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Abstract: We revisit the problem of the Casimir force between high-Tc superconductors below
and above the critical temperature for the superconducting transition. Ceramic superconductors
exhibit a different temperature dependence of the reflectivity when switching from the normal to
the superconducting state. We leverage this unique characteristic with respect to ordinary metals to
claim that these kind of materials can prove useful as an alternative system where the long-standing
discussion on the role of electronic relaxation can be addressed. Furthermore, we show that the
two main damping mechanisms associated with free and mid-infrared electrons dominate at very
distinct scales, meaning that they can be considered separately when the Casimir force is measured
as a function of slab distance. This facilitates the experimental identification of the role of the two
electronic relaxation contributions to the force.

Keywords: Casimir force; superconductivity; high-Tc superconductors

1. Introduction

The Casimir force between planar surfaces has been a topic of intense research since its
inception in 1948 [1,2]. Its reformulation by Lifshitz in terms of fluctuating electrodynamics
related the force with the macroscopic dielectric properties of the materials [3]. Measure-
ments of the Casimir force have been made using atomic force microscopy [4–7], torsional
balances [8,9] and microelectromechanical systems [10,11], as well as in a wide variety of
materials such as metals [12], semiconductors [13,14] and change-phase materials [15].

To compare the experimental results with the predictions of Lifshitz, an accurate
description of the dielectric function is needed. In the case of metals, the dielectric function
is obtained from experimental data and extrapolated at low frequencies with a Drude
model [16]. The Drude model describes the intraband transitions, in particular those
where the d-bands interact with nearly-free electron bands such as noble metals and alkali
metals [17]. Two parameters define the Drude model: the plasma frequency, ωp, and the
electronic relaxation rate, γp. Its use and accuracy describing many phenomena such as
plasmonic excitation in noble metal nanoparticles [18,19] or the D.C. conductivity of metals
are well established, and its application to the Casimir problem should be straightforward.
However, several studies aiming to measure Casimir forces in metals indicate that Lifshitz
theory gives a better description of the experimental data if the damping term is omitted,
and, instead, a simple plasma model is considered. Furthermore, it has been argued that
the Nernst heat-theorem is not satisfied for Drude metals [20], but this has been disputed by
some authors [21,22]. From a theoretical point of view, this statement is troublesome, since
at zero-frequency the DC conductivity is finite in metals, as predicted by the Drude model.
An extensive description of the problem and a possible resolution using the nonlocal
response of the materials was recently proposed by Klimchitskaya and Mostepanenko [23].

As mentioned above, experiments reporting a better agreement with the plasma model
have been performed by several groups. Recently, the Casimir force was measured using
isoelectronic materials to reduce electrostatic effects [24]. On the other hand, the experiment
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of Sushkov et al. [25] measured the Casimir force in the range of 0.7–7 µm and in this
particular case the plasma model was excluded, giving rise to a discussion on the many
issues that can affect the experiment such as patch potentials [26,27].

Another scenario of interest is the investigation of thermal properties of Casimir
forces in setups involving either BCS or high-Tc superconductors [28–31]. By considering a
superconducting material such NbTiN, with a critical temperature Tc = 9.2 K, Bimonte [28]
calculated the force associated with changes in the temperature. Later on, a more detailed
analysis of the dielectric function of type-I superconductors at imaginary frequencies was
performed using the Mattis–Bardeen theory of superconductors [29].

Two experimental proposals exist related to the Casimir effect in BCS superconductors.
In one case, involving a nanoelectromechanical system with a Pb layer deposited on a
Au substrate, Perez-Morelo et al. [32] proposed that the Casimir energy would provoke
a shift on Tc; however, no changes were observed for temperatures above 12 µK. On the
other hand, Norte and coauthors [33] presented an on-chip platform including an optome-
chanical cavity to measure the Casimir effect between two closely-spaced freestanding
superconductors as they transit into a superconducting state. Bimonte [30] showed that
when working with Al the sensitivity of this device was not enough to detect changes in
the Casimir force near Tc. However, the employment of Al and NbTiN could give enough
contrast to detect changes in the force.

The issue of sensitivity can be alternatively addressed by considering high-temperature
superconductors (HTSCs). A theoretical study was presented by Villarreal et al. [31] for
optimally-doped YBa2Cu3O6.95 (YBCO) slabs, showing that in the long-distance regime a
significant abrupt change in the Casimir force could be observed at the critical temperature.
The dielectric function of YBCO considered in that work has three main contributions
with different origins: one Drude-like from free electrons, a second mid-infrared (MIR)
term associated with absorption of electromagnetic energy putatively due to electronic
interband transitions, and several phonon contributions.

In this paper, we further explore the repercussion of relaxation phenomena in the
Casimir effect. With that purpose, we revisit the Casimir force between YBCO supercon-
ductors as a function of plate separation in the short- (L ∼ 10–500 nm) and long-distance
(L ∼ 500–7000 nm) regimes explored in previous experimental studies. We discuss the
role of the electronic damping associated with either Drude or MIR contributions on the
Casimir effect both in the normal and superconducting states.

2. Formalism

Consider two semi-infinite parallel plates of YBCO kept at the absolute temperature T
and separated by a vacuum gap of width L. Within the framework of Lifshitz theory, the
finite-temperature force per unit area, F(L, T), acting on both plates is described by the
formula [34,35]

F(L, T) = − kBT
π

∞

∑′

`=0

∫ ∞

0
dββκ0(iζ`, β) ∑

ν=s,p

{
exp [2κ0(iζ`, β)L]

r2
ν(iζ`, β)

− 1
}−1

. (1)

Each term in Equation (1) represents the contribution of the `th imaginary Matsubara
frequency iζ` = i(2πkBT/h̄)`. The prime at the sum-symbol means that the ` = 0 term
must be halved. In turn, the sum over ν accounts for the s and p polarization states of
the electromagnetic radiation. The reflection coefficients for s- and p-polarized waves
impinging upon the (vacuum|YBCO) interface are given by the Fresnel equations

rs(iζ`, β) =
κ0(iζ`, β)− κ(iζ`, β)

κ0(iζ`, β) + κ(iζ`, β)
, rp(iζ`, β) =

ε(iζ`)κ0(iζ`, β)− κ(iζ`, β)

ε(iζ`)κ0(iζ`, β) + κ(iζ`, β)
. (2)
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Using the imaginary frequency representation, the out-plane component of the wave
vector inside the vacuum gap, κ0, and within YBCO plate characterized by the permittivity
ε(iζ`), κ, are related to the in-plane component, β, by the expressions

κ0(iζ`, β) =

√
ζ2
`

c2 + β2 and κ(iζ`, β) =

√
ε(iζ`)

ζ2
`

c2 + β2. (3)

The evaluation of the Casimir force (1) requires knowledge of the YBCO dielectric
function ε(iζ`) in the normal and superconducting phases. To characterize the optical
response of high-Tc superconductors, two important questions must be addressed. First,
HTSCs are layered materials with a highly anisotropic optical response. Second, for temper-
atures below Tc, the total charge density, n, is divided accordingly with London’s two-fluid
model into normal and SC contributions: n = nn(T) + ns(T) [36]. When complemented
with a Drude representation of HTSCs dielectric permittivity, discussed below, London’
s model gives an account not only of the most salient electromagnetic features of these
materials, such as the expulsion of magnetic field lines from their interior or an infinite DC
conductivity, but also provides an accurate representation of their optical response. It is
worth commenting that, in the case of BCS superconductors, the Mattis–Bardeen dielectric
function [37] provides a better description of their optical properties as compared with the
two-fluid model [30]. This holds in the so-called dirty limit, defined by l < ξ0, being l the
mean free path and ξ0 the zero-temperature coherence length of Cooper pairs. However,
HTSCs satisfy the clean-limit condition l � ξ0. It is straightforward to show that in this
limit the Mattis–Bardeen function reduces to Drude dielectric function.

The unit cell of YBa2Cu3O7−δ defines a uniaxial crystal, where the superfluid current
is predominantly confined within two CuO2 planes, the ab-planes, equidistant from the
central yttrium atom. In the transverse c-axis direction, charge transport mainly occurs
due to interplane incoherent hopping; however, superfluid transport is also
observed to a small extent near optimal doping (δ = 0.05) [38]. The dielectric response of
YBa2Cu3O6.95 with Tc = 93 K is thus specified by a diagonal dielectric tensor
ε̄ = diag(εab, εab, εc) [39,40], where its components have been characterized through a
number of experimental studies [38,41–45]. Explicit calculations incorporating the result-
ing parameterizations for εab(ω) and εc(ω) show that the c-axis optical response leads to
negligible contributions in the evaluation of frequency-integrated quantities, such as the
heat flux between YBCO plates at different temperatures [46] or the Casimir force per unit
area considered in this work. Therefore, to ease the interpretation of the derived results, in
the following, we limit our analysis by contemplating only the ab-plane permittivity. In
the normal regime, at T > Tc, the measured optical spectra have been parameterized by a
Drude–Lorentz dielectric function, expressed at imaginary frequencies as follows:

εn(iζ`) = ε∞ +
ω2

p

ζ2
` + γpζ`

+
Ω2

mir
ζ2
` + ω2

mir + Γmirζ`
+

6

∑
j=1

Sjω
2
ph,j

ζ2
` + ω2

ph,j + γph,jζ`
. (4)

The different terms represent, respectively, a high-frequency contribution, a Drude-
like component due to free charge carriers, a mid-infrared Lorentz term, and six addi-
tional phonon contributions [38,41,42,45]. The values of the parameters at T = 100 K are
given by ε∞ = 3.8, ωp = 0.75 eV, γp = 0.037 eV, Ωmir = 2.6 eV, ωmir = 0.26 eV, and
Γmir = 1.0 eV. The phonon parameters Sj, ωph,j and γph,j are presented in [31]. This pa-
rameterization of the Drude band corresponds to a polycrystalline YBCO sample with
Tc = 93 K, and no significant variations in our results are expected with the different values
reported for γp at T = 100 K [41].

Concerning the second point, we assume that, even if the pairing mechanism in HTSCs
is uncertain [47], superfluid properties may be described in terms of a 2D gas of weakly-
interacting Cooper-like pairs condensing at T = Tc. The dispersive properties of a dilute
boson gas are described by an energy Bogoliubov spectrum E(p) =

(
p2c2

s + (p2/2m)2)1/2,
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where p is the magnitude of transferred momentum and cs is the speed of sound. For
sufficiently cold and dilute gases Bogoliubov spectrum reduces to a phonon dispersion
relation: E(p)→ cs p. It can be shown that a 2D gas with this kind of spectrum satisfies [48]:

ω2
ps(T)

ω2
ps(0)

=
n2

s (T)
n2 = 1− T2

T2
c

, (5)

where the SC plasma frequency is defined by ωps(T) ≡ ns(T)e2/ε0m, for T < Tc. Similarly,
the normal plasma frequency in this temperature regime is ωpn(T) ≡ nn(T)e2/ε0m. Ex-
pression (5) provides a general and accurate representation of experimental measurements
of the ab-plane penetration length λab(T) = c/ωps(T) for a wide range of dopings of
YBa2Cu3O7−δ samples [47].

In the SC regime, coherent charge transport is determined by the vanishing of the
Drude relaxation parameter: γp → 0. Additionally, in this work, we contemplate the
possibility that the MIR-damping parameter also tends to the limit Γmir → 0. The decrease
of Γmir would entail an increase in the intensity of the mid-infrared absorption band. The
physical interpretation of this contribution is uncertain, but there is evidence indicating
that even if this band is practically temperature independent, the damping parameter may
significantly decrease when a single-crystalline sample is considered [41]. We address this
question below within the framework of the Casimir force. Consequently, for T < Tc, the
dielectric function is described by

εs(iζ`) = ε∞ +
ω2

ps(T)

ζ2
`

+
ω2

pn(T)

ζ2
` + γpζ`

+
Ω2

mir
ζ2
` + ω2

mir + Γmirζ`
+

6

∑
j=1

Sjω
2
ph,j

ζ2
` + ω2

ph,j + γph,jζ`
. (6)

Assuming that the plasma frequency of the superconducting component does not
vary at very low temperatures, we consider the measured value ωps(2K) = 0.75 eV and
Equation (5) to evaluate the normal and superconducting contributions of the charge
carriers in Equation (6). The values for Ωmir, ωmir, Γmir and ε∞ are the same as those
obtained in the normal state. The phonon parameters are also very similar [31].

On the other hand, the effect of electronic relaxation is related to the contribution of
the first (` = 0) Matsubara frequency in the force calculation (Equation (1)). To evaluate the
zero-frequency limit of the reflection coefficients rν(0, β), we now introduce the expressions
for normal (4) and superconducting (6) permittivities into Equation (2), obtaining

rs(0, β) =


0 if γp 6= 0

β−
√

ω2
p+β2

β+
√

ω2
p+β2

if γp = 0, for T ≥ Tc,
(7a)

rs(0, β) =


β−
√

ω2
ps(T)+β2

β+
√

ω2
ps(T)+β2

if γp 6= 0

β−
√

ω2
p+β2

β+
√

ω2
p+β2

if γp = 0, for T < Tc,

(7b)

and
rp(0, β) = 1, for all the above cases. (7c)

It is worth mentioning that the above limit expressions are valid regardless of the Γmir
value. In the following discussion, we employed the former expressions to evaluate the
Casimir force per unit area in four different scenarios for temperatures either above or
below Tc as a function of the temperature of the system and the YBCO plates separation L:
(i) γp 6= 0, Γmir 6= 0; (ii) γp 6= 0, Γmir = 0; (iii) γp = 0, Γmir 6= 0; and (iv) γp = 0, Γmir = 0.
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3. Results

We study the normalized Casimir force, F/F0, between two semi-infinite YBCO slabs
when both are in the normal, T ≥ Tc, or in the superconducting, T < Tc, state. Here,
F0 = −π2h̄c/240L4 describes the Casimir force per unit area acting on two perfect conduct-
ing parallel plates at zero temperature. The effects of the relaxation rate of the free (γp)
and mid-infrared (Γmir) electrons on the normalized force are investigated at the separation
distances L = 10–500 nm and L = 500–7000 nm. These are both relevant because typical
experiments are performed in either the former or the latter case. Figure 1 shows the
normalized force, F/F0, as a function of the vacuum gap width, L. Solid curves correspond
to the case of finite damping frequency, γp = 37 meV, i.e., modeling the free electrons
contribution as a Drude term in the YBCO dielectric response (4). The normalized force
predicted for a zero relaxation rate γp = 0, which results from changing the Drude term in
Equation (4) by the simpler plasma model ω2

p/ζ2
` , is shown with dashed curves. We also

consider different values for the mid-infrared damping Γmir = 1 or 0 eV, which can be
distinguished by the color of the curves. Figure 1a,b show that the effect of the mid-infrared
damping Γmir is to lower F/F0. On the other hand, it is clear that the relevance of γp at
short distances, L = 10–500 nm, is practically negligible for both normal (Figure 1a) and
superconducting (Figure 1b) plates. This can be explained by considering that the most
significant contribution to the normalized Casimir force comes from those terms in the
sum (1) with a frequency ζ` close to the characteristic cavity frequency ζc = c/2L. For small
L, this characteristic frequency falls in the visible and infrared range (≈9.8–0.2 eV), i.e., it is
largely detuned from the relaxation rate values γp = 37 or 0 meV. This has the important
consequence that at short distances it is unfeasible to distinguish between a Drude- or a
plasma-like behavior of the YBCO response. As L increases, the lowest frequencies ζ` in
the sum Equation (1) acquire more importance, which implies that the effect of γp on the
normalized force becomes stronger. This can be appreciated by comparing the continuous
and dashed (red or yellow) curves in Figure 1a,c, whose spacing increases with L. On the
contrary, the influence of the mid-infrared term decreases, as indicated by the approaching
of the (continuous or dashed) red and yellow curves. A similar argument holds for the su-
perconducting state (Figure 1b,d), although with some important differences. For a temper-
ature above the critical, the normalized Casimir force obtained using the Drude term with
γp = 37 meV displays a plateau in the range L = 500–7000 nm, completely different from the
nearly linear dependence predicted by the plasma model with γp = 0 (see Figure 1c). The
normalized force estimated by the simple plasma formula can be up to 1.5 times larger than
that calculated with the Drude model, Fplasma(100 K, 7000 nm) ≈ 1.5FDrude(100 K, 7000 nm).
For superconducting plates, both models predict a similar behavior of the normalized force
dependence with L, as well as similar magnitudes, being the maximum relative difference
[Fplasma(90 K, 7000 nm)− FDrude(90 K, 7000 nm)]/FDrude(90 K, 7000 nm) ≈ 15%.

For ease comparison and to further analyze the effect of the superconducting phase
transition on the normalized Casimir force, some of the curves in Figure 1 are repeated in
Figure 2. We limit the discussion to the case of Γmir = 1 eV but similar observations hold
for Γmir = 0. For short distances (Figure 2a), the main contribution to the normalized force
is provided by the temperature-independent mid-infrared band, which implies that the
normal and the superconducting curves coincide. On the other hand, for large separations,
the Drude model with γp = 37 meV predicts a normalized force between superconducting
plates up to 25% larger than that between two normal plates, [FDrude(90 K, 7000 nm)−
FDrude(100 K, 7000 nm)]/FDrude(100 K, 7000 nm) ≈ 25% (see Figure 2b). Conversely, the
dashed curves obtained using the plasma model are practically identical for normal
and superconducting plates. The previous results are explained by recalling that, for
large L, the most important contribution in the sum (1) is given by the zero-frequency
reflectivities (7). Using the plasma model, the reflectivities rs(0, β) are the same in the
normal and superconducting states, while, for the Drude model rs(0, β) = 0 in the normal
state, and it is temperature-dependent in the superconducting phase. Therefore, accord-
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ing to Equations (7a) and (7b) in the case γp 6= 0, we expect an increased difference
FDrude(T < Tc, L)− FDrude(T > Tc, L) as the temperature decreases.
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Figure 1. Normalized Casimir force, F/F0, as a function of the vacuum gap width, L, for temperatures T > Tc (a,c) and T < Tc (b,d).
Solid curves correspond to a free electrons relaxation rate γp = 37 meV, while the dashed ones to γp = 0. Different colors refer to the
value of the mid-infrared damping parameter Γmir.
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Figure 2. Comparison of the normalized Casimir force between normal (T = 100 K) and superconducting (T = 90 K) YBCO plates for
short (a) and large (b) separation distances using γp = 37 meV (solid line) and γp = 0 (dashed line). In all cases. the mid-infrared
damping Γmir = 1 eV.

4. Conclusions

We study the effects of free and mid-infrared electron relaxation rates on the Casimir
force between two superconducting slabs made of optimally doped YBCO. The influence
of these two damping mechanisms is analyzed for the case of both plates being below or
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above the critical temperature for the superconducting phase transition. The temperature-
independent mid-infrared damping causes a reduction in the normalized Casimir force
and its influence decreases with the increase of the vacuum gap width. On the other hand,
the effect of the free electrons damping is negligible at short separations for both normal
and superconducting plates, while it dominates for distances in the micrometer scale. Here,
the plasma model estimates a normalized force up to 50% (15%) larger than that obtained
with the Drude model for two normal (superconducting) plates. Our results show that
Drude model predicts an increase of up to 25% in the normalized force when both plates
become superconducting, whereas, according to the plasma model, no significant changes
in the normalized force are expected as a result of the phase transition. This indicates
that high-temperature superconductors represent a valid alternative to ordinary metals to
explore the role of damping in the Casimir force.
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