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Abstract: We study the quantum radiation of particle production by vacuum from an ultra-relativistic
moving mirror (dynamical Casimir effect) solution that allows (possibly for the first time) analytically
calculable time evolution of particle creation and an Airy particle spectral distribution. The reality of
the beta Bogoliubov coefficients is responsible for the simplicity, and the mirror is asymptotically
inertial at the speed of light, with finite energy production. We also discuss general relations regarding
negative energy flux, the transformation to the 1-D Schrodinger equation, and the incompleteness of
entanglement entropy.

Keywords: moving mirrors; acceleration radiation; black holes; quantum field theory in curved
space

1. Introduction

The dynamical Casimir effect (DCE) [1-4] is a celebrated and multidisciplinary phe-
nomena that plays an important role in many areas of physics ranging from quantum
fields, atomic physics, condensed matter, and applications in nanotechnology all the way
to astrophysics, cosmology and gravitation. The overarching reach of the DCE results from
the fact that it is sourced, like the Unruh effect [5], by the amplified zero-point fluctuations
of quantized fields, inherent to physical systems. Notable theoretical studies [6-8] have
helped lead to experiments (the first being [9]) which have been successful at verifying the
existence of the DCE (see a pedagogical overview here: [10]). The quantum acceleration
radiation of the DCE is well-connected to the Hawking effect [11], potentially bringing
experimental data to bear on the quantum relationship between gravity and acceleration.

Studying acceleration radiation with finite energy production is physically well-motivated.
In the case of black hole evaporation, for example, this is a conspicuous sign that the evo-
lution has finished, energetic radiation has stopped, and conservation of energy is upheld.
The canonical moving mirror model of DeWitt-Davies-Fulling [2—4], for a single perfectly
reflecting boundary point in flat (1+1)-D spacetime, has solutions demonstrating in a sim-
ple way total finite energy production (e.g., the four decade old solution of Walker-Davies
which first derived a finite amount of energy creation [12]). Recently, several finite energy
mirror solutions have been found that demonstrate close connections to strong gravitational
systems. These gravity analog models are called accelerated boundary correspondences
(ABCs). The infinite energy ABC solutions correspond to the most well-known spacetimes, e.g.,
Schwarzschild [13], Reissner-Nordstrom (RN) [14], Kerr [15], and de Sitter [16]. The finite
energy ABC solutions closely characterize interesting well-known curved spacetime end-
states, including extremal black holes (asymptotic uniformly accelerated mirrors [15,17-20]),
black hole remnants (asymptotic constant-velocity mirrors [21-26]) and complete black hole
evaporation (asymptotic zero-velocity mirrors [12,27-32]).

Despite this progress, it has been very hard to find a mirror solution whose particle
spectrum is simple. Only two known solutions have analytic forms, one whose spectrum
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is an infinite sum of terms [26] and another which is so lengthy as to be prohibitively
cumbersome [27,28]. Consequently, analytic time evolution is impossible to find for the
above spectra. Further investigation of the particle production at any given moment is
hobbled because one must instead resort to numerical analysis and finite sized frequency-
time bins utilizing the discrete nature of orthonormal wave packets [30].

Motivated by simplicity, we take a step back and consider that any Bogoliubov trans-
formation can be broken down into two types: (1) the trivial unitary transformation with
B Bogoliubov coefficient zero, p = 0, indicating no particle production and (2) squeezing
transformations where the B # 0 is given by a transformation matrix that is diagonal [33]
(see the Bloch-Messiah decomposition or the theory of singular values). The simplest
examples of the non-trivial transformations are those where the Bogoliubov coefficients are
real-valued. We therefore look for some mirror motion (i.e., ABC) that should lead to a real
non-zero beta Bogoliubov coefficient for particle creation, and anticipate corresponding
simplicity in the resulting spectrum.

We take the simplest possible choice for global mirror motion with characteristics
leading to the desired reality of the Bogoliubov coefficient, and indeed find a simple
solution for the particle production spectrum. Remarkably, a transformation to the time
domain on this spectrum analytically gives the particle production at any given moment.

Our paper is organized as follows: in Section 2 we give a very brief motivation
of the connection between the reality of the beta Bogoliubov coefficient and the mirror
trajectory properties. We analyze this accelerated trajectory in Section 3, computing the
key relativistic dynamical properties such as rapidity, speed, and acceleration. In Section 4,
we derive the energy radiated, by analysis of the quantum stress tensor, and in Section 5
we derive the particle spectrum, finding a unique Airy-Ai form for the radiation and
confirming consistency with the stress tensor results. Finally, in Section 6 we compute
the time evolution of particle creation analytically. Appendices A and B discuss some
general properties leading to necessary negative energy flux, and connecting to the 1-D
Schrédinger equation, respectively. Appendix C is a note on the connection between
rapidity and entanglement entropy. Throughout we use natural units, i = c = 1.

2. Reality, Acceleration, and Inertia

The beta Bogoliubov coefficient controls quantum particle production and to compute
it, we need the trajectory of the mirror. Mirror motions can be written in configuration
space, (x,t), but also in light-cone (null) coordinates (u,v). Here retarded timeisu =t — x
and advanced time is v = t + x, while the moving mirror trajectory f(v) gives retarded
time location, where u is switched out for f since u is the independent variable and f is the
trajectory function. The beta Bogoliubov coefficient is [34]

_ oo o
Boww = 4m/cluiw’ ./_oo dos. e s —iwf(0) (wf! (v) — '), @M

where w and «’ are the frequencies of the outgoing and incoming modes, respectively, [35].

To maintain finite energy and the simplicity of no information loss, there must not be
a horizon at finite time, and the acceleration must vanish at infinity (i.e., the mirror motion
must be asymptotically inertial). Under these conditions we can carry out an integration

by parts to give
1 w' [t —iw'v—iwf(v)
buw = 32\ o |, S0 ' @

To guarantee a real-valued beta Bogoliubov coefficient, the mirror trajectory f(v) must
be an odd function so that the exponential over the symmetric interval turns into a cosine
of the argument, i.e., a real valued function. The simplest odd function that accelerates
in the required manner is f(v) ~ vs. + v3. We will find this results in not only interesting
dynamics, but analytic calculation of particle production spectrum and time evolution.
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3. Trajectory Motion

As motivated in the previous section, we expect the accelerated mirror trajectory

20
f(v) =vs.+« 5 ©)]
to have interesting physical properties. Here x is a quantity related to the acceleration (and
the surface gravity in the black hole case).
We can also write the trajectory in spacetime coordinates,

1
t=—x+ %(—61(3()1/3, 4)

taking the real cube root, or

1

x = —t
2K

[A2+/3A1_/3 i A1+/3A2_/3} ) ®)

where

Ay =3kt + V922 4 8. (6)

Note at late times x — —t + O(t!/3). These forms make it obvious that asymptotically
the mirror travels at the speed of light.

A spacetime plot with time on the vertical axis is given of the trajectory in Figure 1. A
conformal diagram is plotted in Figure 2. We next investigate the dynamics of the trajectory
Equation (3).

— f(v)

Figure 1. A spacetime diagram of the mirror trajectory, Equation (3) with ¥ = 1. It starts off
asymptotically inertial with zero acceleration and light-speed velocity and decelerates, eventually
reaching zero speed (at t = 0), and then accelerates again approaching the speed of light in an
asymptotically inertial way. Note that field modes moving to the left will always hit the mirror,
demonstrating no horizon, despite the mirror accelerating to light-speed.
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Figure 2. A Penrose diagram of the mirror trajectory, Equation (3). The mirror is moving at light-
speed at v — Zoo. Since the acceleration is asymptotically zero as v — d-co then this mirror is
asymptotically inertial. The various colors correspond to different maximum accelerations; here
x = 1,4,16,64 from red, blue, black, and green.

We compute the rapidity 17(v) by 257(v) = — In f'(v) where the prime is a derivative
with respect to the argument,

1(0) = —% 1n(;<2v2 + 1). @)

From the rapidity we may easily compute the velocity V = tanhy, plugging in
Equation (7),

—KZUZ

— 1 2.2 —
V(o) = tanh[zln(x v +1)] =52 ®)

and the proper acceleration, which follows from a(v) = ey’ (v),

KZU

*(2) (K202 + 1) ©
At x =t = 0 = v, the velocity and acceleration are zero. At asymptotic infinity, the
velocity is the speed of light and the acceleration goes to zero. The magnitude of the velocity,
Equation (8), along with the proper acceleration, Equation (9), are plotted in Figure 3. Often,
an asymptotically initial zero velocity state is more common. Trajectories are normally
either globally defined or piece-wise defined where the accelerated piece is glued to the
static piece at the origin. Thus, the asymptotic light-speed property distinguishes the Airy
trajectory Equation (3). However, what does it mean to start inertial at the speed of light?
What exactly is the initial state of the system? Recall that the ‘mirror’ in the moving mirror
model is a massless boundary condition imposed on the fields such that the modes are
always zero at it. To start inertial is to start time-like, physically well-associated with
familiar world-lines (which are by definition, time-like). The modes in the initial vacuum
state are the usual plane wave form as is familiar from ordinary quantum field theory in
Minkowski space. The only difference here is that the initial asymptotic inertial state of
motion saturates the speed limit and pushes the model to its extreme, but causal effects on
the field are still in the past light cone of the ‘reflection” events that disturb the quantum
field and amplify zero-point fluctuations. Cause and effect are still contiguously mediated
across the flat spacetime.
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Figure 3. The velocity and proper acceleration as a function of light-cone coordinate advanced time
v = t + x for the mirror trajectory, Equation (3). At v = 0, the velocity V = 0, but asymptotically
|V| — 1 and the proper acceleration vanishes, & — 0. The maximum acceleration occurs at |¥max| =
2x/(3v/3) = 0.385x. Here v is in units of 1/x and the maximum accelerations happen at advanced
time xvs. = +1/v/2 = 0.707.

4. Energy Flux and Total Energy
4.1. Energy Flux

The quantum stress tensor reveals the energy flux emitted by the moving mirror.
Typically, one will see [3]

Fu) = = gy {p(u), u), (10)

where the energy flux, F(u), is a function of light-cone coordinate retarded time
u =t — x [4,34] and the brackets define the Schwarzian derivative. The trajectory in light-
cone coordinates of the mirror is p(u) which is the advanced time position “v” as a function
of retarded time u. However, since we want advanced time v as the independent variable,

we write the radiated energy flux using f(v) [16,21],

F(o) = 55 {f(2),0}f'(0) 2, a

where the Schwarzian brackets are defined as usual,

{f(v),v} = ;-;({:)2 (12)

For f(v) given by Equation (3), this yields
2 1—-2 2.2
F(v) = A S . (13)
1277 (K202+1)4

It is clear that asymptotically F(v) — 0 for both v — +oo. Figure 4 shows the energy
flux as a function of advanced time v.
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Figure 4. The energy flux, Equation (13), is asymptotically zero at v = toco. The total energy, as
we shall see in Equation (16), is therefore finite, E = x/96. Notice the emission of negative energy
flux near early and late advanced times. The maximum flux Fpnax = %2/ (1271) occurs at v = 0 and
the minimum flux Fo, = —«2/(19277) occurs at v = +1/x. The energy flux crosses zero, F = 0, at
v =+1/(v/2x). Here x = 1.

4.2. Total Energy
The total energy measured by a far away observer at .7 is [36]

E— /oo F(u)du, (14)

where integration occurs over retarded time (it takes the energy time to reach .#"). Since

we are using advanced time v, we write this with du = %dv to get the Jacobian correct,

E= [ " P (o) f (0)do. (15)

Plugging in Equations (3) and (13) into Equation (15), with Jacobian du/dv = x?v* + 1,
the simple result is

which is finite and positive.

Physically, the finite value tells us the evaporation process stops, similar to the ABC’s of
extremal black holes (asymptotic uniformly accelerated mirrors), black hole remnants (non-
horizon sub-light-speed asymptotic coasting mirrors), and complete black hole evaporation
(asymptotic static moving mirrors). The fact that the total energy is positive is consistent
with the quantum interest conjecture [37] as derived from quantum inequalities [38].

4.3. Negative Energy Flux

As seen from Figure 4, there are regions of negative energy flux (NEF). This is required
by the unitarity sum rule (see Appendices A and B and, e.g., [27]). These regions extend
for || > 1/(xv/2). The total negative energy is, by symmetry,

Ener =2 [ v::w F(o)f (v)do, 17)

which gives an analytic result

K(—loﬂ +3m—6cot! \/E)
28871

ENEF = = —0.00930x (18)
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As a ratio, the emission of NEF to positive energy flux (PEF) is

|ENEF|
EpErF

~47.1%. (19)

Note one cannot judge by eye this ratio in Figure 4 due to the redshift Jacobian f’(v)
in Equation (17).

The NEEF is a result of asymptotic inertia. We point out that the asymptotic inertia, while
ensuring the total energy is finite, does not ensure information preservation [39]. Only the
absence of a horizon guarantees that. In the Airy case, even though there is no horizon, and
thus no information loss, the entanglement entropy diverges. This is because the rapidity
diverges, as seen through the relationship S = —# /6. This indicates that entanglement
entropy is not a comprehensive measure of the unitary, finite energy, information preserving
dynamics, due to the inertial light speed asymptote (see Appendix C for more detail).

5. Particle Spectrum

The particle spectrum can be obtained from the beta Bogoliubov coefficient, given
by Equation (2) in Section 2. For the particular trajectory Equation (3), as promised the
Bogoliubov coefficient is real,

-1 " wtd
b = G s M) @

which is highly unusual. This corresponds to the Bogoliubov transformation being a pure
boost without rotation, i.e., there is no phase on the beta coefficient, giving us a natural
choice for both field modes and coefficients (and potentially an action integral whose real
part defines the vacuum-vacuum amplitude [40]).

To obtain the particle spectrum, we take the modulus square, Ny = |Buww|%
which gives

w’ of wHdo
Now = “g73 573 Al <K2/3w1/3>' (21)

The Airy-Ai function is perhaps most well-known as the solution to the time-
independent Schrodinger equation for a particle confined within a triangular potential well
and for a particle in a one-dimensional constant force field. The spectrum Equation (21),
|Bewer |? is explicitly non-thermal and plotted as a contour plot in Figure 5.

This demonstrates a new spectrum of radiation emanating from a moving mirror
trajectory. Equation (21) can be compared to the late time (equilibrium after formation)
spectra of non-extremal black holes (e.g., Schwarzschild, RN, Kerr),

1 1

Now: = 2k’ e2mw/x — 1

, (22)

and extremal black holes (e.g., extremal RN, extremal Kerr, extremal Kerr-Newman),

efmuc/A 2

2
Nyw = TR2AT ‘KlJriwc/A(A WW’) (23)

(For extremal Kerr, ¢ = V/2; for extremal RN, ¢ = 2; for extremal Kerr-Newman,
¢ = A/x.) Here « is the surface gravity, i.e., x = 1/(4M) in the case of a Schwarzschild
black hole, or outer horizon surface gravity for the RN and Kerr non-extremal black holes.
In addition, A is the extremal parameter, or the asymptotic uniform acceleration [20] in the
case of the mirror system, while K, is the modified Bessel function of the second kind with
order v.
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w

Figure 5. The Airy-Ai spectrum, |B..|> from Equation (21), as a contour plot, here with x = 1. The
brighter the contours the more particle production. Notice the asymmetry between w and w’ which
are uniformly scaled. This asymmetry ultimately shows up in the infinite total particle count due to
the infrared divergence of w in N, but makes it possible to analytically integrate N, over w'.

Furthermore, it is remarkable that the spectrum
o0
Ny — / N,ode, (24)
0

is analytic,
p s~ A~ 20—
_ zﬂAiZ(a‘)) B Al(w)_Al (@) 2Ai%(@) ’
3x 3k@3/2 3@

where @ = (w/x)?/3. This analytic N(w) spectrum is plotted in Figure 6 for all .

N (25)

— T T T T T

0.01 0.05 0.10 050 1 5 10

wl K

Figure 6. The Airy particle spectrum, N(w), Equation (25). Note the infrared divergence at w — 0;
the soft particle divergence results in infinite total particle count characteristic of asymptotic coasting
mirrors. Larger maximum acceleration as measured by x results in more particles for a wider range

of frequencies, i.e., N scales as 1/« as seen by the kN curve plotted vs. w/«.



Universe 2021, 7, 60

9o0f 16

The Airy functions can be reformulated into Bessel functions using the identities

Ai(x) = \/% K1/3(§x3/2) (26)

Ai'(x) = \/;%Kz/a(gaﬁﬂ). 27)

This turns Equation (21) into

1 q@+9) (2(q+q’)3/2>/ 28)

N =
wo' T 32 g2 1/3 3q1/2

which has similarities to the extremal black hole expression. Here ¢ = w/x, 4’ = w’/x. For
the particle spectrum we get

972k N, = ZqK%/3(2q/3) +Ky/3(29/3) Ky/3(2q/3)
—29K3,5(2q/3) . (29)

In the small and large w limits the leading order terms are, respectively,

1
Ny —» ——, w—0, 30
w 6\/§7Tw (30)
K ,—4w/(3
— WE w (K), w — 00. (31)

The 1/w in the small frequency limit (note this is independent of x) demonstrates
the infrared divergence leading to an infinite total particle count commonly associated
with constant-velocity moving mirror solutions [21-26], that are not asymptotically static
(asymptotic zero-velocity [12,27-32]).

To check that the energy is indeed carried away by the particles, we look for consis-
tency between Equation (21) and the total energy, Equation (16), found from the stress
tensor. This is done by quantum summing,

E— / / WN,,y dw da, (32)
0 0

that is, associating a quantum of energy w with the particle distribution and integrating
over all the frequencies. The result is pleasingly analytic:

K

E=—.
96

(33)

Since this is also the result of Equation (16), the beta spectrum Equation (21), or
Equation (29), is consistent with the quantum stress tensor, Equation (13).

The time dependence of particle creation can be computed via wavepacket analysis
treated in Hawking [11], and explicitly numerically computed in [27,28]. Wave packet
localization, particularly via orthonormal and complete sets in the moving mirror model,
was first carried out in detail in [41]. For completeness, we utilize the same code to illustrate
particle creation in time and present the results in Figure 7. The rate of emission of particles
is finite only in a given time and frequency interval which can be seen by these complete
orthonormal family of wave packets constructed from the beta Bogoliubov coefficients,
following Hawking’s notation,

1 (j+1)e

,Bjnw’ = % e

dw XM (34)
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where j > 0 and 7 are integers. These packets are built at future right null infinity, .7,
and peak at delayed exterior time, u = 27tn /€, with width 27t/€. Therefore the vertical
axis in Figure 7 has a discrete and intuitive physical interpretation, giving the counts of
a particle detector sensitive to only frequencies within € of w; = je, for a time 271/€ at
u = 27tn /€. Late times correspond to large quantum number 7 (for the mirror Equation (5),
late times have u ~ 2t[1 + O(xt) ~2/3]). For excellent time resolution, only one frequency
bin is needed, where the particles pile up, j = 0, and a relatively large value of € resolves
the count in time. The text of Fabbri-Navarro-Salas [42] also describes the details needed
to reconstruct Figure 7 by first packetizing the beta coefficient as done in Equation (34)
and then secondly numerically integrating over w’ from 0 to oo, and third, computing the
results, Njn,

tee ! 2
Njn = /O dw |‘Bjnw’| ’ (35)

for each individual time bin, n, for a set frequency bin, j (in our fine-grained time resolution
case, j = 0). While this numerical approach evolves the particle count in time, it is not
particularly stream-lined, fast, nor arbitrarily accurate. In Section 6, we will find an analytic
approach to the evolution process, resolving these issues.

€=10, j=0, k=1.
N;,

0.006 i

~

0.003

0.001

0.000 n

-10-9-8-7-6-5-4-3-2-10 12 3 456 7 8 910

Figure 7. The particle count in time, via wave packet localization. The detector is set with e = 10, a
relative large value (¢ > 1) in order to get clear time resolution. The scale of the system is x = 1 and
the frequency bin is in the lowest possible j = 0 value, where most of the particle production occurs,
and finer resolution in time is possible. Notice there is no plateau, hence indicative of non-thermal
radiation. This emission includes the ‘phantom radiation” of soft particles as described in [17]. It is
symmetric in delayed time, 1, centered around time bin n = 0.

6. Analytic Time Evolution

The spectrum, Equation (25), is simple enough that analytical time evolution without
discrete wave packetization is possible — possibly uniquely in the literature. Typically we
would like to employ a Fourier transform converting from frequency to time. Since this
does not work out in a straightforward manner, we consider that the Fourier transform
of a radially symmetric function in the plane can be expressed as a Hankel transform.
The Hankel transform, N, = H(N,,) /2—where by time symmetry we have divided the
spectrum by 2 so that retarded time u ranges from —oo to +co—is analytically tractable for
the spectrum Equation (25):

384 11 9
TN” = 531:2 (/ =7 1/2;_1’[21(2)

3'1 2; —9u21c2>. (36)
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The particle spectrum dies off at large times as 1!, so the total number indeed diverges.

Turning to the energy, a consistency check can be done by Hankel transforming the
quantum of energy wN,, and integrating over all time. The result for the transform,
E, = H(wNy)/2,is

_ sinh6 _ cosh 6
3v3mkud  3v3mucv9x2u? + 16

(37)

u

where 0 = % sinh ™1 (?’1‘1—”) Equation (37) dies off as u~8/3 for large times, so the total energy
is finite. The result for the total energy by integrating over all time is also analytic,

E= [ Eodu=t 38
= u—=— P

/m ! 96 (38)
which agrees with the total energy as derived by the stress tensor, Equation (16), and the
total energy as derived by integration of the particle spectrum with respect to frequency,
Equation (33). As far as we know, this is the first solution for analytic time evolution
of particle production from the quantum vacuum. Notice there is no need to resort to
wavepacket discreteness as the creation is continuous. Nor have we made any analytic
approximations. A plot of the evolution is given in Figure 8.

0.005
Ny
0.004
0.003

0.002

0.001

0.000

Figure 8. The continuous time evolution of particle creation, Equation (36), and time evolution
of energy quanta, Equation (37). Here x = 1 (though N;,/x and E;;/ 2 have invariant forms as a
function of xu).

7. Conclusions

An interesting connection between the reality of the beta Bogoliubov coefficient,
asymptotic inertia and finite energy, and mirror motion near the speed of light leads to
particle radiation by quantum vacuum that is analytic in the energy flux, simple in the
particle spectrum—an Airy function—and, remarkably, analytic expression of the time
evolution of particle creation.

We evaluate the simplest allowed accelerated mirror with the needed conditions and
derive all these physical quantities. The Airy mirror is asymptotically inertial, coasting at
the speed of light; the total energy radiated is finite and simply x /96 despite a soft particle
divergence; the beta Bogoliubov coefficient is given by a real Airy-Ai function; the particle
creation time evolution is analytic and exact.

The mirror has no horizon, and so there is no information loss. The finite energy
corresponds to the black hole analog case where evaporation ceases, related to extremal
black holes, remnants, or complete evaporation. The asymptotic inertia is responsible
for finite energy, but inertial motions that asymptotically approach the speed of light do
not preserve the interpretation of entanglement entropy derived from the rapidity as an
adequate measure of unitarity (see Appendix C).

The radiated flux exhibits regions of negative energy flux (NEF); these are required by
unitarity for the conditions present, and we expand on this “necessity of negativity” in the
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Appendices, showing it follows directly from the asymptotically inertial nature. The lack
of a horizon ensures information conservation although information loss does occur from
an inertial horizon [39]. We further connect the NEF to the 1-D Schrodinger equation and
interpretation of the rapidity as a Lorentz transformation and wavefunction in a potential
well defined by the acceleration properties.

While obtaining a real, and simple, Bogoliubov coefficient is a significant advance, we
further derive an analytic particle spectrum (integrating over the beta coefficient squared),
time evolution (through a Hankel transform), and energy (further integrating over the spec-
trum times frequency). An exact analytic time evolution solution for particle production
from the quantum vacuum may be unique in the literature. No discrete wave packetization
is required (although we also show those results, consistent with the analytic one).

The techniques of accelerating boundary correspondences (ABC) and moving mirrors
continue to deliver intriguing insights into connections between acceleration (or surface
gravity), particle creation, and information. Furthermore, these lead to interesting direc-
tions for research in the properties of black holes (for which they serve as analogs) and
quantum information, entanglement, and gravity.
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Appendix A. Necessity of Negativity

We emphasize that negative energy flux is a common, and indeed required [43],
component of certain acceleration dynamics. That this follows from unitarity is discussed
in [27] and references therein. Here we give two quick derivations.

From Equation (11) and the relations f'(v) = e~?7 and a(v) = 5’ (v) e, we can write

247F(v) = — 2% {;7” + (;7’)2} = 2% (v). (A1)
This immediately implies
0 -3 o le (o)
—127'(/ dve ”P(v):/ dv%:oc|_oo. (A2)

Whenever the acceleration & vanishes asymptotically—as it does for any asymptoti-
cally inertial dynamics—(or if it is time symmetric), then the left hand side must be zero.
Since e~ %" is positive, then F(v) must have negative regions.

This depends only on the conditions mentioned in the previous paragraph and not on
the specific mirror trajectory used in this paper. One can also see this even more directly in
terms of proper time T:

127F (1) = —a' (1) 21T, (A3)

SO
127t/dre_2’7F(T) = _/dT%' (A4)
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Appendix B. Zero-Energy Resonance

The simple harmonic oscillator is the basis of many diverse physics areas. Here
we consider a relation between particle radiation from an accelerated system and the
oscillator equation. Let us adapt the usual form, ¢(t) + w(t)¢(t) = 0 (in the time domain)
or ¢"(x) + k(x)¢p(x) = 0 (in the space domain) and write it in terms of the light-cone
coordinate retarded time u = t — x,

" (u) + V(u) p(u) = 0. (A5)

We allow the resonance frequency or spring constant to be spacetime dependent, and
write it as V (u) for reasons discussed below.
The immediate consequence (see also [43]) is that

—+00 dll/
/ duV(u)p(u) = —/du —. (A6)
— du

This looks quite similar to Equation (A4). If ¢ vanishes at asymptotically early
and late times, |u| — oo, then we find that for positive i the “potential” V must have
negative regions.

Let us make the analogy more concrete. If ¢(u) = e~ then —¢'(u) = a(u), which is
the acceleration. While ¢’ (u) = —a, it is worth pointing out that i (u) itself is the Lorentz
transformation (LT) in retarded time from un-tilded to tilded boosted frame ii = e~ u,
where the LT acts like a wave function. So our constraint on ¢’ vanishing at infinity is
exactly our condition in Appendix A, and the asymptotically inertial case we treat in the
main text. Note that indeed ¢ is always positive. Now the derivatives of 77, and hence 1,
are also related through the Schwarzian in Equation (10) to the energy flux F(u)—which
arises from the acceleration—through

V() = 127F () = —5 {p(u),uk = 1/ (0 — " (). (A7)

Under these definitions, Equation (A6) is identical to Equation (A4). Thus, again we
see the “necessity of negativity”.

The derivation in Appendix A relied on accelerating system dynamics while the one
here arose from the simple harmonic oscillator equation. The harmonic oscillator can also
be related to the 1-D Schrodinger equation

hz 2
— oy +Vy =Ey, (A8)
for a spacetime-dependent potential where the “spring constant”

2m(E — V)

k < 2

. (A9)

Absorbing the 7 and m factors, and taking the zero energy case, we see we can rewrite
the Schrodinger equation as Equation (A5). Hence our V(u) = 127tF(u) does act like a
potential and ¢ (u) acts like a wave function. The moving mirror differential equation for
energy flux, Equation (A7), and the zero-energy case with absorption of a negative sign
into the definition of the potential, Equation (A8), corresponds to the physics of resonance
transmission for a potential, V(u) = V(—u), of a 1-D scattering threshold anomaly [44].

For the particular trajectory of the main text, we have the asymptotic condition ¢ — 0
but to keep the wave function zero at infinity we perform a parity flip, x — —x, on the
mirror trajectory f(v), Equation (3), resulting in

3

p(u) =u+ KZ% . (A10)
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With 27 (1) = Inp’ (1), the rapidity 7(u) = } In(x*u? 4 1), hence asymptotically +oco
rather than —co without the parity flip, i.e., the mirror approaches an observer located
at # at the speed of light, instead of receding at the speed of light as is the case with
Equation (3). The wave function form is then

1
Y = U

plotted in Figure A1l. The wave function is normalized by setting x = 7 so

p(+o0) =0, (A11)

/oo ()P du=1. (A12)

Plugging Equation (A10) into the Schwarzian relation, Equation (10), gives

k226 - 1)

== (A13)
1271 (122 4 1)

which is PT symmetric u — —u. Phrasing this as the potential V(u) = 127tF(u) of the
Schrodinger equation we see in Figure A1 how the wave function is localized within the
potential well.

Figure A1. The potential Equation (A7) with Equation (A13), and the wave function Equation (A11).
|| is normalized according to Equation (A12) where x = 7t. The potential maxima occur at
Uy = +/2/x with maximum value Vin(um) = x2/3; the zero crossings are at 1y = :I:l/(K\ﬁ).

Appendix C. Entanglement Entropy and the Speed of Light

Entropy diverges because rapidity does, S = —# /6. Interestingly, a divergent informa-
tion measure like entanglement entropy is, at first glance, seemingly at odds with the obvi-
ous unitarity of the dynamics as seen in the Penrose diagram. However, the entanglement-
rapidity formula has a subtle caveat in that it was carefully derived [25,43,45-47] assuming
unitarity a priori only in the cases where entropy (rapidity) achieves a constant non-infinite
value in the far future. Since this is not the case for an asymptotic light speed moving
mirror, the entropy as rapidity interpretation is not a good measure of unitarity [43] for
such cases. This example highlights the need for caution because the entanglement as
rapidity approach may not hold much utility for general motions that approach the speed
of light, that is, for cases where # — oo.
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