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Abstract: The Impact Monitoring (IM) of Near-Earth Objects (NEOs) is a young field of research,
considering that 22 years ago precise algorithms to compute an impact probability with the Earth did
not exist. On the other hand, the year 2020 just passed saw the increase of IM operational systems:
in addition to the two historical systems, CLOMON2 (University of Pisa/SpaceDyS) and Sentry
(JPL/NASA), the European Space Agency (ESA) started its own system AstOD. Moreover, in the last
five years three systems for the detection of imminent impactors (small asteroidal objects detected a
few days before the possible impact with the Earth) have been developed: SCOUT (at JPL/NASA),
NEORANGER (at University of Helsinki) and NEOScan (at University of Pisa/SpaceDyS). The IM
science, in addition to being useful for the planetary protection, is a very fascinating field of research
because it involves astronomy, physics, mathematics and computer science. In this paper I am
going to review the mathematical tools and algorithms of the IM science, highlighting the historical
evolution and the challenges to be faced in the future.
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1. Introduction

Since the time of formation (over 4.5 billion years ago), our planet has been hit many
times by natural objects which have orbits into the inner solar system. Such objects
are generally called Near-Earth Objects (NEOs): most of them are Near-Earth Asteroids
(NEAs, [1]), probably fragments of Main-Belt Asteroids (MBAs) that, after collisional events,
evolved (resonances and non-gravitational perturbations played a fundamental role) until
reaching an Earth-approaching orbit ([2]). The heliocentric orbit of a NEO has perihelion
distance q ď 1.3 AU. Based on their dynamical properties, NEAs can be classified into four
categories, each taking the name of the first object discovered belonging to it:

• Aten: Earth-crossing asteroids with semimajor axis a smaller than the Earth’s one;
• Apollo: Earth-crossing asteroids with semimajor axis a greater than the Earth’s one (it

is estimated that 62% of the total number of NEAs are Apollos);
• Amor: NEAs with an orbit comprised between the ones of the Earth and Mars;
• Atira: category introduced after the discovery of its first representative in 2003;

these objects have orbits contained entirely within the orbit of the Earth, implying
that their aphelion distance Q is less than 0.983 AU.

The first NEA, 433 Eros, was discovered in 1898, but the attention for NEOs increased
after the Apollo program in the 1960s and 1970s, when lunar craters were shown to be
derived from impacts ([3,4]). It is now generally accepted that they represent a hazard of
global disaster for human civilization. For this reason in the last 20–25 years we have seen
a huge progress in our ability to assess the risk of an asteroid or comet colliding with the
Earth. The tools and the techniques used to study the possibility of impact with our planet
come from several and different fields of research and they are evolving quickly.

The computation of an orbit of a small natural body (asteroid, comet) is not a simple
task because, in many cases, the observations are few. Even if a preliminary orbit is
available, the uncertainty is large and the only way to proceed is to consider a set of orbits
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belonging to a confidence region (CR, a subset of the 6-dimensional space of the orbital
elements) where the astrometric residuals are acceptable ([5]). Such orbits, obtained with a
sampling (random or geometrical), are called Virtual Asteroids (VAs). The goal of Impact
Monitoring (IM) is to understand if the CR contains some Virtual Impactor (VI), that is a
subset of initial conditions which when propagated shows an impact with the Earth ([6]).
A certain collision can be obtained in different dynamical ways (see the part of Section 2
about resonant returns) giving rise to a disconnected collision subset: in this case a VI is
a connected component. Once a representative of a VI (initial conditions that leads to a
collision) has been identified, an Impact Probability (IP) needs to be computed: in general
terms, the IP of a VI is proportional to the volume of the VI in the orbital elements space. If
we are looking for small IPs, the sampling should be very dense; but the real problem is how
to do this to ensure completeness to VI search, taking into account the computational costs.
One class of methods, including Monte Carlo (MC) and statistical ranging methods (see
for example [7,8]) uses random sampling of the CR to study the probabilistic distributions
of the orbits through the swarm of VAs. When we have to manage a large catalog of
objects and small probabilities with a small number of VAs, it is more cost-effective to
sample the CR with a geometrical object, such as a smooth manifold. At the end of 1990s
in Pisa we developed a class of 1-dimensional sampling methods based on the Line Of
Variations (LOV), a differentiable curve, which can represent, in some cases, the spine of the
CR ([9]). The LOV is sampled generating a swarm of indexed VAs, thus it is possible to
interpolate between consecutive VAs. The sampling could be done uniformly using the
curve parameter or, more recently, the possibility to collect points at fixed step in probability
has been introduced ([10]). Another interesting method for handling nonlinear propagation
of uncertainties and also to compute impact probabilities of NEOs has been developed in
the last ten years and it is based on differential algebra (see for example [11,12]).

Coming back to the history of IM, the first automatic system, called CLOMON,
was operational since 1999 at the University of Pisa: it was based on the LOV and tar-
get plane ([13]) tools. Around 2002 the second generation of IM systems started to operate:
CLOMON2 and Sentry ([14]) are two independent IM systems at the University of Pisa
(for an initial period also at the University of Valladolid, now managed also by SpaceDyS
srl, a spin-off company of the Celestial Mechanics Group of the University of Pisa ) and at
NASA Jet Propulsion Laboratory (JPL) respectively. Presently, a third system at ESA NEO
Coordination Center (NEOCC) has been added: AstOD has been developed by SpaceDyS
and uses algorithms similar to the CLOMON2 ones, but with a different computational
engine. All the three systems take the observations collected by the Minor Planet Center
minorplanetcenter.net (accessed on 20 March 2021) (MPC, operating at the Smithsonian
Astrophysical Observatory, under the auspices of Division F of the IAU, International
Astronomical Union) and compute the possibility of impact of a given NEO with the
Earth. During the time span over which observations are collected, CLOMON2, Sentry and
AstOD outcomes, eventually with the announcement that some asteroid has the possibility
of impacting, are published on the web: CLOMON2 results are published in the on-line
information system NEODyS newton.spacedys.con/neodys (accessed on 20 March 2021) ,
Sentry results are available at CNEOS cneos.jpl.nasa.gov/sentry (accessed on 20 March
2021) , while AstOD results are available at the ESA NEO portal neo.ssa.esa.int (accessed
on 20 March 2021) .

Such systems base their algorithms on the LOV tool to manage the uncertainty in
the OD of minor bodies. The LOV approach is very useful when the CR is elongated
and thin. When the observed arc is very short, such as 1˝, the CR appears like a flat
disk and the LOV definition is strongly dependent on the coordinates and units used:
the LOV is just a chord of that disk and this implies that the sampling of the curve is
not representative of the entire CR ([9,15]). Unfortunately this is indeed the case of very
small objects that could impact our planet a few days after the discovery. We know that
small asteroids are expected to strike the Earth every few years and, since such objects
are likely to be observed only shortly before the impact, it is important to succeed in an

minorplanetcenter.net
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early recognition of hazardous objects. When an object is first observed, the available data
are so few that the differential corrections procedure of finding a least-squares orbit could
fail and thus they could not permit the determination of a well-constrained six-parameter
orbit. Therefore, the short arc OD is a crucial issue and the timing is essential because
we are interested in a rapid follow up of the object, to investigate whether could be or
not an imminent impactor. Three automatic systems were developed recently, SCOUT
(at JPL/NASA, [16]), NEORANGER (at University of Helsinki, [17]) and NEOScan (at
University of Pisa/SpaceDyS, [18]). The system developed in Pisa, NEOScan, consults the
NEO Confirmation Page (NEOCP) of the MPC every two minutes, extracting data and
running the algorithms based on the Admissible Region (AR) tool that is widely used in
the asteroid OD ([19,20]) and also in the space debris OD ([21–25]). However, the core of
the short term OD method is the computation of the Manifold Of Variations (MOV, [26,27]),
a 2-dimensional compact manifold parameterized over the AR. The MOV represents the
2-dimensional analogue of the LOV, thus it is used to sample the set of possible orbits as
a starting point for the short term IM. The goal of NEOScan is to detect all the possible
VIs down to a probability level of about 10´3, called completeness level ([10]): the choice of
10´3 has been done because there is no interest in lower probability values, given that it is
fundamental to avoid unjustified alarms.

In this paper we are going to review the mathematical tools and algorithms of the IM
science, highlighting the historical evolution and the challenges to be faced in the future.
The paper is structured as follows.

In Section 2, after a very brief introduction on the Minimum Orbit Intersection Distance
(MOID), we illustrate the analytical theory of close encounters of a small body with a planet
following the paper of Valsecchi et al. ([28]). Such theory is an extension of the one exposed
by Öpik ([29,30]). Öpik developed the theory only for the case in which the orbit of the small
body and the one of the planet are actually touching, that is the MOID is zero. Moreover,
the original theory did not consider that the subsequent encounters of the small body with
the same planet (or even with another one) are not independent from the occurrence of
the previous ones. Valsecchi et al. extended the Öpik theory of close encounters to near
misses, which can occur also for a finite value of the MOID, and explained analytically the
key mechanism of resonant returns. The analytical theory is a powerful tool to understand
the chaotic dynamics of a NEO deriving from close approaches.

Sections 3 and 4 deal with the elements of the OD problem: the observations and the
management of the uncertainty. After the definition of discovery and a brief introduction
to surveys (including the description of the fly-eye telescope, that is probably the most
promising IM programme that has been established to date), we will describe the LOV
method, very useful when there is one predominant direction of uncertainty, the so-called
weak direction. When a small body is observed for a few nights and the arc is short, the LOV
definition is not applicable and we need to switch to a 2-dimensional approach using the
AR and the MOV.

In the Section 5 we describe, both in case of classical IM and in the case od short term
IM, the algorithms to find VIs and to compute IPs. Moreover a detailed analysis of the
2018LA imminent impactor case will be shown.

The Section 6 is devoted to draw a possible scenario for improving the IM systems
and to highlight some challenges to face in the future.

2. Close Encounters: Öpik-Valsecchi Theory

A close encounter or close approach of a NEO is defined as a passage of the small
body near the Earth: with the word near we could mean inside the sphere of influence
of our planet or, as we usually do, consider a distance from the Earth less than 0.05 AU.
A necessary condition to have a close approach is that the MOID between the orbit of the
minor body and that of the Earth is small.

The MOID is a measure for the distance between the orbits of the NEOs and of the
Earth, not considering the positions that the bodies occupy in them. As such, the MOID can
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act as an early warning indicator for collisions and it also can be used to create a priority list
for follow-up observations, both in case of large NEOs ([14,31]) and imminent impactors
(ref. [32]). A large MOID between an asteroid and the Earth indicates that the asteroid will
not collide with our planet in the near future, while asteroids with a small MOID should
be carefully followed because they could become Earth impactors.

In the scientific literature, there are various papers exploring with analytical and
numerical methods the computation of the MOID: see for example [33–38]. However,
an important result is about the computation of the uncertainty of the MOID ([39,40]):
in fact, the uncertainty in observations propagates to orbits and therefore to the MOID
computation. In [39] a deep analysis of the Keplerian distance function between two
confocal orbits was conducted arriving to a regularization for some minimal distance
maps giving the locally minimal values of the distance between two points on the two
orbits. Thanks to this regularization, it is possible to define a meaningful uncertainty
for the MOID also when there are orbit crossings; moreover, the definition of a MOID
uncertainty permits to detect collisions or close approaches between two celestial object
moving approximatively on these orbits, with important consequences in the study of
their dynamics.

The first mathematical theory of planetary encounters was formulated by the Estonian
astronomer Ernst Öpik, who hypothesised that the motion of a minor body could be treated
as the composition of the solutions of different two-body problems ([29]). According to
Öpik’s theory, as explained in [30], the orbit of the object can be considered elliptical
and heliocentric until it enters the region in which the dynamics is dominated by the
gravitational attraction of a planet. At that point the trajectory becomes an hyperbola
branch with focus in the planet, until the object leaves the sphere of influence of the planet
on a new elliptic heliocentric orbit, whose initial conditions are given by the solution of
the hyperbolic two-body problem. Öpik’s theory, although it is the basis for any model
of planetary encounters, has been modified by Valsecchi ([28]) to include two aspects that
were initially not taken into account: a) the original theory was only valid for cases of actual
intersection between the orbits of the asteroid and of the planet, while leaving out the
interesting events of near misses; b) each encounter with the same planet is not independent
of the previous one. This second point is the subject of the theory of resonant returns in
which the important concept of keyhole is defined.

2.1. Target Planes

The geometry of a close approach can be described using the so-called Target Plane
(TP) or b-plane (in the literature the impact parameter is also indicated with uppercase
letter B, e.g., in [41]), a plane passing through the center of the Earth and orthogonal to the
incoming asymptote of the hyperbolic geocentric orbit of the asteroid (see Figure 1). The
orbit of the small body is then completely described by a set of elements that includes two
coordinates (ξ, ζ) on the TP, two angles (θ, φ) describing the orientation of the plane, the
size U of the escape velocity and the time t̄ of the encounter (see Figure 2). The impact
parameter b is the distance of the position of the object on the TP to the origin: b2 “ ξ2 ` ζ2.
In this way the encounter can be modelled as a planetocentric two-body scattering event.

Following [42], if we use a geocentric reference frame pX, Y, Zq (the Y-axis coincides
with the direction of motion of the Earth, the Sun is on the negative X-axis and the Earth is
considered on a circular orbit around the Sun) then the components of the unperturbed
geocentric velocity vector ~U of the small body with respect to Keplerian elements are
(a system of units such that the distance of the planet from the Sun is 1 and the period of
the planet is 2 π is used):

»

–

Ux
Uy
Uz

fi

fl “

»

–

˘
a

2´ 1{a´ ap1´ e2q
a

ap1´ e2q cos i´ 1
˘
a

ap1´ e2q sin i

fi

fl
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Figure 1. Target Plane for a generic planetary encounter, modelled as a scattering problem in a central field.
The distance B between the center of the planet and the intersection between the TP and the incoming asymptote
of the hyperbolic orbit is the impact parameter of the encounter.

The planetocentric velocity is

U “

c

3´
1
a
´ 2

b

ap1´ e2q cos i “
?

3´ T ,

where T is the Tisserand parameter with respect to the planet

T “
1
a
` 2

b

ap1´ e2q cos i .

The angles θ and φ defining the direction of the incoming asymptote are defined as

»

–

Ux
Uy
Uz

fi

fl “

»

–

U sin θ sin φ
U cos θ

U sin θ cos φ

fi

fl

and, conversely
„

cos θ
tan φ



“

„

Uy{U
Ux{Uz



.

As explained in [41,43], the ~ζ direction is oriented opposite to the projection of the
heliocentric velocity of the Earth on the TP, thus is related to the along-track position of the
NEO. This means that the coordinate ζ contains the information about how early or late
the minor body is with respect to the encounter with the planet. The ~ξ direction is defined
as ~ξ “ ~U ˆ~ζ{|~U| and its module |~ξ| approximates the MOID. A schematic representation
of the reference frame is reported in Figure 2.
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Figure 2. Left: B-plane with respect to the asteroid’s trajectory relative to the Earth. Right: B-plane coordinates
and interpretation. Figure adapted from Figure 1 in [43].

In this formalism, an impact can be defined as an intersection between the asteroid
trajectory and the cross section of the Earth on the TP, represented by a circle of radius

Rcross “ R‘

d

1`
2GM
RpU2 , (1)

greater than the actual radius R‘ of the Earth by a factor that accounts for gravitational
focusing. The asymptotic velocity U of the NEO for t Ñ ´8 is computed, as in [41],
from the conservation of energy:

E “
v2

2
´

µ

r
“

U2

2
“ ´

µ

2a
ùñ U “

c

µ

´a
. (2)

As an alternative to the TP, a planetary encounter can also be described by means of
the Modified Target Plane (MTP), passing through the centre of the Earth and orthogonal
to the velocity ~v of the NEA at the time of closest approach ([13]). Anyway the use of the
TP provides an advantage with respect to the MTP, since gravitational focusing introduces
a nonlinear deformation in the vicinity of an impact, thus the direction of~v can vary greatly
in a small uncertainty range. This implies that it might not be the same for all of the VAs
that belong to the same object. On the other hand, the direction of ~U is unaffected by the
encounter, since the incoming asymptote does not change, allowing representing all the
VAs on the same TP. The MTP is mainly used in the frame of the imminent impact problem,
where the gravitational focusing does not affect so much the VAs orbits (see Section 5.2).

In its original formulation, Öpik’s theory of close encounters did not use a complete set
of state variables. In the extension presented in [28] a complete set of elements is introduced:
U, θ, φ, ξ, ζ and the time t0 of the ecliptic crossing by the small body. These variables are
not canonical and in [44] the author proved that a set of canonical variables containing
some information about the position of the object on the b-plane does not exist.

2.2. Consequence of the Encounter

The effect of the close approach is the rotation of ~U into ~U1, aligned with the outgoing
asymptote, without changing the length: U “ U1. The angle γ of deflection between the
two vectors depends on U, the mass of the Earth m, and the impact parameter b (c “ m{U2

needs to be small to apply Öpik’s theory):
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tan
γ

2
“

m
bU2 “

c
b

cos γ “
b2U4 ´m2

b2U4 `m2 “
b2 ´ c2

b2 ` c2 (3)

sin γ “
2mbU2

b2U4 `m2 “
2bc

b2 ` c2 ; (4)

The angles θ1 and φ1, defining the direction of the post-encounter velocity vector ~U1,
can be obtained in terms of θ, φ, γ, ψ (this last angle is the polar angle on the TP which
specifies the position of the small body) by

cos θ1 “ cos θ cos γ` sin θ sin γ cos ψ

tanpφ´ φ1q “
sin γ sin ψ

sin θ cos γ´ cos θ sin γ cos ψ

tan φ1 “
tan φ´ tanpφ´ φ1q

1` tan φ tanpφ´ φ1q

cos φ1 “
1

b

1` tan2 φ1

sin φ1 “ cos φ1 tan φ1.

2.3. Resonant Returns and Keyholes

Using the units introduced before, the orbital period of the Earth is 2π, and that of
the asteroid after the close approach is 2πa13{2. If the two periods are commensurable,
that is a13{2 “ k{h with h and k integers, then after h periods of the asteroid k periods of
the Earth have elapsed, and both the Earth and the small body will be back again in the
same position of the previous encounter. Such a subsequent encounter is called a resonant
return. Also if the ratio of the period is not exactly k{h, but is close, a subsequent encounter
can take place, but the Earth will be earlier or later for the encounter than it was at the
previous one. The new close approach conditions can be computed analytically and all the
computations can be found in [28].

An important advantage of an analytical, albeit approximate, theory of planetary
close encounters is that it gives us a key to understand the divergence of orbits due to
repeated close planetary encounters, enabling the study of chaotic phenomena. It also give
the possibility to study in a simple way the chance of collision of a minor body with the
Earth. The key concept is that of keyhole. Such term has been introduced by Chodas ([45])
to denote the small regions of the b-plane of a specific close encounter such that, if the
asteroid passes through one of them, it will hit the planet at a subsequent return, i.e., a
keyhole is simply one of the possible pre-images of the Earth’s cross section on the b-plane.
The expression keyhole may also be used to indicate a region on the b-plane leading not
necessarily to a collision, but to a very deep encounter. Thus, a keyhole is tied to a specific
value for the post-encounter semimajor axis a1, i.e., to the value allowing the occurrence of
the next encounter at the given date. The analytical description of a keyhole is quite simple
as well as its geometrical representation on the TP (see [28]).

3. Observations

The process by which a NEO is discovered and its orbit determined starts with
observation, that is the recording of the position of an object on the celestial sphere, in
order to acquire astrometric information. Depending on the kind of telescope used for the
detection, the observation can be of optical or radar type.

An optical observation gives the position of the object in the sky using two angles,
usually right ascension (indicated with RA or α) and declination (DEC or δ). Optical
observations also allow measuring the apparent magnitude through photometry.
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Radar observations require the vicinity of the object to be performed successfully, since
the signal to noise ratio for a target at distance r is proportional to 1{r4. The advantage is
an increase of accuracy in the astrometry, with respect to the optical case. The information
provided by radar observations includes astrometry in terms of range and range rate with
respect to the observer’s position, but also shape, size and rotational state of the object.

Observations are performed all around the world both by professional institutions
and amateur observers, and are then submitted to the MPC, which is responsible for
the designation of minor bodies in the solar system (according to the precepts dictated
by the IAU) and for the efficient collection, computation, checking and dissemination of
astrometric observations and orbits for asteroids and comets. Newly observed objects
waiting to be confirmed as NEAs are posted on the NEOCP with a temporary designation
until a reasonably reliable orbit becomes available. The page can also generate rough
ephemerides for the objects in the list to facilitate the observers in their follow-up.

3.1. Surveys

A survey is a project aiming at collecting observations for the largest and most repre-
sentative sample of objects possible. The need for a NEO survey, aimed at the establishment
of a complete catalogue of the Earth-threatening objects, was addressed for the first time in
1992 by NASA through a workshop establishing the Spaceguard project ([46]), with the goal
to identify at least 90% of all NEOs with diameter greater than 1 km by the end of 2008.
An international foundation with the same name, dedicated to planetary defense from im-
pacting small bodies, was established in 1995, when Spacewatch, the first telescope network
dedicated to NEOs, was built and became operational. Since then, firstly to achieve the
Spaceguard goal, then to reduce the completeness diameter as much as possible, numerous
surveys have been conducted, and their results in terms of numbers of objects discovered
are shown in Figure 3.

Figure 3. Timeline of NEO discoveries by survey. From https://cneos.jpl.nasa.gov/stats, (accessed on 20 March 2021).

The main ones are Spacewatch, LINEAR (Lincoln Near-Earth Asteroid Research),
NEOWISE (formerly Wide-field Infrared Survey Explorer) and Pan-STARRS (Panoramic
Survey Telescope and Rapid Response System). A brief description of their peculiarities
can be found in [47].

https://cneos.jpl.nasa.gov/stats
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3.2. The Fly-Eye Telescope

Currently under development, the NEOSTEL Fly-Eye telescope is a new instrument
expected to discover NEOs up to apparent magnitude 21.5, thanks to its wide survey
observing strategy. The large field of view (6.7° ˆ 6.7°) will allow scanning 2/3 of the
visible sky three times per night and detect objects candidate for hitting the Earth a few
weeks or days in advance of impacts. In other words, once the Fly-Eye will start operations,
we expect an increment in the number of imminent impactors (see Section 5.2). This will
require an update of the currently available orbit determination methods and tools to
improve the results in cases whose time span between discovery and possible impact is
very short.

The first Fly-Eye telescope will be located in the site of Monte Mufara (Palermo, Italy)
and will represent the core of the NEO optical observation network that ESA aims to build
in the frame of its Space Situational Awareness (SSA) programme. The Fly-Eye telescope is
named after its innovative core optics, consisting of a configuration of 16 distinct beams,
the outputs of which recombine to form a large field of view image of the sky, similar
to how the eyes of a fly work. The 16 optical channels are equivalent and, although
independent of each other, share a common spherical primary mirror. The modularity of
the structure allows for the channels to be added progressively, with no need to modify the
already operational ones. Thanks to this characteristic, the deployment of the telescope
could be split in two phases, the first of which led to the building and factory testing
of an already functional instrument capable of observing half of the total field of view
(ref. [48]). In the second one, the structure with the remaining eight optical channels, will
be completed and the installation at the selected final location performed. The architecture
of the telescope consists of three main structures: the primary mirror, a centre piece and
the secondary structure hosting the optical channels. The secondary structure is composed
by the Central Beam Shaper (whose core part consists of a 16 facets beam splitter), the 16
optical tubes and a mechanical system for alignment of the secondary elements and the
overall telescope structure. A state of the art CCD image-recording element is placed on the
focal plane of each optical channel. To reduce the effect of thermal noise, each CCD sensor
is operated in a vacuum chamber and kept at ´50 °C by means of a Peltier electric cooler.
Furthermore, NEOSTEL will be provided with a low-noise equatorial mount, allowing fast
repositioning and damping of every vibration prior to image acquisition.

The location chosen for the first Fly-Eye telescope is atop the 1865 m a.s.l. Monte Mu-
fara in Sicily, where a dedicated seeing monitoring system, provided with a meteorological
station has been installed to collect statistical information about the expected observing
conditions. In the building of the dome that will host the telescope, special attention is
being paid to elimination of any temperature gradient that might affect the acquired images.
In an estimation by means of a Monte Carlo simulation, the telescope is expected to detect
2.8 impactors per year (allowing 365 clear nights per year, thus clearly an overestimation).
The number is expected to rise to 4.1 detections per year after the implementation of a
second telescope, which is planned to be installed in the southern hemisphere.

3.3. Discovery

Moving objects are often discovered comparing several digital images of the same
portion of the sky, taken in a time interval of 15 min to 2 h (a method used to detect transients
in general, known as blinking), singling out the objects that change their position with
respect to the stars in the passing from one image to the next. A collection of astrometric
measurements obtained from images that could correspond to the same moving object is
called a tracklet. Tracklets are then compared and linked, when possible, in order to obtain
enough information to compute an orbit. We define a Too Short Arc (TSA) as an ensemble
of one or more tracklets that does not contain sufficient information to calculate curvature,
which is assumed to be significant if
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χ2 “

„

κ
9η

T

Γ´1
pκ, 9ηq

„

κ
9η



ą χ2
min (5)

where η “ ||~v|| “
b

9α2 cos2pδq ` 9δ2 is the proper motion of the object and

κ “ pδ2α1 ´ α2δ1q cos δ` α1p1` δ12q sin δ (6)

is the geodesic curvature of its path as a function of the derivatives of α and δ with respect to
the arc length s, which is a parameter defined by ds{dt “ η. The normal matrix Γ´1 is the
inverse of the covariance matrix Γ. Thus, this definition of TSA depends on the choice of
the control value χ2

min.
Given N chronologically consecutive TSAs, they can then be combined to form an

arc of type N if each couple of consecutive TSAs, once joined, shows significant curvature.
By this definition, observations of NEOs taken on a single night often form an arc of type
ě 2, sufficient to compute an orbit. According to the definition given in [49], a new object
is discovered when three requirements are simultaneously fulfilled for the first time:

• an arc of type ě 3 is available for the object,
• a Least Squares (LS) orbit is computed and it fits the observational data with residuals

compatible with the current error model,
• enough photometric information to compute the absolute magnitude is available.

4. Managing the Orbital Uncertainty

The main problem to address in IM is the management of the uncertainty deriving
from the observations and the orbit computation. In particular, when a small body has just
been discovered, the preliminary orbit is poorly constrained because of the observations
span only a short arc. There are cases where is possible to apply a LS method and to
converge to a nominal solution; but also orbits near the nominal one could be acceptable
as solutions, because they have a Root Mean Square (RMS) error of the residuals not
significantly above the minimum. The best method to represent this situation is to define
a CR or uncertainty region Zpχq in the 6-dimensional space of orbital elements: an orbit
belongs to the CR if the penalty (increase in the target function with respect to the minimum,
see Appendix A for more details) does not exceed some threshold depending on the
parameter χ.

Many applications, including the one we are interested in this paper, require the use
of the entire set of orbits belonging to the CR. Since the N-body problem, that is the basic
dynamical model for asteroids, is not integrable, it is not possible to obtain all the orbits
for some time span in the future or in the past. The only thing to do is to compute a finite
number of orbits by numerical integration.

The CR is sampled by a finite number of VAs, ranging between a few tens and a
few tens of thousands, depending on the application and on the available computing
power. It is possible, and in some cases it is achieved, to select the VAs at random, as
the so-called MC methods do. However, the idea developed at the end of 1990s was to
consider a geometrical object, the Line Of Variations (LOV), a one-dimensional segment
of a curved line in the initial conditions space. There are several different ways to define,
and to practically compute, the LOV, but the general idea is that a segment of this line is
a kind of spine of the CR. In [5] the LOV is seen as a solution of an ordinary differential
equation with a vector field defined by the weak direction (the direction of the eigenvector
of the normal matrix relative to the smallest eigenvalue) and considering the nominal
LS solution as initial condition. This kind of definition is not stable, in particular when
there is a largely dominant weak direction, which is precisely where the LOV is most
useful. To face this problem, a corrective step in the algorithm was introduced, using
differential corrections constrained on the hyperplane orthogonal to the weak direction. In
this way an approximation of the LOV can be computed in a stable manner. This algorithm,
called constrained differential corrections, is useful also to define the LOV as set of points
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of convergence ([9]). Doing so, the definition corresponds to the numerically effective
algorithm implemented for the sampling of the LOV. Furthermore, this definition can be
used also when the nominal solution either does not exist or has not been found. The
algorithm described naturally samples the LOV, generating a certain number of VAs equally
spaced in the parameter used to define the curve (usually this parameter is called σ). As
said, in recent years, the possibility to sample the LOV with constant steps in probability,
considering a Probability Density Function (PDF) on it, has been introduced ([10]).

The dynamics of the LOV points is very interesting because they are in order. For example,
if in the time span between the time of initial conditions and that of prediction is long,
but strong perturbations (e.g., planetary close encounters) are not experienced, then the
VAs will stay approximately uniformly spaced as at the initial time. If close approaches
occur during the time of propagation, the prediction can become much more difficult.

Another kind of problem arises when the observational data are poor, for example
due to too few days of observations. In this case the CR has a two-dimensional structure
and the selection of a LOV is quite arbitrary because of a strong dependence on the
coordinates used for the preliminary OD. The best strategy to face this situation is to
sample the CR using different LOVs (it is possible to exploit the other directions defined by
the eigenvectors of the normal matrix) or using a two-dimensional sampling, as described
in the next subsection.

4.1. The Admissible Region

In the last 20 years there has been a huge increase of observations classified as Too Short
Arcs (TSAs): a TSA is a set of observations which span a too short arc on the celestial sphere
to perform a full OD (full means arriving to a LS solution). In [19], the authors started to
face the problem of the existence of large databases of TSAs. In particular, they identified
a TSA using an attributable, a set of four quantities (two average angular coordinates and
two corresponding angular rates) at a reference time (usually the mean of the observing
times). The attributable is computed using a linear regression or a polynomial fit on the
observations detected and therefore leaves undetermined the radial geocentric distance
of the object r (range) and its time derivative 9r (range-rate). However the attributables are
sources of useful information and in order to exploit it the Admissible Region (AR) has
been defined: it is a compact region in the pr, 9rq plane, over which is possible to define a
2-dimensional manifold, the Manifold Of Variation (MOV, see Section 4.2). Sampling the
AR by Delaunay triangulation allows to consider the nodes as VAs with a two dimensional
structure. In [15] the idea to use this structure to search for VIs has been explored, but the
feedback has been negative: after a propagation, the resulting structure was too complex to
perform a significant analysis. However, the idea of a 2-dimensional manifold, the so called
Manifold Of Variations (MOV), will come in handy for the problem of imminent impactors
(Section 5.2).

Now, let us introduce the fundamental concepts of attributable and AR. Let us consider
an asteroid, at time t, with a heliocentric position P and observed from the Earth, which is
at the same time in P‘. Then let pr, ε, θq P R` ˆ r´π, πq ˆ p´π{2, π{2q be spherical polar
coordinates for the geocentric position P´ P‘.

Definition 1. An attributable is defined, at a time t (the mean of the times of the observations), as
a set of four quantities

pε, θ, 9ε, 9θq P r´π, πq ˆ p´π{2, π{2q ˆR2

obtained by a polinomial fit starting from the available observations.

The reference system defining the angles pε, θq can be an equatorial reference system
(e.g., J2000), so the angles are the right ascension α for ε and the declination δ for θ,
or an ecliptic system, but the equations defining the AR do not change. The information
on the average apparent magnitude h, if available, can be attached to the attributable.
The range r and the range rate 9r are left undetermined by the attributable, but we can
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extract information using the hypothesis that the asteroid belongs to the solar system, but
not to the Earth-Moon system. To constrain the range and the range-rate and to define a
compact region in the pr, 9rq plane the following quantitites are used: the heliocentric two-
body energy Ed, the geocentric two-body energy E‘, the radius of the sphere of influence
of the Earth RSI and the physical radius of the Earth R‘.

Definition 2. Let us suppose to have computed an attributable from a TSA. The Admissible Region
(AR) associated to the attributable is the domain

D “ tD1 YD2u XD3 XD4 .

where

(A) D1 “ tpr, 9rq : E‘ ě 0u (A is not a satellite of the Earth) ;
(B) D2 “ tpr, 9rq : r ě RSIu (the orbit of A is not controlled by the Earth) ;
(C) D3 “ tpr, 9rq : Ed ď 0u (A belongs to the Solar System) ;
(D) D4 “ tpr, 9rq : r ě R‘u (A is outside the Earth) .

In [19] the authors found analytical formulas based on the Definition 2 and they
proved that the AR consists of at most two connected components, and that it is compact
being the inside of a finite number of closed continuous curves. Once the AR is defined,
we can sample it (by a grid or by triangulation) and each node defines the orbit of a VA,
expressed as (considering, for example, that the angular coordinates are right ascension
and declination)

X “ rα, δ, 9α, 9δ, r, 9rs “ rA, Bs ,

where A “ pα, δ, 9α, 9δq and B “ pr, 9rq. Such elements are called attributable orbital elements
and we have to assign them an uncertainty. This case is quite different from the usual one
because a 6ˆ 6 covariance matrix is not available. Thus, the CR describing the uncertainty
of X “ rA, Bs can be defined by

ZXpσq “
!

rA, Bs
ˇ

ˇ

ˇ
pA´ A0q

T CA0 pA´ A0q ď σ2 and B P DpAq
)

(7)

where σ ą 0 is a parameter, A0 is the nominal (least squares) value of the attributable angu-
lar coordinates, and CA0 is the corresponding normal matrix. This set is not a Cartesian
product, although in many cases it can be approximated by the Cartesian product of a con-
fidence ellipsoid in the A space times the AR computed with the nominal attributable A0:

Z0
Xpσq “

!

A
ˇ

ˇ

ˇ
pA´ A0q

T CA0 pA´ A0q ď σ2
)

ˆDpA0q . (8)

The quasi-product structure of Equation (7) and its approximation with the product of
Equation (8) play an important role in the process of prediction of future/past observations
with a formal uncertainty and in the process of identification, as described in [50].

4.2. The Manifold Of Variations (MOV)

Very Short Arcs (VSAs) are sequences of observations closely spaced in time, assumed
to be of the same physical object and with which it is possible to compute preliminary
orbits with their own uncertainty. Giving a look to the eigenvalues of the covariance
matrices of the preliminary orbits we can note that frequently there is not a predominant
eigenvalue, but there are two eigenvalues much bigger than the others. This means that
there is not just one direction of uncertainty and the CR has a 2-dimensional structure.
Therefore, as already anticipated, it is not sufficient anymore to sample one LOV: it could
be possible to compute several LOVs in different coordinates and then to go on with the
methods already explained, but it is more reliable to change the geometrical object used by
switching to a sampling by surfaces.
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The idea is to construct a cobweb covering the CR in the plane pr, 9rq using the level
curves of the cost function used to minimize the RMS of the observational residuals.
For each level curve, points corresponding to some fixed directions are selected and used
as VAs. Let us show how to do this construction starting from a least square solution and
its uncertainty (as described in [26]), represented by a 6ˆ 6 covariance matrix. We initially
create a regular grid of points (the nominal solution is, for simplicity, fixed in p0, 0q) in the
space of polar elliptic coordinates pR, θq, where 0 ď θ ă 2 π and 0 ď R ď MRMS (MRMS is
a parameter defining the maximum value of RMS that we consider reliable in our analysis).
Then we apply to each point of the grid the transformations described below, depending
on the covariance matrix of the preliminary orbit and on the orbit itself.

1. We switch from the grid in the space pR, θq to the range/range-rate plane using
the map

ˆ

r1

9r1

˙

“ R
ˆ ?

λ1 cos θ ´
?

λ2 sin θ
?

λ2 sin θ
?

λ1 cos θ

˙

V1 ,

where λ1 and λ2 are the eigenvalues of the 2ˆ 2 covariance matrix of the variable
pr, 9rq and V1 is the eigenvector corresponding to the greater eigenvalue λ1.

2. Since we have assumed that the nominal solution is in the origin of the range/range-
rate plane, we have to move all the points by the vector prnom, 9rnomq, that represents
the real position of the the preliminary orbit computed with a least square fit:

ˆ

r
9r

˙

“

ˆ

r1 ` rnom
9r1 ` 9rnom

˙

Figure 4 shows the cobweb sampling of the CR of asteroid 2004 FU4 with the first
17 observations. The variables are MRMS (corresponding to the maximum value of R),
the number of directions computed and the number of points in each direction.
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Figure 4. Asteroid 2004 FU4 with the first 17 observations: CR in the pr, 9rq plane, with maximum RMS equal to 4
and number of points equal to 1000 (100 directions and 10 points in each direction).

Since the orbits computed in this way are not so accurate we apply a differential
correction along each direction. Let us fix a direction h in the the pr, 9rq plane and let us
describe the recursive method applied:
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1. we start from the 6-dimensional preliminary orbit pA0, r0, 9r0q composed by a 4-
dimensional vector of elements A0 and by the projection pr0, 9r0q on the pr, 9rq plane;

2. we consider the next point pr1, 9r1q in the pr, 9rq plane along the fixed direction and we
construct the orbit pA0, r1, 9r1q;

3. we apply a differential correction constrained to the 4-dimensional vector A0 ob-
taining a new vector Ah

1 which gives us a new orbit pAh
1, r1, 9r1q corresponding to the

point pr1, 9r1q;
4. we repeat the previous steps analyzing all the points along the direction h.

We apply this procedure for each direction generating a set of 4-dimensional points Ah
i

which constitute a 4-dimensional manifold parameterized by the 2-dimensional cobweb.
We shall call this manifold the Manifold Of Variations (MOV). A formal definition of the
MOV can be found in [27]:

Definition 3. Given a subset K of the AR, we define the Manifold Of Variations to be the set
of points pA˚pr0q, r0q such that r0 P K and A˚pr0q is the local minimum of QpA, rq|r“r0 , when
it exists.

5. Impact Monitoring Overview

As seen in the previous section, the observational data provide a set of possible orbits,
but we do not know which is the real one. All these orbits belong to the CR; the goal of
IM is to establish if the CR of a given NEO contains a small subset of initial conditions
leading to a collision with the Earth (what we called VI). The collisional subset for a
given epoch may be disconnected, for example when the same collision can be reached
in different dynamical ways; in this case a VI is a connected component of the collisional
subset. The Impact Probability (IP) of a VI is roughly proportional to the volume of the VI
in the elements space. To find an initial guess belonging to the VI, the VI representative,
when the IP is very small, it is necessary a very dense sampling of the CR. The current
classical impact monitoring systems, CLOMON2, Sentry and AstOD use the LOV as a tool
to sample the CR. While Scout, NEORANGER and NEOScan use the MOV. In this section
we will describe the methods and the algorthms to search for VIs used by the classical IM
systems and by the systems developed for the imminent impactors.

5.1. Classical IM

The goal of IM is to find VIs and to alert the astronomical community of a potential
risk. The first thing to do when we are searching for VIs is to explore the CR sampling the
LOV (see Section 4) and obtaining an ordered set of VAs (also called multiple solutions).
Unfortunately such sampling is dependend on coordinate system, that is the multiple
solutions obtained depend on the coordinates used for the preliminary OD. The IM sys-
tems have the possibility to investigate different coordinate systems. CLOMON2 and
AstOD usually use Equinoctial elements, but also run in Cartesian coordinates; Sentry uses
Cometary elements but can optionally run in Cartesian or Keplerian. If the arc is short,
Cartesian coordinates are preferable.

Once the LOV has been sampled, each VA is propagated to some point in the future
(typically 100 years after the discovery), recording all the information about the close
approach. For each encounter, the goal is to find, among the LOV points, the minimum
possible approach distance. This task can be done performing a minimization of a function
of one variable r2, the closest approach distance (around a given date) squared, as a function
of the parameter σ along the LOV. The function r2pσq is differentiable, therefore it is possible
to search for zeroes of the derivative f pσq “ dpr2q{dσ. If there is a closed interval rσ1, σ2s

such that a close approach occurs (to the Earth and around the same epoch) for all initial
conditions corresponding to a parameter σ P rσ1, σ2s, and the values of the derivative at the
two extremes are f pσ1q ă 0 and f pσ2q ą 0, then there is at least one minimum of r2pσq inside
the interval. If the previous conditions are satisfied, the regula falsi algorithm provides an
iterative procedure converging to some stationary point (almost always a minimum).
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This approach is quite simple, but two problematic scenarios can appear. First, in order
to start such algorithm we need at least two consecutive VAs with encounters around the
same date, thus tracing two sequential points on the same TP. Second, the minimum
possible distance along the LOV could be more than one Earth radius and still an impact
could be possible, because the image on the TP of the entire CR is not just a line but has
some width.

The case of one only TP point is called singleton: the solution is to use a unidimensional
Newton’s method or a densification around the point ([51]). CLOMON2 and AstOD
implement a variant which searches for zeroes of f pσq with controlled length steps, in such
a way that divergence is not possible, provided that the image on the TP exists for some
neighborhood of the first LOV point. Nevertheless this method can fail because of strong
nonlinearity. Sentry ignores singletons applying densification in such cases.

CLOMON2 and AstOD algorithms use the so-called principle of the simplest geometry,
by which we suppose that the qualitative behavior of the LOV image on the TP is the
simplest possible with the available information on the TP points. Subsequent close
encounters make this behavior more complex with no absolute limit on the complexity of
the figure drawn by the LOV on a TP: Figure 5 shows a typical example of chaotic behavior.
As in fractal sets, smaller and smaller subintervals on the LOV can be distorted according
to a typical pattern. The principle of the simplest geometry allows the algorithms to stop
within acceptable computation times by not following finer and finer details.
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Figure 5. Figure from [26]. A trail of the asteroid 2003 UM3 on the TP of the Earth in 2040. Please note that the
information contained in the first and last point on TP would not be sufficient to understand the behaviour of the
LOV trace. The cross-section of the Earth is not to scale.

Once the minimum along the LOV has been found, we should show the existence of a
VI, a connected region in the CR leading to an Earth impact at the given date. If it exists,
we need to compute the associated IP. The TP point of minimum distance along the LOV
could be outside the impact cross section of the Earth and nevertheless a VI could exist:
this is because the image of the CR is not exacly a curve, but more like a 2-dimensional
strip around it. The basic approach is to linearize the map between the initial conditions
space and the TP; so the confidence ellipsoid in the initial conditions space is mapped onto
an elliptic disk on the TP. If this disk intersects the impact cross section there is a VI.
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To compute an IP, all the IM systems use the Gaussian formalism, starting from
the hypothesis that the residuals are Gaussian random variables. Therefore a Gaussian
distribution can be used to describe the set of initial conditions with the boundary el-
lipsoids of the CRs as level surfaces, and this distribution can be projected onto the TP
obtaining a normal distribution (in two dimensions) with the above mentioned ellipses
as level curves. The coefficients of the Gaussian distribution on the TP can be explicitly
computed ([13]) and a probability integral of this distribution on the impact cross section
can be computed ([14,26]). Due to the nature of normal distributions (always positive) also
for very distant close approaches, the IP would be positive; however, when the probability
formally computed in this way is very small, e.g., ă 10´11, the VI is just rejected.

Given a point on the TP, ~Ppσq “ pξ, ζq, the uncertainty associated can be represented
using an ellipse (projection of the confidence ellipsoid onto the TP) centered in the point.
The semimajor axis Λ is called stretching, while the semiminor axis w is called semi-width.
To express the PDF in a more understandable way, a rotation of the coordinates by the
angle ´αΛ between the major axis of the confidence ellipse on the TP and the ζ axis is
performed. The new rotated coordinates pξ1, ζ1q gives the possibility to express the PDF as
the product of the two densities

• ρ1puq “ 1?
2πw

exp
„

´ 1
2

´

u´ξ1

w

¯2


, along the width direction,

• ρ2pvq “ 1?
2πΛ

exp
„

´ 1
2

´

v´ζ1

Λ ` σ
¯2


, along the stretching direction.

Then the complete probability density is

ρpu, vq “
1

2πwΛ
exp

#

´
1
2

«

ˆ

u´ ξ1

w

˙2

`

ˆ

v´ ζ1

Λ
` σ

˙2
ff+

,

and the probability of an Earth impact is

IP “
ż ż

D‘
ρpu, vq dv du ,

where D‘ is the impact cross section on the TP (note that the disk has a radius b‘,
larger than the physical radius of the Earth R‘, because of gravitational focusing). Ob-
viously, it is not necessary to compute this integral where the PDF is negligible, so the
integral can be computed over a finite TP domain with a maximum extension of 8 w:

IP “

rmax
ż

rmin

du

b

b2
‘´u2
ż

´

b

b2
‘´u2

ρpu, vqdv

where rmax “ minpb‘, ξ ` 8wq, rmin “ maxp´b‘, ξ ´ 8wq
The results obtained with this modelling are reliable until two conditions are fulfilled:

(i) the set of VAs obtained sampling the LOV is representative of the entire CR; (ii) the point
of closest approach along the LOV has a small distance from the center of the Earth, so the
linearization of the Gaussian PDF represents quite well the PDF at the Earth. However, such
conditions can drop, especially when the observations are few and the uncertainty large.
If the linearized Gaussian approximation fails, we can identify spurious VIs: they are cases
in which the approximated IP is non-negligible, while an exact probability computation
would give an actually vanishing result. The goal of IM is not to find all the VIs for a
given object or to avoid all the spurious ones. The basic requirement is to obtain a list
of VIs which is not empty when, and only when, the real list of VIs with non-vanishing
probability is not empty. Doing so, the asteroid can be labelled as to be reobserved, and
the new observations will allow recomputation. To face the problem of spurious VIs an



Universe 2021, 7, 103 17 of 28

algortihm has been developed. The spurious VI elimination algorithms of CLOMON2 and
AstOD are based on the fact that in order to prove the existence of a VI the representative of
the VI must be exhibited. These algorithms start from the TP point of the closest approach
and apply a Newton method to obtain an initial condition leading to a TP point inside
the impact cross section. If this iterative procedure fails, the VI is rated as spurious. If the
procedure converges to an explicit VI, the IP is rescaled by using the RMS of the observation
residuals; in practice, if the orbit of collision results in unacceptable residuals, the VI is
also considered spurious. Sentry has a different approach with spurious VIs, testing for
excessive nonlinearity at the point of closest approach to the Earth. If the LOV local
behavior is highly nonlinear (considering the curvature of the LOV and the rate of change
of stretching), then the VI detection is considered unreliable and discarded. This approach
has the opposite problem with respect to those of CLOMON2 and AstOD, in the sense
that some spurious VIs can be unfiltered. However, it is preferable to add to the list some
spurious VIs than to eliminate a significant VI. Obviously, the risk of rejecting a real VI is
present in all the approaches used, but such cases can be expected to have very small IPs
due to the extreme nonlinearity.

Communication of the Risk

The Torino impact hazard scale (TS) is a system designed to communicate to the public
the risk associated with a future Earth approach by an asteroid or comet. This scale,
which has integer values from 0 to 10 (0 means virtually no chance of collision, while 10
means certain global catastrophe), takes into consideration the predicted impact energy of
the event and the impact probability. It has been adopted by a working group of the IAU
in 1999 at a meeting in Torino ([52]) and revised in 2004 ([53]).

The Palermo Technical Impact Hazard Scale (PS) has been developed by and for NEO
specialists. The goal was to classify and prioritize potential impact risks spanning a wide
range of impact dates, energies and probabilities. PS values less than ´2 describe events
without consequences, while PS values between ´2 and 0 indicate situations that have to
be monitored. VIs with positive PS values will generally indicate situations that merit some
level of concern. The scale compares the detected potential impact with the background
risk, that is the average risk posed by objects of the same size or larger over the years until
the date of the potential impact. The scale is logarithmic: a PS value of ´2 describes a
potential impact event that is only 1% as likely as a random background event, a value of
zero indicates that the single event is just as threatening as the background hazard, and
a value of +2 indicates an event that is 100 times more likely than a background impact.
The primary reference for the Palermo Technical Scale is [54].

5.2. Short-Arc OD and Imminent Impactors

Short-arc OD indicates the capability to compute an orbit when an asteroid is first
discovered. In such cases we are interested in a fast follow-up in order to exclude that the
object could be an imminent impactor, which is an asteroidal object impacting the Earth
shortly after its discovery, within the same interval of observability (apparition). The few
observations permit to compute an attributable, but they leave almost unknown the range
and the range-rate. We can infer information using the AR (see Section 4.1) and some
ranging methods alternatives to the MC ones. There are two possible approaches to the
ranging methods: statistical ([7,8,17,55,56]) and systematic methods ([16,18,57]).

The original statistical ranging method ([7,8]) selects a pair of astrometric observations
and, then, the right ascension and the declination are randomly sampled. Candidate orbital
elements are included in the sample of accepted elements if the χ2-value between the
observed and computed observations is within a pre-defined threshold and the sample
orbital elements obtain weights based on a meticulous debiasing procedure. In [55] the
authors improved the statistical ranging by replacing the random sampling with the use
of a PDF that produces a chain of orbital elements in the phase space. This method is
called Markov-Chain Monte Carlo (MCMC) ranging method and it is based on a bivariate
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Gaussian proposal PDF for the topocentric ranges. Then, in [56] the authors have developed
a random-walk ranging method in which the orbital-element space is uniformly sampled,
up to a χ2 value, with the use of the MCMC method. The sample orbits obtain weigths
from the a posteriori probability density value and the MCMC rejection rate.

In [16,57] the authors introduce the so-called systematic ranging, which systematically
explores a raster in the topocentric range and range-rate space. This technique provides
a geometric description of the orbital elements as a function of range and range rate.
Systematic ranging also allows to identify regions of the phase space filled with impact
solutions and the corresponding impact times and locations.

In [18] the authors introduce a new approach to the systematic ranging, based on the
AR tool: in particular, the AR is scanned by a regular semi-logarithmic or by a uniform
grid and the MOV is computed. If a preliminary orbit exists, the MOV is compute as in
Section 4.2 using a cobweb. Sampling the MOV, a set of orbits (VAs) compatible with the
observations can be obtained and propagated into the future (usually 30 days from the
date of the observations) looking for VIs using the MTP tool.

A probability distribution on the MOV can be defined in order to compute the impact
probability associated to a given VI. The residuals Ξ can be assumed Gaussian random
variables with the following probability density

PpΞq “ Np0, ΓΞqpΞq “

?
det W

p2πqm{2
exp

ˆ

´
m QpΞq

2

˙

where W is the weight matrix, and m the number of observations. The choice of the
weights for each observatory is fundamental, and it has to take into account the fact that the
discovery observations are few and can sometimes not reach the precision usually assigned
to the observatory itself.

The a-posteriori probability density function for pρ, 9ρq is given in as:

Ppostpρ, 9ρq 9 PpΞpρ, 9ρqq Ppriorpρ, 9ρq

where pprior is a prior distribution on the sampled space. Some possible choices for the
prior probability are the following.

• Jeffrey’s prior. It has been used for the first time in [58]. It takes into account the
partial derivatives of the vector of the residuals with respect to the coordinates pρ, 9ρq.
Jeffrey’s prior tends to favor orbits where the object is close to the observer, because of
the sensitivity of the residuals for small topocentric distances.

• Prior based on a population model. This approach requires the choice of a metric on
the absolute magnitude that is not unit independent.

• Uniform distribution. This choice can appear simplistic, but it identifies the potential
impactors without particular problems.

The uniform distribution is a natural choice, because it represents a good compromise
between a simple approach and the good identification of potential impactors. In [18] a
new algorithm to propagate the probability density function back to the sampling space
without any a priori assumption has been presented. It is based on the law of transformation
of the Gaussian random variables and on the following spaces:

• S is the space of the sampling variables. It changes depending on the case we are
considering: S “ R` ˆR if the sampling is uniform in ρ, S “ R2 if the sampling is
uniform in log10 ρ, whereas S “ R` ˆ S1 in the cobweb case.

• K1 Ď K is the subset of the points of the admissible region such that the doubly
constrained differential corrections give a point on the MoV;

• M Ď R6 is the MoV, a 2-dimensional manifold in R6;
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• Rm is the residuals space. The residuals are a function of the fit parameters, that is
Ξ “ Fpxq, with F : R6 Ñ Rm a differentiable function, and we define the manifold of
possible residuals as V “ FpR6q.

Then the following chain of maps is considered:

S
fσ
ÝÑ R` ˆR Ě K1

fµ
ÝÑ R6 ĚM F|M

ÝÝÝÑ V

and their Jacobian determinants are used to compute the probability density function on S.
In particular, in the neighborhood of each point of the MOV, it is possible to compute the
density coming from V, and then to pull it back to S. Let s be the variable of the sampling
space S, and let S be the corresponding random variable. Moreover, using the compact
notation χpsq to indicate χpxpρpsqqq, the probability density function of S is

pSpsq “
exp

ˆ

´
χpsq

2

˙

det Mµpρpsqqdet Mσpρpsqq
ż

f´1
σ pK1q

exp
ˆ

´
χpsq

2

˙

det Mµpρpsqqdet Mσpρpsqq ds
, (9)

where Mµ is the 2ˆ 2 matrix associated to fµ, and Mσ is the 2ˆ 2 Jacobian matrix of fσ.
The derivation of (9) is given in the appendix of [18].

The Case of Asteroid 2018LA

This section is devoted to the analysis of an interesting case of imminent impactor.
In 2018 the small Apollo-type NEA 2018LA was discovered by the Mt. Lemmon Survey.
The object could not be detected before it came very close to the Earth due to its high
entry velocity and small size (the estimated diameter was of a few meters). Only 8 h later,
it impacted the Earth’s atmosphere over Botswana, becoming the third imminent impactor
ever detected and the perfect opportunity to test the systems performing short term IM.
Among these, we will focus on NEOScan.

In the following hours after the first observational data were published on the NEOCP,
follow-up observations were performed and 4 tracklets were obtained. The results pro-
duced by NEOScan for each of these observed arcs can be summarized in a brief timeline:

• 09:04–09:18 UTC: first run over three observations (obs. time = 08:25 UTC), covering
a time span of 22.8 minutes. The absolute magnitude can be estimated between a
minimum value Hmin “ 31.9 and a maximum value Hmin “ 34.39, thus indicating a
small object. The observed arc shows no significant curvature, so it is classified as
type 1. Since no reliable nominal solution is available, the double grid sampling of
the AR is performed, yielding a 5304 points MOV. The observation score ensures that
the object is a NEA, while the estimated Impact Probability is IP “ 0.08%. The object
is declared nonsignificant, since the observed arc is shorter than 30 min, but is given
impact flag 1, which produces an alert for the observers.

• 11:41–11:57 UTC: second run over 11 observations (obs. time = 09:07 UTC), covering
a time span of 85.2 min, sufficient to declare the case as significant. The arc shows
significant curvature and is classified as type 2, with geodesic curvature signal-to-
noise ratio smaller than 3. Again, the AR is scanned via the double grid, but the
corresponding MOV has reduced to 634 points, of which 168 can lead to an impact.
The estimated Impact Probability rises to IP “ 5.1%, leading to the assignment of
impact flag 3.

• 14:10–14:26 UTC: third run over 12 observations (obs. time = 09:11 UTC), still covering
a time span of 85.2 min. With a single additional observation, the software computes
a MOV consisting of 584 points, of which 177 are possible impactors, thus increasing
the Impact Probability to IP “ 38.3%.
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• 14:13–14:40 UTC: fourth run over 14 observations (obs. time = 09:40 UTC), covering
a time span of 226.8 min. The tracklet becomes an arc of type 3, allowing for the
computation of a reliable nominal solution with RMS = 0.571. The new estimate for
the absolute magnitude is H “ p30.57˘ 0.02q. NEOScan performs a cobweb sampling
of the AR, that results in a 8811 points MOV, each of which is an impactor, therefore
Impact Probability rises to IP “ 100%.

The AR and MTP projection evolution for each tracklet, with the consequent Impact
Probability value, is shown in Table 1, where in the AR representation, the legend is
as follows:

• the red solid line identifies the outer boundary;
• the green dashed line shows where the geocentric energy is equal to 0;
• the magenta dashed line represents the shooting star limit condition;
• the magenta solid lines represent different values of the absolute magnitude;
• dots representing VAs are indicated in blue if χpxq ď 2, green if 2 ă χpxq ď 5 and

black if χpxq ą 5;
• red dots correspond to VIs.

On the MTP projections, the Earth’s cross section is indicated by the green circle
centred in the origin.

Once the collision is certain, the last step, in order to identify the potential impact
locations and adopt the necessary safety measures, is the prediction of the impact corridor.
This is done by means of the semilinear method ([59]) consisting of a mapping from a repre-
sentative curve on the boundary of the confidence ellipsoid to the target two-dimensional
space of geodetic coordinates. A representation of the resulting corridor for 2018LA is
shown in Figure 6.

Figure 6. Google Earth 3D visualisation of 2018LA impact regions on ground for different values of the parameter σ that
defines the confidence ellipsoid. The fireball location at an altitude of 28.7 km is also displayed. Figure from [59].



Universe 2021, 7, 103 21 of 28

Table 1. Evolution of the IP, AR and MTP projection for each tracklet obtained for 2018LA. Figures from [60].

N. obs IP AR MTP Projection

3 0.08%

11 5.1%

12 38.3%

14 100%
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6. Future of Impact Monitoring and Conclusions

As already discussed and explained in [60], at the moment there are two types of
automatic systems dealing with IM of NEOs:

(1) those for already designated orbits, such as CLOMON2, Sentry and AstOD, and
(2) those for the detections of imminent impactors (SCOUT, NEORANGER, NEOScan).

Systems of class (1) use data from MPEC, and a geometrical sampling of the CR with
the LOV, while those of class (2) scan the NEOCP and use systematic ranging methods
and/or geometric sampling with a 2-dimensional manifold.

The birth of these two classes of systems has been essentially dictated by the history
of searching for NEOs, by the grow of observational facilities and by the amount of data
available. When CLOMON2 and Sentry started their activities, the scientific and public
communities were interested in big objects that could have caused global damage, while at
the moment, the attention has moved to small objects and meteoroids ([61,62]). Probably,
the differentiation in this two classes are due also to the rules of the MPC, or better, how the
automatic systems catch the data from it. In this processes there could be a flaw, in the
sense that there are objects, with a very well-defined orbit, remaining on the NEOCP,
and, on the contrary, there exist designated objects with a great uncertainty. Thus, there
are a certain number of cases that are not properly processed: object with a very well
defined orbit should be processed like ordinary cases using, for example, LOV methods,
while designated objects would deserve a treatment using a different sampling of the CR.

An idea to overcome this criticality, which could expand in the future with the advent
of new technologies, could be the development of an unified system (see Figure 7).

Figure 7. Figure from [47]. A flow diagram concerning a possible new approach with the IM problem.

This kind of system should start from NEOCP data of an object, decide the type of orbit
and which is the best possible algorithm of OD to extract as much information as possible.
The starting step should use, for example, the NEOScan algorithms to give a first insight to
the observational data and to understand, using the score of the detection, the type of orbit.
The score is the probability that an object belongs to the classes listed below:
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• NEO, Near-Earth Object, an object with perihelion distance q ă 1.3 AU;
• MBO, Main Belt Object, an object belonging either to the Main Belt or to the Jupiter

Trojans; in particular, it has to fulfill the conditions
#

1.7 AU ă a ă 4.5 AU
e ă 0.4

_

#

4.5 AU ă a ă 5.5 AU
e ă 0.3

where a is the semimajor axis (in AU) and e is the eccentricity;
• DO, Distant Object, characterized by q ą 28 AU (for instance, a Kuiper Belt Object);
• SO, Scattered Object, not belonging to any of the previous classes.

In case the probability of being a NEO is greater than some threhsold, the algorithms
for searching VIs should start. The choice of the more convenient algorithm should be
based on some facts and quantities:

• type of observational arc;
• geodetic curvature;
• presence or not of a reliable LS orbit.

Knowing the previous input, the system should be able to decide:

(a) the way to sample the uncertainty region (AR or CR);
(b) the duration of propagation;
(c) how to detect potential impactors after the propagation and the projection on the TP

of an encounter;
(d) in case of an impact detection, how to compute the impact corridor and the potential

damages on Earth.

Concerning (a), a possible improvement is the use of a MC sampling of the CR,
when a nominal solution exists. MC method starts from a given probability distribution of
initial conditions and propagated forward in time while recording the number of impacts.
This kind of method has the advantage of making no simplifying assumptions on how
the orbital uncertainties are mapped into the future. However, the MC method is a very
computationally expensive technique because it requires propagating a large number of
VAs, typically of the order of the inverse of the target probability resolution. However,
due to increase in the speed of processors, new MC-type methods are being studied ([63])
in order to replace geometrical sampling. A new automatic system, as we have in mind,
should have the capability to use both a geometrical sampling or MC method and above
all understand when to use one and when the other.

In conclusion, the IM of Near-Earth Objects (NEOs) is a fascinating field of research
that involves astronomy, mathematics and computer science: the mathematical algorithms
evolve in time because they have to follow the progress in the hardware and software stuff
(e.g., observatories, computers).

In this paper, I tried to summarize the last 25 years of work in the field, highlighting
the main algorithms to find potential Earth impactors, and I gave an insight to possible
future developments. In reality, there is another aspect that could be investigated: the
possibility of using Machine Learning (ML) and/or Deep Learning (DL) approaches to the
problem; but this is material for the next decade.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Admissible Region
AU Astronomical Units
CR Confidence Region
DL Deep Learning
ESA European Space Agency
IAU International Astronomical Union
IM Impact Monitoring
IP Impact Probability
JPL Jet Propulsion Laboratory
LOV Line Of Variations
LS Least Squares
MBA Main Belt Asteroid
MC Monte Carlo
MCMC Markov-Chain Monte Carlo
ML Machine Learning
MOID Minimum Orbital Intersection Distance
MOV Manifold Of Variations
MPC Minor Planet Center
MPEC Minor Planet Electronic Circulars
MTP Modified Target Plane
NEA Near-Earth Asteroid
NEO Near-Earth Object
NEOCC Near-Earth Object Coordination Center
NEOCP NEO Confirmation Page
OD Orbit Determination
PDF Probability Density Function
PHA Potentially Hazardous Asteroid
PS Palermo Scale
RMS Root Mean Square
TP Target Plane
TS Torino Scale
VA Virtual Asteroid
VI Virtual Impactor
VSA Very Short Arc

Appendix A. OD Pills

The weighted LS method of OD seeks to minimize the weighted RMS of the m obser-
vation residuals Ξ “ pξiq, i “ 1, . . . , m, defined as the difference between the measured
observations and the computed (by means of a mathematical model) ones. To operate the
minimization, we define the cost function

Q “
1
m

ΞTW Ξ ,

where W is a square, symmetric (but not necessarily diagonal, see [64]), positive-definite
mˆm matrix that should reflect the a priori RMS and correlations of the observation errors.
We denote the design matrix, a mˆ 6 matrix containing the partials of the residuals with
respect to the elements, as

B “
BΞ
BX

pXq .

Then we can compute the gradient of the cost function

BQ
BX

“
2
m

ΞTW B.
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The stationary points of the cost function Q are solutions of the system of nonlinear
equations BQ{BX “ 0, which are usually solved by some iterative procedure: the most used
method is a variant of Newton’s method, known in this context as differential corrections,
with each iteration making the correction

∆X “ ´pBTWBq´1BTWΞ “ ´Γ D

neglecting the second derivatives of the cost function. Γ “ C´1 is the covariance matrix,
inverse of the normal matrix C “ BTWB.

If the iterative procedure converges, the limit X˚ is a stationary point of the cost
function, that is DpX˚q “ 0. If a stationary point X˚ is a local minimum of QpXq it is called
a best-fitting or nominal solution. Such nominal solution may not be unique, although it is
generally unique when there are enough observations over a long enough span of time.

The expansion of the cost function at a point X “ X˚ `∆X in a neighborhood of X˚ is

QpXq “ QpX˚q `
1
m

∆XT CN ∆X` . . . “

“ QpX˚q `
1
m

∆XT C ∆X` . . . “ QpX˚q ` ∆QpXq ,

where the dots in the first equality indicate terms of order ě 3 in ∆X; the dots in the second
line contain also a term with the second derivative of Ξ, which is only second order in
∆X, although it contains also Ξ. The CR Zpχq is defined by setting an upper limit to the
penalty ∆Q:

Zpχq “
!

X | ∆QpXq ď χ2{m
)

.

If the CR is small and the residuals are small, then all the higher order terms in the cost
function are negligible and the CR is well approximated by the confidence ellipsoid ZLpχq
defined by the quadratic inequality

ZLpχq “
!

X | ∆XT CpX˚q∆X ď χ2
)

.

The direction V1, where V1 is the eigenvector of the normal matrix C (computed at
the nominal solution, CpX˚qV1 “ λ1V1) relative to the smallest eigenvalue λ1, is called the
weak direction.

If the axial vector field V1pXq is defined for all X, then the orthogonal hyperplane
HpXq is also defined:

HpXq “ tY|pY´ Xq ¨V1pXq “ 0u .

Given an initial guess X, it is possible to compute a differential correction constrained
to HpXq by defining the 5ˆm matrix BHpXqwith the partial derivatives of the residuals
with respect to the coordinates of the vector H on HpXq. Then the constrained normal
equations are defined by the constrained normal matrix CH , which gives the restriction
of the linear map associated to C to the hyperplane HpXq, and by the right hand side DH ,
which is the component of vector D along the hyperplane:

CH “ BT
HW BH DH “ ´BT

HW Ξ CH∆H “ DH

with solution
∆H “ ΓH DH ΓH “ C´1

H

where the constrained covariance matrix ΓH is not the restriction of the covariance matrix
Γ to the hyperplane. The computation of CH , DH can be performed by means of a rotation
to a new basis in which V1pXq is the first vector, then CH is obtained by removing the first
row and the first column of C, DH by removing the first coordinate from D.

The constrained differential correction process is obtained by computing the corrected
X1 “ X ` ∆X where ∆X coincides with ∆H along HpXq and has zero component along
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V1pXq. Then the weak direction and the hyperplane are recomputed: V1pX1q, HpX1q and the
next correction is constrained to HpX1q. This procedure is iterated until convergence. If X
is the convergence value, then DHpXq “ 0, that is the right hand side of the unconstrained
normal equation is parallel to the weak direction

DpXq || V1pXq .

The above equation is equivalent to the following property: the restriction of the cost
function to the hyperplane HpXq has a stationary point in X; the constrained corrections
correspond to the intuitive idea of falling down to the river. Thus, we can introduce a
definition of LOV as the set of points X such that DpXq||V1pXq (the gradient of the cost
function is in the weak direction). If there is a nominal solution X˚, then DpX˚q “ 0, thus
it belongs to the LOV. However, the LOV is defined independently from the existence of a
local minimum of the cost function.
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