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Abstract: Technological progress has made possible precise measurements of the Casimir forces
at distances less than 100 nm. It has enabled stronger constraints on the non-Newtonian forces at
short separations and improved control of micromechanical devices. Experimental information on
the forces below 30 nm is sparse and not precise due to pull-in instability and surface roughness.
Recently, a method of adhered cantilever was proposed to measure the forces at small distances,
which does not suffer from the pull-in instability. Deviation of the cantilever from a classic shape
carries information on the forces acting nearby the adhered end. We calculate the force between a
flat cantilever and rough Au plate and demonstrate that the effect of roughness dominates when
the bodies approach the contact. Short-distance repulsion operating at the contact is included in the
analysis. Deviations from the classic shape due to residual stress, inhomogeneous thickness of the
cantilever, and finite compliance of the substrate are analysed. It is found that a realistic residual
stress gives a negligible contribution to the shape, while the finite compliance and inhomogeneous
thickness give measurable contributions that have to be subtracted from the raw data.

Keywords: Casimir forces; non-Newtonian forces; short distances; surface roughness; adhered
cantilever; contact mechanics; elastic beam

1. Introduction

Quantum fluctuations of the electromagnetic field manifest themselves in very differ-
ent physical circumstances such as sticking gecko to walls or evaporation of black holes.
Van der Waals (vdW) attraction between nonpolar molecules is also the effect of quantum
fluctuations as was explained by London [1]. With the increase of the distance the attractive
forces decrease faster than the vdW interaction due to the retardation of electromagnetic
field as was demonstrated by Casimir and Polder [2]. The same interaction results in an
attractive force between parallel plates separated by a short distance. This force, which
is called the Casimir force (CF), was deduced between perfect mirrors by applying the
zero-field boundary condition on the plates [3]. If the plates are separated by the distance
h, the force per unit area is given by a surprisingly simple expression

PC(h) =
π2h̄c
240h4 , (1)

where only the fundamental constants h̄ and c enter the formula. Lifshitz and coworkers [4,5]
proposed a united theory that reproduces all the separate results as different limit cases.
The theory takes into account realistic dielectric properties of interacting materials and
accounts not only for quantum but also for thermal fluctuations. In the heart of this theory
lies the fluctuation–dissipation theorem.
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Casimir forces are the subject of active investigation in the last 20 years (see, for example,
the reviews [6–8]). The modern technological level is high enough to control separations of the
order of 100 nm and made possible precise measurements of the forces [9–18]. The interest in
the forces is related to their role in micro/nanoelectromechanical systems (MEMS/NEMS).
These systems have elements with a sufficiently large area separated by a sufficiently small
distance to allow the CF to become operative [19–25]. On the other hand, precise measure-
ment of the CF allows us to make constraints on the forces beyond Newtonian gravity at
short separations. The better we know the CF the stronger we can restrict new physics
beyond the standard model. For distances larger than 10 µm the strongest constraints
on the non-Newtonian gravity follow from Cavendish-type experiments [26,27] but at
distances smaller than a few micrometers the strongest restrictions on the hypothetical
forces follow from the Casimir-type experiments [28–30] (see also a recent comprehensive
review [31]). For separations smaller than 10 nm the strongest constraints follow from the
experiments on neutron scattering [32–34].

The CF have been measured with a high precision of the order of 1% in the distance
range from 62 nm [10] up to 1 µm [18]. It is difficult to do measurements with a similar
precision at shorter separations. Uncertainty in the force is dominated by the error in
the absolute distance h, which for all the experiments is ∆h ∼ 1 nm. The corresponding
relative error in the force is ∆PC/PC = α∆h/h, where 3 < α < 4 and the force behaves as
∼ h−α. Obviously the error in the force will increase with the decrease of the separation.
Moreover, at short separations an additional problem occurs. All systems used to measure
the forces employ the elastic suspension (torsional pendulum or cantilever with a ball
attached) that loses stability at sufficiently short separations. This is a generic feature of the
elastic suspension. Practically, it was possible to go down to h = 12 nm [35] in measuring
the force with an atomic force microscope (AFM) between a sphere and plate covered with
gold. Stiff cantilevers were used for that and the measurement precision was not high.
The surface force apparatus that uses much stiffer springs is more stable, but even in this
case the smallest distance in vacuum was about 8.5 nm [36]. The measurements at these
short separations are sparse [35–37] and have low precision.

Besides the loss of stability an important factor at short separations is the surface
roughness. The Lifshitz theory predicts the forces between flat surfaces but in reality all
surfaces are rough and the effect of roughness becomes important at distances considerably
larger than the root-mean-square (rms) roughness w. For gold films thermally evaporated
on Si substrates it was established experimentally [38] that roughness influences signif-
icantly the CF between a sphere and plate at distances h . 7w. In this range the forces
strongly deviate from the expected regime ∼ h−α. The effect has been explained by the
presence of high rare peaks on the rough surface, which can approach very close to the
opposite body and give significant contribution to the force [39,40].

Thus, the CF at distances below 30 nm are poorly investigated due to instability of
elastic suspensions and due to roughness effects when the bodies approach the contact.
Recently an experiment has been proposed [41] allowing exploration of the distance range
from 5 nm to 30 nm. Instead of the elastic suspension it is proposed to use an adhered
cantilever to measure the forces. Such a cantilever is a rectangular flexible beam, one
end of which is firmly fixed at a height H above a substrate and the other end is adhered
to the substrate mainly due to vdW-Casimir forces. The shape of the cantilever was
shown to be sensitive to the forces acting nearby the adhered end [42] with the maximum
effect at 1/3 of its unadhered length. The main advantages of the adhered cantilever
method are the following: (a) In contrast to the elastic suspension the adhered cantilever
never losses stability (no pull-in instability at short distances). For this reason it can be
used to measure the forces at short distances. (b) The force and the adhesion energy are
measured simultaneously. (c) The force is measured between practically parallel surfaces.
No restrictions exist on the interaction area as for the standard sphere-plate configuration.
However, there is a disadvantage of the method. It is not possible to change freely the
distance, at which the force is measured. Each measurement gives the force at the distance
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h0 that is defined as the average distance between rough bodies at contact. To change the
distance one has to change the roughness of contacting surfaces that can be realised only
by fabrication of new surfaces.

If no force is acting outside of the adhered area, the cantilever takes a classic shape
that is well defined within the theory of elasticity. The interaction between the cantilever
and substrate will change the shape and the deviation from the classic shape is the value
that is measured in the proposed experiment. However, there are a few effects (back-
ground effects), which provide small corrections to the classic shape independently on
the measured forces, that have to be taken into account. The effects are the following. (i)
The cantilevers are characterised by a residual stress, which results to their initial (before
adhesion) bending. (ii) Thickness of the cantilever is not completely homogeneous, which
can change slightly the classic shape. (iii) The adhered end sticks to the substrate, which is
not absolutely stiff. A finite compliance of the substrate also can result in the correction to
the classic shape.

Accounting for the finite compliance of the substrate requires consideration of the
contact problem that includes intermolecular interactions. In contact mechanics these
interactions were taken into account for the first time in relation to the Hertz contact [43].
Many effective approaches to the contact problem were developed including contact
between solids with surface roughness (see, for example, [44]). In particular, a continual
model of the surface roughness as a deformable layer was proposed, where compliance is
described by the Winkler model (nonlinear in general) [45,46]. Description for the contact
interaction between cantilever and substrate in the unadhered area requires the use of a
self-consistent approach (according to Derjaguin) [47]. Such an approach implies that a gap
between solids in contact ensures the balance between deformation and intermolecular
forces on the interface. Self-consistent approach was applied to the contact problems for
solids with a Winkler type layer [48,49].

In this paper we discuss the CF between the cantilever and substrate that differ from
those predicted by the Lifshitz theory because of the effect of roughness and analyse how
these additional contributions influence the shape of the cantilever. To be able to extract
information on the CF from the experiment we also analyse the influence of the background
effects on the classic shape of the cantilever. It includes the residual stress in the cantilever,
inhomogeneous thickness of the cantilever, and finite compliance of the substrate in the
adhered area.

2. Method of Adhered Cantilever

First, let us define the terminology used in this paper. At very short distances the
fluctuation induced forces between bulk bodies decreasing with the distance as h−3 are
called the vdW forces, while at larger separations the forces behave as h−4 and are called
the Casimir forces. There is no physical difference in the origin of these forces, just in the
first case (vdW forces) retardation of the electromagnetic signal is neglected, but in the
second case (CF) it is fully taken into account. We consider here the transition region but
continue to call the forces conditionally the Casimir forces even in the vdW limit. Since
relatively short distances are considered, we neglect the thermal fluctuations, which play a
significant role at much larger distances h ∼ h̄c/2T = 3.8 µm where T is the temperature
in energy units.

In this section we briefly describe the idea of the method [41] that allows measuring
the forces at distances close to contact. In the process of fabrication or operation of MEMS
separate elements can stick together that result in malfunction of the entire device [50–52].
To investigate the effect of the irreversible stiction, a model system was proposed that is the
adhered cantilever shown in Figure 1. The cantilever sticks to a substrate (typically silicon)
covered with a functional layer, which is a material with a certain roughness. The total
length of the cantilever is L and the unadhered length is s. It is assumed that in the adhered
range with the length L− s the adhesion energy per unit area is Γ.
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Figure 1. Adhered cantilever. The main geometric characteristics are shown. Average distance
at contact h0 is defined by the roughness of the functional layer. Realistic roughness is presented
schematically by brown triangles. Areas of adhesion and strong CF are highlighted.

If we neglect the Casimir interaction near the adhered end, the deflection of the
cantilever is described by the classic shape

u0(x) = H(1− 3ξ2 + 2ξ3), ξ = x/s (2)

that is defined by the minimum of the elastic energy of the beam with the boundary
conditions u0(0) = H, u′0(0) = 0 and u0(s) = 0, u′0(s) = 0. The unadhered length s is
related to the adhesion energy Γ by the classic relation [53]

Γ =
3Et3H2

2s4 , (3)

where E is the Young modulus of the cantilever material and the height H and thickness t
are shown in Figure 1. This relation has been used to determine experimentally the value
of Γ. In reality the Casimir interaction cannot be completely neglected since it is always
strong in the area close to the adhered end. Near this end the average distance between the
cantilever and substrate approaches the value h0. This distance is defined by roughness
of the contacting bodies and in the planned experiment the value will be varied in the
range 5 < h0 < 30 nm. Influence of the CF on the shape of the cantilever was analysed by
modelling the force with the following dependence [42]

PC(h) = P0(h0/h)α, P0 = PC(h0) (4)

that is a good approximation for the force given by the Lifshitz theory in a restricted range
of distances between flat parallel plates. For the configuration of adhered cantilever the
running distance is h = H − u(x) + h0.

Influence of the CF (4) on the shape of the cantilever is shown in Figure 2. The impor-
tant parameters are the following:

R = H/h0 � 1, K = (P0/Ps)
1/4, Ps =

Et3H
12s4 , (5)

where Ps is an equivalent of the elastic pressure. The figure shows the absolute deviation
u(x)− u0(x) from the classic shape as a function of x-coordinate along the beam. One
can see that the maximum deviation from u0(x) is realised at x = s/3 and the deviation
strongly depends on the parameter K. When K approaches the critical value Kc ∼ R1/4 the
deviation reaches the absolute maximum that scales as R−1/2. The experiment has to be
designed in such a way that K is as close to Kc as possible. In this case the deviation from the
classic shape can be as large as a few percents that is well measurable with interferometric
methods (see details in [41]).
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Figure 2. Contribution of the CF to the shape of the cantilever. The difference from the classic shape
is shown as a function of normalised coordinate ξ = x/s for H = 10 µm. Note that the origin of
x-coordinate is at the adhered end. The results are presented for a few values of the parameter K.

The dependencies described above correspond to an ideal situation. In the real
world the force between the cantilever and substrate does not follow Equation (4) even
approximately. This is because the surface roughness gives significant contribution to
the force at short distances. Besides this, one can expect appreciable contributions to
the classic shape from the residual stress in the cantilever, nonhomogeneous thickness of
the cantilever, and finite compliance of the substrate. All these effects have to be taken
into account to extract reliable values of the force from the experiment. These effects are
discussed below.

To determine the contribution to the shape of the cantilever, many parameters char-
acterising the problem will be used in this paper. These parameters are related to the
geometrical characteristics of the cantilever, describe roughness of deposited Au films,
optical properties of materials, or mechanical properties of the solids in contact. The most
important parameters are defined in Table 1, where their expected values are presented
together with the references for more detailed information.

Table 1. Main parameters describing the adhered cantilever and material properties related to the force measurements.

Parameters Definition Value Refs.

geometrical [41]
L total length of the cantilever 5–10 mm
s unadhered length of the cantilever 3–5 mm
t thickness of the cantilever 10 µm
H height of the support 10 µm

roughness (Au) [39,40,54]
w root-mean-square roughness 1− 5 nm
la correlation length 30–50 nm
A parameter describing high peaks ∼1
B parameter describing high peaks 0.05–0.2 nm−1

optical (Au) [55]
ωp plasma frequency 7.84 eV
γ relaxation frequency 49 meV
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Table 1. Cont.

Parameters Definition Value Refs.

mechanical
E Young modulus 160 GPa (Si), 78 GPa (Au)
Pf plasticity limit 0.25 GPa (Au) [56]
Γ adhesion energy 10–1000 µJ/m2 [53]
h0 average separation at contact ∼10 nm [35]
hc minimum distance between solids ≈0.3 nm [57]

3. Interaction between the Cantilever and Rough Substrate

Let us consider the simplest realisation of the experiment when a very smooth and stiff
cantilever made of silicon single crystal with a typical rms roughness of 0.3 nm interacts
with Si substrate covered by a softer metallic layer (functional layer) sputtered or thermally
deposited on the substrate. It is assumed that the rms roughness of the metallic layer is
considerably larger. Therefore, we will analyse the force between a flat and stiff silicon
surface and a rough deformable metal as a function of the average distance h, which can
be smaller than the highest roughness peaks. For any position along the cantilever this
force consists of three contribution: the CF between flat surfaces separated by the average
distance h, correction to the force between flat surfaces that appears due to roughness of
the metallic surface Prough(h), and the force that originates from the contact between some
asperities and the flat Si surface Pcont(h):

PC(h) = PL(h) + Prough(h) + Pcont(h), (6)

where the first term PL(h) is calculated within the Lifshitz theory. The last term needs
special attention that is going beyond the scope of this paper. Its contribution is not
necessary small in the adhered area at h = h0 but decreases very fast with h increase in the
unadhered area. However, our purpose here is to see the influence of the deviations from
the Lifshitz contribution on the shape of the cantilever. This effect can be well analysed
only with Prough(h). Moreover, it has to be noted that the contact term is exactly zero in the
limit of zero load (small adhesion energy).

3.1. Lifshitz Contribution

The first contribution in Equation (6) is the standard term that is given by the Lifshitz
formula [5]. It is well-known and presented here only for completeness. Since we consider
rather short separations h < 50 nm one can change the summation over discrete Matsubara
frequencies by the integral over all imaginary frequencies. This approximation means that
we neglect all thermal fluctuations that are justified at short separations. We use here a
representation of the Lifshitz formula [58], which is convenient due to fast convergence of
the integrals:

PL(h) =
h̄c

32π2h4 ∑
ν=s,p

∫ 1

0
dt
∫ ∞

0
dxx3 rν

1rν
2e−x

1− rν
1rν

2e−x , (7)

where the variables of integration are expressed via the physical quantities as x = 2h(ζ2/c2 +
q2)1/2, tx = 2hζ/c (ζ is the imaginary frequency and q is the magnitude of the wave vector
directed along the plate). In this representation the Fresnel reflection coefficients rν

i (i = 1, 2
enumerates the bodies) for two possible polarizations ν = s, p can be written as

rs
i =

1−
√

1 + t2(εi − ε0)

1 +
√

1 + t2(εi − ε0)
, rp

i =
εi − ε0

√
1 + t2(εi − ε0)

εi + ε0
√

1 + t2(εi − ε0)
. (8)

Here εi and ε0 are the dielectric functions of the plates and intervening medium. All these
functions have to be taken at the imaginary frequencies ζ = txc/2h. The functions at
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imaginary frequencies can be expressed via the directly measurable dielectric functions at
real frequencies with the Kramers–Kronig relation

ε(iζ) = 1 +
2
π

∫ ∞

0
dω

ωε”(ω)

ω2 + ζ2 , (9)

where ε”(ω) is the imaginary part of the corresponding dielectric function.

3.2. Roughness Contribution

In genal case the roughness contribution to the force is a difficult problem especially at
short separations when the roughness amplitude is comparable with the distance between
the bodies. The problem is related to the nonadditivity of the CF. At distances large
in comparison with the rms roughness there is a well defined procedure to calculate
the roughness contribution perturbatively [59,60]. However, the perturbation theory is
broken long before the bodies approach the contact as follows form the experimental
data [38]. A way to calculate the roughness contribution, while the bodies did not get
into contact, was proposed in Refs. [39,40]. The approach is based on the separation of
normal asperities (height∼ w) and high peaks > 3w. The first are accounted perturbatively
but the contribution of the high peaks can be calculated additively since the peaks are
rare. However, we consider small distances, when a typical lateral size of asperities (the
correlation length la) is comparable or larger than the separation distance la & h. In this
situation all asperities can be accounted additively [59].

It is rather simple to calculate the roughness contribution additively: we have to take
the sum over all asperities, which height is smaller than the distance between the bodies.
Mathematically it can be expressed as

Prough(h) =
∫ h0−hc

−h1

dz f (z)[P(h− z)− P(h)]. (10)

Here f (z) is the probability density function to find an asperity with the height z and P(h)
nearly coincides with PL(h) except for very small h (see below). The upper integration
limit is smaller than the average distance between bodies at contact h0 on a very small
value hc � h0 that has the meaning of an equilibrium distance at contact as explained
below. In the lower integration limit the value h1 is the deepest pit in the roughness
profile. Because the force at the distance h + h1 is significantly smaller than that at h and
f (−h1) � 1 we can safely put h1 → ∞. Typical value of h0 is larger than 3w and on the
upper limit f (h0 − hc)� 1. It means that the second term in Equation (10) is practically
equal to the Lifshitz contribution and (10) presents a pure roughness correction in the
total force.

The argument in P(h − z) can be very close to zero at the upper integration limit.
This is the reason why P(h) has to differ from PL(h): the force has to stay finite when the
argument is going to zero. The physical reason for the modification of PL(h) at very short
separations (angstrom range) is the repulsion of electron clouds so that the equilibrium dis-
tance between the bodies cannot be zero. The modification is important only at separations
close to contact. We parameterise P(h) as

P(h) = PL(h)
[
1− (hc/h)6

]
, (11)

where hc is the equilibrium distance at contact without external load, which is in the
range 0.2–0.3 nm. This parametrization follows from the Lennard-Jones potential between
molecules 1 and 2 that has the standard form:

ULJ = 4E0ij

[(
σij/rij

)6 −
(
σij/rij

)12
]
, (12)
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where rij is the distance between the molecules i and j and E0ij and σij are the corresponding
parameters. If we calculate additively with the potential (12) the interaction energy between
two parallel plates made of molecules i = 1 and j = 2, then this energy can be presented as

U (h) = AH

12πh2

[
1− 1

4

(
hc

h

)6
]

, (13)

where AH is the Hamaker constant. Both the parameters AH and hc are related to the
original Lennard-Jones parameters, but for AH this relation has no special meaning because
the vdW forces are not additive. On the contrary, the molecule sizes do not change signif-
icantly when the molecules are arranged in a solid and we can relate hc = (2/15)1/6σ12.
If materials 1 and 2 are different, one can use the standard rule for molecular dynamics:
σ12 = (σ11 + σ22)/2. When gold interacts with silicon we can take σ11 = 0.293 nm for Au
and σ22 = 0.392 nm for Si [61] and find for hc = 0.245 nm.

Information on roughness statistics of the substrate can be collected from AFM images.
Since high peaks play a very important role [54], it is necessary to collect information from
as large area as possible. For our calculations we use one of the images collected for the
paper [54]. It is a 200 nm thick Au film thermally deposited on Si substrate. The image
size is 20× 20 µm taken with a resolution of 4096 pixels per line. The correlation length is
estimated as la ≈ 45 nm and the rms roughness is w = 2.35 nm. The height distribution
function f (z) extracted from the image is shown in Figure 3. The important feature of this
function is that the high peaks are not described by the normal distribution that is shown
by the red dashed line. The normal distribution works rather well for the heights in the
range −3w < z < 3w but for the high peaks and deep pits is does not describe the statistic
of the roughness.

Figure 3. The probability density function as a function of the random height of asperities z. Black
circles are the data collected directly from the AFM images, the red dashed curve shows the normal
distribution with the same rms roughness, and the blue solid curve demonstrates the extreme value
distribution. The last distribution describes well the high peak tail.

Deep pits do not play any role for the force between the bodies, but high asperities
are very important because they can approach close to the opposite body and even get
into contact with it. The deviation of roughness from the normal distribution was already
stressed previously [54]. It was demonstrated [39,40] that for gold films the high peaks
are well described by the extreme value statistics, but the conclusion was made from
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the analysis of much rougher films. The case demonstrated in Figure 3 corresponds to a
smoother film, but the high peak tail is also well described by the extreme value statistics
as the solid blue curve shows.

In general case this statistics is described by the cumulative distribution P(z) in the
form [62]

P(z) = 1− exp
[
− exp

(
z− µ

β

)]
, (14)

where µ and β are the parameters. A characteristic feature of this distribution is given by
the relation

ln[− ln(1−P(z))] = A + Bz. (15)

The parameters A and B used in [39,40] are obviously related to µ and β. The corresponding
probability density has the following form

f (z) = BΦ exp(−Φ), ln Φ = A + Bz. (16)

In our case the values of these parameters are A = 0.7528 and B = 0.1179 nm−1. This
distribution is shown in Figure 3 by the blue solid line. It describes well the AFM data for
the heights z > 3w.

For what follows we need a relation between the pressure applied to the bodies in
contact and the average distance between them. It is defined by the roughness and plasticity
limit of the substrate material. The rough substrate is modeled as an ensemble of columns
with a random height and fixed cross-section l2

a , which is defined by the correlation length
la. The highest asperities get into contact with a flat stiff surface of the cantilever. Only a
few asperities are in contact and pressure on them exceeds the plasticity limit Pf . These
columns are deformed plastically reducing their height to a uniform value equal to h0 that
is the average distance between the bodies at contact. As the result the pressure on the
asperities, which are in contact with the cantilever, is equal to Pf .

If the surfaces are pressed together with the force F, this force is balanced by the
deformed columns and the balance can be expressed as F = ∑i Pf l2

a , where the sum
is taken on the columns, which are higher than h0. This sum can be expressed via the
probability density function f (z) as

F = Pf S
∫ ∞

h0

dz f (z), (17)

where S is the nominal area of contact. Since the average distance between the bodies in
contact h0 is larger than 3w, we can use the asymptotic distribution (16). Dividing (17) by S
one finds the relation between the applied pressure P and the average distance h0:

P = Pf e−Φ(h0). (18)

This relation will be used in Section 4.4 to estimate the coefficient of compliance.

3.3. Total Force

As input data in Equation (7) we used ε(ω) for Si taken from the handbook [63],
which is well documented, and the corresponding function for Au [55] that was measured
in a wide range of frequencies. The conductivity of silicon was neglected since it is not
important for the distances of interest. On the other hand, the Drude parameters for
gold were taken to be ωp = 7.84 eV and γ = 49 meV as extrapolated in [55], but their
exact values are not crucially important in the short distance range, because the far- and
mid-infrared frequencies do not give large contribution to the force at h < 30 nm.

In actual calculation of the roughness contribution with Equation (10), we used the
experimental function f (z) while z < 5w but for larger heights the relation (16) was used.
The result is shown in Figure 4 for a few values of the average distance between the bodies
at contact. One can see that the roughness contribution becomes very significant and
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even dominates when the bodies approach the contact. It occurs because high asperities
approach very close to the opposite body and the number of such asperities is much larger
than that predicted by the normal distribution. When the bodies are separated further
apart the roughness contribution decreases quickly and asymptotically behaves with the
distance as ∼PL(h)w2/h2 that coincides with the prediction of the perturbation theory.

h (nm)
10 15 20 25 30 35 40 45 50

P
C

 (
P

a)

102

103

104

105

h
0
=5w+h

c

h
0
=4w+h

c

h
0
=3.5w+h

c

flat

Si-Au(200nm)

w=2.35 nm
h

c
=0.245 nm

Figure 4. The Casimir force (CF) between Si (smooth) and Au (rough) plates as a function of distance.
The force is shown for three average distances at contact h0 = 8.46, 9.66, 12.02 nm. The dashed line
corresponds to the force between two flat plates.

At short separations the highest asperities get into contact with the flat plate and
deform plastically. In the area of real contact the modified Lifshitz force (11) becomes
important. If no external load, the equilibrium distance in the area of real contact is
heq = hc and according to Equation (11) the contact force is equal to zero. However,
for nonzero adhesion energy Γ the equilibrium distance at contact heq does not coincide
with hc and the contact force Pcont(h) becomes finite. Although the area of real contact is
not large, the forces acting in this area are significant. As a result the contact contribution
at some conditions can even dominate in the total force. It depends on the details of the
roughness distribution, on the repulsive component of the force, and on the value of plastic
flow stress of the deformable materials. As we already indicated, Pcont(h) is outside of
the scope of this paper. Here we concentrated on the effects of nonideality. One of such
effects is the deviation of the total force from the Lifshitz contribution. For this purpose the
deviation due to roughness is sufficient to understand the tendency.

4. Contribution of Roughness and the Background Effects to the Shape of
the Cantilever

In this section we investigate influence of different effects on the shape of the cantilever.
One can distinguish the effect related to the external force acting on the cantilever from
the effects related to the internal properties of the cantilever. The shape of the cantilever is
described by the theory of elasticity resulting in different equations for these two kinds
of effects.

The cantilevers are fabricated using silicon on insulator (SOI) wafers [41] where the
top layer is 10 µm thick single crystal silicon separated by a 1 µm SiO2 layer from the base
Si substrate (350 µm thick). The fabrication procedure includes patterning and etching
of the cantilevers in the top layer and their release by etching away the base layer from
the back side. It is a multistep process, which inevitably leaves a residual stress in the
cantilevers. The technology is tuned to minimise this stress but it is not possible to exclude it
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completely. The residual stress manifests itself as an initial curvature of the free (unadhered)
cantilever. This curvature can be measured before assembling the cantilevers with the
counter substrate, to which the free ends adhere.

Besides that the providers of SOI wafers guarantee that the thickness of the top layer is
homogeneous within 5–10%. This means that the thickness of cantilevers t can vary slowly
along its length and the variation can be as large as 1 µm. This variation can be measured
using, for example, an infrared interferometer, for which Si cantilevers are transparent and
the interference contrast is formed due to reflection from both sides. In addition, the rough
substrate is not completely stiff. It has a finite compliance because high asperities can be
deformed. It makes the adhered end of the cantilever not firmly fixed. All these effects will
change the classic (without external force) shape that will be slightly different from that
described by Equation (2). This difference has to be taken into account to extract the force
from the raw data and for that we have to modify the equation used in [42].

4.1. Generalised Equation for the Shape of the Cantilever

Consider bending of a rectangular elastic beam with the total length L, for which the
left end is firmly fixed at the height H and the right end is adhered to the substrate as
shown in Figure 5. In the macroscopic description the rough surface of the substrate is
considered as a deformable smooth surface, for which the undeformed state coincides with
the level h = h0 as shown explicitly in Figure 1. If the origin of x-coordinate is chosen at the
right end, then the cantilever is detached from the substrate at xs = L− s and the left end
is at the position x = L. Since the substrate has a finite compliance the beam can penetrate
into the substrate in the adhered area to the depth δ(x). The unadhered part of the beam
in the interval xs < x < L is separated from the substrate by a gap v(x) = h(x) − h0.
If u(x) is the bending of the cantilever midline as shown in Figure 5, then there is a simple
geometrical relation between v(x) and u(x) in the entire domain 0 < x < L that is

v(x) = H + t(L)/2− t(x)/2− u(x) + δ(x). (19)

Figure 5. Adhered cantilever in the most general case. The cantilever has a nonhomogeneous
thickness t(x) and has a nonzero initial bending r(x) shown by the thick dashed line. The rough
substrate is modelled as a deformable smooth surface and the penetration of the adhered part of the
cantilever into the substrate is δ(x). The function u(x) describes the bending of the midline of the
adhered cantilever.

Using the theory of beam bending [64] one can deduce the following differential
equation that describes the shape of adhered cantilever:[

D(x)ũ′′(x)
]′′

= β(x), ũ(x) = u(x)− r(x), (20)

where prime means the derivative on x, r(x) is the initial shape of the cantilever before the
adhesion, D(x) = Et3(x)/12 is the running flexural rigidity of the beam, and β(x) is the
bending stress. To describe the effective deformation of the substrate we use the Winkler



Universe 2021, 7, 64 12 of 20

model [45,46,65] that postulates a linear dependence of the penetration δ on the normal
stress at the substrate surface σz = β so that

δ(x) = −AW β(x), (21)

where AW > 0 is the compliance coefficient, which is defined by the deformation properties
of the rough substrate that follows from Equation (18).

The stress β(x) that enters Equations (20) and (21) is due to the mechanical reaction
of the substrate in the adhered area or due to the external (Casimir) forces acting on the
unadhered part of the beam. In the latter case it is

β(x) = PC(h(x)) = PC(v(x) + h0). (22)

Taking into account that v(x) = 0 in the adhered area and using the Derjaguin self-
consistent approach [47] for the unadhered part one can use Equations (19)–(22) to deduce
the equation that describes bending of the midline of the cantilever u(x). The result can be
written in the form

[
D(x)u′′(x)

]′′
= βr(x) +

{
β1(u(x) + t(x)/2), 0 < x < xs, (adhered)

β2(u(x) + t(x)/2), xs < x < L, (unadhered)
(23)

where βr(x) is defined as βr(x) = [D(x)r′′(x)]′′, the function β1(X) has an explicit expres-
sion β1(X) = (H + t(L)/2− X)/AW , while the function β2(X) is defined implicitly as a
solution of the equation β2(X) = PC(H + t(L)/2 + h0 − X− AW β2(X)).

The differential Equation (23) has to be solved with the following boundary conditions

u′′(0) = 0, u′′′(0) = 0, u(L) = 0, u′(L) = −t′(L)/2. (24)

Here the first two conditions correspond to the absence of bending moment and shearing
force at the right end. The other two conditions describe the firmly fixed left end of the
cantilever. The last condition follows from the fact that the bottom line of the cantilever
has zero derivative at x = L. The boundary problem (23), (24) can be solved, for example,
by shooting method using the Runge–Kutta procedure. Let us consider now a few relevant
special cases.

4.2. Influence of Roughness

If the external force PC is acting on an ideally homogeneous cantilever t(x) = t0 that
has no initial bending r(x) = 0 and the substrate is stiff AW = 0, then the adhered end is
completely immobilised. In this case it is convenient to shift the origin of the coordinate
system to the point x = xs, where the cantilever is detached from the substrate, and the left
end will be at x = s. The flexural rigidity D is now a constant and Equation (23) gets the
form [42]

D
d4u
dx4 = PC(H + h0 − u(x)), 0 < x < s,

u(0) = H, u′(0) = 0, u(s) = u′(s) = 0. (25)

The boundary conditions for this problem means that both ends of the cantilever are firmly
fixed at x = 0 and x = s.

It has to be stressed that experimentally we measure the shape of the cantilever along
its top surface but not along the midline. The observed shape ut(x) is related to u(x) by a
simple geometric relation ut(x) = u(x) + t(s)/2− t(x)/2. Therefore, for the case t(x) = t0
the function u(x) gives the complete information on the experimentally observed shape.

If PC = 0 the Equation (25) becomes linear and has a simple solution (2). When the
right hand side in (25) is given by the force between flat surfaces PC(h) = PL(h), then the
equation is nonlinear because h(x) = H + h0 − u(x) depends on u and the equation has to
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be solved numerically. For PL(h) approximated by Equation (4), the solution is shown in
Figure 2.

In more general case, when the force as a function of the separation is taken from
the data presented in Figure 4, the deviation from the classic shape is shown in Figure 6.
The solid lines demonstrate the results for the total force that includes both the Lifshitz and
roughness contributions. Each curve corresponds to the critical parameter K = Kc, where
K is defined as in (5) with P0 = PL(h0) taken as the force between flat surfaces. For three
values h0 = 8.49, 9.66, 12.02 nm the critical parameters are Krough

c = 11.76, 11.96, 12.47,
respectively, and the corresponding P0 are P0 = (2.23, 1.47, 0.72)× 104 Pa. The values
of K are presented for E = 160 GPa (silicon) and H = t = 10 µm. The thin dashed
curve demonstrates the deviation from u0(x) for flat surfaces separated by the distance
h0 = 9.66 nm. It corresponds to the critical values for flat surfaces K f lat

c = 14.56. The dash-
dotted curve shows the deviation for flat surfaces that corresponds to K f lat = 11.96 that is
smaller than the critical value K f lat

c .
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Figure 6. Deviation from the classic shape for the forces shown in Figure 4 (solid lines). The results
are presented for H = t = 10 µm and the parameter K is close to the critical value Kc for each
curve. The point x/s = 0 corresponds to the point of attachment to the substrate and x/s = 1 to the
right side of the support. The colours are related to the value h0, which are the same as in Figure 4.
The thin dashed line corresponds to the critical situation (K f lat

c = 14.56) between flat surfaces for
h0 = 9.66 nm. The thin dash-dotted curve shows the deviation between flat surfaces corresponding
to the same h0 but for K = 11.96, which is realised for the same s as for the rough surfaces.

Intuitively one would expect that the deviation u− u0 will be larger when the force
increases. However, it is true if we compare the deviations corresponding to the same un-
adhered length s = K(Et3H/12P0)

1/4. The solid and dash-dotted blue curves correspond
to the same length s = 3.69 mm and indeed the deviation for rough surfaces is larger than
that for flat surfaces. On the other hand, the critical situation for flat surfaces is realised
for longer unadhered length s = 4.49 mm and the deviation can be larger than that for the
rough surfaces (dashed curve). Such long s cannot be realised for rough surfaces because
the force is too strong. We can conclude that in spite of a significant increase in the force
between rough surfaces the deviation from the classic shape, which can be measured in
the experiment, decreases because the larger force corresponds to the shorter unadhered
length. Nevertheless, the deviation is still well in the measurable range.
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4.3. Stiff Substrate

In this section we consider a stiff substrate AW = 0 but the cantilever can be bent
initially r(x) 6= 0 and its thickness can be inhomogeneous t = t(x). The main interest is
how the classic shape of the cantilever u0(x) changes due to nonideality of the cantilever.
It is expected that these effects are small in comparison with the classic shape (2) or
equivalently that maximum deviation from (2) is much less than the height H. Since the
CF gives also only a small correction to the classic shape, it is reasonable to assume that the
effects of nonideality do not depend on the force and in the first approximation we can put
PC(h) = 0. For a stiff substrate without external forces the equation describing the shape
becomes linear: [

D(x)ũ′′(x)
]′′

= 0, ũ(x) = u(x)− r(x). (26)

As in Section 4.2 it is convenient to choose the origin of the x-coordinate in the point where
the cantilever is detached from the substrate, then the equation is defined in the domain
0 < x < s and the boundary conditions are

u(0) = H + t(s)/2− t(0)/2, u′(0) = −t′(0)/2, u(s) = 0, u′(s) = −t′(s)/2. (27)

Because Equation (26) is linear the effects of the initial curvature and inhomogeneous
thickness can be considered separately. Moreover, the equation can be solved analytically.
First, let us consider the case of finite curvature of the cantilever with a homogeneous
thickness t(x) = t0, t′(x) = 0. Since the cantilever is firmly fixed at x = s, the function r(x)
obeys the conditions r(s) = r′(s) = 0. The solution of Equation (26) can be presented as

u(x) =
[
2H − 2r(0)− sr′(0)

]
(x/s)3 +

[
−3H + 3r(0) + 2sr′(0)

]
(x/s)2+

H + r(x)− r(0)− r′(0)x,
(28)

In real experiment the cantilever is slightly curved and can be described as a piece of a
circle with a large radiusR. Then the function r(x) is

r(x) =
s2

2∆H

[
1−

√
1− 4∆H2

s2 (1− x/s)2

]
, R ≈ s2

2∆H
. (29)

Here instead of the curvature radius R we introduced more practical parameter ∆H =
r(0)− r(s) that is the sag (positive or negative) of the cantilever. The fabrication technology
is tuned to minimise the sag that is ∆H ∼ 1 µm. Since the unadhered length is s = 3–5 mm
the parameter 2∆H/s ∼ 10−3 is small. The first nonvanishing term in the expansion of
(29) gives the parabolic behaviour r(x) = ∆H(1− x/s)2. If we put this function into the
solution (28), all the terms containing ∆H will cancel. It means that the initial bending of
the cantilever does not contribute to the shape of the adhered cantilever. This could be
expected because, while r(x) is described by a polynomial of less than the fourth order
in x and the boundary conditions do not depend on r, the solution of the fourth-order
differential equation cannot be sensitive to r(x). The second term in the expansion of (29)
will change the classic shape of the adhered cantilever slightly. Its effect will be of the
order of ∆H(∆H/s)2 ∼ 10−3 nm that is negligible. Thus, we can conclude that in realistic
situations the initial curvature of the cantilever can be neglected.

In contrast with the finite curvature, the inhomogeneous thickness of the cantilever has
an observable effect. As was explained above, the top layer of SOI wafer with a diameter of
100 mm can vary 5–10%. On the length s = 5 mm one can expect 1% linear variation of the
thickness. Let the total thickness variation be ∆t = t(s)− t(0), then t(x) can be presented
as

t(x) = t(0)(1 + αx/s), α =
∆t

t(0)
. 0.01, (30)
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where α is a small positive or negative parameter. Equation (26) is now modified to
the following [

(1 + αx/s)3u′′(x)
]′′

= 0, 0 < x < s, (31)

Since t(x) is a linear function of x, the same equation describes the top ut(x) and bottom
ub(x) surfaces of the cantilever. The boundary conditions are formulated directly for the
bottom surface and have for ub(x) the simplest form that is

ub(0) = H, u′b(0) = 0, ub(s) = 0, u′b(s) = 0. (32)

Since α is small we can look for the solution as a series in α. The first nonvanishing term is

δub(x) = ub(x)− u0b(x) = −3αHξ2(1− ξ)2,

u0b(x) = H(1− 3ξ2 + 2ξ3), ξ = x/s.
(33)

One can see that the sign of the correction is defined by the sign of α. The external
force always gives a positive correction to (u0b), but the correction due to inhomogeneous
thickness is negative if at the adhered end it is thinner and positive in the opposite case.
For the parameters expected in the experiment H = t(0) = 10 µm the result is shown in
Figure 7. As we already mentioned, the directly observed shape is ut(x) = ub(x)− t(x) +
t(s).

Figure 7. Deviation from the classic shape u0b(x) (see Equation (33)) due to linear variation of the
thickness t(x) = t(0)(1 + αx/s). The result is presented for α = 0.01 and H = 10 µm.

Maximum variation of the thickness along the unadhered part of the cantilever is ex-
pected as 1%. One can see that this variation gives a measurable change in the classic shape,
which is comparable with the effect of the CF as shown in Figure 6 for the same parameters
H and t(0). The second order correction ∼ α2 to the classic shape can be neglected since it
is on the level of the experimental errors. We can conclude that the variation of thickness is
an important background effect that has to be carefully excluded from the experimental
data. For that it is important to measure the function t(x) experimentally.

4.4. Finite Compliance of the Substrate

Consider now the case when r(x) = 0, t(x) = t0 but the compliance of the substrate
AW is nonzero. Our interest here is the modification of the classic shape due to finite
compliance. In Equation (23) we can exclude the external force PC(h(x)), exclude the term
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βr(x) = 0 related to the initial curvature, and take D(x) = D = Et3
0/12 as a constant.

In this case the equation can be solved analytically, but to present it in a readable form it
is convenient to put the origin of x-coordinate at the very end of the adhered part of the
cantilever as shown in Figure 5. The equation describing the shape of the cantilever is

D
d4u
dx4 =

{
(H − u)/AW , 0 < x < L− s, (adhered)

0, L− s < x < L (unadhered)
(34)

that has to be solved with the boundary conditions

u′′(0) = 0, u′′′(0) = 0, u(L) = 0, u′(L) = 0. (35)

In the adhered domain the equation is

d4u
dx4 =

4k4

L4 (H − u), 0 < x < L− s;

u′′(0) = u′′′(0) = 0; k =

(
3L4

Et3
0 AW

)1/4

. (36)

Normalising x-coordinate with the total length L but keeping the same notation for the
normalised coordinate ξ = x/L, one can present the solution in the following form

u(x) = H + ekξ(A1 cos kξ + A2 sin kξ)+

e−kξ [(A1 − 2A2) cos kξ + A2 sin kξ], ξ = x/L,
(37)

where A1,2 are arbitrary constants. On the other hand, in the domain L− s < x < L the
function is described by the equation

d4u
dx4 = 0, L− s < x < L;

u(L) = u′(L) = 0 (38)

and the solution is

u(x) = B1ξ3 + B2ξ2 − (3B1 + 2B2)ξ + 2B1 + B2, (39)

where B1,2 are also arbitrary constants. Four unknown constants A1,2 and B1,2 are deter-
mined by matching the functions (37) and (39) and their three derivatives in the point
x = L − s. In principle, this procedure can be performed analytically but the result is
cumbersome and we do the matching numerically.

Before presenting the final result it is important to know the expected value of the
compliance parameter AW . It is defined by the roughness and by the plasticity limit of the
substrate material and can be found from the relation (18) between the applied pressure and
average distance between the bodies. To compare this relation to the Winkler model (21)
we can linearize Equation (18) near h0 and find for the compliance coefficient as

AW =
eΦ(h0)

BΦ(h0)Pf
. (40)

The plasticity limit for gold is Pf = 0.205 GPa but for nanosized samples it can be
somewhat larger [56,66]. For h0 = nw + hc used to calculate the force in Figure 4, where
n = 3.5, 4 , 5 we find AW = (2.29, 4.68, 29.4)× 103 nm/GPa. Knowing AW one can find
the parameter k that enters in the shape of the cantilever in the adhered domain (37); it
gives k = 267, 224, 141 for L = 5 mm. Resolving the matching condition with respect
to the constants A1,2 and B1,2, we find the solution u(x) in the entire domain 0 < x < L.
The result is shown in Figure 8.
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Figure 8. Deviation from the classic shape (2) due to finite compliance of the rough substrate for
L = 5 mm and s = 4 mm. The values of h0 are the same as in Figure 4. The results are presented for
three values of average distance between the bodies at contact. The inset demonstrates the detailed
behaviour near the transition from the adhered to unadhered state.

As one can see, the effect of finite compliance is even more important than the variation
of the thickness t(x). The transition region from adhered to unadhered part of the cantilever
is about 40 µm, while for the CF the width of the transition region is estimated as 300 µm.
Effectively it looks like a kink at the adhered end, although the inset in Figure 8 demon-
strates that the transition is smooth. The inset shows also that the cantilever penetrates into
the substrate but the penetration depth is rather small.

5. Conclusions

Experimental measurement of the Casimir forces at distances shorter than 30 nm is
problematic due to pull-in instability and due to roughness effect. A method of adhered
cantilever proposed recently [41] allows for the overcoming of the instability problem
and proposes an approach to treat the roughness effect. In this paper we addressed the
way to calculate the roughness contribution to the force beyond the perturbation theory.
In comparison with the previous analysis [39,40] we demonstrated that the roughness
contribution is especially important for the surfaces with a relatively small rms roughness.
When the bodies approach the contact the roughness contribution starts to grow so strongly
that it dominates the total force and can be one order of magnitude larger than the force
between flat surfaces separated by the same distance. It is manifested as a strong deviation
from the power law behaviour at short separations. In contrast with [39,40], we also
took into account the repulsive contribution when the bodies get into contact. It allowed
calculation of the force even in the case when the bodies are in direct contact. Without this
repulsive contribution the force would diverge at contact. Our calculations are justified
up to the point of direct contact but still restricted by the limit of small load. When the
load is not negligible there is an additional contact contribution to the force that has to be
analysed with different method and will be presented elsewhere.

In any experiment measuring the forces there are a number of background effects,
which are sometimes larger than the measured force. For example, the main background
effect for the Casimir forces at h > 30 nm measured with the elastic suspension method
is the residual electrostatic force [9–13]. At shorter separations the electrostatic forces
are not so critical, but the elastic suspension cannot be used due to the pull-in instability.
The adhered cantilever method gives the opportunity to measure the forces at small
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distances but there are some background effects that have to be excluded from the data.
These effects have been discussed in Section 4.

In the method of adhered cantilever the force is measured as the deviation of the
shape of the cantilever from a known classic shape. Here we indicated three potentially
important effects, which are able to change slightly the classic shape even if there is no
force acting on the cantilever. Technologically it is not possible to fabricate cantilevers
without residual stress. This stress results in a small initial bending of the cantilever. We
demonstrated that, while the initial bending is parabolic, it does not influence the shape
of the adhered cantilever. Deviation from the parabolic bending is too small to provide a
measurable effect in the adhered state. Thus, a small initial bending of the cantilever does
not influence the shape of the adhered cantilever on a measurable level.

Fabrication technology of the cantilevers cannot guarantee completely homogeneous
thickness of the cantilevers. The variation of the thickness up to one percent is expected.
This variation can influence the shape of the adhered cantilever. It was shown that inho-
mogeneous thickness can contribute to the classic shape on the same level as the expected
Casimir force. To control this effect it is necessary to measure thickness of the cantilever
along its length. If this variation is known, one can reliably predict its effect on the shape
of the adhered cantilever.

We also estimated the effect of finite compliance of the rough substrate on the classic
shape of the cantilever. The calculations have been performed within the linear Winkler
model but the compliance coefficient was estimated using a realistic roughness statistics
of the substrate. The result showed that the effect of finite compliance is also important
and has to be carefully excluded from the raw data. Influence of finite compliance depends
significantly on the average distance between the bodies at contact.

Author Contributions: Conceptualisation, I.A.S. and V.B.S.; software, A.A.Y.; validation, I.A.S.,
A.A.Y. and V.B.S.; writing—original draft preparation, V.B.S.; writing—review and editing, I.A.S.
and A.A.Y.; funding acquisition, V.B.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Russian Science Foundation grant number 20-19-00214.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request from V.B.S. (svetovoy@yandex.ru).

Acknowledgments: Authors are grateful to George Palasantzas for providing the AFM data for
Au sample.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

vdW van der Waals
CF Casimir forces
MEMS/NEMS Micro/Nanoelectromechanical systems
AFM Atomic Force Microscope
rms root-mean-square
SOI silicon on insulator

References
1. London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 1930, 63, 245. [CrossRef]
2. Casimir, H.B.G.; Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 1948, 73, 360–372.

[CrossRef]
3. Casimir, H.B.G. On the Attraction between Two Perfectly Conducting Plates. Proc. Kon. Ned. Akad. Wet. 1948, 51, 793.
4. Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73.

http://doi.org/10.1007/BF01421741
http://dx.doi.org/10.1103/PhysRev.73.360


Universe 2021, 7, 64 19 of 20

5. Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. General theory of van der Waals’ forces. Sov. Phys. Uspekhi 1961, 4, 153–176.
[CrossRef]

6. Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev.
Mod. Phys. 2009, 81, 1827–1885. [CrossRef]

7. Rodriguez, A.W.; Capasso, F.; Johnson, S.G. The Casimir effect in microstructured geometries. Nat. Photonics 2011, 3, 211–221.
[CrossRef]

8. Woods, L.M.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on
Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [CrossRef]

9. Lamoreaux, S.K. Demonstration of the Casimir Force in the 0.6 to 6 µm Range. Phys. Rev. Lett. 1997, 78, 5–8. [CrossRef]
10. Harris, B.W.; Chen, F.; Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 2000,

62, 052109. [CrossRef]
11. Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum Mechanical Actuation of Microelectromechanical

Systems by the Casimir Force. Science 2001, 291, 1941–1944. [CrossRef]
12. Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir Force between Parallel Metallic Surfaces. Phys. Rev.

Lett. 2002, 88, 041804. [CrossRef]
13. Decca, R.S.; López, D.; Fischbach, E.; Krause, D.E. Measurement of the Casimir Force between Dissimilar Metals. Phys. Rev. Lett.

2003, 91, 050402. [CrossRef]
14. Decca, R.; López, D.; Fischbach, E.; Klimchitskaya, G.; Krause, D.; Mostepanenko, V. Precise comparison of theory and new

experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys.
2005, 318, 37–80. [CrossRef]

15. Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the thermal Casimir force. Nat. Phys. 2011, 7, 230–233.
[CrossRef]

16. Chang, C.C.; Banishev, A.A.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir
force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique.
Phys. Rev. B 2012, 85, 165443. [CrossRef]

17. Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434.
[CrossRef]

18. Liu, M.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Precision measurements of the gradient of the Casimir
force between ultraclean metallic surfaces at larger separations. Phys. Rev. A 2019, 100, 052511. [CrossRef]

19. Buks, E.; Roukes, M.L. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 2001, 63, 033402.
[CrossRef]

20. Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir Forces and Quantum Electrodynamical Torques: Physics and
Nanomechanics. IEEE J. Sel. Top. Quant. 2007, 13, 400–414. [CrossRef]

21. Esquivel-Sirvent, R.; Reyes, L.; Bárcenas, J. Stability and the proximity theorem in Casimir actuated nano devices. New J. Phys.
2006, 8, 241. [CrossRef]

22. Esquivel-Sirvent, R.; Palomino-Ovando, M.A.; Cocoletzi, G.H. Pull-in control due to Casimir forces using external magnetic
fields. Appl. Phys. Lett. 2009, 95, 051909. [CrossRef]

23. Broer, W.; Palasantzas, G.; Knoester, J.; Svetovoy, V.B. Significance of the Casimir force and surface roughness for actuation
dynamics of MEMS. Phys. Rev. B 2013, 87, 125413. [CrossRef]

24. Broer, W.; Waalkens, H.; Svetovoy, V.B.; Knoester, J.; Palasantzas, G. Nonlinear Actuation Dynamics of Driven Casimir Oscillators
with Rough Surfaces. Phys. Rev. Appl. 2015, 4, 054016. [CrossRef]

25. Palasantzas, G.; Sedighi, M.; Svetovoy, V.B. Applications of Casimir forces: Nanoscale actuation and adhesion. Appl. Phys. Lett.
2020, 117, 120501. [CrossRef]

26. Smullin, S.J.; Geraci, A.A.; Weld, D.M.; Chiaverini, J.; Holmes, S.; Kapitulnik, A. Constraints on Yukawa-type deviations from
Newtonian gravity at 20 microns. Phys. Rev. D 2005, 72, 122001. [CrossRef]

27. Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the Gravitational
Inverse-Square Law below the Dark-Energy Length Scale. Phys. Rev. Lett. 2007, 98, 021101. [CrossRef]

28. Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise
measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [CrossRef]

29. Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. New Experimental Limits on Non-Newtonian Forces in the Micrometer
Range. Phys. Rev. Lett. 2011, 107, 171101. [CrossRef]

30. Chen, Y.J.; Tham, W.K.; Krause, D.E.; López, D.; Fischbach, E.; Decca, R.S. Stronger Limits on Hypothetical Yukawa Interactions
in the 30–8000 nm Range. Phys. Rev. Lett. 2016, 116, 221102. [CrossRef]

31. Mostepanenko, V.M.; Klimchitskaya, G.L. The State of the Art in Constraining Axion-to-Nucleon Coupling and Non-Newtonian
Gravity from Laboratory Experiments. Universe 2020, 6, 147. [CrossRef]

32. Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V. Neutron scattering and extra-short-range interactions. Phys. Rev. D 2008, 77, 034020.
[CrossRef]

33. Kamiya, Y.; Itagaki, K.; Tani, M.; Kim, G.N.; Komamiya, S. Constraints on New Gravitylike Forces in the Nanometer Range. Phys.
Rev. Lett. 2015, 114, 161101. [CrossRef]

http://dx.doi.org/10.1070/PU1961v004n02ABEH003330
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1038/nphoton.2011.39
http://dx.doi.org/10.1103/RevModPhys.88.045003
http://dx.doi.org/10.1103/PhysRevLett.78.5
http://dx.doi.org/10.1103/PhysRevA.62.052109
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1103/PhysRevLett.88.041804
http://dx.doi.org/10.1103/PhysRevLett.91.050402
http://dx.doi.org/10.1016/j.aop.2005.03.007
http://dx.doi.org/10.1038/nphys1909
http://dx.doi.org/10.1103/PhysRevB.85.165443
http://dx.doi.org/10.1103/PhysRevB.93.184434
http://dx.doi.org/10.1103/PhysRevA.100.052511
http://dx.doi.org/10.1103/PhysRevB.63.033402
http://dx.doi.org/10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1088/1367-2630/8/10/241
http://dx.doi.org/10.1063/1.3193666
http://dx.doi.org/10.1103/PhysRevB.87.125413
http://dx.doi.org/10.1103/PhysRevApplied.4.054016
http://dx.doi.org/10.1063/5.0023150
http://dx.doi.org/10.1103/PhysRevD.72.122001
http://dx.doi.org/10.1103/PhysRevLett.98.021101
http://dx.doi.org/10.1103/PhysRevD.75.077101
http://dx.doi.org/10.1103/PhysRevLett.107.171101
http://dx.doi.org/10.1103/PhysRevLett.116.221102
http://dx.doi.org/10.3390/universe6090147
http://dx.doi.org/10.1103/PhysRevD.77.034020
http://dx.doi.org/10.1103/PhysRevLett.114.161101


Universe 2021, 7, 64 20 of 20

34. Haddock, C.C.; Oi, N.; Hirota, K.; Ino, T.; Kitaguchi, M.; Matsumoto, S.; Mishima, K.; Shima, T.; Shimizu, H.M.; Snow, W.M.; et al.
Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam. Phys. Rev. D 2018,
97, 062002. [CrossRef]

35. Van Zwol, P.J.; Palasantzas, G.; van de Schootbrugge, M.; De Hosson, J.T.M. Measurement of dispersive forces between evaporated
metal surfaces in the range below 100nm. Appl. Phys. Lett. 2008, 92, 054101. [CrossRef]

36. Tonck, A.; Houze, F.; Boyer, L.; Loubet, J.L.; Georges, J.M. Electrical and mechanical contact between rough gold surfaces in air. J.
Phys. Condens. Matter 1991, 3, 5195. [CrossRef]

37. Sedighi, M.; Svetovoy, V.B.; Palasantzas, G. Casimir force measurements from silicon carbide surfaces. Phys. Rev. B 2016,
93, 085434. [CrossRef]

38. Van Zwol, P.J.; Palasantzas, G.; De Hosson, J.T.M. Influence of random roughness on the Casimir force at small separations. Phys.
Rev. B 2008, 77, 075412. [CrossRef]

39. Broer, W.; Palasantzas, G.; Knoester, J.; Svetovoy, V.B. Roughness correction to the Casimir force beyond perturbation theory. EPL
2011, 95, 30001. [CrossRef]

40. Broer, W.; Palasantzas, G.; Knoester, J.; Svetovoy, V.B. Roughness correction to the Casimir force at short separations: Contact
distance and extreme value statistics. Phys. Rev. B 2012, 85, 155410. [CrossRef]

41. Svetovoy, V.; Postnikov, A.; Uvarov, I.; Stepanov, F.; Palasantzas, G. Measuring the Dispersion Forces Near the van der
Waals–Casimir Transition. Phys. Rev. Appl. 2020, 13, 064057. [CrossRef]

42. Svetovoy, V.B.; Melenev, A.E.; Lokhanin, M.V.; Palasantzas, G. Global consequences of a local Casimir force: Adhered cantilever.
Appl. Phys. Lett. 2017, 111, 011603. [CrossRef]

43. Derjaguin, B. Untersuchungen über die Reibung und Adhäsion, IV. Kolloid-Zeitschrift 1934, 69, 155–164. [CrossRef]
44. Wang, Q.; Chung, Y.W. (Eds.) Encyclopedia of Tribology; Springer: Berlin/Heidelberg, Germany, 2013.
45. Goryacheva, I. Contact Mechanics in Tribology; Solid Mechanics and Its Applications; Springer: Berlin/Heidelberg, Germany, 1998.
46. Galin, L.; Gladwell, G. Contact Problems: The Legacy of L.A. Galin; Solid Mechanics and Its Applications; Springer:

Berlin/Heidelberg, Germany, 2008.
47. Muller, V.; Yushchenko, V.; Derjaguin, B. On the influence of molecular forces on the deformation of an elastic sphere and its

sticking to a rigid plane. J. Colloid Interface Sci. 1980, 77, 91–101. [CrossRef]
48. Soldatenkov, I. The use of the method of successive approximations to calculate an elastic contact in the presence of molecular

adhesion. J. Appl. Math. Mech. 2012, 76, 597–603. [CrossRef]
49. Soldatenkov, I. The contact problem with the bulk application of intermolecular interaction forces (a refined formulation). J. Appl.

Math. Mech. 2013, 77, 629–641. [CrossRef]
50. Tas, N.; Sonnenberg, T.; Jansen, H.; Legtenberg, R.; Elwenspoek, M. Stiction in surface micromachining. J. Micromech. Microeng.

1996, 6, 385–397. [CrossRef]
51. Maboudian, R.; Howe, R.T. Critical Review: Adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 1997, 15, 1–20.

[CrossRef]
52. Parker, E.E.; Ashurst, W.R.; Carraro, C.; Maboudian, R. Adhesion characteristics of MEMS in microfluidic environments. J.

Microelectromech. Syst. 2005, 14, 947–953. [CrossRef]
53. De Boer, M.P.; Michalske, T.A. Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 1999, 86, 817–827.

[CrossRef]
54. Van Zwol, P.J.; Svetovoy, V.B.; Palasantzas, G. Distance upon contact: Determination from roughness profile. Phys. Rev. B 2009,

80, 235401. [CrossRef]
55. Svetovoy, V.B.; van Zwol, P.J.; Palasantzas, G.; De Hosson, J.T.M. Optical properties of gold films and the Casimir force. Phys. Rev.

B 2008, 77, 035439. [CrossRef]
56. Kim, J.Y.; Greer, J.R. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater.

2009, 57, 5245–5253. [CrossRef]
57. Israelachvili, J.N. Intermolecular and Surface Forces; Elsevier: Amsterdam, The Netherlands, 2011.
58. Svetovoy, V.; Palasantzas, G. Influence of surface roughness on dispersion forces. Adv. Colloid Interface Sci. 2015, 216, 1–19.

[CrossRef]
59. Genet, C.; Lambrecht, A.; Neto, P.M.; Reynaud, S. The Casimir force between rough metallic plates. Europhys. Lett. 2003,

62, 484–490. [CrossRef]
60. Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Casimir effect with rough metallic mirrors. Phys. Rev. A 2005, 72, 012115. [CrossRef]
61. Munaò, G.; Correa, A.; Pizzirusso, A.; Milano, G. On the calculation of the potential of mean force between atomistic nanoparticles.

Eur. Phys. J. E 2018, 41, 38. [CrossRef]
62. Gumbel, E.J. Statistics of Extremes; Dover: New York, NY, USA, 2004.
63. Palik, E.D. (Ed). Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985.
64. Timoshenko, S.; Goodier, J.N. Theory of Elasticity; McGraw-Hill Book Conmpany, Inc.: New York, NY, USA, 1951.
65. Dillard, D.A.; Mukherjee, B.; Karnal, P.; Batra, R.C.; Frechette, J. A review of Winkler’s foundation and its profound influence on

adhesion and soft matter applications. Soft Matter 2018, 14, 3669–3683. [CrossRef]
66. Islam, A.A.; Klassen, R.J. Kinetics of length-scale dependent plastic deformation of gold microspheres. J. Mater. Res. 2017,

32, 3507–3515. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.97.062002
http://dx.doi.org/10.1063/1.2832664
http://dx.doi.org/10.1088/0953-8984/3/27/013
http://dx.doi.org/10.1103/PhysRevB.93.085434
http://dx.doi.org/10.1103/PhysRevB.77.075412
http://dx.doi.org/10.1209/0295-5075/95/30001
http://dx.doi.org/10.1103/PhysRevB.85.155410
http://dx.doi.org/10.1103/PhysRevApplied.13.064057
http://dx.doi.org/10.1063/1.4991968
http://dx.doi.org/10.1007/BF01433225
http://dx.doi.org/10.1016/0021-9797(80)90419-1
http://dx.doi.org/10.1016/j.jappmathmech.2012.11.005
http://dx.doi.org/10.1016/j.jappmathmech.2014.03.007
http://dx.doi.org/10.1088/0960-1317/6/4/005
http://dx.doi.org/10.1116/1.589247
http://dx.doi.org/10.1109/JMEMS.2005.851867
http://dx.doi.org/10.1063/1.370809
http://dx.doi.org/10.1103/PhysRevB.80.235401
http://dx.doi.org/10.1103/PhysRevB.77.035439
http://dx.doi.org/10.1016/j.actamat.2009.07.027
http://dx.doi.org/10.1016/j.cis.2014.11.001
http://dx.doi.org/10.1209/epl/i2003-00374-9
http://dx.doi.org/10.1103/PhysRevA.72.012115
http://dx.doi.org/10.1140/epje/i2018-11646-3
http://dx.doi.org/10.1039/C7SM02062G
http://dx.doi.org/10.1557/jmr.2017.223

	Introduction
	Method of Adhered Cantilever
	Interaction between the Cantilever and Rough Substrate
	Lifshitz Contribution
	Roughness Contribution
	Total Force

	Contribution of Roughness and the Background Effects to the Shape of the Cantilever
	Generalised Equation for the Shape of the Cantilever
	Influence of Roughness
	Stiff Substrate
	Finite Compliance of the Substrate

	Conclusions
	References

