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Abstract: We investigate optical forces on oscillating dipoles close to a phase change vanadium
dioxide (VO2) film, which exhibits a metal-insulator transition around 340 K and low thermal
hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an
interface and we employ a classical description to capture its important aspects. We consider both
electric and magnetic dipoles for two different configurations, namely with the dipole moments
parallel and perpendicular to the VO2 film. By using Bruggeman theory to describe the effective
optical response of the material, we show that the thermal hysteresis present in the VO2 transition
clearly shows up in the behavior of optical forces. In the near-field regime, the force on both dipoles
can change from attractive to repulsive just by heating (or cooling) the film for a selected frequency
range. We also verified that the optical forces are comparable to the Casimir-Polder force in a similar
system, revealing the possibility of modulating or even changing the sign of the resultant force on an
illuminated nano-object due to the presence of a thermochromic material. We hope that this work
contributes to set the grounds for alternative approaches to control light-matter interactions using
phase-change materials.

Keywords: optical forces; insulator-metal phase transition; phase-change materials

1. Introduction

Optical forces play a pivotal role in photonics with many applications. As interesting
examples, we can mention radiation pressure forces [1,2], forces in optical tweezers [3–6],
nanostructures [7,8], and waveguides [9,10], as well as interdisciplinary applications in bi-
ology [11] and atomic physics [1,5,12–14]. Hence, the possibility of harnessing light-matter
interactions to tailor and control optical forces at the nanoscale is a sought-after goal in
nanophotonics. At the nanoscale range, fluctuation-induced phenomena are non-negligible
and Casimir forces between two bodies (or Casimir-Polder forces between a polarizable
particle and a body) may be comparable to the classical electromagnetic forces [15–17].
In particular, the feasibility of switching on and off the repulsion between particles and
surfaces in micro- and nano-mechanical devices can lead to new functionalities, such as
the levitation of objects from surfaces to eliminate undesired adhesion and stiction of
nanomechanical components [6,18].

Recent advances in plasmonics and metamaterials allow for the development of new
material platforms to tune optical and dispersive forces at increasingly smaller scales.
Remarkable examples are phase-change materials (PCM) [19], such as transition metal
dichalcogenides [20], transparent conductive oxides [21], and liquid crystals [22,23], which
have been integrated into metasurfaces and metadevices to allow for external control of
their functionalities. Using this strategy, one can either progressively tune or abruptly
switch the structural and/or optical properties of metadevices by externally varying an
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applied voltage [20], electric current [24], and incident light intensity [25]. Amid the
PCMs for photonic applications, vanadium dioxide (VO2) may be singled out for its low
thermal hysteresis, for exhibiting a metal-insulator transition (MIT) at low temperature
(around 340 K) over a broad frequency range, and for its high refractive-index contrast
in the visible range [26–30]. The modulation of plasmonic responses in VO2 has been
reported [31–34]. In particular, hybrid structures of VO2 (in combination with metallic
nanostrustures) may display localized surface plasmon resonances, a distinct characteristic
for the field of active plasmonics [35]. Altogether, these features make VO2 a promising
PCM as a tunable metamaterial [36], enabling the emergence of applications, such as smart
windows [37,38]. Photonic applications of VO2-based structures, both in the infrared [39]
and visible ranges [40], have been recently developed, including the temperature control of
heat transfer [41] and quantum emission [42].

Due to its tunable optical properties, PCMs have been considered in investigations of
the Casimir force in some situations [43–45]. In particular, Casimir-Polder forces between
an atom and a VO2 film [46] have already been calculated. In the present work, we
investigate optical forces on oscillating electric and magnetic dipoles close to a VO2 film.
This system mimics the interaction of an illuminated nano-object with a neighbouring
interface, as such an object would develop electric and/or magnetic dipole moments
induced by the incoming radiation. In addition, this setup also relates to an excited two-
level quantum emitter located near a surface (in the dipole approximation). Therefore,
the classical description alone provides newsworthy results and may not only shed light
upon the competition of light-induced and dispersive forces, but also predict important
aspects of cavity effects on excited quantum states, a kind of approach that has been
widely applied to study optical forces in such systems [47–50]. We consider two distinct
configurations to compute optical forces: In one of them, the oscillating dipole (electric
or magnetic) is parallel to the VO2 film, and, in the other one, it is perpendicular to the
film. Remarkably, we show that it is possible to achieve a thermal control of the optical
force on the dipole and change the attractive/repulsive character of the force in the near
field on both kinds of dipoles just by varying the temperature. Hence, we conclude that
thermal hysteresis clearly shows up in optical forces. Our calculations for optical forces
are comparable to the Casimir-Polder force in a similar system, so that the resultant force
on an illuminated nano-object can be regulated or even have its sign modified due to the
presence of a thermochromic material. Our results expand the applicability of PCMs, VO2
in particular, to the external tuning of optical forces, and in general controlling light-matter
interactions at the nanoscale.

This paper is organized as follows. In the next section, we present the methodology
employed to model the VO2 medium and its metal-insulator phase transition and to
calculate the classical expressions for the optical force near a planar surface for both
configurations of dipoles. Section 3 comprises our main results, whereas Section 4 is
dedicated to our final comments and main conclusions.

2. Methodology

In order to study optical forces, we shall consider a prescribed oscillating dipole near a
VO2 film of thickness d = 200 nm, supported by a saphire substrate (Al2O3). The oscillating
dipole can be either electric or magnetic, and it is placed at a distance z from the surface, as
shown in Figure 1.

In the following subsections, we introduce the theoretical approach employed to
characterize the film and its metal-insulator phase transition. Next, we describe the main
equations used to evaluate the optical forces on the dipole.
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Figure 1. Schematic representation of the system. An oscillating dipole in vacuum is placed at a
distance z of a VO2 film of thickness d suported by a Al2O3 substrate.

2.1. Modelling the VO2 Metal-Insulator Transition

In this work, we used the approach developed in Refs. [42,51] to model VO2 optical
properties in terms of its dielectric function, applying the Bruggeman effective medium
theory (BEMT) [52]. In short, VO2 presents an insulating behavior and monoclic struc-
ture [53] up to a critical temperature TMIT ∼ 340 K, at which it undergoes a metal-insulator
transition that consists of a structural phase transition to a rutile-type structure. In prac-
tice, however, the transition is smooth and at temperatures close to TMIT, the material
presents a mixture of both metallic and insulating domains [54,55], which can be modeled
as spheroidal metalic inclusions in a dielectric host medium. It is, therefore, possible to treat
VO2 as a two-phase system with an effective permittivity depending on the permittivities
of both metallic and insulating regions and their respective volume filling fractions f and
1− f (0 < f < 1) [56]. Here, the filling fractions are modeled as a logistic function of
the temperature to emulate the histeretical behavior of the VO2 electric response as the
temperature is ramped up or down [42].

The task now is to calculate the VO2 effective dielectric constant εVO2(λ, T) for temper-
atures in which the heteregeneous regime is present, i.e., close to TMIT. In the framework
of BEMT, this may be be obtained from [42]

(1− f )
{

εd − εVO2

εVO2 + L (εd − εVO2)
+

4(εd − εVO2)

2 εVO2 + (1− L)(εd − εVO2)

}
+ f
{

εm − εVO2

εVO2 + L (εm − εVO2)
+

4(εm − εVO2)

2 εVO2 + (1− L)(εm − εVO2)

}
= 0 , (1)

where L (0 ≤ L ≤ 1) is the depolarization factor related to the shape of the metallic
inclusions, and wavelength and temperature dependences have been omitted for simplicity.
In addition, εd and εm denote the dielectric constants of VO2 in the purely insulating
(T � TMIT, f = 0) and in the purely metallic (T � TMIT, f = 1) phases, respectively. These
quantities are given by

εm(ω) = 1− ω2
m

ω2 + i γm ω
, (2)

εd(ω) = 1 +
ω2

d
ω2

R − ω2 − i ω γ d
, (3)

where ωR is the material resonance frequency, ωm (ωd) is the the plasma frequency (os-
cillating strength), and γm (γd) is the inverse of the relaxation time of the metallic phase
(insulator phase). These parameters were obtained by numerically fitting the experimental
data reported in Reference [57] in the range 1 µm ≤ λ ≤ 10 µm.
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2.2. Optical Forces near a Planar Surface

In this subsection we shall briefly establish the expressions for the optical forces acting
on a harmonically oscillating electric or magnetic dipole, when they are near a given
planar surface whose reflection Fresnel coefficients for the transverse electric (TE) and
transverse magnetic (TM) waves are known. Hence, the electromagnetic fields responsible
for the optical force acting on the dipole will be the scattered part of the own dipole
field. The optical force acting on a time-dependent electric dipole d(t) located at a generic
position r0 is given by [58,59]

Fe(t) = (d(t) · ∇)E(r0, t) +
1
c

ḋ(t)× B(r0, t) . (4)

For the case at hand, the dipole and the electromagnetic fields have the same harmonic
time-dependence, namely:

d(t) = d0e−iωt ; E(r, t) = E0(r)e−iωt ; and B(r, t) = B0(r)e−iωt . (5)

The time average of the force is given by

〈Fe〉 = 〈(Re d · ∇)Re E〉+ 1
c
〈Re ḋ× Re B〉

=
1
2
Re
{
(d0 · ∇)E∗0 −

iω
c

d0 × B∗0
}

. (6)

For the i-component of the force, we have

〈Fe
i 〉 =

1
2
Re
{

d0j∂jE∗0i −
iω
c

εijkd0jB∗0k

}
. (7)

Throughout this paper, we adopted the implict sum notation for repeted indices. Us-
ing Faraday’s law, B0 = c

iω∇ × E0, so that B∗ok = ic
ω εlnk∂lE∗0n, as well as the identity

εijkεlnk = δilδjn − δinδjl , we finally obtain [59]

Fe
i (r0) =

1
2
Re
{

d0j∂iE∗0j(r0)
}

, (8)

where we brought back the dipole position r0, and, for convenience of notation, we wrote
the time average 〈Fe

i 〉(r0) simply as Fe
i (r0).

Analogously, it can be shown that the time average force acting on an oscillating
magnetic dipole m(t) = Re

(
m0e−iωt) is given by Fm

i (r0) =
1
2 Re

{
µ0 m0j ∂i H0∗

j (r0)
}

, so
that, if the two dipole moments are present, the total force on the particle is

Fe
i (r0) + Fm

i (r0) =
1
2
Re
{

d0j∂iE∗0j(r0) + µ0 m0j ∂i H0∗
j (r0)

}
. (9)

Now, let us consider that the dipole is near a planar surface. In this case, in order
to compute the optical force on the dipole, we need to take into account in the previous
equations the electromagnetic field that is scattered by the neighboring surface and acts
back in the dipole. As usual, these scattered electromagnetic fields can be calculated with
the aid of the corresponding Green function G(r, r′; ω).

Let us first compute the electromagnetic force on an oscillating electric dipole at
position r0. Adopting m = 0 in the previous equation the time average of the electric force
reads

Fe(r0) =
1
2
Re
{

dj∇E∗j (r0)
}

, (10)

where, for simplicity of notation, we are omitting the subscripts 0 in the electric dipole
moment, as well as in the electric field. In order to compute the force on the electric dipole
using the previous equation, we need the scattered electric field, which can be written in
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terms of the scattered Green function as E(S)(r) = ω2µ0 G
(S)
e (r, r0; ω) · d. The scattered

Green function for a planar geometry is well-known in the literature [47], so that last
equation leads to

Fe
l =

1
2

ω2 µ0Re
{

d∗i dj ∂l G(S)
ij (z, z0; ω)

}
z=z0

= −1
4

ω2 µ0Re
{

d∗i dj

∫ ∞

0
dk‖ e2i kz0z0

∫ 2π

0

dϕ

(2π)2

k‖kl

kz0
Rij

}
(11)

for the l-component of the force, with kz0 =
√

k2
0 − k2

‖, k0 = ω/c and R given by

R = ∑
p,q={TE,TM}

rp,q ε+p ⊗ ε−q , (12)

where rp,q (p, q = TE, TM) are the usual Fresnel reflection coefficients for a p-polarized
incident wave being scattered into a q-polarized reflected wave, and ε±TE and ε±TM denote
the TE- and TM-polarization unitary vectors, respectively [47]. It can be shown that

Fe
x(z) =

1
8πε0

Re
∫ ∞

0
dk‖

[
i rTM,TM Im(d∗x dz) +

k0

kz0
rTE,TMRe (d∗y dz)

]
k3
‖ e2i kz0z , (13)

Fe
z(z) = −

1
16πε0

Re
∫ ∞

0
dk‖

[
|d‖|2

(
k2

0 rTE,TE − k2
z0 rTM,TM

)
+ 2 |dz|2 k2

‖ rTM,TM

+ 4 i Im(d∗x dy) k0 kz0 rTE,TM
]
k‖ e2i kz0z .

(14)

In the previous equations, we have already performed the angular integral in dφ and
|d‖|2 = |dx|2 + |dy|2; Fe

y is the analogous to Fe
x provided we replace the dipole moment

components properly, meaning dx → dy and dy → −dx.
For an isotropic material, like VO2, rTE,TM = 0. In this work, we will only be concerned

with cases in which the dipole components do not present a relative phase between them
and can be considered real. Consequently, Im(d∗xdz) = Im(d∗xdy) = Im(d∗ydz) = 0 and
the optical forces acting on the dipoles will have only a component perpendicular to the
VO2 film.

It is convenient to split the vertical force into two contributions, namely: Fe
⊥, which is

proportional to the component of the electric dipole moment perpendicular to the surface
dz, and Fe

‖, which is proportional to the component of the electric dipole moment parallel
to the surface d‖. These contributions can be written as

Fe
⊥

Γe
0 h̄k0

(z) = − 3
8k4

0

|dz|2
|d|2 Re

∫ ∞

0
dk‖ rTM,TM k3

‖ e2i kz0z , (15)

Fe
‖

Γe
0 h̄k0

(z) = − 3
16k4

0

|d‖|2

|d|2 Re
∫ ∞

0
dk‖

(
−k2

z0 rTM,TM + k2
0 rTE,TE

)
k‖ e2i kz0z . (16)

In order to deal only with dimensionless quantities, we normalized the force by the quantity
Γe

0 h̄k0, where Γe
0 = |d0|2 k3

0/(3πε0h̄) is the spontaneous emission rate of a two-level system
in the empty space with transition dipole moment equal to the dipole moment d0 (the
quantity Γe

0 h̄k0 can be interpreted as the recoil force on a quantum emitter whose transition
frequency is ω0). Recall that, if we take the average in all possible orientations, for an
isotropic emitter, |dz|2/|d|2 = 1/3 and |d‖|2/|d|2 = 2/3.

Let us now turn our attention to the calculation of the optical force on a magnetic
oscillating dipole. The procedure to compute this force follows the same steps as those
for the electric dipole case. The main difference is that we need now the magnetic Green
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function Gm(r, r0; ω), instead of the electric one. With this is mind, the optical force on the
magnetic dipole reads

Fm(r0) =
µ0

2
Re
{

mj∇H∗j (r0)
}

. (17)

As in Equation (10), we are omitting the subscripts 0 in the magnetic dipole moment and in
the magnetic field. The scattered part of the magnetic field at a generic position r created
by a magnetic dipole which is located at position r0 is given by H(S)(r) = G(S)

m (r, r0; ω) ·m.
The magnetic Green function can be written asG(S)

m (r, r′; ω) = µ−1
0
−→∇ ×G(r, r′; ω)×←−∇ ′ [60].

For a planar geometry, we find the expressions for the optical force on a magnetic oscillating
dipole in terms of the Fresnel reflection coefficients, namely:

Fm
x (z) =

µ0

8π
Re

∫ ∞

0
dk‖

[
i rTE,TE Im(m∗x mz)−

k0

kz0
rTE,TMRe (m∗y mz)

]
k3
‖ e2i kz0z , (18)

Fm
z (z) = − µ0

16π
Re

∫ ∞

0
dk‖

[
|m‖|2

(
k2

0 rTM,TM − k2
z0 rTE,TE

)
+ 2 |mz|2 k2

‖ rTE,TE

− 4 i Im(m∗x my) k0 kz0 rTE,TM
]

k‖ e2i kz0z .

(19)

Comparing the above formulas with those written in Equation (14), we see that they can
be mapped one into another when we make the replacements di → mi, rTM,TM → rTE,TE,
rTE,TE → rTM,TM, and rTE,TM → −rTE,TM.

Finally, as we have done for the optical force on the oscillating electric dipole, it is
also convenient to split the vertical force into two contributions, to wit: Fm

⊥ (proportional
to the component of the electric dipole moment perpendicular to the surface mz) and Fm

‖
(proportional to the component of the electric dipole moment parallel to the surface m‖).
For an isotropic medium, they are given by

Fm
⊥

Γm
0 h̄k0

(z) = − 3
8k4

0

|mz|2
|m|2 Re

∫ ∞

0
dk‖ rTE,TE k3

‖ e2i kz0z , (20)

Fm
‖

Γm
0 h̄k0

(z) = − 3
16k4

0

|m‖|2

|m|2 Re
∫ ∞

0
dk‖

(
−k2

z0 rTE,TE + k2
0 rTM,TM

)
k‖ e2i kz0z , (21)

where we applied an analogous normalization to the one used in Equations (15) and (16),
but now with Γm

0 = µ0 k3
0 |m|2/(3π h̄) being the spontaneous emission rate of a magnetic

emitter in empty space.

3. Results and Discussions

We now proceed to detailed discussions of our results regarding the optical forces
acting on oscillating dipoles close to a VO2 film. As previously mentioned, we performed
our analysis for the cases of electric and magnetic dipoles, and each of the following
subsections accounts for one of them.

3.1. Electric Dipole

In Figure 2, we plot the force on the oscillating electric dipole in the perpendicular
configuration, due to the presence of VO2 medium near the MIT, as a function of tempera-
ture. We chose z = 50 nm, so that we are in the near-field regime, and the electric dipole
is oscillating perpendicularly to the film. As expected, the material thermal hysteresis is
directly reflected in these curves. The most compelling feature that can be noted is the fact
that there are some values of wavelengths λ for which the attractive/repulsive character of
the force may be interchanged just by heating or cooling the VO2 film.
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Figure 2. (a,b): Force on the electric dipole in the perpendicular configuration normalized by Γe
0h̄k as a function of

temperature T for different values of wavelengths λ. The dipole is assumed to be at a distance z = 50 nm from the VO2 film.
In (c), we considered a dipole moment d0 ∼ 3× 10−27C ·m.

In order to furtherly exploit this property, Figure 3 displays the force dependence with
the wavelength λ of the radiation emitted by a dipole at the same distance z = 50 nm.
Note that, due to the thermal hysteresis, two distinct temperatures can correspond to
the same curve in Figure 3 depending on whether the system is being heated or cooled.
It can be spotted that the change in the force sign with temperature occurs only for the
short range 1.186 µm < λ < 1.228 µm (where the blue and the purple lines cross Fe

⊥ = 0).
For higher wavelengths, the force is always attractive, whereas, for smaller wavelengths,
always repulsive. It may also be noted from Figure 3a that, as the wavelength increases,
the force does not significantly change with λ for a fixed temperature. This behavior
can also be inferred from Figure 2c, which reveals that the relative change in Fe

⊥ at a
given phase reduces with λ. This remark should be considered carefully. We normalized
Equations (15) and (16) by Γe

0 h̄k to keep our results as general as possible, so that they
do not explicitly depend on any particular value of the dipole moment |d| (just on the
ratio dz/|d|). However, in doing so, Γe

0 h̄k ∼ 1/λ4 and our normalized results artificially
grow with λ4. To avoid any misleading conclusions, in Figures 2c and 3a, we plot the non-
normalized Fe

⊥ considering large λ intervals so that this artificial λ-dependence is absent.
In order to do so, we assumed a dipole moment d0 ∼ 3× 10−27 C ·m . This corresponds
to a transition wavelength of 1 µm and a static polarizability of 4πε0r3, with r = 10 nm.
Indeed, the Casimir-Polder force between a metallic sphere with a few nanometers radius
and a metallic wall at z = 50 nm can be estimated as FCP ∼ 10−15 N [17], comparable with
our results from Figure 3.
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Figure 3. (a) Force on the electric dipole (with dipole moment d0 ∼ 3× 10−27C ·m) in the perpendicular configuration as a
function of wavelength λ for different temperatures T. The dipole is assumed to be at a distance z = 50 nm from the VO2

film. (b) Details of the previous panel in the range 1 µm < λ < 1.4 µm. Dashed lines indicate the λ-interval for which the
force may change its sign depending on the temperature.

The profile at Figure 3 can be depicted in terms of the near-field regime of Equation (15).
The quasi-static limit, obtained by taking c→ ∞, leads us to

Fe
⊥ ' −

1
16πε0

3 d2
z,‖

4z4 ηe, ηe =
|εVO2 |2 − 1
|εVO2 + 1|2 . (22)

Figure 4 shows the dependence on the factor ηe with λ for different temperatures. By com-
paring it with Figure 3, one realizes that it exhibits exactly the same behavior, except for
the negative sign. In particular, the force changes sign at wavelengths for which |εVO2 | ∼ 1,
i.e., λ ∼ 1.2 µm. Around this value, there is a peak on the factor ηe, responsible for the non-
monotonic behavior with λ appearing in Figure 2a. Note that, for wavelengths λ & 2 µm,
this factor is basically independent of λ and its value in the dielectric and metallic phases
differs only by a fixed value. These features can be explained due to the behavior of Drude
and Drude-Lorenz permittivities εm and εd (Equations (2) and (3)) and it is also present in
Figure 3b. The permittivities approach a fixed value as ω → 0. Similar conclusions occur
for the case in which the electric dipole oscillates parallel to the film. In fact, the near-field
regime of Equation (16) furnishes Fe

⊥ ' 2 Fe
‖, so that Fe

‖ only differs from the perpendicular
contribution by a factor of two. This factor can be physically interpreted in terms of the
field created by a static electric dipole. At a given distance from the dipole, this field has
its modulus along the dipole direction twice as large as its modulus at the same distance
along a direction perpendicular to dipole.
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Figure 4. (a) Factor ηe as a function of wavelengths for different temperatures. (b) Details of the previous panel in the range
1 µm < λ < 1.5 µm.
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Figure 5 displays the normalized force Fe
⊥/Γe

0h̄k as a function of z at the insulator and
metal phases for different wavelengths λ. Note that the force oscillates around zero for
large distances and diverges with ∼ 1/z4 in the near-field regime. Curiously, for certain
wavelengths λ ∼ 1.2 µm, the force may diverge positively or negatively depending on the
phase in which the VO2 film is found. For instance, in the insulator phase (Figure 5a), Fe

⊥
diverges positively for λ = 1.2 µm, while, in the metallic phase (Figure 5b), it diverges
negatively. Conversely, the force Fe

⊥ for the others λ shown in Figure 5 does not change
qualitatively with the temperature.

Figure 5. Force Fe
⊥ in the perpendicular configuration normalized by Γe

0h̄k as a function of the distance at the insulator (a)
and metallic phases (b) for different wavelengths.

In order to unveil such behavior, Figure 6 illustrates how the force Fe
⊥ varies as a

function of the distance z for different temperatures at fixed wavelengths λ ∼ 1.2 µm.
For example, considering z . 50 nm in Figure 6b,c, Fe

⊥ can be either attractive or repulsive
depending on the temperature, but the same behavior is not verified in the other panels.
One may notice that, as λ increases, the force at very small distances changes gradually
from repulsive to attractive. Hence, the force may diverge negatively or positively as
z → 0 depending on λ and also on the temperature. Actually, this type of behavior was
already expected from Figure 2b, when we verified that at a fixed distance z = 50 nm
the force could change sign just through heating for wavelenghts around λ ∼ 1.2 µm.
Nevertheless, in studying this change of behavior as a function of z, one may find results
that are robust with respect to the distance z. In particular, Figure 6 reveals a new property,
to wit, the fact that the first equilibrium point of the system changes its stability character
with the temperature.

To further investigate this feature, Figure 7 shows the normalized position zeq/λ
of the first equilibrium point as a function of λ at fixed temperatures. Note that, for
1.17 µm < λ < 1.21 µm, zeq/λ varies discontinuously with λ, and the position of the dis-
continuity depends on the temperature. In fact, this discontinuous behavior is a conse-
quence of the fact that the equilibrium point changes from unstable to stable as λ increases.
Moreover, for any λ in between the aforementioned range, it is always possible to place
the dipole at a distance z at which the force will change sign just by heating (or cooling)
the VO2 film. For instance, the force Fe

⊥ on the dipole is repulsive at a distance z = 50 nm
for λ = 1.18 µm, regardless of the temperature (see Figures 2b and 6b), but it changes sign
for smaller z. In contrast, the force is always attractive for λ = 1.25 µm, regardless of the
distance z and the temperature of the film.
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Figure 6. Force Fe
⊥ in the perpendicular configuration as a function of the distance for different temperatures and fixed

wavelengths λ = 1.10 µm (a), λ = 1.18 µm (b), λ = 1.20 µm (c), and λ = 1.25 µm (d). The insets in (a,d) show the intercept
of these plots with x-axis.
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Figure 7. The normalized position zeq/λ of the first equilibrium point as a function of λ for different
temperatures. Dotted lines indicate discontinuities in zeq(λ) for each temperature.

We also investigate the electric field distributions of the scattered field (Figure 8)
at a given instant of time. Surely, the field distribution is qualitatively altered when
we compare insulator and metallic phases, regardless of the λ considered. Recall that,
at z = 50 nm, the force Fe

⊥ on the dipole changes from repulsive to attractive through
heating for λ = 1.2 µm, but it is always attractive for λ = 1.3 µm (Figure 2a). In terms
of the field distributions, this fact can be inferred from the relative field orientations at
the dipole position. The orientation changes from insulator to the metallic phase for
λ = 1.2 µm, but it is essentially the same for λ = 1.3 µm. We stress that it is not the
absolute orientation of the field that matters for unveiling the character of the force—after
all, the fields oscillate in time—but the fact that there is a relative orientation between the
two phases that are flipped.
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Figure 8. Scattered electric field distribution in the near-field regime for an oscillating electric dipole at x = 0 and z = 50 nm
(white point in the plots) perpendicular to the VO2 film in insulator (a,c) and metallic phases (b,d), considering the dipole
wavelength λ = 1.2 µm (a,b) and λ = 1.3 µm (c,d). The VO2 film lies in the region −200 nm < z < 0 nm and the sapphire
substrate lies in the region z < −200 nm. The electric field is normalized by its maximum value.

It is also interesting to explore the changes of the electric field intensities exhibited
in Figure 8. Recalling that the electric dipole is pushed to regions where the field intensiy
is greater, it can be realized that, in the situations depicted in Figure 8b–d, the dipole is
attracted to the VO2 film in agreement with Figure 6. Although the dipole is repelled by
the VO2 film in the situation described in Figure 8a, this is not seen so clearly in this panel.

In Figure 9, we calculated the scattered electric field distribution of an oscillating
electric dipole perpendicular to the VO2 film in the insulator phase with λ = 1.2 µm,
but now, in the far-field regime. In this region, we checked that there is no qualitative
changes between the distributions in metallic and insulator phases, as expected, since
the more distant the dipole is from the VO2 film, the less important are the boundary
conditions and, consequently, the less important is the difference between metals and
insulators. Note the transverse character of the field and its oscillatory behavior with the
distance, as expected. Observe that local minima are separated by a distance λ/2, and the
field is attenuated for large distances.



Universe 2021, 7, 159 12 of 20

Figure 9. Scattered electric field distribution in the far-field regime for an oscillating electric dipole at
x = 0 and z = 50 nm perpendicular to the VO2 film in insulator phase for λ = 1.2 µm. The electric
field is normalized by its maximum value in this region.

3.2. Magnetic Dipole

Figure 10 represents the magnetic force on the magnetic dipole as a function of
temperature for different values of λ. Besides the thermal hysteresis, note that for λ ∼ 1 µm
the force behavior is significantly different for perpendicular and parallel configurations
(Figure 10a,c), but it is not for λ & 2.5 µm (Figure 10b,d). Moreover, likewise the electric
dipole case, there are wavelengths for which the force changes sign just by heating the VO2
film. However, the wavelength interval for which this may occur is much larger here.

Figure 11 shows the magnetic force as a function of λ in both parallel and per-
pedicular configurations. Comparing Figure 11b,c, one may note that, in the interval
1 µm < λ . 2.5 µm, the forces for the perpendicular and parallel configurations of the
dipole are qualitatively different. Particularly, the force may change from repulsive to
attractive with heating in the interval 1.22 µm < λ < 1.31 µm for a magnetic dipole parallel
to the surface (see Figure 11d), but it is always repulsive in this range for a perpendicular
configuration. Nevertheless, heating changes the force from attractive to repulsive in a
much broader range than for the electric dipole case, i.e., λ & 2.5 µm, regardless of the
dipole orientation (specifically, for a parallel configuration, this happens for λ & 2.3 µm).
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Figure 10. Force on an oscillating magnetic dipole as a function of temperature for different wavelengths in both perpendic-
ular (a,b) and parallel configurations (c,d) for distinct wavelengths. The dipole is assumed to be at z = 50 nm from the VO2

film.
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z = 50 nm from the VO2 film. Dashed lines indicate λ-intervals for which the force may change its sign depending on
the temperature.
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In order to further clarify these results, we also performed an extreme near-field
(c→ ∞) approximation on Equations (20) and (21), obtaining

Fm
⊥ ' −

µ0

16π

2 m2
z k2

4z2 ηm
⊥, ηm

⊥ =
Re εVO2 − 1

4
, (23)

Fm
‖ ' −

µ0

16π

m2
‖ k2

4z2 ηm
‖ , ηm

‖ =
Re εVO2 − 1

4
+
|εVO2 |2 − 1
|εVO2 + 1|2 . (24)

By comparison of these expressions with Equation (22), one can realize that, besides the
factor 2 also present in the electric dipole case, the difference between parallel and per-
pendicular cases have now an additional term ηm

⊥. To clear up these differences, the fac-
tors ηm

⊥ and ηm
‖ are plotted in Figure 12. Note that, for λ & 2.5 µm, the contribu-

tion ηe = (|εVO2 |2 − 1)/|εVO2 + 1|2 only shifts up the force in the parallel configuration.
This behavior is in agreement with the plot of ηe in Figure 4b. In fact, a comparison
between Figure 10b,d determines that, apart from a shift and a factor, the terms in paren-
theses in Equations (23) and (24) have qualitatively similar behaviors. Despite that, for
1 µm < λ . 2.5 µm, the effect of ηe is non-negligible. This accounts for the differences in the
predictions of parallel and perpendicular configurations in this interval (see Figure 10a,c).
Specifically, Fm

‖ is non-monotonic with λ in the metallic phase and, more importantly, it
may change sign with heating in the interval 1.22 µm < λ < 1.31 µm (Figure 10c), which
does not happen for Fm

⊥ (Figure 10a).
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Figure 12. (a) Factors ηm
⊥ (dashed lines) and ηm

‖ (solid lines) as functions of λ for different temperatures. (b) Details of the
previous panel in the range 1 µm < λ < 3 µm.

The dependence of the force on the magnetic dipole with the term involving ηm
⊥

explains why the effect of changing the force sign is more robust in frequency for a
magnetic dipole than for an electric dipole. Strictly speaking, the lower the frequency,
the better is the distinction between metal and dielectric [42]. The distinction between the
force in the metallic and insulator phases is clearer for a magnetic dipole than for an electric
dipole since in the former the dependence onRe εVO2 is stronger (see Equations (22)–(24)).
The only exception is found for higher frequencies where the distinction between metal and
dielectric is blurred. Even though, in this region, we were still able to find a short λ-interval
in which a change in the sign of the force on the magnetic dipole occurs. However, the main
reason for that is different, relying on the contribution ηe with Re εVO2 ∼ −1 and small
Im εVO2 .

In addition, Equations (23) and (24) reveal a scaling law with the distance in the
form z−2. Comparison with z−4 scaling law for the electric case, given by Equation (22),
evidences a two powers difference between the electric and magnetic setups. It may be
attributed to the fact that the electric field of an oscillating electric dipole d = d0 e−iωt

has three terms (1/r, 1/r2 and 1/r3), whereas the electric field of an oscillating magnetic
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dipole m = m0 e−iωt has only two (1/r and 1/r2) [61]. The reason for that is very simple: a
static magnetic dipole does not create an electric field, so that there is no term proportional
to 1/r3 in the expression of the electric field produced by an oscillating magnetic dipole.
This fact also has interesting consequences in the dispersion force between an electrically
polarizable atom and a magnetically polarizable one, namely: while, in the former case, the
non-retarded force between them is proportional to 1/r7, in the latter, it is proportional to
1/r5 [62–64]. Likewise, the magnetic field of an oscillating magnetic dipole has three terms,
while the magnetic field of an oscillating electric dipole has only two. In other words,
the ultimate reason for such two powers difference is related to the fact that the magnetic
field of an electric oscillating dipole does not contain the static-like term. Moreover,
the scaling law z−2 of the force on a magnetic dipole compared to z−4 law of force on an
electric dipole accounts for the main reason why the electric contribution is dominant in
this near-field regime.

Figure 13 shows the force on a magnetic dipole as a function of z for two distinct
wavelengths: λ = 2 µm, for which the force is repulsive in the near-field; and λ = 4 µm,
for which the force changes sign in the near-field (recall Figure 10b). Besides the expected
oscillatory behavior for large distances, note that, for λ = 2 µm, the force Fm

⊥ diverges
positively as z → 0, regardless of the temperature, while, for λ = 4 µm, there are tem-
peratures for which the force diverges negatively as z → 0. In fact, the latter behavior is
present for λ & 2.5 µm. In contrast with the electric case, there are no wavelengths for
which the force on the magnetic dipole diverges only negatively as the distance z decreases
for different temperatures.

Figure 13. Force on the magnetic dipole Fm
⊥ as a function of distance z, for different temperatures and for (a) λ = 2 µm and

(b) λ = 4 µm.

These conclusions about whether the force diverges positively or negatively as z→ 0
can also be driven from Figure 14, that shows the position of the first equilibrium point
as a function of the wavelength λ. Similarly to the electric case, the discontinuity on the
plot informs about the stability of the equilibrium point. For λ < 2.3 µm, the first equilib-
rium point is always unstable. As λ increases, its stability depends on the temperature.
Interestingly, for T > 342 K, it is always unstable. This result is in agreement with the
prediction that there is a λ above which the force on the magnetic dipole in the perpen-
dicular configuration always changes its sign with heating, i.e., λ ∼ 2.3 µm. From the
previous discussion, we can verify that, in order to have the possibility of changing the
attractive/repulsive character of the force by varying the temperature, the position of the
dipole and its oscillating frequency need to be properly chosen.
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(µm)

Figure 14. The normalized position zeq/λ of the first equilibrium point of the magnetic dipole and
VO2 film system as a function of λ for different temperatures. Dotted lines indicate discontinuities
in zeq(λ) for each temperature. Note that, for T > 342 K, there are no discontinuities in the range
considered, and the first equilibrium point is always unstable.

Lastly, we computed in Figure 15 the magnetic field distributions for a perpendicular
magnetic dipole at a given instant of time. Our considerations are very similar to the ones
made before about the electric field distributions for an electric dipole (Figure 8). When
the force does not change its sign, the field at the dipole position also does not alter its
orientation, as occurs, for example, for λ = 2 µm. In contrast, when the force changes
from attraction to repulsion with heating, it can be seen through the modification on the
field orientation on the particle position (for λ & 2.5 µm). In particular, for λ = 2 µm,
the magnetic field at the dipole position points downwards in both insulator and metallic
phases (Figure 15a,b), while, for λ = 4 µm, it points upwards in the insulator phase
(Figure 15c) and downwards in the metallic phase (Figure 15d). Regarding the analysis
of the field intensities, we should point out that, differently from the electric case, it is
not possible to discern the sign of the force as the gradients are too smooth within the
panel’s resolution.

In Figure 16, we calculated the magnetic field distribution in the far-field regime
(compare with Figure 9). In this region, there is no qualitative changes between the
behavior of the distributions in metallic and insulator phases. Note that the separation
between two local minima is again given by λ/2, and the field is weakened and oscillates
with the distance.
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Figure 15. Scattered magnetic field distribution in the near-field for an oscillating magnetic dipole at x = 0 and z = 50 nm
(white point in the plots) perpendicular to the VO2 film in insulator (a,c) and metallic phases (b,d), considering the dipole
wavelength λ = 2 µm (a,b) and λ = 4 µm (c,d). The VO2 film lies in the region −200 nm < z < 0 nm, and the sapphire
substrate lies in the region z < −200 nm. The magnetic field is normalized by its maximum value in this region.

Figure 16. Scattered magnetic field distribution in the far-field regime for an oscillating magnetic
dipole at x = 0 and z = 50 nm perpendicular to the VO2 film in insulator phase for λ = 3 µm.
The magnetic field is normalized by its maximum value in this region.
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4. Final Remarks and Conclusions

In this work, we investigated optical forces acting on oscillating electric and magnetic
dipoles close to a VO2 phase-change film, in order to explore the effects of its well-known
metal-insulator transition and thermal hysteresis at relatively low temperatures. Addi-
tionally, we considered two distinct configurations of the dipoles in our setup, to wit,
perpendicular and parallel to the film. We verified the remarkable possibility of thermally
controlling the optical force on both dipoles in the near-field regime, once the appropriate
dipole frequency and the distance from the VO2 surface were chosen. More specifically, we
show that the thermal hysteresis allows for a change in the attractive/repulsive character
of the force just by heating (or cooling) the VO2 film. Interestingly, the force on electric and
magnetic dipoles shows different power laws with the distance from the film. Furthermore,
for magnetic dipoles, there are more wavelength intervals for which the force may change
its sign depending on the temperature. Our results also show that the optical forces are
comparable to the Casimir-Polder force on a nanosphere located at the same distance in a
similar setup, so that the resultant force on an illuminated nano-object may be controlled
or even reversed due to the presence of the VO2 film. Altogether, we hope that our results
further expand the broad spectrum of applications of these materials, providing alternative
ways to tune light-matter interactions using phase-change materials.
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