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Abstract: We consider the scalar bremsstrahlung of the spinless relativistic particle, which interacts
with infinitely thin cosmic string by linearized gravity. With the iterational scheme, based on the
Perturbaion Theory with respect to the Newtonian constant, we compute the radiation amplitude and
the emitted energy due to collision. The general phenomenon of mutual cancellation of the leading
terms on the local and non-local amplitude, known in the ultrarelativistic regime for several types of
collision, also takes place here. Remarkably, this cancellation (destructive interference) is complete,
and takes place for any particle’s velocity. We compute the spectral and angular distributions of the
emitted waves. Particular attention is paid to the ultrarelativistic case. Due to the radiation emission,
a string may lose its energy and decrease the tension; it may affect all field effects, including the
vacuum polarization and the Casimir effect, in terms of physical problems with the real cosmic strings.

Keywords: cosmic string; point charge; gravitational interaction; bremsstrahlung; destructive
interference; perturbation theory

1. Introduction

Over the past forty years, various cosmological scenarios have been proposed for
the explanation of the stages of the Early Universe. All these models try to explain
the observable data, including the Cosmic Microwave Background and (since 2016) the
gravitational wave detections. Most contemporary theories of the Universe’s evolution
imply inflation at the very early stages [1,2].

Among them are the cosmological models, which admit the existence of relativis-
tic gravitating objects with non-trivial codimensionality (strings, domain walls) [3–6]
and braneworld scenarios, which consider the four-dimensional Universe as being embed-
ded into some higher-dimensional spacetime with non-trivial topology [7,8]. In addition,
the spontaneous symmetry breaking implies phase transitions [9–11], where some topolog-
ical defects may be created [12].

The cosmic string is a topological defect, which might appear in phase transitions
in the Early Universe and may well survive during the Universe’s evolution [4–6]. It is
supposed that the discovery of cosmic strings may become the first evidence of the validity
of string theory [13,14]. Some recent attempts to identify the observable data with the
existence of cosmic strings may be found in [15,16].

The research on the theory of cosmic strings has been concentrated on the field
effects of the curved background, generated by a string (gravitational lensing, vacuum
polarization, self-action, gravitational radiation [17–23] etc.), and with the dynamics of the
strings themselves, including the radiation due to the collision of the strings [23,24].

The length of a cosmic string is estimated to be comparable with the Universe’s size.
If so, some inelastic processes involving the cosmic string are important for the proper
description of the energy balance during the evolution of the Universe.

In this work, we consider the inelastic encounter of the spinless particle—charged
by the massless scalar field—with the infinite cosmic string. Due to the particle being
the only charged object, the interaction is purely gravitational. Therefore, we continue
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the work initiated in [25], extending our consideration from the elastic scattering to the
radiation emission. Though there is no hard evidence of the contemporary existence of
strings, they might have existed in the past. Therefore, our work may contribute to the
study of observable electromagnetic and gravitational cosmic radiation.

Radiation emission represents a collective effect of the system “string–particle”,
where the string may lose its energy. It decreases the tension, hence it may change the
quantitative estimates of the field effects, which contain the string’s tension as the field-
strength coupling [17–20,23] including the vacuum polarization [26,27] and the Casimir
effects [21,22,26], in diverse physical problems with cosmic strings.

The metric of the cosmic string, co-directed with the Cartesian x-axis, in cylindric
coordinates (t, x, $, ϕ) is given by [28]

ds2 = dt2 − dx2 − d$2 − β2$2dϕ2 , (1)

where 0 < β 6 1. The dimensionless parameter β is connected with energy scale η of
the Universe’s phase transition by relation η2 = (1− β2)/8πG. The factor β′ ≡ 1− β
represents the relative angular deficit and takes very small values (for η = ηGUT ∼ 1016 GeV
it is of order 10−5) [12,18]. Then β′ ' 4πGη2.

For the description of scattering, we introduced the Cartesian coordinates [25]. With
the change $ → r of the radial variable by relation β$ = R0(r/R0)

β , where R0 is an
arbitrary parameter with dimensionality of length, the metric becomes (1)

ds2 = dt2 − dx2 − e−2β′ ln(r/R0)(dy2 + dz2) , (2)

(where r2 = y2 + z2), that is, conformally-Euclidean (on the hyperplane with fixed x).
The metric (1) and (2) is valid for the infinitely-thin cosmic string. The strings with a

finite width were considered in [4,19,29]. However, in practice, the exterior metric coincides
with the conical metric (1), while the string’s width [4] is estimated to be η−1. For η = ηGUT,
the string’s diameter is of order d ∼ 10−29 cm [10], which is (presumably) much less than
that of the impact parameters supposed for the scattering. Hence, we expect that by
preserving the string’s linear energy density in the thin-string limit, the string’s width
may be neglected, with the corresponding restriction on the available impact parameters.
Therefore, we consider an infinitely-thin cosmic string; for the mathematical description of
which we will use the Polyakov’s form.

Concerning the dynamics of cosmic strings, the interaction of cosmic strings, the propa-
gation of strings in the expanding Universe, the scattering on the string, and so
forth [5,6,30,31], including the self interactions of cosmic strings [32,33], have previously
been considered. In [25], we computed the back-effect of the particle on the string.
Though it turned out to be tiny (the gravitational deflection of a string due to a sin-
gle spinless particle is of the order of its Schwarzschild radius), one might expect the
amplification of effects in the inelastic stage, due to the possible multiplicity in a gas of
similar particles.

Here, we consider the energy emitted due to collision of a spinless point-like particle
in the plane transverse to the unperturbed string. In order to minimize the technical com-
putational routine, we compute the scalar radiation instead of the gravitational radiation,
which allows us to not involve polarizations and so forth. As the basis of this substitution,
we can refer to an analogy that happened for the bremsstrahlung due to the ultrarelativistic
gravitational collisions of a point-like charge: scalar bremsstrahlung on point mass [34]
versus pure gravitational bremsstrahlung [35] and scalar bremsstrahlung on the domain
wall [36] versus pure gravitational bremsstrahlung [37]. In both analogies, the estimate
of the total emitted energy in the gravitational bremsstrahlung can be obtained by the
formal substitution of f →

√
Gm (where f is a scalar charge of the point mass m, G is the

Newtonian constant) in the expression for the total emitted scalar energy.
Furthermore, the scalar bremsstrahlung can be an adequate representative of the

electromagnetic radiation of electric charge e, with the corresponding replacement of
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couplings f → e. For the gravitational interaction, we refer to [38], for the non-gravitational
interaction we refer to [39,40] and we refer to the scalar and vector Larmor formulae directly.

This paper is organized as follows: after the Introduction, in Section 2 we consider the
setup of the gravitational interaction problem for the particle–string system and introduce
the iteration scheme we will use. Section 3 is devoted to the computation of the radiation
amplitude. In Section 4, we compute the total emitted energy and the particular spectral
and angular distributions. Finally, in the Conclusion we will discuss the results and point
out some prospects of the presented work. The momentum–space integrals used in the
text are computed in the single Appendix A.

We use h̄ = c = 1 units and the spacetime metric gµν with signature (+− −−) .
The Greek indices µ, ν, . . . run over the values 0, 1, 2, 3. The Riemann and Ricci tensors
are defined as Rµ

νλρ ≡ ∂ λΓµ
νρ − . . . , Rµν ≡ Rλ

µλν . The string’s inner coordinates σ on the
worldsheet have initial small Latin indices, which take the values 0 and 1.

2. The Setup

The pointlike spinless particle with mass m and scalar charge f moves across the
worldline with coordinates Zµ(s) parametrized by the affine parameter s; Żµ ≡ ∂Zµ/∂s
stands for the tangent vector to the worldline. The string propagates by its worldsheet
V2 ⊂M4 with inner coordinates (τ, σ), which define the inner induced metric γ ab with
signature (+−).

The interaction is assumed to be gravitational, described by General Relativity with
no cosmological constant. The real massless scalar field is presented as well.

Full action for the interacting system “particle–string” reads

S = Ssc + Sgr , (3)

where

Ssc =
1
2

∫
gµν∂µφ ∂νφ

√
|g| d4x− f

∫
φ
√

gµνŻµŻνds,

Sgr = −
µ

2

∫
Xµ

a Xν
b gµνγab√γ̃ d2σ−m

∫ √
gµνŻµŻνds− 1

κ2

∫
R
√
|g| d4x . (4)

Here, µ is the string tension, Xµ is the worldsheet embedding coordinates,
Xµ

a ≡ ∂Xµ/∂σa the tangent vectors to the worldsheet, and γab is the inverse induced
metric. Additionally, γ̃ ≡

∣∣det ‖γab‖
∣∣ and κ2 = 16πG.

Varying (3) over Xµ, one obtains the string’s equation of motion in covariant form:

∂a

(
Xν

b gµνγab√γ̃
)
=

1
2

gνλ,µXν
a Xλ

b γab√γ̃ , (5)

while the variation with respect to γab yields the constraint(
Xµ

a Xν
b −

1
2

γabγcdXµ
c Xν

d

)
gµν = 0 , (6)

whose solution defines γab as an induced metric on V2: γab = Xµ
a Xν

b gµν

∣∣
x=X .

Varying S over coordinates Zµ, we obtain the particle’s equation of motion:

(m + f φ)Z̈µ = −mΓµ
νλ ŻνŻλ + f Πµνφ,ν , (7)

where we impose the natural parametrization of the particle’s worldline (gµνŻµŻν = 1).
Here, Πµν ≡ g µν − (gλρŻλŻρ)−1/2ŻµŻν stands for the projector onto a plane transverse to
the instantaneous 4-velocity.
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Finally, variations over φ and over full metric gµν yield the field equations

g µν∇µ∇νφ = −j (8)

Rµν − R
2

gµν =
κ2

2

(
Tµν + T̄µν + Tµν

sc

)
, (9)

where

Tµν = µ
∫

Xµ
a Xν

b γab δ 4(x− X(σ)
)√

|g|
√

γ̃ d2σ

T̄µν = m
∫ ŻµŻνδ 4(x− Z(s))(

gλρŻλŻρ
)1/2√|g| ds

Tµν
sc = ∂µφ ∂νφ− 1

2
gµν∂λφ ∂λφ

(10)

represent the energy–momentum tensor of the string, particle and scalar field, respectively, and

j = f
∫ √

gµνŻµŻν
δ 4(x− Z(s))√

|g|
ds (11)

is a scalar current.

Approximation Method

We intend to use an approximation technique that relies on the fact that the deviation
from the Minkowski metric is small, that is, |gµν − ηµν| � 1. In what follows:

Gm ∼ rg � b . (12)

The possible restrictions due to the charge do not affect the perturbative approximation
we use, and the discussion of these is postponed to the Section 5.

We will be solving the equations of motion iteratively. Introducing the exact deviation
of the total metric with respect to the Minkowski one, Hµν ≡ (gµν − ηµν)/κ, we expand
Hµν in a gravitational constant. Therefore, all fields and kinematical quantities are to be
effectively expanded as follows:

φ = 0φ + 1φ + 2φ + . . . , (13)

where φ can be Hµν, Tµν, T̄µν, Tµν
sc , φ, j, Zµ or their derivatives. Thus, the left superscript

is used to mark the order of iteration. Therefore, effectively, we expand all tensors in G.
In fact, the parameter of expansion is a dimensionless angular deficit β′ ∼ Gµ. Each term
of any expansion, starting from Hµν, becomes the tensor with respect to the flat metric.
In what follows, any contraction and the index raising will be carried out with help of the
Minkowski metric.

Zeroth order. To the zeroth order, one expects the flat space with no fields in it:

0Hµν = 0 , 0φ = 0 . (14)

In what follows, to this order, the particle moves freely:

0Z̈µ = 0 , (15)

with constant velocity 0Żµ ≡ uµ. We will be working in the Lorentz frame, where the
unperturbed string is at rest and aligned with the x-axis; the unperturbed particle moves
along the z-axis while the vector of closest proximity b µ between the particle and string
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is chosen to coincide with the y-axis. Finally, we set the moment of collision to t = 0.
In what follows,

uµ = γ(1, 0, 0, v) , 0Zµ = 0uµs + b µ , b µ = (0, b, 0, 0) . (16)

Thus, γ = (1− v2)−1/2 represents the Lorentz factor of collision, and b > 0 represents
the impact parameter of this scattering.

Therefore, the unperturbed string’s worldsheet is a plane spanned by t- and x-axes:
σ0 ≡ τ = t, σ1 ≡ σ = x, thus

0Xµ = δ
µ
a σa 0γab = ηab . (17)

Finally, the scalar and gravitational sources are given by

0 j(t, x) =
f
γ

δ(x) δ(y− b) δ(z− vt)

0T̄µν(t, x) =
m
γ

uµuν δ(x) δ(y− b) δ(z− vt)

0Tµν(t, x) = µ δ
µ
a δν

b ηab δ(y) δ(z) = µ δ(y) δ(z)diag(1,−1, 0, 0) ,

(18)

while 0Tµν
sc (t, x) vanishes due to 0φ = 0.

First order. The zeroth-order sources produce the corresponding first-order fields.
Namely, from the Einstein Equation (9), one expects to obtain the equation for 1Hµν.

Setting the flat de Donder gauge, 2∂ν Hµν = H ,µ, the first-order Einstein equations are
given by

� 1Hµν = −κ
[(

0Tµν + 0T̄µν
)
− ηµν

2

(
0T + 0T̄

)]
, (19)

(where � = ηλρ∂λ∂ρ is a flat d’Alembertian, 0T ≡ ηλρ
0Tλρ is a flat trace). Thus, we can

split the first-order Hµν as 1Hµν = 1hµν + 1h̄µν and consider the separate fields 1hµν, 1h̄µν,
which satisfy

� 1hµν = −κ
(

0Tµν − ηµν
0T
2

)
, (20)

plus the same equation for the 1st-order field h̄µν, due to a particle. These solutions are
well-known: the linearized field created by the string reads

1hµν(x) =
κµ

2π
Σµν ln

r
R0

, Σµν ≡ diag (0, 0, 1, 1), (21)

where r ≡
√

y2 + z2 is the Euclidean distance to the string, and R0 > 0 is an arbitrary
positive lengthy parameter. Expanding (2) over β′ and making the comparison with (21),
we find that the correspondence between the string’s tension and the relative angular
deficit reads β′ = 4Gµ. The corresponding linearized solution for the particle is nothing
but the Newton potential boosted in the z-direction:

1h̄µν(x) = −κm
4π

(
uµuν −

1
2

ηµν

)[
γ2(z− vt)2 + x2 + (y− b)2]−1/2 . (22)

Furthermore, the first order of (8) reads

� 1φ = − 0 j (23)
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as also a d’Alembert equation, with solution

1φ(x) = − f
4π

1√
γ2(z− vt)2 + x2 + (y− b)2

. (24)

Now, consider the first-order equation of motion for the charge: making use of (7),
one derives the formal expression for the scalar part of a force, acting on the charge:

m 1Z̈µ
sc = f 0Πµν 1φ,ν , (25)

where 1φ,ν is a total first-order scalar field. To exclude the self-action, one has to consider
only the external scalar field acting on the charge. However, the total scalar field to this
order is the one (24) created by the charge itself. In what follows, we have to omit 1Z̈µ

sc
and this also concerns the gravitational self-action in the gravitational contribution to the
total acceleration.

In what follows, to the first order, a particle moves along the geodesics created by the
gravitational field produced by the string, and vice versa.

Thus, only the gravitational part of the total force (7) survives and the total first-
order equation-of-motion represents a motion in the external linearized gravitational field,
and reads

1Z̈µ = −κ 0Πµν
(

1hνλ,ρ −
1
2

1hλρ,ν

)
uλuρ . (26)

The solution to it, with initial conditions 1Zµ = 0 and 1Żµ = 0 in the Cartesian
coordinates is given by [25]

1Z0 = 1Zx = 0

1Zy = −β′
[

γvs arctan
γvs

b
− b

2
ln

b2 + γ2v2s2

b2

]
1Zz = β′

[
γvs

2

(
ln

b2 + γ2v2s2

b2 − 2
)
+ b arctan

γvs
b

]
.

(27)

Therefore, the trajectory is determined by the zeroth order for Zz and by the first order
for Zy:

y(z) = b− β′
[

z arctan
z
b
− b

2
ln

b2 + z2

b2

]
. (28)

The corresponding gravitational deformations of the string may be found in [25]; here,
we will not use them.

Second order equation for φ-radiation.The generic formula for the total scalar radia-
tion due to collision reads

dE
dωdΩ

=
ω2

16π3 |j(k)|
2, ω = k0 = |k|, (29)

where j(k) stands for the Fourier-transform of the total source. This formula is well-known
and may be obtained in the assumption of the proper decay rate of the fields involved in
the process.1

The solution (24) of linear Equation (23) is a field generated by a uniformly moving
charge and represents the boosted “Coulomb” field; hence, it does not contribute to
radiation. In four dimensions, it explicitly follows from the Larmor-like formula for the
scalar radiation by an accelerated charge.
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The second order of our scheme leads to the radiation. For the scalar emission in the
bremsstrahlung process, it is enough to consider only the correction to scalar field 2φ and
its source.

Taking the next order of (8), one obtains

� 2φ = − 1 j(x) , 1 j(x) ≡ ρ(x) + σ(x) , (30)

where

ρ(x) = − f
∫

1Zµ(s) ∂µδ 4(x− 0Z(s)
)

ds (31)

σ(x) = κ ∂µ

(
1hµν(x) ∂ν

1φ(x)− 1
2

1h(x) ηµν∂µ
1φ(x)

)
, (32)

respectively.
We will refer to the first term as the local term, since it is fixed on the unperturbed

trajectory of charge f (due to delta-function), while the second term will be referred to as
the non-local current. The latter comes from the left-hand side of (8) and represents the
non-linear terms of the d’Alembertian in the presence of gravity.

3. Radiation Amplitudes

For the first non-vanishing contribution of the emitted energy we have to take

j = 0 j + 1 j (33)

and plug it into (29) in the momentum space with the on-shell condition k2 = 0. The wave
vector of the emitted scalar field is parametrized as

kµ = ω
(
1, sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ

)
. (34)

However, we encounter terms 0 j(k) 0 j∗(k), 0 j(k) 1 j∗(k) and 0 j∗(k) 1 j(k) with at least
one zeroth-order j. Each of them corresponds to the uniform motion and does not contribute
to radiation. Therefore, we are left with the 1 j∗(k) 1 j(k)-term, and reduce our problem to
the computation of the two constituents of 1 j(k).

Local amplitude. The Fourier transform of (31) is given by2

1ρ(k) = i f ei(kb)
∫

ds ei(ku)s k ·1Z(s) , (35)

where “·” denotes the Minkowskian scalar product (a · b ≡ ηµνaµbν).
It will be useful for us to work with momentum representations for all quantities in-

volved. For 1Zµ(s), we need the linearized hµν in the Fourier space. From (21), we deduce:

1hµν(q) = −
(2π)2κµ δ(q0)δ(q1)

δαβqαqβ
Σµν . (36)

Substituting hµν, the particle’s acceleration reads

1Z̈µ(s) =
iκ2µγ2v2

(2π)2

∫
d4q

δ2(q0, qx)

q2 e−i(qb)e−i(qu)s
(
− ηµzqz − 1

2
qµ
)

. (37)

Double integration with initial conditions 1Zµ = 0 and 1Żµ = 0 yields

1Zµ(s) = − iκ2µγ2v2

(2π)2

∫
d4q

δ2(q0, qx)

q2 (qu)2 e−i(qb)
[
e−i(qu)s − 1 + i(qu)s

](
− ηµzqz − 1

2
qµ
)

. (38)
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Thus, substituting it into (35), one obtains

1ρ(k) =
κ2 f µγ2v2

2(2π)
ei(kb)

∫
d4q

δ2(q0, qx)δ(k · u− q · u)
q2 (qu)2 e−i(qb)

(
kyqy − kzqz

)
. (39)

Introducing the following vectorial Fourier-integrals,

Iµ =
∫

δ(q0)δ(qx) δ(k ·u− q ·u) e−i(qb)

q2 qµ d 4q , (40)

the local source due to the particle reads

1ρ(k) =
κ2 f µγ2v2ω

4π(ku)2 ei(kb)
(

sin ϑ sin ϕIy − cos ϑIz
)

. (41)

The computation is provided in the single Appendix A. Substituting Iµ (A3), one obtains

1ρ(k) = − κ2 f µv
4ωγψ2 ei(kb) exp

(
− (ku)b

γv

)(
cos ϑ + i sin ϑ sin ϕ

)
, (42)

where ψ ≡ 1− v cos ϑ.
The crucial factor in (42), with respect to both frequency and angles, is the exponential

(ku)b
γv

=
ωb
v

ψ . (43)

For the local amplitudes in the related problems, the behavior of the expressions with
this exponential is well-known. Such an expression may arise, in particular, in purely
electromagnetic bremsstrahlung of two charges. The exponential restricts the valuable
phase–volume domain as

ωbψ . v . (44)

Due to the phase–volume factors ω2 sin ϑ, the dominant spectral–angular domain is
apparently revealed in the ultrarelativistic case:

ω ∼ γ2

b
, ϑ ∼ 1

γ
(45)

(the z-domain). It is this domain that could be characteristic in the absence of a non-local
part; however, we have the latter.

Non-local amplitude. The non-local amplitude (32) in the momentum representation
reads

σ(k) = − κ
(2π)4

∫
kµ

[
1hµν(q) (kν − qν)

1φ(k− q)− 1
2

1h(q) (kµ − qµ)1φ(k− q)
]

.

Substituting here the string’s gravity (36) and the corresponding Fourier-transform of
the scalar field (24),

1φ(q) = −2π f
q2 eiqbδ(qu) , (46)

we obtain the non-local amplitude in the Fourier space:

σ(k) =
κ2 f µ

2π
ei(kb)

∫
δ2(q0, qx) δ(k ·u− q ·u) e−i(qb)

q2(k− q)2

[
Σµνkµkν− Σµνkµqν+ k2−k ·q

]
d 4q . (47)
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In the presence of δ2(q0, qx), a scalar product a · q (with arbitrary vector aµ) equals
−Σµνaµqν. Thus, the 2nd and 4th terms in the parentheses mutually cancel, while the 3rd
term vanishes on-shell. Therefore, we are left with the 1st term alone, which is (k0)2− (kx)2

and does not depend upon the integration variables; thus we rewrite:

σ(k) =
κ2 f µω2

2π
ei(kb)(1− sin2ϑ cos2 ϕ

)
J , (48)

where we introduce

J ≡
∫

δ(q0) δ(qx) δ(k ·u− q ·u) e−i(qb)

q2(k− q)2 d 4q . (49)

This two-propagator momentum–space integral is computed in the Appendix A.
Substituting its value (A5), one finally obtains:

σ(k) =
κ2 f µ

4γvω

(
1− sin2ϑ cos2 ϕ

)[ v2eik·b exp(−ωbψ/v)
ψ2 (cos ϑ− i sin ϑ sin ϕ)

−

− exp(−ωbR)
R (ψ cos ϑ/v− sin2ϑ sin2 ϕ− iR sin ϑ sin ϕ)

]
, (50)

where R ≡
√

γ−2v−2 + sin2ϑ cos2 ϕ.
Now we have the term with the exponential similar to that from the local source,

and also the term with the crucial factor e−ωbR. The valuable phase–volume domain for
the latter is given by R . 1/ωb. It implies simultaneous

ωb sin ϑ| cos ϕ| . 1 , ωb . γv . (51)

Thus, the characteristic spectral–angular region for this term drastically depends
upon velocity.

Therefore, depending on the ratio between the sum of the two e−ωbψ/v-terms and the
single e−ωbR-term, we could expect different behavior of the whole amplitude.

Total amplitude. Combining the local amplitude (42) and the non-local amplitude
(50), we notice that the two e−ωbψ/v-terms mutually annihilate, and we are left with

1j(k) = − κ2 f µ

4γωR
1− sin2ϑ cos2 ϕ

ψ cos ϑ− v sin2ϑ sin2 ϕ− ivR sin ϑ sin ϕ
exp(−ωbR) . (52)

In general, such a phenomenon is well-known, and is called “destructive interfer-
ence”. It is proper for gravitational interaction, but known for the ultrarelativistic collisions.
Usually [34–38], the non-local e−ωbψ/v-term kills the two leading terms of the correspond-
ing local amplitude (in 1/γ-expansion in the frequency-angular domain (45)), but the
resulting sum may even dominate over the remaining non-local term (especially in higher-
dimensional models with large-sized extra dimensions).

Thus, it is more surprising that, in the problem at hand, the cancellation is (i) complete,
and (ii) valid for any velocity not necessarily in the UR regime.

4. Emitted Energy

Now we compute the total emitted energy of the inelastic gravitational collision.
Plugging the total amplitude (52) into the generic formula (29), one obtains

dE
dωdΩ

=
κ4 f 2µ2

28π3γ2R2ψ2
(1− sin2ϑ cos2 ϕ)2

cos2 ϑ + sin2ϑ sin2 ϕ
exp(−2ωbR)

=
G2 f 2µ2v2

πψ2
1− sin2ϑ cos2 ϕ

1 + γ2v2 sin2 ϑ cos2 ϕ
exp(−2ωbR) . (53)
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Integrating (53) over frequencies, one obtains the angular distribution

dE
dΩ

=
G2 f 2µ2γv3

2πb
1− sin2ϑ cos2 ϕ

ψ2(1 + γ2v2 sin2 ϑ cos2 ϕ)3/2
. (54)

Integrating (54) over ϑ [41], we obtain the ϕ-distribution:

dE
dϕ

=
G2 f 2µ2

πb
γ3v

sin2 ϕ tan2 ϕ

[
2 + v2 tan2 ϕ +

cos2 ϕ

1− v2 sin2 ϕ
−
(

3v +
2 + cos2 ϕ

γ2v

)
Arth(v sin ϕ)

sin ϕ

]
, (55)

where Arth stands for the inverse hyperbolic tangent.
The expression (55) is invariant with respect to the symmetries (i) ϕ → −ϕ and (ii)

cos ϕ → − cos ϕ. They originate from the total spectral–angular distribution (53), the
dependence of which upon ϕ is reduced to the dependence on cos2 ϕ. With the definition
of ϕ (the ray ϕ = 0 is parallel to the string), the symmetry (ii) is just the symmetry with
respect to reflection in the scattering plane. The symmetry (i) is more surprising. It
means that if we look along the particle’s unperturbed trajectory, the radiation towards
the string (angles −π < ϕ < 0) equals the total energy emitted outwards from the string
(angles 0 < ϕ < π). This happens because we consider the total emitted radiation. The
radiation amplitude represents the Fourier-transform of the corresponding coordinate-
space amplitude, that is, the source averaged with respect to the total collision time.
The perturbed trajectory 1Zµ(s) (27) is an even function of the proper time s. Hence, the
expected local (instantaneous, at fixed time s) left–right asymmetry of the radiation, being
averaged over the whole time on the symmetric trajectory, vanishes. Most likely, this
left–right symmetry is restored at the level of the direct sum of the local radiation at proper
time s = −|s0| (before the collision) and the corresponding radiation at s = +|s0| (after
the collision).

Plots of the ϕ-distribution for different velocities in the relativistic regime are shown
in Figure 1. One can see that, for any velocity, the plot has a minimum of ϕ = 0 and a
maximum of ϕ = π/2.

Thus, we define the ϕ-anisotropy coefficient δϕ as

δϕ ≡
dE/dϕ (ϕ = π/2)

dE/dϕ (ϕ = 0)
. (56)

From Equation (55), we deduce:

δϕ =
15

5 + v2 ,
5
2
< δϕ 6 3 . (57)

Thus, apart from the overall normalizing coefficient, qualitatively the ϕ-distribution
varies slowly from the non-relativistic regime to the ultra-relativistic one.
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Figure 1. Plots of the ϕ-distribution of the scalar bremsstrahlung, normalized by the overall factor
1/γ4v, in units G = µ = b = f = 1: v = 0.1 (red), v = 0.3 (green), v = 0.5 (blue), v = 0.7 (black),
v = 0.9 (magenta).

Integration of (54) over ϕ [42] gives the ϑ-distribution:

dE
dϑ

=
2G2 f 2µ2γv

πb
sin ϑ

ψ2
√

1 + γ2v2 sin2ϑ

E
(

γv sin ϑ√
1 + γ2v2 sin2ϑ

)
− 1

γ2 K
(

γv sin ϑ√
1 + γ2v2 sin2ϑ

), (58)

where K and E are complete elliptic integrals of the 1st and 2nd kind, respectively. Plots
of the ϑ-distribution for different velocities are shown in Figure 2. Amongst the other
aspects, they differ in terms of the position of the global maximum and its value. From (58),
one notices that the crucial factor in the behavior of dE/dϑ is ψ−2 sin ϑ, since the elliptic
integrals are of order O(1).3 Such a factor is common for angular distribution in the
diverse problems of classical electrodynamics. For the typical integrands (with respect to
subsequent integration over ϑ) ψ−m sinn ϑ, the case 2m > n + 1 corresponds to a beaming,
with the most valuable ϑ-domain determined by relation

cos ϑ ∼ v . (59)

Therefore, for higher velocities most of the contribution to the total emitted energy
comes from smaller values ϑ. Figure 2 confirms our estimates. In what follows, we shall
consider the ultra-relativistic regime separately and in more detail.

The red plot in Figure 2 (v = 0.1, γ ≈ 1.005) reveals some features proper to the non-
relativistic motion. Namely, the domain π/2 < ϑ < π (backward direction, with respect to
the particle) becomes of the same importance as the forward-direction region and, in the
limit v→ 0, the plot is expected to be symmetric according to the symmetry of collision.

The plots of the frequency distribution for several values of velocity in the relativistic
regime are shown in Figure 3. Any plot has a finite zero-frequency limit (ZFL). Here, one
notices that the mean value of the frequency (or the value of half-ZFL) shifts to ultraviolet
with an increase of the particle’s speed.
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Figure 2. Plots of the ϑ-distribution of the scalar bremsstrahlung, normalized by the overall factor
27(π/γv)3, in units G = µ = b = f = 1: v = 0.1 (red), v = 0.3 (green), v = 0.5 (blue), v = 0.7 (black),
v = 0.9 (magenta).

Figure 3. Plots of the frequency distribution of the scalar bremsstrahlung, normalized by the overall
factor γ/v2, in units G = µ = b = f = 1: v = 0.2 (red), v = 0.4 (green), v = 0.6 (blue), v = 0.8 (black).

Qualitatively, in the spectral–angular distribution (53) the only factor, involving ω, is
the exponential exp(−2ωbR). After the integration over all angles, the pre-factor becomes
some average value times 4π, while

〈sin ϑ〉 ∼ γ−1 , 〈cos ϕ〉 ∼ 1 . (60)

In what follows, the average value of R is estimated as

〈R〉 ∼ (γv)−1. (61)

Hence, the frequency distribution approximates as

dE
dω
∼
( dE

dω

)
ω=0

e−2b〈R〉ω, (62)

with characteristic frequency

〈ω〉 ∼ γv
b

,
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times a coefficient of order O(1).
The total energy emitted due to collision may be integrated numerically. We consider

the particular case of ultrarelativistic collision, which is of the most significance.

Ultrarelativistic Regime

Due to γ� 1 in the UR regime, we are interested in the leading contribution to the
emitted energy and can drop all subleading terms. From the estimate (60), it follows that
the 2nd term in the numerator of angular fraction in (54) is suppressed by γ2 with respect
to the 1st one in the UR regime. Thus, it may be neglected. Furthermore, we can put v = 1
for the overall factor (but not for ψ):

dE
dΩ

=
G2 f 2µ2γ

2πb
1

ψ2(1 + γ2 sin2ϑ cos2 ϕ)3/2
. (63)

Now we integrate with respect to ϑ: introducing the new variable χ = γϑ, we expand

sin ϑ ' χ

γ
, ψ ' 1 + χ2

2γ2 . (64)

These expansions are valid at 0 < χ < O(1) but, for higher χ, we notice that both
the original integrand and the approximated one undergo very fast decay. Thus, the
contribution of the domainO(1) < χ < πγ is subleading with respect to the most valuable
domain 0 < χ < O(1). A fortiori, it concerns the domain πγ < χ < ∞. In what follows,
we can extend the upper integration limit up to infinity. Performing the integration, one
obtains the ultrarelativistic ϕ-distribution:

dE
dϕ

=
G2 f 2µ2

πb
γ3

sin5 ϕ

[
sin ϕ

(
1 + 2 cos2 ϕ

)
− 3

2
cos2 ϕ ln

1 + sin ϕ

1− sin ϕ

]
. (65)

Integrating (65), one arrives at

E =
3π

8
G2 f 2µ2

b
γ3 , (66)

plus subleading in γ terms. The characteristic frequency is 〈ω〉 ∼ γ/b. Therefore, the
destructive interference does not change the characteristic angles but decreases the charac-
teristic frequency by a factor of γ.

5. Conclusions

We have considered the classical scalar bremsstrahlung of the spinless relativistic
charge in the process of gravitational collision with an infinitely thin cosmic string.

Effectively, our approximation method is based on the formal perturbation theory
over the Newtonian constant. With the impact parameter given in the problem-at-hand,
it implies

b� rg . (67)

For, say, protons, the Schwarzschild radius is rg ∼ 10−52 cm.
In the first order of our approximation, we computed the radiation amplitude. It

consists of two parts—the local part due to direct variation of the scalar current, and the
non-local part due to the curved background. In turn, the non-local amplitude splits into
two constituents with different spectral–angular behaviors of the characteristic exponentials.
One of them reproduces the local-current exponential and thus may be combined with it.

The general phenomenon of mutual cancellation of the leading (at z-domain of the
phase volume) terms of the local and non-local amplitude, known in the ultrarelativistic
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regime for several types of collision, also takes place here. Remarkably, this cancellation
(destructive interference) is complete and takes place at any velocity of the particle.

We compute the spectral and angular distributions of the emitted waves; the total
emitted energy is estimated to be

E ∼ G2µ2 f 2

b
γ3. (68)

For the estimate of the efficiency of the emitted energy, we note that, in the problem-
at-hand, the radiation represents a collective effect: both particle and string (via gravity)
take part in the amplitude formation. With our setup of the infinitely long cosmic string,
the initial string’s energy is infinite and the only thing for us to do is to suppose that only
the particle loses its energy. Of course, this drastically restricts the initial energy available
for the subsequent radiation during the collision.

Let us suppose this (worst) case; for efficiency, we normalize the emitted energy
(basically, we are interested in the UR case) by the mechanical energy mγ of the mass m.
One estimates:

εrad =
E

mγ
∼ G2µ2 f 2

mb
γ2 ∼ rcl

b
β′2γ2 , (69)

where rcl = f 2/m is a classical radius of charge f . With temporal values of Lorentz-factors
and estimates of the cosmic-string angular deficit, the efficiency may easily be of the order
of unity. This implies that the perturbation theory fails, at least in the 2nd order, but the
qualitative conclusion remains the same: the charge’s loss of energy is comparable with the
initial one.

For the real cosmic strings, we have to consider them as finite-sized. The finiteness of
the string’s width d drastically shifts the restriction on impact parameters:

b > d , (70)

where d ∼ 10−29 cm. Further, for a cosmic string with finite length L we have to impose
the extra restriction

γ� µL/m , (71)

which means that the string’s energy is much greater than the total energy of a charge. It
also decreases the maximal value of the efficiency εrad and, moreover, now we have to
normalize the emitted energy by the string’s emitted energy, which may only decrease
the ratio. Some particularly interesting cases may arise in the problem of the collision
of a cosmic string with a relativistic gas of charged particles. The string’s deflection will
vanish on average, but the string is just used as an object of gravitational friction by
any single particle. However, these estimates lie beyond the model considered for the
problem-at-hand, and demand separate considerations.

Finally, although we have considered only the gravitational interaction, the classical
charge’s radius has appeared in the final answer, or in the radiation efficiency (69). It can
indicate the additional restrictions related to the self-action of a charge in the presence of a
curved background [36,43–46].

Looking forward, this paper represents an apparent interest in the bremsstrahlung of
particles scattered by a string, not only in the transverse plane. It can help with the solution
of the bremsstrahlung problem due to the interaction of a string with a gas of charged
particles. It may be significant for the proper analysis of all inelastic processes in the Early
Universe. The bremsstrahlung of particles with spin may also be significant.
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Appendix A. Useful Integrals

In (40) we have introduced the following vectorial integral:

Iµ =
∫

δ(q0) δ(qx) δ(k ·u− q ·u) e−i(qb)

q2 qµ d 4q . (A1)

Let us start with the corresponding scalar integral:

I =
∫

δ(q0) δ(qx) δ(k ·u− q ·u) e−i(qb)

q2 d 4q .

Integrating over two deltae from the string’s gravity source, one has

I = −
∫

δ(k · u + qzγv) eiqyb

q2
y + q2

z
dqy dqz .

Integration over qz is trivial; integration over qy is a contour in the upper complex
half-plane. The single simple pole at qy = i(ku)/γv results in

I = − π

(ku)
exp

(
− (ku)b

γv

)
. (A2)

Now return to the vectorial integral. In components, we can reduce it to the computed
scalar integral I with the help of relations

Ix = Iy = 0 , Iz = − (ku)
γv

I , Iy = −i
∂

∂b
I .

Introducing λµ =
(
0, 0, i,−1

)
, the vectorial integral is given by

Iµ = − π

γv
exp

(
− (ku)b

γv

)
λµ =

(ku)
γv

Iλµ . (A3)

The two-propagator scalar integral J was introduced in (49):

J =
∫

δ(q0) δ(qx) δ(k ·u− q ·u) e−i(qb)

q2(k− q)2 d 4q . (A4)

After integrations over q0, qx and qz, through the three delta-functions, we are left
with a single-variable integral,

J =
1

γv

∫ eiqyb

(q2
y + ω2ψ/v2)[(qy − ky)2 + ω2R2]

dqy ,
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where we introduce

ψ = 1− v cos ϑ , R =
√

γ−2v−2 + sin2ϑ cos2 ϕ .

The integrand has four poles,

q1,2 = ± iωψ

v
, q3,4 = ω

(
sin ϑ sin ϕ± iR

)
.

Taking the residuals at two upper-halfplane poles and simplifying, one arrives at

J =
π

2γvω3

[
v2 exp(−ωbψ/v)

ψ2 (cos ϑ− i sin ϑ sin ϕ)
− e−ik·b exp(−ωbR)

R (ψ cos ϑ/v− sin2ϑ sin2 ϕ− iR sin ϑ sin ϕ)

]
. (A5)

Notes
1 In particular, the derivation may be found in [36].
2 Direct Fourier-transform is defined as

F [ f (x)](q) ≡
∫

d 4x exp
(
iηµνqµxν

)
f (x) .

3 For the elliptic integral of the 2nd kind it is verified directly: 1 6 E(x) 6 π/2 at x ∈ [0; 1]. The elliptic integral of the 1st kind
satisfies K(x) > π/2 and blows up at x → 1− as K(1− z) ' (1/2) ln(z/8). However, approaching z � 1 implies very large
Lorentz factors; thus, taking into account the pre-factor γ−2, one verifies that the whole term with K is restricted by π/2.
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