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Abstract: New spherically symmetric solution in 4D Einstein–Gauss–Bonnet gravity coupled with
nonlinear electrodynamics is obtained. At infinity, this solution has the Reissner–Nordström behavior
of the charged black hole. The black hole thermodynamics, entropy, shadow, energy emission rate,
and quasinormal modes of black holes are investigated.
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1. Introduction

The heterotic string theory at the low energy limit gives the action including higher
order curvature terms [1–5]. Glavan and Lin proposed a new theory of gravity in four
dimensions, 4D Einstein–Gauss–Bonnet gravity (4D EGB) [6], with higher-order curvature
corrections. The action of the 4D EGB theory consists of the Einstein–Hilbert action and
the Gauss–Bonnet (GB) term, which is a case of the Lovelock theory. The Lovelock gravity
represents the generalization of Einstein’s general relativity in higher dimensions that leads to
covariant second-order field equations. The Einstein–Gauss–Bonnet gravity in 5D and higher
dimensions was studied in [7]. Recently, 4D EGB gravity has received much attention [8–27].
Glavan and Lin showed [6] that the GB term, which is a topological invariant before
regularization, while rescaling the coupling constant after regularization, contributes to the
equation of motion. The authors of [12,13] found a solution of the semiclassical Einstein
equations with conformal anomaly, which is also a solution in the 4D EGB gravity. The
approach of Glavan and Lin was recently debated in [28–33]. It was shown by [34,35]
that solutions in the 4D EGB theory are different from GR solutions as they are due to
extra infinitely strongly coupled scalars. The authors of [36–38] proposed a consistent
theory of 4D EGB gravity with two dynamical degrees of freedom that breaks the temporal
diffeomorphism invariance, in agreement with the Lovelock theorem. In accordance with
the Lovelock theorem [11], for a novel 4D theory with two degrees of freedom, the 4D
diffeomorphism invariance has to be broken. In the theory of [36–38], the invariance under
the 3D spatial diffeomorphism holds. The authors considered EGB gravity in arbitrary
D-dimensions with the Arnowitt–Deser–Misner decomposition. Then, they regularized
the Hamiltonian with counterterms, where D− 1 diffeomorphism invariance holds and
taking the limit D → 4. It should be noted that the theory of [36–38], in the spherically
symmetric metrics, represents the solution that is a solution in the scheme of [6] (see [39]).
In this work, we obtain a black hole (BH) solution in the 4D EGB gravity coupled with
nonlinear electrodynamics (NED) proposed in [40] in the framework of [36–38] theory.
Quasinormal modes, deflection angle, shadows of BHs, and Hawking radiation were
studied in [41–47]. The image of the M87* BH, observed by collaboration with the Event
Horizon Telescope [48], confirms the existence of BHs in the universe. The BH shadow is
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the closed curve that separates capture orbits and scattering orbits. For a review on BH
shadows, see, for example, [49].

The paper is organized as follows. In Section 2, we find BH spherically symmetric
solution in the 4D EGB gravity. It is shown that at infinity, we have the Reissner–Nordström
behavior of the charged BH. We study the BH thermodynamics in Section 3. The Hawking
temperature and the heat capacity are calculated showing the possibility of second-order
phase transitions. The entropy of BHs is obtained, which includes the area law and the
logarithmic correction. In Section 4, the BH shadow is studied. The photon sphere radii,
the event horizon radii, and the shadow radii are calculated. We investigate the BH energy
emission rate in Section 5. In Section 6, quasinormal modes are studied, and we obtain the
complex frequencies. In Section 7, we draw our conclusions.

2. The Model

The action of the EGB gravity in D-dimensions coupled with nonlinear electrodynam-
ics (NED) is given by

I =
∫

dDx
√
−g
[

1
16πG

(R + αLGB) + LNED

]
, (1)

where α has the dimension of (length)2, and the Lagrangian of NED, proposed in [40], is

LNED = − F
cosh

(
4
√
|βF|

) , (2)

with the parameter β (β ≥ 0) having the dimension of (length)4, F = (1/4)FµνFµν =
(B2 − E2)/2, Fµν = ∂µ Aν − ∂ν Aµ is the field strength tensor. The GB Lagrangian reads

LGB = RµναβRµναβ − 4RµνRµν + R2. (3)

The variation of action (1) with respect to the metric results in field equations

Rµν −
1
2

gµνR + αHµν = −8πGTµν, (4)

where
Hµν = 2

(
RRµν − 2RµαRα

ν − 2RµανβRαβ − RµαβγRαβγ
ν

)
− 1

2
LGBgµν. (5)

In the following we consider a magnetic BH with the spherically symmetric field. The
static and spherically symmetric metric in D dimension is given by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2

D−2, (6)

where dΩ2
D−2 is the line element of the unit (D− 2)-dimensional sphere. Equations (1) and

(3)–(5) are valid in D dimensions, and we will consider rescaled α as α→ α/(D− 4) and
then the limit D → 4. Taking into account that the electric charge qe = 0, F = q2/(2r4) (q
is a magnetic charge), one obtains the magnetic energy density [40]

ρ = T 0
0 = −L =

F
cosh

(
4
√
|βF|

) =
1

βx4 cosh(1/x)
, (7)

where we introduced the dimensionless variable x = 21/4r/(β1/4√q). We consider the
limit D → 4 and at µ = ν = t field Equation (4) gives

r(2α f (r)− r2 − 2α) f ′(r)− (r2 + α f (r)− 2α) f (r) + r2 − α = 2r4Gρ. (8)
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Making use of Equation (7), we obtain

∫ r

0
r2ρdr = mM −

21/4q3/2

β1/4 arctan

(
tanh

(
β1/4√q
25/4r

))
, (9)

where the magnetic mass of the black hole reads

mM =
∫ ∞

0
r2ρdr =

πq3/2

27/4β1/4 . (10)

Then, the solution to Equation (8) is

f (r) = 1 +
r2

2α

(
1±

√
1 +

8αG
r3 (m + h(r))

)
,

h(r) = mM −
21/4q3/2

β1/4 arctan

(
tanh

(
β1/4√q
25/4r

))
, (11)

where m is the Schwarzschild mass (the constant of integration), and M = m + mM is the
total mass of the BH. One can verify that the Weyl tensor for the D-dimensional spatial part of
the spherically symmetric D-dimensional line element (6) vanishes [39]. As a result, the new
solution (11) obtained in the framework of [6] is also a solution for the consistent theory [36–38].
For Maxwell electrodynamics, the energy density is ρ = q2/(2r4), and Equation (8) leads
to the metric function obtained in [15]. In the dimensionless form, Equation (11) becomes

f (x) = 1 + Cx2 ± C
√

x4 + x(A− Bg(x)), (12)

where

A =
215/4(m + mM)αG

β3/4q3/2 , B =
16αG

β
, C =

√
βq

2
√

2α
,

g(x) = arctan
(

tanh
(

1
2x

))
, (13)

We will use the sign minus of the square root in Equations (11) and (12) (the negative
branch) because, in this case, the BH is stable and without ghosts [8]. The asymptotic of the
metric function f (r) (11) for the negative branch is given by

f (r) = 1− 2MG
r

+
Gq2

r2 +O(r−3) r → ∞, (14)

where the total mass of the BH M = m + mM includes the Schwarzschild mass m and the
electromagnetic mass mM. According to Equation (14), the Reissner−Nordström behavior
of the charged BH holds at infinity. It is worth noting that the limit β → 0 has been in
Equation (8) before the integration. In this case, the solution to Equation (8) at β = 0 is
given by [15]. The plot of the function (12) is given in Figure 1.

In accordance with Figure 1,we have two horizons—one (the extreme) horizon and no
horizons—depending on the model parameters.



Universe 2021, 7, 249 4 of 12

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

f(
x
)

 

 

B=8

B=10.8

B=14

Figure 1. The plot of the function f (x) for A = 7, C = 1.

3. The BH Thermodynamics

Consider the BH thermodynamics and the thermal stability of the BH. The Hawking
temperature is given by

TH(r+) =
f ′(r) |r=r+

4π
, (15)

where r+ is the event horizon radius defined by the biggest root of the equation f (rh) = 0.
Making use of Equations (12) and (15), with the variable x = 21/4r/ 4

√
βq2, we obtain the

Hawking temperature

TH(x+) =
21/4

4π 4
√

βq2

(
2cx2

+ − 1 + BC2x2
+g′(x+)

2x+(1 + cx2
+)

)
, (16)

g′(x+) = −
1

2x2
+ cosh2(1/(2x+))(tanh2(1/(2x+)) + 1)

,

where we substituted parameter A from equation f (x+) = 0. The plot of the dimensionless
function TH(x+) 4

√
βq2 versus x+ is depicted in Figure 2.

According to Figure 2, the Hawking temperature is positive in some range of x+. To
study the local stability of the BH, we calculate the heat capacity, making use of the expression

Cq(x+) = TH

(
∂S

∂TH

)
q
=

∂M(x+)
∂TH(x+)

=
∂M(x+)/∂x+
∂TH(x+)/∂x+

, (17)

where M(x+) is the BH gravitational mass depending on the event horizon radius. From
equation f (x+) = 0, one obtains the BH gravitational mass

M(x+) =
β3/4q3/2

215/4αG

(
1 + 2Cx2

+

C2x+
+ Bg(x+)

)
. (18)
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With the aid of Equations (16) and (18), we find

∂M(x+)
∂x+

=
β3/4q3/2

215/4αG

(
2Cx2

+ − 1
C2x2

+

+ Bg′(x+)

)
, (19)

∂TH(x+)
∂x+

=
1

4π23/4 4
√

βq2

(
5Cx2

+ − 2C2x4
+ + 1

x2
+(1 + Cx2

+)
2

+
BC2[g′(x+)(1− Cx2

+) + x+g′′(x+)(1 + Cx2
+)]

(1 + Cx2
+)

2

)
, (20)

g′′(x+) =
(tanh2(1/(2x+)) + 1)(2x+ − tanh(1/(2x+)))

2x4
+ cosh2(1/(2x+))(tanh2(1/(2x+)) + 1)2

− tanh(1/(2x+))
2x4

+ cosh4(1/(2x+))(tanh2(1/(2x+)) + 1)2
.
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Figure 2. The plot of the function TH(x+) 4
√

βq2 at C = 1.

According to Equation (17), the heat capacity possesses a singularity when the Hawking
temperature has an extremum, ∂TH(x+)/∂x+ = 0. It follows from Equations (16) and (17)
that at some point, x+ = x1, the Hawking temperature and heat capacity are zero where
a first-order phase transition occurs. In this point, x1, the BH remnant with nonzero BH
mass is formed, but the Hawking temperature and heat capacity become zero. In the point
x = x2, ∂TH(x+)/∂x+ = 0, the heat capacity has a discontinuity, and the second-order
phase transition occurs. In the interval x2 > x+ > x1, BHs are locally stable, and at x+ > x2,
the BH becomes unstable. By using Equations (17), (19), and (20), we represented the heat
capacity in Figure 3.
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Figure 3. The plot of the function Cq(x+)αG/(βq2) at C = 1.

In accordance with Figure 3, the BH is locally stable in the range x2 > x+ > x1 with a
positive Hawking temperature and heat capacity. The entropy S at the constant charge q
could be calculated from the first law of BH thermodynamics dM(x+) = TH(x+)dS + φdq,

S =
∫ dM(x+)

TH(x+)
=
∫ 1

TH(x+)
∂M(x+)

∂x+
dx+. (21)

It should be noted that the entropy in this expression is defined as a constant of
integration. Making use of Equations (16), (19) and (21), we obtain the entropy

S =
πβq2

8C2αG

∫ 1 + Cx2
+

x+
dx+ =

πr2
+

G
+

4πα

G
ln

(
4
√

2r+
4
√

βq2

)
+ Constant, (22)

where Constant is the integration constant. One can see the discussion of integration
constants in [50]. We choose the integration constant as

Constant =
2πα

G
ln

(
πq
√

β√
2G

)
. (23)

From Equations (22) and (23), we find the BH entropy

S = S0 +
2πα

G
ln(S0), (24)

where S0 = πr2
+/G is the Bekenstein–Hawking entropy. According to Equation (24), there

is a logarithmic correction to area law. The entropy (24) does not contain the NED parameter
β. The entropy (24) was obtained in 4D EGB gravity coupled with other NED models
in [51–53]. Thus, entropy (24) does not depend on NED, which is due to the GB term in
action, and the logarithmic correction vanishes when α = 0. At big r+ (event horizon
radii), the Bekenstein–Hawking entropy is dominant, and for small r+, the logarithmic
correction is important. It is worth noting that at some event horizon radius r0, the entropy
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vanishes, and when r+ < r0, the entropy becomes negative. The negative entropy of BHs
was discussed in [7].

4. The Shadow of Black Holes

The shadow of the BH is due to the light gravitational lensing and is a black circular
disk. The image of the super-massive M87* BH was observed by collaboration with the
Event Horizon Telescope [48]. The shadow of a neutral Schwarzschild BH was investigated
in [54]. The photons moving in the equatorial plane with ϑ = π/2 will be considered.
Making use of the Hamilton−Jacobi method, the photon motion in null curves is described
by the Equation (see, for example, [55])

H =
1
2

gµν pµ pν =
1
2

(
L2

r2 −
E2

f (r)
+

ṙ2

f (r)

)
= 0, (25)

where pµ is the photon momentum, ṙ = ∂H/∂pr, and the energy and angular momentum of
a photon, which are constants of motion, are defined by E = −pt and L = pφ . Equation (25)
can be represented in the form

V + ṙ2 = 0, V = f (r)
(

L2

r2 −
E2

f (r)

)
. (26)

The radius of the photon circular orbit rp obeys the equation V(rp) = V′(r)|r=rp = 0.
From Equation (26), one obtains

ξ ≡ L
E
=

rp√
f (rp)

, f ′(rp)rp − 2 f (rp) = 0, (27)

where ξ is the impact parameter. The shadow radius rs for a distant observer, r0 → ∞,

reads rs = rp/
√

f (rp). Note that the impact parameter is ξ = rs. The event horizon radius
r+ is the biggest root of the equation f (rh) = 0. Making use of Equation (12) and f (rh) = 0,
one finds the parameters A, B and C versus xh

A =
1 + 2Cx2

h + C2xhBg(xh))

C2xh
, B =

−1− 2Cx2
h + C2xh A

C2xhg(xh))
,

C =
x2

h +
√

x4
h + xh(A− Bg(xh))

xh(A− Bg(xh))
, (28)

where xh = rh/ 4
√

βq2. The plots of functions (28) are given in Figure 4.
According to Figure 4 (Subplot 1), if parameter A increases, the event horizon radius

x+ also increases. Figure 4 (Subplot 2) shows that when parameter B increases, the event
horizon radius decreases. According to Figure 4 (Subplot 3), if C increasing the event
horizon radius x+ also increasing.

In Table 1, we presents the photon sphere radii (xp), the event horizon radii (x+), and
the shadow radii (xs) for A = 7 and C = 1. The null geodesics radii xp belong to unstable
orbits and correspond to the maximum of the potential V(r) (V′′ ≤ 0).

According to Table 1, when the parameter B increasing the shadow radius xs decreases.
Because xs > x+, the BH shadow radius is given by the radius rs = xs

4
√

βq2/21/4.
It is worth noting that nonlinear interaction of fields in the framework of NED leads to

self-interaction, and photons propagate along null geodesics of the effective metric [56,57].
However, corrections in radii of photon spheres and impact parameters (due to the self-
interaction of electromagnetic fields) are small [58].
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Table 1. The event horizon, photon sphere and shadow dimensionless radii for A = 7, C = 1.

B 0.1 0.5 1 2 3 4 5 6

x+ 3.34 3.31 3.27 3.19 3.10 3.01 2.91 2.80

xp 5.11 5.07 5.02 4.91 4.80 4.68 4.55 4.42

xs 8.97 8.92 8.85 8.71 8.57 8.43 8.27 8.11

5. The Energy Emission Rate of Black Holes

For the observer at infinity, the BH shadow is linked with the high energy absorption
cross section [43,59]. The absorption cross section, at very high energies, oscillates around
the photon sphere σ ≈ πr2

s , and the BH energy emission rate is expressed as

d2E(ω)

dtdω
=

2π3ω3r2
s

exp(ω/TH(r+))− 1
, (29)

where ω is the emission frequency. From Equations (16) and (29), we obtain the BH energy
emission rate in terms of the dimensionless variable x+ = 21/4r+/ 4

√
βq2

β1/4√q
d2E(ω)

dtdω
=

2π3v3x2
s

exp(v/T̄H(x+))− 1
, (30)

where T̄H(x+) = β1/4√qTH(x+), and v = β1/4√qω. The radiation rate, as a function of
the dimensionless emission frequency ω̄ for C = 1, A = 7 and B = 0.1, 3, 6, is plotted in
Figure 5.

According to Figure 5, we have a peak of the BH energy emission rate. If the parameter
B increases, the peak of the energy emission rate becomes smaller and is in the low
frequency. At a bigger parameter B, the BH possesses a bigger lifetime.
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Figure 5. The plot of the function β1/4√q d2E(ω)
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6. Quasinormal Modes

Information about the stability of BHs under small perturbations can be obtained by
studying quasinormal modes (QNMs), which are characterized by complex frequencies ω.
The mode is stable when Im ω < 0 otherwise it is unstable. In the eikonal limit Re, ω is
connected with the radius of the BH shadow [60,61]. The perturbations by a scalar massless
field around BHs are described by the effective potential barrier

V(r) = f (r)
(

f ′(r)
r

+
l(l + 1)

r2

)
, (31)

where l is the multipole number l = 0, 1, 2 . . .. Equation (27) can be represented as

V(x)
√

βq =
√

2 f (x)
(

f ′(x)
x

+
l(l + 1)

x2

)
. (32)

The dimensionless potential V(x)
√

βq is given in Figure 6 for A = 7, B = 1, C = 1
(Subplot 1), and l = 3, 4, 5 and for A = 7, C = 1, l = 5, and B = 1, 3, 6 (Subplot 2).

Figure 6, Subplot l, shows that the potential barriers of effective potentials have
the maxima. When the l increases, the height of the potential increases. According to
Figure 6, Subplot 2, if the parameter B increases, the height of the potential increases. The
quasinormal frequencies can be found by [60,61]

Re ω =
l
rs

=
l
√

f (rp)

rp
, Im ω = −2n + 1

2
√

2rs

√
2 f (rp)− r2

p f ′′(rp), (33)

where rs is the BH shadow radius, rp is the BH photon sphere radius, and n = 0, 1, 2, . . . is
the overtone number. The frequencies, depending on parameter B (at A = 7, C = 1, n = 1,
l = 5), are represented in Table 2.
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Table 2. The real and the imaginary parts of the frequencies vs. the parameter B at n = 1, l = 5,
A = 7, C = 1.

B 0.1 0.5 1 2 3 4 5 6
4
√

βq2Re ω 0.557 0.561 0.565 0.574 0.583 0.593 0.605 0.617

− 4
√

βq2Im ω 0.3212 0.3215 0.3221 0.3229 0.3234 0.3232 0.3230 0.3220

The modes are stable (the real part represents the frequency of oscillations) because
the imaginary parts of the frequencies in Table 2 are negative. Table 2 shows that when
parameter B increases the real part of the frequency 4

√
βq2Re, ω increases, and the absolute

value of the imaginary part of the frequency | 4
√

βq2Im ω | increases. Therefore, when
parameter B is increased, the scalar perturbations oscillate with greater frequency and
decay fast.

7. Conclusions

We obtained the exact spherically symmetric and magnetized BH solution in 4D EGB
gravity coupled with NED. The thermodynamics and the thermal stability of magnetically
charged BHs were studied by calculating the Hawking temperature and the heat capacity.
The phase transitions occur in the points where the Hawking temperature possesses the
extremum. It is shown that BHs are thermodynamically stable at some interval of event
horizon radii when the heat capacity and the Hawking temperature are positive. The
heat capacity possesses a singularity in some event horizon radii where the second-order
phase transitions occur. The entropy of BHs is calculated, including the Hawking entropy
and the logarithmic correction. The photon sphere radii, the event horizon radii, and the
shadow radii are calculated. We show that with increasing the model parameter B, the
BH energy emission rate decreases and, as a result, the BH has a longer lifetime. The
quasinormal modes are investigated and it is shown that increasing the parameter B the
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scalar perturbations oscillate with greater frequency and decay fast. It is worth noting
that other solutions in 4D EGB gravity coupled with some NED were obtained in [51–53].
It is of interest to study solutions of BHs in 4D EGB gravity coupled with different NED
because astrophysical characteristics depend on them.
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