 M� obtained for a non-massive strange quark.

Figure 20. Stability window shown in the shaded area. The flags indicate the maximum stellar
masses obtained with various B and strange quark mass values. Figure taken from [141].

Hence, we next mention another quark matter model that satisfies de Bodmer–Witten
conjecture at the same time that can describe massive stars and canonical stars with small
radii, the density-dependent quark mass (DDQM) proposed in [142,143] and investigated
in [144]. In the DDQM model, the quark masses depend on two arbitrary parameters and
are given by

mi = mi0 + mI ≡ mi0 +
D

ρ1/3
b

+ Cρ1/3
b , (107)

where the index I stands for the medium corrections and the baryonic density is written in
terms of the quark densities as

ρb =
1
3 ∑

i
ρi, ρi =

giν
3
i

6π2 , (108)

and νi is the Fermi momentum of quark i, which reads:

νi =
√

µ∗2i −m2
i (109)

and µ∗i is the i quark effective chemical potential. The energy density and pressure are
respectively given by

E = Ω0 −∑
i

µ∗i
∂Ω0

∂µ∗i
, (110)

and
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P = −Ω0 + ∑
i,j

∂Ω0

∂mj
ni

∂mj

∂ρi
, (111)

where Ω0 stands for the thermodynamical potential of a free system with particle masses
mi and effective chemical potentials µ∗i [142]:

Ω0 = −∑
i

gi
24π2

[
µ∗i νi

(
ν2

i −
3
2

m2
i

)
+

3
2

m4
i ln

µ∗i + νi

mi

]
, (112)

with gi being the degeneracy factor 6 (3 (color) x 2 (spin)) and the relation between the
chemical potentials and their effective counterparts is simply

µi = µ∗i +
1
3

∂mI
∂nb

∂Ω0

∂mI
≡ µ∗i − µI , (113)

On the left of Figure 21 the stability window is plotted for a fixed value of C, so that it
displays a shape that can be compared with Figure 20. For other values of the constants,
more stability windows are shown in [144]. On the right of Figure 21, different mass–radius
curves are shown, and one can see that very massive stars can indeed be obtained. At this
point, it is worth mentioning that quark stars are believed to be bare (no crust is supported),
and for this reason, the shape of the curves shown in Figure 21 are very different from the
ones obtained for hadronic stars and shown in Figures 11 and 12 and for hybrid stars, as
seen in Figure 19.

 60

 80

 100

 120

 140

 150  152  154  156  158  160  162  164

m
s
0
 (

M
e
V

)

D
1/2

 (MeV)

2-flavor QM stable
SQM unstable

SQM stable

 0

 0.5

 1

 1.5

 2

 2.5

 8  9  10  11  12  13  14  15  16  17

M
A

S
S

 (
s
o
la

r 
m

a
s
s
e
s
)

RADIUS (Km)

J0740+6620
J1614-2230
J0348+0432

C = 0.650, D
1/2

 = 130.75 MeV
C = 0.965, D

1/2
 = 121.00 MeV

Maximum masses

Figure 21. (Left) Stability window for fixed C = 0, (Right) mass–radius diagram for different values
of C and

√
D. Figures based on the results shown in [144].

There is still another very promising model: an extension of the MIT bag model based
on the ideas of the QHD model. In this extended version, the Lagrangian density accounts
for the free Fermi gas part plus a vector interaction and a self-interaction mesonic field and
reads [145]:

L = ∑
u,d,s
{ψ̄q[γ

µ(i∂µ − gqqVVµ)−mq]ψq − B}Θ(ψ̄qψq) +
1
2

m2
ωVµVµ + b4

(g2
uuVVµVµ)2

4
, (114)

where the quark interaction is mediated by the vector channel Vµ representing the ω meson,
in the same way as in QHD models [35]. The relative quark–vector field interaction is
fixed by symmetry group and results in

gssV =
2
5

guuV =
2
5

gddV , (115)

with adequate redefinitions given by

(guuV/mV)
2 = GV , XV =

gssV
guuV

(116)
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and b4 taken as a free parameter. Using a mean field approximation and solving the Euler–
Lagrange equations of motion, the following eigenvalues for the quarks and V0 field can be
obtained:

Eq = µ =
√

m2
q + k2 + gqqVV0, (117)

guuVV0 +

(
guuV
mω

)2(
b4(guuVV0)

3
)
=

(
guuV
mω

)
∑

u,d,s

(
gqqV

mω

)
nq.

With this new approach, when the self-interaction vector channel is turned off, the sta-
bility window increases, and a 2.41 M� quark star that satisfies all astrophysical constraints
is obtained. The self-interaction vector channel does not change the stability window,
but it allows even more flexibility in the calculation of the tidal polarizability and the
canonical star radius due to the inclusion of the free parameter b4. In this case, a 2.65 M�
quark star corresponding to a 12.13 km canonical star radius and a tidal polarizability
within the expected observed range is obtained along many other results that satisfy all
presently known astrophysical constraints. Some of the results are displayed in Figure 22.
After all the discussion on the radii of NS constrained with the help of gravitational wave
observation and neutron skin thickness experimental results presented in Section 4.2 and
on the uncertainty of these values, I just would like to add one comment: contrary to what
is obtained for a family of hadronic stars (maximum mass stars are generally associated
with a smaller radii than their canonical star counterparts), a family of quark stars may
produce canonical stars with radii that can be approximately the same as the maximum
mass star radii, depending on the model used [145], and this feature could accommodate
the recent NICER detections for J0030+0451 and J0740+6620.
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Figure 22. Mass–radius diagram obtained with the minimum value of the bag pressure that produces
stable quark stars with different values of Gv and left) Xv = 0.4, right) Xv = 1.0. Figure based on the
results presented in [145].

This modified MIT bag model has also been used to investigate the finite temperature
systems and to obtain the QCD phase diagram in [5] with the help of a temperature
dependent bag B(T), as discussed in the Introduction of the paper. Some of the possible
phase diagrams are shown in Figure 23.
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I have outlined the main aspects concerning the internal structure of quark stars,
but the discussion about their bare surface [146,147] is not completely settled [148] and
important problems as its high plasma frequency and neutrinosphere are out of the scope
of the present work but should not be disregarded.

7. Magnetars: Crust–Core Transitions and Oscillations

I cannot end this review without mentioning magnetars [149,150], a special class of
neutron stars with surface magnetic fields three orders of magnitude (reaching up to 1015

G at the surface) stronger than the ones present in standard neutron stars (1012 G at the
surface). Most of the known magnetars detected so far are isolated objects; i.e., they are
not part of a binary system and manifest themselves as either transient X-ray sources,
known as soft-γ repeaters or persistent anomalous X-ray pulsars. They are also promising
candidates for the recent discovery of fast radio bursts [151]. So far, only about 30 of them
have been clearly identified [152] but more information is expected from NICER [7] and
ATHENA [153], launching foreseen to take place in 2030. So far, NICER has already pointed
to the fact that the beams of radiation emitted by rapidly rotating pulsars may not be as
simple as is often supposed: the detection of two hot spots in the same hemisphere suggests
a magnetic field configuration more complex than perfectly symmetric dipoles [8].

From the theoretical point of view, there is no reason to believe that the structure of
the magnetars differs from the ones I have mentioned in this article. Thus, they can also be
described as hadronic objects [81,154–158], as quark stars [138,139,157–160] or as hybrid
stars [155,157].

At this point, it is fair to claim that the best approach to calculate macroscopic proper-
ties of magnetars is the use of the LORENE code [161], which takes into account Einstein–
Maxwell equations and equilibrium solutions self consistently with a density dependent
magnetic field. LORENE avoids discussions on anisotropic effects and violation of Maxwell
equations as pointed out in [160], for instance. However, at least two important points
involving matter subject to strong magnetic fields can be dealt with even without the
LORENE code. The first one is the crust core transition density discussed in [156,162].
Although the magnetic fields at the surface of magnetars are not stronger than 1015 G, if the
crust is as large as expected (about 10% of the size of the star), at the transition region the
magnetic field can reach 1017 G. The transition density can then be estimated by computing
the spinodal sections, both dynamically and thermodynamically. The point where the EOS
crosses the spinodal defines the transition density [163]. An interesting aspect is that the
spinodals of magnetized matter are no longer smooth curves. Due to the filling of the
Landau levels, more than one crossing point is possible [156,162], which introduces an
extra uncertainty into the calculation.
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The second aspect refers to possible oscillations in magnetars caused by the violent
dynamics of a merging binary system. One has to bear in mind that so far, all observed
magnetars are isolated compact objects, but there is no reason to believe that binary systems
do not exist. In this case, the perturbations on the metric can couple to the fluid through
the field equations [164,165]. For a comprehensive discussion of the equations involved,
please refer to [81]. The gravitational wave frequency of the fundamental mode is expected
to be detected in the near future by detectors such as the Einstein Telescope. In [81], the
effect of strong magnetic fields on the fundamental mode was investigated. From the
results presented in that paper, one can clearly see that magnetars with masses below
1.8 M� present practically the same frequencies. Nevertheless, more massive stars present
different frequencies depending on their constitution: nucleonic stars present frequencies
lower than their hyperonic counterparts, a feature that may define the internal constitution
of magnetars.

The DDQM described in Section 6 was also investigated under the effects of strong
magnetic fields, and the main expressions can be found in [166]. This may be an interesting
model for future calculations of the fundamental models.

8. Final Remarks

From the existence of a massive ordinary star that is alive due to nuclear fusion, to
its explosive ending and its aftermath, I have tried to tell the history of the neutron star.
All these stages can be explained thanks to nuclear physics, and I have revisited the main
aspects and models underlying each one.

I have also tried to emphasize that nuclear models are generally parameter-dependent,
and a plethora of models have been proposed in recent decades, but it is unlikely that
the very same models can be used to describe different aspects of nuclear matter and,
at the same time, all macroscopic properties of neutron stars. I do not advocate that the
models I have chosen to use are the best ones, but the main idea is to show that different
models should be used at the discretion of the people who employ them. I have not used
density-dependent hadronic models such as the ones proposed, for instance, in [122,167],
to avoid extra theoretical complications, but they are indeed very good options, since they
can describe nuclear matter, finite nuclei, and NS properties well, as seen in [37,90,91].

As far as detections of gravitational waves are concerned, a window was opened in
2015, and many observations will certainly be disclosed even before I finish writing this
paper. Besides the ones already mentioned, I would like to comment on the GW190425 [168],
GW200105, and GW200115 [169]. The first one was used in conjunction with a chiral
effective field theory to constrain the NS equation of state [170]. The authors obtained a
radius equal to 11.75+0.86

0.81 for a canonical star, which was also quite small as compared with
the ones obtained from the PREX experiment. The other two probably refer to neutron
star–black hole mergers, systems that have been conjectured for a long time and will
probably contribute to the understanding of NS EOS.

Before concluding, I would like to mention that many aspects regarding either isolated
NS or binary systems have not been tackled in this manuscript and, in my opinion, rotation
is the most important one. A better understanding of these compact objects depends
on many rich features, including thermal and magnetic evolution. Different observation
manifestations such as pulsars, accreting X-ray binaries, soft γ-repeaters, and anomalous
X-ray pulsars also deserve an attentive investigation. Hence, this review is just one step
towards the incredible exotic world of neutron stars.

As far as the QCD phase diagram is concerned, many aspects have been extensively
studied and are well understood: matter at zero temperature; symmetric nuclear and pure
neutron matter; low density matter; including clusterisation and the pasta phase; high
density matter; and matter in β-equilibrium. Nevertheless, an EOS that covers the complete
QCD phase diagram parameter space in (T, µB) in a single model is not available yet. Some
of the EOS can be found on the CompOSE (CompStar Online Supernovae Equations of
State) website [171].
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