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Abstract: We present a geometrical derivation of the relativistic dynamics of the superfluid inner
crust of a neutron star. The resulting model is analogous to the Hall-Vinen-Bekarevich-Khalatnikov
hydrodynamics for a single-component superfluid at finite temperature, but particular attention
should be paid to the fact that some fraction of the neutrons is locked to the motion of the protons
in nuclei. This gives rise to an ambiguity in the definition of the two currents (the normal and the
superfluid one) on which the model is built, a problem that manifests itself as a chemical gauge
freedom of the theory. To ensure chemical gauge covariance of the hydrodynamic model, the
phenomenological equation of motion for a quantized vortex should contain an extra transverse force,
that is the relativistic version of the Iordanskii force discussed in the context of superfluid Helium.
Hence, we extend the mutual friction model of Langlois et al. (1998) to account for the possible
presence of this Iordanskii-like force. Furthermore, we propose that a better understanding of the
(still not completely settled) controversy around the presence of the Iordanskii force in superfluid
Helium, as well as in neutron stars, may be achieved by considering that the different incompatible
results present in the literature pertain to two, opposite, dynamical regimes of the fluid system.

Keywords: general relativity; fluid dynamics; superfluidity

1. Introduction

The presence of superfluidity has a significant impact on the behaviour and evolu-
tion of neutron stars, both on short timescales (where superfluidity leads to additional
modes of oscillation, e.g., [1–3]) and on secular timescales (where superfluidity affects
the nuclear reactions responsible for neutrino cooling [4]). Furthermore pulsar glitch
models [5] are typically based on extensions to the neutron star problem of the two-fluid
Hall-Vinen-Bekarevich-Khalatnikov (HVBK) hydrodynamics, usually employed to describe
superfluid 4He [6,7].

A particularly important point in this hydrodynamic description concerns the so-called
mutual friction, a dissipative force coupling the superfluid and normal parts of the system,
which is directly related to the presence of quantised vortices, e.g., [8–14]. In addition to
being the coupling mechanism giving rise to glitches, the mutual friction may also provide
the main damping mechanism for various classes of neutron star oscillations and it is a
likely candidate for limiting the growth of modes that are driven unstable by the emission
of gravitational waves, see e.g., [15,16]. Hence, it is important to develop hydrodynamic
relativistic models of neutron star interiors that can consistently take into account for the
multifluid nature of the system, and possibly include a consistent modeling of vortex
mediated mutual friction.

In particular, this work is devoted to extending the effective two-fluid description of
neutron star hydrodynamics developed by Langlois et al. [8], focusing our attention on the
inner crust, where a superfluid of delocalized neutrons (that will be present in the inner
layers below the neutron drip threshold at ∼ 1011 g/cm3) coexists with the exotic ions
comprising the crustal lattice and a neutralizing background of relativistic electrons [17].
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Clearly, such a two-fluid treatment does not account for a third independent current,
that of the electrons, which is of dominant importance for magnetic effects but makes a
negligible contribution to the mass transport effects under consideration here. Since also
the stress anisotropy that can arise from the elastic solidity of the crust, or from strong
magnetic fields, is neglected, this effective two-fluid description parallels the relativistic
version of the HVBK hydrodynamics described by Gusakov [10], valid for a single species
superfluid at finite temperature. We also allow for a special feature of the inner crust
layers, namely the clustering of some nucleons into ions, which gives rise to a fundamental
ambiguity on the number of free neutrons, as well as on the number of confined nucleons
that behave as an effectively normal fluid in the inner crust. This ambiguity was discussed
in depth by Carter et al. [18], and takes the form of a “chemical gauge freedom” of the
macroscopic hydrodynamic model, see also [19].

Furthermore, we also aim to discuss in a fully relativistic setting the relationship
between the dissipative behavior of the macroscopic HVKB two-fluid model and the
most general Phenomenological Equation for Vortex Motion (PEVM), which expresses the
balance of all the lift and drag forces acting on a vortex. The PEVM provides a closure of
the hydrodynamic system (see e.g., [20] for the case of 4He) by defining the form of the
vortex mediated mutual friction [9,13,14].

Our decision of considering the most general form of PEVM is not a mere exercise.
In fact, there is a long-lasting debate around the possible presence of the so-called Ior-
danskii force acting on quantized vortices in superfluid 4He, which is still not completely
settled [21–27]. In the context of neutron star crusts this problem is, possibly, even more
severe, as the physical meaning of the “superfluid” and “normal” components is not
uniquely defined because of the ambiguity on the number of free neutrons mentioned
above. Therefore, we provide a discussion of the way such a possible Iordanskii force
appearing in the PEVM depends on the gauge freedom involved in the choice of a chemical
basis for the purpose of specifying which neutrons are considered to be free. We prove that
the presence of a Iordanskii-type force is a formal necessity to ensure the covariance of the
macroscopic hydrodynamic theory under chemical gauge.

The paper is organised as follows.
In Secection 2 we introduce the two-fluid model of Langlois et al. [8] for neutron-star

matter; we analyse the model from a geometrical perspective and derive, in this setting,
the relativistic form for the vortex velocity, which turns out to be equivalent to the one of
Gusakov [10]. In Section 3 we consider the most general PEVM for a non-turbulent vortex
configuration. This PEVM contains two force terms that were not included in the model of
Langlois et al. [8], see also [11,28]: a rescaled Iordanskii force and a drag force due to the
superfluid component.

In Section 4 we present the chemical gauge freedom described by Carter et al. [18].
We prove that, to respect the formal covariance established by this microscopic principle,
the hydrodynamic theory must account for a generic Iordanskii force term of the form
introduced in Section 3.

In Section 5 we apply the analysis of Carter et al. [29] to the context of neutron stars:
this allows us to derive the relativistic counterparts of both the Sonin-Stone [7,25,30] and
the Thouless et al. [26] results for the Jukowski lift force (i.e., the total transverse force on a
vortex). We show how these two incompatible results arise from different assumptions on
the value of the circulation of the relativistic normal momentum around a vortex.

Finally, in Section 6 we propose a relativistic extension of the thought experiment
of Wexler [21], that was designed to clarify which are the transverse forces on a vortex
in superfluid 4He (Wexler concluded that there is no transverse force proportional to the
normal fluid velocity, i.e., that there is no Iordanskii force, see also [24]). This is in apparent
conflict with the result of Sonin [30] and Stone [25], that predicted the presence of the
Iordanskii force on a microscopic basis (i.e., scattering of phonons in the vicinity of a vortex,
see also e.g., [7]). We propose that, in both 4He and neutron stars, this controversy on the
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presence of the Iordanskii force may be overcome by considering that the incompatible
results of Thouless and Sonin-Stone pertain to two different dynamical regimes.

Throughout the paper we adopt the spacetime signature (−,+,+,+), choose units
with the speed of light c = 1 and Newton’s constant G = 1, use greek letters ν, ρ, σ. . . for
coordinate tensor indexes and latin letters a, b, c, . . . for tetrad tensor indexes. For anti-
symmetrization we adopt the shorthand notation A[νρ] = (Aνρ − Aρν)/2 . The sign of the
volume form is chosen according to the convention ε0123 =

√−g. The Hodge dual of a

generic p-form f is ? fν1 ...ν4−p = (1/p!) ε
λ1 ...λp

ν1 ...ν4−p
fλ1 ...λp .

2. Relativistic Formulation of the HVBK Hydrodynamics

We introduce the two-fluid model of Langlois et al. [8] for the finite temperature
hydrodynamic description of a neutron star, which is essentially a relativistic version of the
Hall-Vinen-Bekarevich-Khalatnikov (HVBK) hydrodynamics [10]. We restrict our attention
to the inner crust (although the model can be in principle applied also to the core). The two-
component model is an effective description, in the sense that the nucleons in the ions, the
relativistic electrons and the thermal excitations are treated as a single normal species.

Contributions to the stress-energy due to the possible presence of an elastic vortex-
array will not be considered here [31–33]. Furthermore, despite the presence of a solid
component, the model neglects the elastic stresses [34], the anisotropies and the inho-
mogeneities due to the presence of the ions [35–37]. However, since our focus is on the
evolution of the superfluid component, the hydrodynamic equations for the effective nor-
mal component are of secondary importance, as they just serve to consistently close the
system. Therefore, the fact that the normal component is treated as a fluid should not
compromise the general validity of our results.

Given the above set of simplifications, our formulation is formally equivalent to the
relativistic extension of the HVBK hydrodynamics for a single-species superfluid at finite
temperature derived by Gusakov [10].

2.1. The Stress-Energy Tensor

The model of Langlois et al. [8] builds on three currents, sν, pν, nν, which can be
interpreted as the current of entropy, protons and neutrons, respectively (we will need
to go back to the problem of assigning a microscopic interpretation to nν in Section 4.2).
For the time being, nν counts all the neutrons, including those in the ions, so that the total
current associated with the conserved baryon number is

bν = pν + nν . (1)

The second law of thermodynamics and the baryon conservation are implemented as

∇νsν ≥ 0 ∇νbν = 0 . (2)

For simplicity, chemical transfusion (β reactions) and heat conduction are
neglected, namely

∇ν pν = −∇νnν = 0 s[ν pρ] = 0 . (3)

Following [8], to construct the stress-energy tensor of the theory it is useful to assume
that the two-fluid system can be described in terms of an appropriate Lagrangian function
Λ(sν, pν, nν), see, e.g., [19] for the precise interpretation of Λ as a thermodynamic potential.
An infinitesimal variation of Λ, resulting from a change of the components of the currents
at fixed metric components, can always be written in the form

δΛ = Θνδsν + χνδpν + µνδnν , (4)

so that the covectors Θν, χν and µν are the conjugate momenta to sν, pν and nν, respectively.
As discussed in Gavassino and Antonelli [19], the second assumption in (3) implies that
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there is a freedom in the choice of Λ, which allows us to introduce the normal four-velocity
uν and the local temperature of the fluid Θ as

uν := sν/(−sρsρ)1/2 Θ := −Θν uν Θν = Θ uν , (5)

without altering the physical content of the theory. Finally, the stress-energy tensor Tν
ρ

derived from the variations of Λ reads

Tν
ρ = Ψδν

ρ + sΘ uνuρ + pνχρ + nνµρ , (6)

where the thermodynamic pressure, see e.g., [19], is

Ψ = Λ + sΘ− pνχν − nνµν . (7)

2.2. The Superfluid Vorticity

We now introduce another conserved (i.e., physical) quantity in the hydrodynamic
model: the vorticity related to the superfluid component (in fact, the quantized vortices in
the superfluid cannot decay). We start by noting that the energy-momentum conservation
∇νTν

ρ = 0, together with the conditions in (3), give

Θρ∇νsν + 2sν∇[νΘρ] + 2pν∇[νχρ] + 2nν∇[νµρ] = 0 . (8)

Now, if we define the hydrodynamic vorticity of the neutron fluid as (e.g., [38,39])

vνρ := 2∇[νµρ] = ∂νµρ − ∂ρµν , (9)

we can contract (8) with uρ and find that

Θ∇νsν = vνρnνuρ . (10)

This tells us that dissipation, for a fixed local value of the currents, is determined
locally by the geometric form of the vorticity tensor vνρ.

With the present formalism it is possible to describe superfluids either at the local
irrotational level (i.e., on the so-called mesoscopic scale, see e.g., [39]), or on the smooth-
averaged macroscopic scale by neglecting the (generally small) anisotropy induced by the
quantized vortices. At the mesoscopic scale, the additional requirement that the neutrons
are in a superfluid state is encoded into the model by imposing the covariant Josephson
relation [18,19,40]

µν =
k

2π
∇νφ k = πh̄ , (11)

where φ is the gradient of the phase of the superfluid order parameter, which implies
that µν is the relativistic version of Landau’s superfluid velocity within a mass factor [38].
The relation (11) is valid at the inter-vortex separation scale and, at this scale, it ensures the
irrotationality constraint

vνρ = 0 . (12)

From (10) we can conclude that the hydrodynamic model at the inter-vortex meso-
scopic scale, far from vortex-core region, is non-dissipative. Conversely, at a scale larger
than the inter-vortex separation, the vorticity vνρ is interpreted as the result of an average
over many vortices and vνρ 6= 0.

Following [39], in the physical limit in which there is no turbulence, i.e., the vortices
are locally parallel, the condition (11) implies that there are two orthonormal four-vectors
uσ

v (timelike, future-oriented) and lσ (spacelike), in symbols

uσ
v uvσ = −lσlσ = −1 uσ

v lσ = 0 , (13)
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such that the macroscopic vorticity of the fluid element can be expressed as

vνρ = kN ενρσλ uσ
v lλ and uσlσ = 0 . (14)

The non-negative scalar N can be interpreted as the local density per unit area of
vortex lines, as measured by an observer that is locally comoving with the lines. The vectors
lσ and uσ

v are, respectively, the unit tangent vector to the vortex lines and the average four-
velocity of the vortex lines as measured by a local observer moving with uσ (the average
four-velocity of the entropy in the local fluid element).

Equation (14) shows that vνρ contains information about both the usual 3-vorticity
and the instantaneous average velocity of the lines. To see this more explicitly, it is useful
to introduce a right-handed tetrad ea = eν

a∂ν, constructed in a way that e0 = u and e3 = l.
This tetrad defines the local Lorentz frame of an observer comoving with the entropy,
whose third axis is locally aligned with the vortices. In this tetrad, we can decompose the
velocity uv = ua

vea as
uv = Γv(e0 + ∆1e1 + ∆2e2) , (15)

so that the components of the four-vorticity read

vab = kNΓv


0 ∆2 −∆1 0
−∆2 0 1 0
∆1 −1 0 0
0 0 0 0

 . (16)

We see that fixing the value of v0j (for a given 3-vorticity) is equivalent to fixing the
velocity at which the vortices are moving. Now, following [19], we indicate the quantities
measured in the entropy frame, which is defined by the four-velocity uν, with a T label.
According to this notation, Equation (16) also implies that the density of vortices in the
entropy frame is

NT := ΓvN . (17)

Thanks to the decomposition (14), it is possible to better understand the meaning
of (10) and the implications of the second law. In fact, by using (14) in (10), we obtain

Θ∇νsν = kN ενρσλuσ
v lλnνuρ ≥ 0 . (18)

This shows that there is no dissipation only if uv ∈ span{l, n, u}. Finally, rewriting (18)
in the aforementioned tetrad, we obtain the condition

ε0jk3 uj
v nk ≥ 0 . (19)

Hence, dissipation is possible if, in the frame of the entropy, there is a component of
the vortex 3-velocity which is orthogonal to the 3-velocity of the superfluid component.

Finally, we remark that the mesoscopic model describing the fluid at the inter-vortex
scale is non-dissipative, while in the macroscopic model, where the vorticity is averaged
over a fluid element containing many vortices, a positive entropy production is possible.
This implies that the processes leading to dissipation occur close to the vortex cores, where
the mesoscopic hydrodynamic description breaks down. Therefore, it is impossible to move
directly from the mesoscopic to the macroscopic model without inserting some additional
information about what happens near the core of the vortices, which is external to the
mesoscopic model itself.

2.3. Closure of the Macroscopic Model: The Dynamics of Vortices

At the macroscopic scale, the model should completely define the evolution of 9
hydrodynamic degrees of freedom: the two independent currents, nν and pν, and, given the
collinearity condition (3), the scalar s =

√
−sρsρ. Proton, neutron and energy-momentum

conservation produce 6 equations of motion, so that 3 additional equations are needed.
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The information needed to close the system is a model for the average dynamics of the
quantized vortices [41], which can be specified by assuming a phenomenological relation
of the type

uρ
v = uρ

v(s, pσ, nσ, lσ,NT). (20)

Equation (20) determines (for a given local state of the fluid) at which velocity the
vortices in the fluid element move, as measured in the frame of the normal component
(i.e., the entropy frame introduced in the previous subsection).

The relation (20) produces three (and only three) differential equations that provide a
closure to the system. Too see this, let us insert (20) into the first equation in (14), which
gives a condition of the type

vνρ = vνρ(s, pσ, nσ, lσ,NT) . (21)

These are 6 independent equations but the 3 space components vjk are not dynamical
equations, since no time derivative is involved. These 3 equations just need to be combined
with the 2 conditions uσlσ = 0 and lσlσ = 1 to constrain uniquely the values of the 5
variables lν and NT in terms of the initial configuration of the fluid (essentially, they are the
relativistic analogue of the Newtonian vorticity definition ω = ∇× µ). The 3 remaining
equations for v0j are dynamical: they can be rewritten as

∂tµj = ∂jµt + vtj(s, pσ, nσ, lσ,NT) (22)

and provide a closure to the system. In fact, a delicate point in the construction of a
model for macroscopic superfluid hydrodynamics is the derivation from microphysics of a
prescription for (20), which may be extracted from simulations of the average velocity of an
ensemble of vortex lines (see e.g., [20] for 4He case, or [14] for a neutron star application).
This should be done by solving a “force balance equation” for every vortex in a fluid
element (i.e., by requiring that the forces acting on the single vortices vanish [6,7,9]), as will
be further discussed in Section 3.

2.4. Geometric Decomposition of the Vortex Velocity

The vortex velocity in Equation (20) can be written in a form which is analogous
to the one used by Gusakov [10] in the derivation of relativistic HVBK hydrodynamics.
Firstly, it is convenient to perform an orthogonal decomposition of the neutron current in
the normal-frame,

nσ = nTuσ + Jσ , Jρuρ = 0 , nT = −nρuρ , (23)

where nT is the neutron density measured in the reference frame of the normal component.
Now, let us assume that the three vectors u, n and l are linearly independent (note that
if this were not the case, then from (18) we would conclude that there is no dissipation).
Then, the four vectors {u , J , l , −?(J ∧ u ∧ l)} provide us with a convenient basis of the
tangent space. In this basis, the vortex velocity uv can be expanded in components as

uν
v = Γv uν + u(J)

v Jν + u(l)
v lν +D ενρσλ Jρuσlλ , (24)

where the Lorentz factor Γv = −uσ
v uσ is the same as the one appearing in (15) because

e0 = u. Contracting (24) with lν and recalling the defining relations (13) and (14), we find
the constraint

u(l)
v = −u(J)

v Jνlν . (25)

We can also use this expression for the vortex velocity to see how the second law (18)
looks like: inserting (24) into (18), we obtain

Θ∇νsν = kND ενρσλ εσµαβ Jµuαlβlλ Jνuρ ≥ 0 . (26)
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This expression can be further simplified (working in the tetrad we introduced in
Section 2.2 the calculations become straightforward) to

Θ∇νsν = kND
[

Jν Jν − (Jνlν)2] ≥ 0 . (27)

Note that, since both J and l are spacelike, the Cauchy-Schwartz inequality Jν Jν ≥
(Jνlν)2 holds (recall that lνlν = 1); therefore, the second law of thermodynamics leads to:

D ≥ 0 . (28)

Thus, we have verified that the dissipation of energy into heat manifests itself at the
level of the vortex dynamics in a non-zero value of D, in agreement with the analysis of
Section 2.2.

Now, let us go back to the general expression of uv, Equation (24), and analyse the num-
ber of free parameters needed to completely specify the vortex velocity. Considering the
constraint (25), the 3 coefficients Γv, u(J)

v ,D are enough to fix uσ
v uniquely. However, these

are not all independent, since the normalization condition uν
vuvν = −1 can be used to write

Γv in terms of the two remaining coefficients. Therefore, we have converted the problem of
determining the law (20) into the search for a formula for the 2 coefficients u(J)

v and D.
Instead of using u(J)

v and D, it is more convenient to express (24) by means of two
rescaled kinetic coefficients /α and /β, that will be referred to as HVBK coefficients and are
defined as

u(J)
v = −Γv/α D = Γv/β . (29)

Thanks to the above definition, the expression for the vortex velocity (analogous to
the one provided by Gusakov [10]) which closes the hydrodynamic system is

uν
v = Γv

[
uν − /α (Jν − Jρlρlν) + /β ενρσλ Jρuσlλ

]
. (30)

Since (28) is equivalent to /β ≥ 0, we see that it is only the third term in the above
equation that contributes to dissipation, while the term proportional to /α is dissipationless,
see also the alternative discussion in [10]. We present the comparison with the relativistic
HVBK formulation of Gusakov [10] in Appendix A, on the basis the equivalence established
in [19] between Carter’s approach and the formalism of Son [42] and Gusakov [43].

3. Phenomenological Modelling of Vortex Dynamics

Microscopic models for vortex dynamics do not provide directly an explicit form
like (30) for uv, which takes the form of a force balance equation in the surroundings of
a vortex, e.g., [9,13,14,27]. The PEVM is thus typically modelled as an algebraic equation
involving uv and the velocities of the two components (its most general form in the
Newtonian limit is described, e.g., in Appendix A of [14], see also [27]).

The general form of uv in (30) must be the solution to the PEVM: this allows to rewrite
the coefficients /α and /β in terms of the microscopic parameters in the PEVM, which are
expected to be linked to physical processes in the vicinity of the vortex core [6,7,44].

In this section we derive the most general form that the PEVM can have, demanding
that it is consistent with the hydrodynamic formalism presented in the previous section.
In addition, we show how to compute the coefficients /α and /β directly from this generic
relativistic form of the PEVM.

3.1. Projection Tensors and Physical Basis for Vortex Dynamics

Before introducing the PEVM we need to define two tensors which will be of crucial
importance in this section. The plane spanned by {uv, l} constitutes the kernel of the
vorticity two-form: a generic vector v 6= 0 satisfies

vνρvν = kN ενρσλuσ
v lλvν = 0 (31)
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if and only if it is a linear combination of uv and l. It can be shown that this plane coincides
with the tangent space to the worldsheet drawn by the vortex line which crosses the
spacetime point under consideration [28,39].

Now, we can use the {uv, l} plane to define a unique orthogonal decomposition of a
generic vector by introducing the two projectors

//ν
ρ = −uν

v uvρ + lνlρ ⊥ν
ρ = δν

ρ + uν
v uvρ − lνlρ δν

ρ =//ν
ρ +⊥ν

ρ . (32)

These two projection tensors can be written in terms of the macroscopic vorticity
as [8,28]

//ν
ρ =

?vνλ?vλρ

(kN)2 ⊥ν
ρ =

vνλvρλ

(kN)2 , (33)

where ? denotes the Hodge duality operator. Equations (33) immediately imply that any
contraction of the kind vνρvρλvλσ . . . must result in a tensor which is proportional either
to v itself (if we contract an odd number of vorticity tensors) or to ⊥ (if we contract an
even number of vorticity tensors). The same holds with ?v, which will always produce
either a result proportional to ?v or to//.

In view of this fact, let us now take again an arbitrary vector v and consider the
four vectors

vνρvρ ⊥ν
ρvρ ?vνρvρ //ν

ρvρ . (34)

If none of them is zero, they constitute an orthogonal basis of the tangent space which
is adapted to the orthogonal decomposition defined in (32). Since the contraction of any
of these basis vectors with v (or ?v) will always result in a vector which is proportional
to another of these basis vectors (with a coefficient which does not depend on v), we can
conclude that (34) is the only possible basis (up to numerical factors) which

• is defined in a covariant way using only the 2-form v and the vector v,
• depends linearly on v,
• is orthogonal for any choice of v.

Therefore, this basis is a local “physical basis” for vortex dynamics, so that each
contribution to the general PEVM is expected to be proportional to one of the 4 expressions
of (34), constructed taking as v any vector which is assumed to be relevant to the dynamics
of a vortex.

To better clarify how this works, we provide the following example. Consider the
vectors uv and l, i.e., the vortex velocity and its direction, as measured by an observer
moving with u. Since the only relevant vector involved in their definition is u, it is natural
to decompose them on the basis (34) by taking v = u. In this way, one will find that uv and
l are proportional to respectively the//ν

ρvρ and the ?vνρvρ basis vector, confirming their
interpretation as natural directions in the tangent space. To show this, we contract (32)
with uρ and use the second equation in (14) to obtain

uν
v =

//ν
ρuρ

Γv
. (35)

If we contract this equation with ?vσν we find

?vσνuν
v =

?vσν//ν
ρuρ

Γv
. (36)

However, since from (14) it immediately follows that

?vσν = −kN(uσ
v lν − uν

vlσ) , (37)



Universe 2021, 7, 28 9 of 35

it is straightforward to show that (36) is equivalent to

lσ = −?vσνuν

kNΓv
. (38)

3.2. Formulation of the Phenomenological Equation of Vortex Motion (PEVM)

In order to provide a microscopic interpretation to the coefficients /α and /β appearing
in the general expression for uv, one needs to have a model for the vortex dynamics,
the aforementioned PEVM. The most common formulation of the PEVM starts from the
assumption that there is a balance of forces acting on the vortex lines (see e.g., the discussion
in [27] for the 4He case), expressible as

fν = 0 , (39)

where fν is a total force per unit volume. To obtain a force per unit volume, one can start
from the force per unit length acting on a single vortex line and then multiply it by the
density of vortices per unit area [9,11]. In a relativistic framework, it is useful to work with
forces per unit volume because, being exchanges of four-momentum per unit spacetime
volume (i.e., per unit volume and per unit time), they are four-vectors.

In order to be as general as possible, we will not make, here, assumptions about
fν based on microscopic arguments, but we will see how far we can go by using only
principles of consistency of the theory: in this sense, the equation for vortex motion that
we will find is purely “phenomenological”.

Starting from the observation that the only two relevant vectors of the hydrodynamic
model are n and u, we apply the natural basis decomposition presented in the previous
subsection and write f as the sum of 8 contributions:

fν =
8

∑
i=1

f (i)ν (40)

with

f (1)ν = z(1) nρvρν f (2)ν = z(2) uρvρν

f (3)ν = z(3)⊥ρ
νnρ f (4)ν = z(4)⊥ρ

νuρ

f (5)ν = z(5) nρ?vρν f (6)ν = z(6) uρ?vρν

f (7)ν = z(7)//ρ
νnρ f (8)ν = z(8)//ρ

νuρ

(41)

The pre-factors z(j) are kinetic coefficients which encode the microphysics into the
PEVM, namely Equation (39). We remark that the decomposition (40) is not an expansion of
the total force f on a basis (for which just 4 linearly independent vectors would be enough,
e.g., f (1), f (3), f (5), f (7)) but it is a subdivision of the total force into the elementary parts that
the most generic microscopic model is expected to produce. Therefore, contrarily to generic
linear combination coefficients, the z(j) should not depend themselves on scalar products
involving vectors of the form (34). Instead, they should be real transport coefficients,
namely kinetic coefficients which depend on the local thermodynamic properties of the
fluid and on the vortex density.

Now, if we contract Equation (39) with the projectors introduced in the previous
subsection, we obtain the system of equations

⊥ν
ρ fν = f (1)ρ + f (2)ρ + f (3)ρ + f (4)ρ = 0 //ν

ρ fν = f (5)ρ + f (6)ρ + f (7)ρ + f (8)ρ = 0 . (42)

It is easy to show that it is possible to reduce the 8 Equations (42) to a system of 5
independent equations. If we interpret them as hydrodynamic equations, recalling that
we needed only 3 equations to completely fix the dynamics of the model, it is clear that
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(42) leads to an over-determination of the system (converting the 2 exceeding equations
of motion into nonphysical constraints on the initial conditions). The only way to avoid
this undesired outcome is to impose that either ⊥ν

ρ fν = 0 or//ν
ρ fν = 0 is an identity, by

setting all the relative z(j) to zero.
In relativity, four-forces acting on point particles are orthogonal to the particles’ world-

lines. It is reasonable to expect that an analogous principle of orthogonality (this time to
the worldsheet) applies also to the case of one-dimensional objects. This suggests us that
the best candidate for being an identity is the relation//ν

ρ fν = 0. It is also interesting to
note that the terms f (5) and f (6) violate parity, thus, if their coefficients were not set to
zero, they would give rise to very exotic dynamics with no possible analogue in laboratory
superfluids. We therefore impose

z(5) = z(6) = z(7) = z(8) = 0 . (43)

From this, we finally conclude that the generic PEVM should assume the form

z(1) nρvρν + z(2) uρvρν = −z(3)⊥ρ
νnρ − z(4)⊥ρ

νuρ . (44)

3.3. Interpretation of the Force Terms in the PEVM

Equation (44) can be recast into a more physically transparent form. Let us assume
that z(1) 6= 0, so that we can rescale all the coefficients in such a way as to set

z(1) = 1 . (45)

Furthermore, we define three dimensionless coefficients Z ,R′ andR via the relations

z(2) = pZ z(3)

kN
= −R′ z(4)

kN
= −(nT +Z p)R , (46)

where p :=
√
−pν pν. With these definitions, the PEVM (44) becomes

nρvρν +Z pρvρν = kNR′⊥ρ
νnρ + kN(nT +Z p)R⊥ρ

νuρ . (47)

This expression contains the two terms f (1) and f (4) considered by Langlois et al. [8],
which are usually taken into account in relativistic models of mutual friction for neutron
star interiors, see e.g., [11,28]. The f (1) term, namely nρvρν, has always been interpreted as
the relativistic analogue of the Magnus force [8,11,28,29] and we will call it for definiteness
Carter-Magnus force. The contribution f (4), i.e., the term proportional toR, is the relativistic
extension of the usual1 drag force imparted on a vortex by the normal component.

However, the generic PEVM (47) includes also the two additional forces f (2) and f (3),
which are typically neglected, e.g., [8,11,28]. The force f (2), namely the term proportional
to Z , has the same structure as the Carter-Magnus force but, instead of the neutron current,
there is the normal current. This is the structure of a Iordanskii-type force2, with a prefactor
Z which can be set freely, so that we will refer to it as a Generalised Iordanskii force. The force

1 In fact, a term of the form f (4), or its Newtonian analogue, is always included in all models for the dissipative PEVM in 4He, as well as in neutron
star interiors, see e.g., [8,9,45]. Regarding neutron star modelling, in the special case Z = 0, or z(2) = 0, the definition of R reduces to the one
of, e.g., [9,11,14,28], apart from a Lorentz factor which is negligible under the assumption of slow rotation.

2 As distinct from the Magnus force, the Iordanskii force arises when a quantum vortex moves with respect to the heat bath made of quasiparticle
excitations. Volovik [23] first proposed that the interaction of quasiparticles with the velocity field around a vortex resembles the interaction of
matter with the gravitational field induced by a spinning cosmic string (gravitational Aharonov-Bohm effect). This analogy allowed Stone [25] to
calculate the asymmetry in the scattering of phonons on the vortex and the associated Iordanskii transverse force, in agreement with the previous
work of Sonin, see e.g., [30]. These results, in principle, would allow to set the value of z(2). Our Generalized Iordanskii force, however, also
includes the possibility of having additional transverse contributions (e.g., a sort of “transverse drag”, possibly due to quasiparticles other than
phonons [6,44]). For this reason, and because of the chemical gauge-covariance issue to be discussed in Section 4.3, the coefficient z(2) and its
temperature dependence are not specified.
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f (3), i.e., the one proportional toR′, is a possible drag imparted by the neutron component
(see, e.g., Appendix A of [14]).

If we contract (47) with uν and employ (10), we obtain

Θ∇νsν = kN
[
R′⊥νρuνnρ + (nT +Z p)R⊥νρuνuρ

]
≥ 0 . (48)

Therefore, assuming that nT +Z p > 0, the simplest way of ensuring the validity of
the second law is to impose that

R′ = 0 R ≥ 0 . (49)

The validity of (49), which implies the absence of the drag force f (3) exerted on the
vortex by the superfluid current, is usually assumed in almost all models of mutual friction
in neutron star interiors [8,17,45], see also the discussion in [14]. However, since at this
level there is no formal reason to rule out the caseR′ 6= 0, for the sake of completeness we
will retain the f (3) term also in the next subsection.

3.4. Computation of the HVBK Coefficients from the PEVM

Now that we have the general form of the PEVM, namely (47), we can use it to
compute the HVBK coefficients /α and /β in terms of the transport coefficients Z , R′ and
R. The case Z = R′ = 0 has already been analysed in [11,28]. We extend this result by
including also the possible contribution of the Generalised Iordanskii force (whose meaning
will be analysed in detail in the next sections) and the drag with the neutron current.

To determine the HVBK coefficients, we work in the tetrad introduced in Section 2.2,
with the further condition that

e2 =
J − g(J, l) l√

g(J, J)− g(J, l)2
. (50)

In Appendix B.1 we summarize the properties of this tetrad and give the explicit com-
ponents’ expressions for the relevant vectors of the model in this physical basis. Now, let
us define the effective neutron density

nT
eff := nT +Z p , (51)

that allows us to absorb the Generalised Iordanskii force into an effective total Carter-
Magnus force. In fact, we can rewrite Equation (47) in the tetrad as

(nT
effu

a + Ja)vab = kN⊥ab(R′na +RnT
effu

a) . (52)

Under the assumption of non-relativistic relative speeds, the above equation written
in components leads to (see Appendix B.2 for the proof)

nT
eff /α + 1 = ReffnT

eff /β

− nT
eff /β = R′ +ReffnT

eff /α ,
(53)

where we have introduced

Reff = R+
nT

nT
eff
R′ . (54)

After solving this system, we finally obtain the explicit expression for /α and /β,

/α = − 1
nT

eff

1 +ReffR′

1 +R2
eff

/β =
1

nT
eff

Reff −R′

1 +R2
eff

. (55)
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The second law, that is equivalent to /β ≥ 0, is respected not only if (49) is valid, but
also whenever

Reff −R′ ≥ 0 , (56)

provided that nT
eff > 0. Now, let us specialize our analysis to the caseR′ = 0, i.e., no drag

with the superfluid component: the HVBK coefficients /α and /β boil down to the usual
result (see, e.g., [9,10,14,17,28,45])

/α = − 1
nT

eff

1
1 +R2 /β =

1
nT

eff

R
1 +R2 . (57)

This result also tells us that the presence of the Iordanskii-type term plays only the role
of replacing nT with the effective neutron density nT

eff . The main goal of the next section is
to understand the formal origin of this mechanism.

Finally, we explicitly write the HVBK-like friction force acting on the superfluid
component of the model, which depends on the HVBK coefficients /α and /β. Recalling (30)
and (9), we contract Equation (14) with uν to obtain (for the caseR′ = 0)

uν(∂νµρ − ∂ρµν) =
kNT

nT
eff(1 +R2)

[
uνενρσλ Jσlλ −R(Jρ − Jλlλlρ)

]
, (58)

which is presented in the same form as Equation (56) of Gusakov [10]. The above expression
is a convenient way of recasting the PEVM into a form that clearly identifies the hydrody-
namic force (the right-hand side) acting on the superfluid component. In fact, Equation (58)
is directly formulated as a system of 3 independent first-order differential equations for the
momentum, which can be used to describe the momentum transfer in relativistic models
for pulsar-glitches and neutron star oscillations. Furthermore, in the next section we will
prove that this expression is also invariant under a change of chemical basis.

4. The Problem of the Chemical Basis

We have shown that a generic PEVM can, in principle, contain both a Carter-Magnus
force and a Generalised Iordanskii force. However, Langlois et al. [8] implicitly assumed
that the Generalised Iordanskii force term should necessarily vanish, see also [11]. This as-
sumption was suggested by the straightforward application of the action principle from
which the hydrodynamic model arises and by the requirement that the macroscopic mutual
friction should be in close relation with the forces acting on a single vortex (i.e., the forces
of the PEVM).

In this section we review the standard argument for the absence of the Generalised
Iordanskii force. However, we will find that such a force is in fact necessary to ensure the
chemical gauge-covariance of the macroscopic theory.

4.1. The Argument for the Absence of the Generalised Iordanskii Force

Langlois et al. [8] have shown that, if we apply the action principle of Carter and
Khalatnikov [46] by taking pν and nν as free currents, then, in addition to the energy-
momentum conservation (8), we also obtain the Euler-Lagrange equation for the neutrons
(see also [19])

nρvρν = 0 . (59)

This action principle, however, produces only a non-dissipative hydrodynamic model
and is not sufficient to specify all the equations in the dissipative regime [19]. To include
dissipation, then, Equation (59) should be replaced by

nρvρν = f n
ν , (60)

where f n
ν is the macroscopic mutual friction. In the absence of turbulence, it is natural to

identify the left-hand side with the Magnus force per unit volume (i.e., the Magnus force
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on a single vortex times the vortex density) and the right-hand side with some drag force
per unit volume, see e.g., [9,14,27,41].

Hence, by considering that at the mesoscopic scale the drag force is assumed to have
the form f (4), we are lead to postulate a PEVM of the form (60) but with f n

ν = − f (4)ν ,
namely

nρvρν = kNnTR⊥ρ
νuρ . (61)

We see that this final equation does not contain a Generalised Iordanskii force acting
on vortices. This happens because the action principle naturally leads to identify (59) with
the non-dissipative limit of the hydrodynamic model. In the following sections we will
explore the shortcomings of this postulate, but we first need to introduce the problem of
the chemical gauge.

4.2. The Chemical Gauge

We define a change of chemical basis of the kind introduced by
Carter and Khalatnikov [46]. In general, it is always possible to introduce two new currents
p̃ν and ñν as

pν = (1− a) p̃ν nν = ñν + ap̃ν bν = pν + nν = p̃ν + ñν , (62)

where a 6= 1 is an arbitrary constant. This transformation does not affect the physical
current bν, meaning that (62) is just a formal redistribution of the baryons between the two
species p and n. Moreover, since a is constant, these new currents are both conserved,

∇ν p̃ν = ∇νñν = 0 , (63)

and the fact that pν is collinear to p̃ν gives

s[ν p̃ρ] = 0 . (64)

Therefore, p̃ν and ñν satisfy Equation (3), exactly as the original pν and nν, and their
conjugate momenta are3

χ̃ν = (1− a)χν + aµν µ̃ν = µν . (65)

The second equation of (65), combined with the Josephson relation (11), implies that
at the mesoscopic level ñν still defines a superfluid species. The quantity ñν thus has all the
original properties of nν.

Finally, the energy-momentum tensor (6) defined via the variations of Λ is not affected
by this redefinition of the currents in (62), namely

T̃ν
ρ = Tν

ρ . (66)

This can be checked by verifying explicitly that

p̃νχ̃ρ + ñνµ̃ρ = pνχρ + nνµρ . (67)

Therefore, we have shown that if we replace pν and nν with p̃ν and ñν all the hydrody-
namic equations of Section 2 remain the same (we just need to place a tilde where needed).
Moreover, the quantities bν, sν, Tν

ρ , µν, are invariant under the chemical basis transforma-
tion (i.e., are not ambiguously defined, as they constitute the real physical content of the
theory). In other words, the change of variables

(pν, nν) −→ ( p̃ν, ñν) (68)

3 Consider the effect of the transformation (62) on the variation of Λ given in (4).
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can be considered as a sort of “gauge transformation” of the model which leaves the form
of the equations of the theory unchanged and does not affect the physical quantities of
the theory (namely bν, sν, Tν

ρ , µν, which are all related to physical conservation laws, as
discussed in Gavassino and Antonelli [19]).

In the context of neutron star crusts, this ambiguity in the definition of the currents
of the theory has been discussed for the first time by Carter et al. [18], who called the
transformation (68) chemical gauge. They also point out that this freedom of choosing
the variables in the hydrodynamic model reflects a fundamental ambiguity that has a
microscopic origin, which we summarize below.

It is theoretically well-established that in the inner crust the protons are mostly con-
fined in neutron-rich nuclei, or nuclear pasta clusters, which are immersed into a fluid of
dripped neutrons [17]. At the beginning of Section 2, we defined nν as the current which
counts all the neutrons. However, below a certain energy threshold, the neutrons in the
ions are not able to cross the potential barriers between the nuclei. This means that, on
a sufficiently short time-scale, they behave as if they were effectively “confined” in the
nuclei. Therefore, it should be possible to work with a conserved current p̃ν of confined
baryons, which includes also the neutrons that cannot escape the nuclear clusters, and with
a current of free neutrons ñν. These two new currents can be obtained from Equation (62),
by setting a = (A− Z)/A, with A and Z being the mass and the charge number of the ions.
The number A, however, is not uniquely determined, as it depends on the energy threshold
at which a neutron can be considered confined. In fact, there can be marginally bound states
with intermediate penetration time scales that are macroscopically long but cosmologically
short: this gives rise to a considerable ambiguity in the definition of the currents.

A concrete example of gauge fixing is the choice of “paired gauge”, A = 2Z, which
classifies as confined only the neutrons in the tightly bound states that are directly paired
with corresponding proton states in the nuclei [18]. Clearly, there are several other possibil-
ities and analogous confinement problems are also expected in the pasta phases, although
proper nuclei do not exist anymore.

In a more general perspective, which goes beyond the case of neutron-star crusts
under consideration, we can interpret this ambiguity in the currents as a consequence of
the fact that, since fermionic superfluidity is just the manifestation of the existence of an
order parameter (the pairing gap) describing a correlation between fermions near the Fermi
surface, there is not a physical separation of the particles into “normal” and “superfluid”
ones. Hence, whether we choose to classify low energy particles (located deep inside the
Fermi sphere), trapped in bound states with normal particles, as belonging to the superfluid
species (as they have the same chemical composition) or to the normal species (as they are
dynamically forced to behave as normal) is just a matter of taste.

4.3. The Generalised Iordanskii Force Is Necessary to Guarantee Chemical Gauge Covariance

Let us go back to the argument for the absence of the Generalised Iordanskii force
presented in Section 4.1. As we said, a straightforward application of the action principle
using pν and nν as fundamental currents may lead to assume the non-dissipative equation
of motion (59). If we make the change of variables (62), Equation (59) becomes

(ñρ + ap̃ρ)ṽρν = 0 , (69)

where we have used the relation ṽρν = vρν, which is a direct consequence of (65). On the
other hand, the action principle gives

ñρṽρν = 0 (70)

when the currents p̃ν and ñν are directly used at the beginning of the variational procedure.
We see that (69) and (70) differ by the term ap̃ρṽρν, namely a Generalised Iordanskii force
with coefficient a.
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This difference arising in the total transverse force on a vortex, is a particular
manifestation of a general feature of Carter’s multifluid formalism: as
Carter and Khalatnikov [46] pointed out, different choices of chemical basis lead to different
non-dissipative hydrodynamic equations, and some important consequences of this fact
have been recently discussed also in the context of radiation hydrodynamics [47].

The formal implications of this problem can be safely neglected in all the situations in
which it is possible to fix a physically motivated gauge choice suggested by the presence
of a natural, or particularly convenient, chemical basis. In the inner crust case, however,
an objective criterion to fix the chemical gauge does not exist: it is therefore necessary to
formulate the hydrodynamic equations in a manifestly gauge-covariant form. This will
ensure that the hydrodynamic model will be valid whatever the microscopic interpretation
of pν and nν is, as long as it is compatible with the physical constraints (1), (3) and (11).
In practice, this means that the equations of the hydrodynamic model must be formulated
in such a way as to not change under different chemical gauge fixing choices [19]: after the
gauge transformation their form should remain exactly the same, but “with a tilde” on top
of every quantity.

It is apparent that the only way to make (59) chemical gauge covariant consists of
introducing a counter-term f (2) which absorbs the force ap̃ρṽρν generated by the change
of chemical basis, see Equation (69). Formally, we need to modify (59) into

(nρ +Z pρ)vρν = 0 , (71)

so that, after a change of chemical basis, we are left with

(ñρ + Z̃ p̃ρ)ṽρν = 0 , (72)

where
Z̃ = (1− a)Z + a . (73)

In the case in which Z is a constant (and only in this case), the Generalised Iordanskii
force can be cancelled out with an appropriate chemical gauge fixing, namely by choosing

a =
Z
Z − 1

⇒ Z̃ = 0 . (74)

In conclusion, we have proved that the Generalized Iordanskii force is a necessary
element to ensure the chemical gauge covariance of the theory.

4.4. Gauge Covariance of the PEVM and the Invariance of the HVBK Coefficients

We conclude this section with an analysis of the transformation law under a change of
chemical gauge of all the kinetic coefficients, in particular the HVBK coefficients /α and /β,
we have introduced so far. To do this, let us start with the effective neutron density nT

eff
defined by Equation (51). The transformation laws (62) and (73) give

nT
eff = ñT

eff , (75)

which tells us that nT
eff does not change for different choices of chemical gauge fixing.

Now, let us focus on the generic PEVM: the left-hand side of (47) is clearly gauge invariant.
We need to ensure the gauge invariance of the right-hand side by imposing

R′nν +RnT
effu

ν = R̃′ñν + R̃nT
effu

ν , (76)

so that
R′ = R̃′ R = R̃ − ap̃

nT
eff
R′ . (77)



Universe 2021, 7, 28 16 of 35

These transformations also imply that the effective drag coefficient in (54) is
gauge invariant,

Reff = R̃eff . (78)

We have shown that the coefficients nT
eff,R

′ andReff do not change under chemical
gauge transformations. This immediately tells us that also the HVBK coefficients /α and /β
are invariant (i.e., are uniquely defined, in the sense that have the same value regardless of
the choice of chemical gauge), namely

/α = /̃α /β = /̃β . (79)

This is also consistent with the explicit form of the vortex velocity (30), as it is possible
to check that all the four vectors uv, u, J, l are chemical gauge invariant.

Finally, we also note that it is possible to rewrite the entropy production Equation (10)
and the generic PEVM (47) in the manifestly gauge-invariant form

Θ∇νsν = vνρ Jνuρ

(nT
effu

ρ + Jρ)vρν = kN⊥ρν(R′ Jρ +ReffnT
effu

ρ) .
(80)

The first relation is simply Equation (44) of Gusakov [10]. The second relation reveals
the deep meaning of the coefficients nT

eff, R
′ and Reff and the origin of their chemical-

gauge invariance. In fact, we see that they are the prefactors that appear naturally when we
rewrite the PEVM in terms of the four manifestly gauge-invariant covectors uρvρν, Jρvρν,
⊥ρνuρ and ⊥ρν Jρ.

5. The Interpretation of the Generalised Iordanskii Force

At the mesoscopic scale, the flow past a vortex in a simple perfect fluid (or in a
superfluid at zero temperature) gives rise to a transverse Magnus force that is given by the
well known Joukowski lift formula. The problem of generalising this to multiconstituent
superfluid models has been controversial since it was originally posed by the work of
Iordanskii in the context of the Landau two-fluid model for 4He [6,7,27].

From a geometrical perspective, this problem has been fully clarified by
Carter et al. [29] for a generic relativistic multifluid. An analogous analysis has been
recently proposed for the Newtonian 4He case at the mesoscopic scale [27]. The analysis
of [29] can be used to provide an interpretation to Z in terms of the circulation of the
momentum χν around a single vortex. This allows us to reinterpret the long-lasting con-
troversy on the presence of a Iordanskii force acting on quantized vortices in view of the
chemical gauge invariance of the mesoscopic hydrodynamic model.

5.1. Forces on a Vortex at the Mesoscopic Scale: Carter’s Multifluid Approach

Let us consider again the generic PEVM (47): as discussed in Section 3.2, if we divide
it by the vortex density N, we can interpret the resulting equation as the request that the
forces per-unit-length acting on a single vortex line should balance. It is natural to interpret
the force appearing on the left-hand side of (47) as the multifluid analogue of the total
Joukowski lift force per unit length F J

ν , namely

NF J
ν = (nρ +Z pρ)vρν , (81)

and the one on the right-hand side (given its dissipative character) as the total drag
force acting on a vortex (in fact, according to (48), it contributes to the entropy increase).
Note that, according to our definition, the total Joukowski lift force represents the totality
of the transverse forces acting on a vortex, see (47).

Carter et al. [29] computed the Joukowski lift in full generality by studying the
momentum balance on the flows around a vortex segment, but then they assumed the
validity of the mesoscopic model introduced in Section 2. In fact, they imposed the zero
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vorticity condition (12) as the equation which closes the system, and studied the momentum
flux through a closed loop surrounding the vortex (the loop was taken sufficiently far
from the vortex core to guarantee the reliability of the hydrodynamic description at the
mesoscopic scale, see also the discussion in [27]), obtaining

F J
ν =

1
kN

vρν ∑
X
CXnρ

X , (82)

see Equation (21) of [29]. Here, the label X labels the currents of the model and

CX =
∮

µX
σ dxσ (83)

is the circulation integral of the momentum conjugate to current X along the loop (which
they prove not to depend on the chosen loop, as long as it goes around a single vortex once).
We remark that in Equation (82) the currents nν

X should be interpreted as the large-scale
ones, namely those used in the macroscopic model, while in Equation (83) the momentum
is the mesoscopic one, measured at the inter-vortex separation scale [29]. In our case, where
we have only the three currents sρ, pρ and nρ, Equation (82) explicitly reads

NF J
ν =

1
k

vρν(Cssρ + C p pρ + Cnnρ), (84)

with
Cs =

∮
Θuσdxσ C p =

∮
χσdxσ Cn =

∮
µσdxσ = k = πh̄ , (85)

see Equation (11). Since Cssρ is of the second order in Θ, we can neglect it in the low
temperature limit. Moreover, assuming that each vortex contains a single quantum of
circulation, the Josephson relation (11) implies the Feynman-Onsager quantization relation
Cn = k, which immediately tells us that Cn is chemical gauge independent (i.e., it is a
physically relevant quantity). Now, Equation (84) becomes

NF J
ν ≈ vρν

(
nρ +

C p

k
pρ

)
(86)

and direct comparison with (81) provides us with the mesoscopic interpretation of Z ,

Z =
C p

k
. (87)

Finally, as a consistency check, we can re-derive the affine transformation law (73) of
Z directly from (87): employing the first equation in (65), we find

C̃ p =
∮

χ̃σdxσ = (1− a)C p + ak , (88)

and by dividing both sides by k we recover Equation (73).
The Iordanskii controversy, transported to the neutron-star setting, revolves around

the problem of prescribing a value for C p. Different assumptions about the mesoscopic
behaviour of the fluid lead to different formulas for C p and therefore to a different predicted
intensity of the force f (2) (the transverse force proportional to pρvρν). In the remaining part
of the section, we summarise the most common available prescriptions for C p, recalling the
mesoscopic assumptions that lead to these formulas.

5.2. Transverse Forces on a Vortex: The Sonin-Stone Model

As anticipated in Section 4, the original hydrodynamic model of Langlois et al. [8] is
not based on the general PEVM of the form (44), or (47), but rather the force balance in
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the surroundings of a vortex is governed by the “standard” PEVM in (61). To obtain this
standard prescription for vortex dynamics, one needs to impose that

C p = 0 , (89)

which immediately implies that one should work in the particular chemical gauge such that

nT
eff = nT . (90)

Carter et al. [29] noticed that the prescription (89) of setting the circulation of the
normal momentum to zero is the same assumption that leads in models for 4He to the
PEVM of Sonin [30] and Stone [25], see also [7,22]. The same conclusion, namely that
assuming no circulation of the normal fluid momentum around a vortex leads to the forces
on a vortex derived by Sonin and Stone, was also reached by Geurst and van Beelen [48] in
the context of the non-relativistic two-fluid model for 4He.

If, for some mesoscopic reason, the condition (89) holds for a vortex immersed in a
neutron star crust, then the total Joukowski lift force NF J

ν and the Carter-Magnus force
nρvρν should coincide, see (81). However, given the transformation law (88), Equation (89)
could be valid only in a particular chemical gauge and, in general, it will not hold for any
other choice of chemical gauge fixing. Therefore, we are left with the problem of identifying
the preferred chemical basis for which C p = 0.

In applying their model (that is in principle valid also in the outer core) to the inner
crust dynamics, Langlois et al. [8] did not specify in which chemical basis they were
working. They only introduced the formal assumption that it was possible to split the total
baryon current into a current of superfluid neutrons and a collectively comoving normal
part. As a working hypothesis, one may assume that the preferred chemical basis is the
one in which nν counts all the neutrons (the dripped ones, as well as the ones confined
in nuclei). Thus, by imposing (61), one would implicitly assume that (89) holds for this
particular choice.

This, however, looks quite unnatural. From a practical perspective it makes sense to
expect that the neutrons that are confined on cosmological timescales only play the role of
additional mass carried by the effective normal component, so that one would expect that
these confined neutrons should be included in the currents pν, and, hence, contribute to the
normal momentum χν. Clearly, even accepting this qualitative argument, we would still
be left with the question of which mass number A to impose, see Section 4.2. Therefore, the
problem of whether setting C p = 0 is justified remains open.

Interestingly, there is an alternative way to extend the results of Sonin [30] and
Stone [25] to the neutron star context. In fact, Geurst and van Beelen [48] and Sourie and
Chamel [27] have shown that if we match the phonon scattering models with asymptotic
two-fluid hydrodynamics (far from the vortex core) then we obtain∮

uσdxσ ≈ k
µT

. (91)

This statement is clearly chemical-gauge invariant. In Appendix C.1 we show that this
assumption, applied to the context of neutron-star crusts, would lead to the chemical-gauge
covariant prescription4

C p = k
χT
µT

χT = −χνuν. (92)

4 The reason why Equations (89) and (92) are so different, while in the 4He analogue they coincide, is that in helium the formal analogue of the
relativistic chemical potential of the normal component is the temperature Θ, while the formal analogue of the relativistic chemical potential of the
superfluid component is ≈ mc2. Therefore in Equation (92) one deals with the ratio Θ/(mc2), which in the Newtonian limit is zero.
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Assuming that the deviations from beta equilibrium are small (χT ≈ µT), we immedi-
ately obtain

nT
eff = bT bT = −bνuν , (93)

and therefore
NF J

ν = bρvρν . (94)

This formula for the Joukowski lift force is clearly chemical-gauge invariant and can be
considered to be the natural generalization of the result of Sonin and Stone to the neutron
star crust case.

We remark, however, that the calculations of Sonin and Stone are performed in the
specific context of bosonic superfluidity (as they are based on phonon dynamics) and that
the results of [29] are valid only in the absence of viscosity and elasticity, which in neutron-
star crusts, at the mesoscopic scale, can become very important. Thus, Equation (94)
constitutes more a philosophical analogy, than a reliable formula. Improving it is beyond
the scope of the present paper.

Note also that the present discussion cannot be extended to the outer core, where
the medium is expected to be homogeneous (i.e., there is no ambiguity in the operational
definition of the “free” neutrons) and the protons are superconducting. These two physical
conditions break the chemical-gauge covariance of the hydrodynamic description, and the
circulation of the momentum associated with the protons around a neutron vortex assumes
the well defined value C p = 0, unless the vortex line is surrounded by (or superimposed to)
one or more flux-tubes and the loop embraces both kinds of topological defects [9,13,49,50].
Thus, in the core one should follow a prescription for the lift force like the one presented in
Section 4.1.

5.3. Transverse Forces on a Vortex: The Thouless-Ao-Wexler-Geller Model

There is an other simple assumption for the value of C p, alternative to (89) and (92),
which makes the Joukowski lift force (81) manifestly chemical gauge invariant. To explore
this alternative possibility, let us first introduce the gauge-invariant quantity Y−1, that is
closely related to the relativistic generalization of the usual superfluid density appearing
in the Landau two-fluid model [19,43].

The conjugate momenta χν and µν can always be uniquely expressed as linear combi-
nations of the two currents pν and nν,

χν = B pν +A nν µν = Y−1nν +A pν , (95)

where the same coefficient A appears in both expressions to guarantee the symmetry of
the stress-energy tensor (6), see e.g., [19,46]. Under a chemical gauge transformation, the
coefficients change as5

B̃ = (1− a)2B+ 2a(1− a)A+ a2Y−1

Ã = (1− a)A+ aY−1

Ỹ = Y .

(96)

To complete the link with the formalism used in [19,43,51], let us decompose the
superfluid momentum in the frame of the normal component, similarly to what has been
done in (23), namely

µν = µTuν + wν wνuν = 0 . (97)

It is easy to verify that (95) implies the chemical gauge invariant relation

Jν = Ywν , (98)

5 Insert (95) into (65) and employ (62). The third equation in (96) tells us that Y is indeed chemical gauge invariant.



Universe 2021, 7, 28 20 of 35

which is the definition of the entrainment coefficient of Gusakov [43], see Equations (3)
and (27) therein.

Now, the relations in (96) allow to derive the transformation law

kỸÃ = (1− a)kYA+ ak . (99)

A comparison with (88) gives that kỸÃ transforms exactly as C p. Therefore, if, instead
of (89) or (92), it is rather assumed that

C p = kYA , (100)

we would end up with a chemical gauge covariant prescription for the value of C p. With this
assumption the Joukowski lift force becomes

NF J
ν = Yµρvρν , (101)

which is gauge-invariant as well (the right hand side is a manifestly gauge-invariant
quantity). Finally, the effective neutron density introduced in (51) is

nT
eff = YµT , (102)

which is the (chemical gauge invariant) Landau density of superfluid neutrons [38].
In Appendix C.2 we show that Equation (100) can be obtained from mesoscopic

considerations if one assumes that, as a result of the action of fast dissipative processes, the
fluid has reached thermodynamic equilibrium in a neighbourhood of the vortex (which is
a chemical gauge invariant statement). The calculation is a rigorous proof of the argument
of Cartier et al. [29], who have proposed that assuming that the normal component is
rigid might lead to the result of Thouless and collaborators for the transverse forces on a
vortex. Indeed, this was one of the central assumptions invoked by Thouless et al. [52] in
the preliminary microscopic analysis which led Wexler [21] to formulate the Newtonian
version of (101). However, to make the argument rigorous, one needs also to assume
diffusive equilibrium.

Contrarily to (94), Equation (101) does not depend on the microscopic details of the
system and is not affected by the inclusion of elasticity and viscosity. This is due to the fact
that it is based only on the general properties of the thermodynamic equilibrium state.

Interestingly, Equation (101) has been implicitly postulated by Gusakov [10] to obtain
his formulation of the no-drag limit of the HVBK hydrodynamics,

µρvρν = 0 , (103)

see Equation (60) of [10].

5.4. The Iordanskii Force in Neutron Stars

We are finally able to transport the standard Iordanskii problem, well known in
superfluid 4He, to the context of neutron star crusts.

To do this we, first of all, invert the second equation of (95) as follows,

nρ = Yµρ −YApρ. (104)

The two terms in the right-hand side are the analogue, for a relativistic mixture, of the
Landau superfluid part nν

S (which is chemical gauge invariant) and the Landau normal
part (which is chemical gauge dependent) nν

N of the current nν,

nρ
S = Yµρ nρ

N = −YApρ, (105)



Universe 2021, 7, 28 21 of 35

see also [38]. These can be used to decompose the total baryon current into a superfluid
and a normal part (in the Landau sense)

bρ = bρ
S + bρ

N bρ
S = nρ

S = Yµρ bρ
N = pρ + nρ

N = (1−YA)pρ. (106)

This decomposition is chemical-gauge invariant and therefore has an unambiguous
physical meaning.

Contracting (106) with vρν we obtain

f S
ν = f T

ν + f I
ν , (107)

where
f S
ν = bρvρν (108)

is the neutron star analogue of the Sonin force (94), while

f T
ν = bρ

Svρν = Yµρvρν (109)

is the neutron star analogue of the Thouless force (101) and

f I
ν = bρ

Nvρν = (1−YA)pρvρν (110)

is the neutron star analogue of the Iordanskii force (which, as we see, is a particular case of
Generalised Iordanskii force).

The controversy, in its standard formulation, revolves around the presence of f I in
the total Joukowski lift force, with Sonin and collaborators who argue that it should be
included, and Thouless and collaborators who argue that it should be removed.

6. Towards a Resolution of the Iordanskii Force Controversy

In this final section we present a possible resolution of the controversy surrounding
the Iordanskii force [22]: the two incompatible assumptions C p = kχT/µT (which gives the
transverse force on a vortex of Sonin and Stone) and C p = kYA (leading to the transverse
force of Thouless and collaborators) possibly refer to two different dynamical regimes of
the same system.

Our argument is based on a revised version of the thought experiment of Wexler [21]:
with the aid of the thermodynamic tools devised in [19,53], we will extend the original
experiment to an arbitrary relativistic superfluid-normal mixture. Then, we will show that,
depending on the time-scale at which Wexler’s experiment is performed, one can move
from the case in which C p = kYA, that we will call the Thouless regime, to a situation in
which C p = kχT/µT , the Sonin-Stone regime.

Let us remark that the arguments presented in this last section transcend the specific
interest for neutron stars. In fact, given the present, simplified and effective, two-fluid
description of neutron star crusts (that is formally analogous to the one of [10] for a
single-species superfluid at finite temperature), our reasoning applies also to 4He.

6.1. Geometry and Preliminary Definitions of Wexler’s Gedanken Experiment

The original experiment of Wexler [21] aims to compute the Joukowski lift force
exerted on a vortex during a quasi-static transformation by means of a thermodynamic
argument (the quasi-static assumption is central, so that dissipative effects due to vortex
motion are negligible).

Let us consider a portion of our two-fluid system enclosed in a (non-rotating) annulus
with rectangular section (for simplicity, the spacetime is assumed flat). Adopting the
same notation of Wexler, we call Lx the circumference of the annulus, Ly the basis of the
rectangular section and Lz its height, with Ly � Lx, so that all the hydrodynamic quantities
can be considered uniform along the section, see Figure 1. The walls play the role of a heat
bath for the fluid, meaning that they have both infinite heat capacity and inertial mass [53].
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The experiment proceeds as:

1. In the initial state, the total system (the fluid and the walls) is in global thermodynamic
equilibrium, with a winding number of the superfluid phase φ along Lx equal to N
(i.e., µxLx = kN). In fact, the winding number is one of the thermodynamic variables
that should be specified to identify a well defined equilibrium state [19].

2. A vortex is created on the outer boundary of the annulus and slowly dragged by an
external force to the inner boundary where it is, then, annihilated.

3. In the final state the total system is, again, in global thermodynamic equilibrium, but
with a winding number of the phase φ equal to N + 1.

By studying the energetics of this experiment (we use the relativistic thermodynamic
formalism formulated in [19,53]), it is possible to extract the total lift force exerted by the
fluid on the vortex during the process.

Figure 1. Sketch of the annulus considered by Wexler [21]: periodic boundary conditions are imposed
on the two shaded faces, that have no walls. The two red arrows indicate the direction of the uniform
background flow along the circumference Lx (since Lx � Ly, this background flow is almost uniform,
at least far from the vortex). An intermediate displacement of the vortex (that from the outer wall is
slowly dragged towards the inner wall) is also shown. The vorticity is directed out of the page, in
accordance with the sketched direction of the induced flow around the vortex.

6.2. Relativistic Thermodynamic Analysis

The description of the aforementioned experiment in a relativistic setting requires the
use of a relativistic thermodynamic formalism. We will adopt the formulation proposed
by Gavassino [53], where the concept of work is extended in special relativity as the
variation of the total four-momentum (in the Newtonian limit the usual concept of work is
recovered).

The fluid in the annulus has total four-momentum Pν and total entropy S, while
the heat bath has total four-momentum Pν

H and total entropy SH . Therefore, the four-
momentum and the entropy of the total system are

Pν
tot = Pν + Pν

H Stot = S + SH . (111)

The external force that drags the vortex can be modelled as the result of the presence
of an external field in the microscopic Lagrangian for the total system, which breaks the
invariance of the theory under the full Poincaré group and, hence, also the conservation of
Pν

tot, that changes by a quantity δPν
tot during the whole process. Following [53], the work

four-vector made by the external force between the beginning and the end of the process is,
therefore,

δWν = δPν
tot = δPν + δPν

H . (112)

In addition, since the process is assumed to be infinitely slow, we can impose that no
dissipation occurs, namely (the system fluid+annulus+external field is isolated and the
entropy of the external field is zero)

δS + δSH = 0 . (113)
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Defining the mass and the center-of-mass four-velocity of the heat bath as

MH =
√
−Pσ

HPHσ uσ
H =

Pσ
H

MH
, (114)

we impose, from covariance requirements, that its equation of state is given in the form
SH = SH(MH) , whose differential is

δSH = −uH σ

ΘH
δPσ

H , (115)

where we have defined the temperature of the heat bath through the relation

1
ΘH

=
dSH
dMH

. (116)

Contracting both sides of (112) with uν
H and employing Equations (115) and (113),

we obtain
− uH σ δWσ = −uH σ δPσ −ΘH δS . (117)

At this point, the free energy of the fluid is defined as

F = −uH σ Pσ −ΘHS , (118)

and we find that (in the limit of infinite mass and heat capacity of the heat bath)

− uHνδWν = δF . (119)

This is the relativistic analogue of the well-known Newtonian theorem which states
that the work exerted on a system in a slow isothermal process coincides with the change
of its free energy [53]. Now, following the same steps of Wexler [21], we need to calculate
explicitly both sides of Equation (119).

6.3. Computation of the Variation of the Total Four-Momentum

From now on we will work in the inertial frame of the walls, where the time coordinate
is t, and 0 and tend are the initial and the final instants of the slow process. The work four-
vector in (112) can be written more explicitly as

δWν =
∫ (
∇ρTρν +∇ρTρν

H

)
d4x , (120)

where the integral extends over the whole spacetime region in which the process occurs
and Tρν

H is the stress-energy tensor of the heat bath. Clearly, wherever the external force is
not applied

∇ρTρν +∇ρTρν
H = 0 , (121)

which means that we can restrict our integration volume to a moving spatial domain
K(t) surrounding the vortex line. Assuming that K(t) do not extend into the walls for
0 < t < tend, we have that Tρν

H = 0 inside K(t), implying

δWν =
∫ tend

0

∫
K(t)
∇ρTρν d3x dt . (122)

In the quasistatic approximation we have∫
K(t)
∇ρTρjd3x =

∫
∂K(t)

Tρj d2Σρ , (123)
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where ∂K(t) is the boundary of K(t) and d2Σρ is its normal covector. The right-hand side
of (123) is nothing but the total Joukowski lift force F J j for a stationary vortex configuration
(integrated over the vortex line), see e.g., [29]. Therefore, since the fluid is essentially
homogeneous in the annulus (far enough from the vortex filament), the lift force is constant
during the whole process (apart in the initial and final moments, where the vortex feels the
effect of the walls), leading us to the final formula

δW j = Lz F J j tend . (124)

Unfortunately, the same kind of explicit calculation cannot be made for δW0, due to a
problem of infinities. In fact, as the process is carried out slower and slower to reach the
reversible limit, the integration in time diverges, while the integral in space converges to
F J0 = 0, giving an indeterminate result of the kind ∞× 0. To solve this drawback, let us
focus on the source of the external force that drags the vortex.

Following Landau and Lifshitz [54], we can model the external force as the result of
the interaction of the system with an external machine (the external field we mentioned
earlier) that pins the vortex and drags it. Since this machine should drag the vortex without
altering its own state of motion relevantly, we can assume that it has an effectively infinite
inertia Me, and its four-momentum is given by

Pσ
e = Me uσ

v , (125)

where uσ
v is the four-velocity with which the pinned vortex is dragged. Since the system

fluid+machine+heat bath is isolated, we can impose

δPσ
e = −δWσ . (126)

Now, we need to treat the machine as a purely mechanical macroscopic body with no
internal degrees of freedom and set its entropy to zero [54]. Hence, its equation of state
reduces to the material-particle relation Me = const, which implies

δPσ
e = Me δuσ

v . (127)

Combining (126) and (127) we immediately derive the geometric constraint

δWσ uσ
v = 0 . (128)

In the reference frame of the walls we can write uv = Γv(1, ∆1, ∆2, ∆3), which allows
us to reformulate Equation (128) as

δW0 = δWj ∆j = Lz tend F J
j ∆j . (129)

We have recovered, in the context of relativistic thermodynamics, the well-known
Newtonian expression for the work of a force. As the vortex is dragged along the positive
y-axis (see Figure 1), we impose

∆j =
Ly

tend
δ

j
y , (130)

which, plugged into (129), gives

δW0 = LyLz F J
y . (131)

This is the formula for the left-hand side of (119) we were looking for, and constitutes
the relativistic version of Equation (5) of Wexler [21].
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6.4. Computation of the Free-Energy Variation

Since both the initial and the final state are in full thermodynamic equilibrium, we
can use the prescription of [19], see Section 3.1 therein, for the variation of the Helmholtz
free-energy per unit volume F of a multifluid, which in this case reads

δF = −sδΘ + χTδp + µTδnT + njδµj . (132)

This formula is based on the fact that in thermodynamic equilibrium the normal
component needs to be at rest in the frame of the heat bath, namely

uν = uν
H . (133)

To explicitly compute the variation in (132), we start by noticing that in equilibrium
Θ = ΘH (where ΘH is constant), meaning that δΘ = 0. Furthermore, given that no
reaction occurs and the baryon number is conserved, the total numbers Np = LxLyLz p0

and Nn = LxLyLzn0 are constant in every chemical gauge, implying that δp = δnT = 0.
From (133) it immediately follows that pj = 0, which inserted in the j-th component of
Equation (104), gives

nj = Yµj . (134)

With these additional relations it is finally possible to write down the explicit result
for (132): the variation of the total free energy F = LxLyLzF reads

δF = LxLyLzYµjδµj . (135)

Now, the only missing ingredient is the variation of the superfluid momentum during
the process. The only non-vanishing component of µj is the one along the annulus, in
the x-direction. Hence, given the Josephson relation (11) and the fact that the phase has a
winding number N in the initial state and N + 1 in the final state, we obtain

µx = N
k

Lx
µx + δµx = (N + 1)

k
Lx

, (136)

which gives
δF = (LyLz)Y µx k . (137)

This is exactly the relativistic version of Equation (11) of Wexler [21].

6.5. Thermalised, Intermediate and Ballistic Regimes

Combining Equations (119), (131) and (137), we find that the outcome of Wexler’s
experiment predicts a Joukowski lift force given by (remember that the vortex is fixed in
the frame of the heat bath, so that the vortex velocity does not appear explicitly)

F J
y = Yµxk . (138)

This formula is exactly the total transverse force acting on a vortex found by
Thouless et al. [26], see also [24], and is in agreement with the final result of [21], see
Equation (14) therein. However, it is fundamental to note that to obtain (138) we had to
use Equation (134), which also implies

F J
y = nxk = bxk = (nx +Z px)k ∀Z , (139)

that is in agreement with the result of Sonin and Stone [7]: the thermodynamic argument
of Wexler, as it is formulated, is not sufficient to pin down a unique, well defined, value of
Z , in neutron star crusts as well as in 4He.

There is a physical reason for this. Since the transformation described in Section 6.1 is
quasi-static, the fluid passes trough a sequence of states that are in thermal equilibrium
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with the heat bath, meaning that Equation (133) is verified for all t. At the same time,
since the vortex is dragged infinitely slowly, we also have uν

v = uν
H = uν, and from (35)

we obtain
uν =//ν

ρuρ , (140)

which implies
pρvρν = 0 , (141)

during the whole process. This proves that the exact value of Z is irrelevant to the
energetics of the quasi-static transformation. This is also consistent with the original study
of Wexler [21], who used his experiment to constrain just one of the two free parameters
appearing in the total lift force (the so called A-parameter, see Equation (4) in [21]) and
then invoked the results of Thouless et al. [52] to constrain the other. With the aid of more
recent results, however, we can now gain further insight from Wexler’s thought experiment,
which indicates a possible resolution of the controversy on the total transverse lift force
acting on a vortex, and that we briefly discuss in the following.

Let us study the behaviour of the normal component during the quasi-static process.
As we said, since the transformation is infinitely slow, Equation (133) holds everywhere.
Therefore, even if both (138) and (139) are correct, from the practical point of view we are
in the scenario described in Appendix C.2, where the normal component can be thought as
rigid6 and diffusive equilibrium is reached. This implies that the value of the circulation
must be given by (100), which is indeed in agreement with the result of Thouless and
collaborators for the total transverse force.

Now, let us imagine, instead, to perform the same experiment presented in Section 6.1,
but assuming that the vortex is dragged from the outer to the inner wall with a finite
velocity. Since, in this case, the evolution is dissipative, Equation (119) does not hold
anymore. In particular, the motion of the vortex will induce deviations form the rigidity
condition (133), producing a non-zero correction to the circulation C p, which may now
deviate from the value C p = kYA of the Thouless regime.

If, however, the motion of the vortex is sufficiently slow (so that we are in the
“parabolic regime” described in [58]), we can treat the deviation of the normal fluid from
thermodynamic equilibrium as a slow perturbation, and it should be possible to model
the dynamics of the normal component by means of the Navier-Stokes equations. We are,
thus, facing an Oseen-type problem [7], where a vortex is slowly moving in a viscous
fluid. In the context of superfluid Helium this problem has been studied in detail by
Thouless et al. [26], who found a small deviation of C p from the Thouless prescription,
given by an additional Iordanskii-type force ∝ (ln uy

v)
−2.

Finally, let us imagine that the thought experiment is performed dragging the vortex
from the external to the internal wall at a speed which is high compared to the timescale
at which the fluid relaxes towards thermodynamic equilibrium. In this case, the normal
component will not have time to thermalise and, in the proximity of the vortex, one should
rely on a kinetic description of the excitations. In this limit, the binary and ternary collisions
(in neutron stars one should also consider collisions between particles of different species)
do not have time to occur near the core of the vortex (i.e., in the ballistic region, see e.g., [7]).
Therefore, the evolution of the distribution function is governed by the single-quasiparticle
Hamiltonian. Only under this assumption, the scattering models of Sonin [7] and Stone [25]
become valid in 4He and may be generalised to the neutron-star context. In this Sonin
regime the proper Iordanskii force (110) is expected to appear and we may thus impose
C p = kχT/µT ≈ k, as a place-holder for more refined future calculations.

6 This argument is valid for any mixture of superfluid and normal species, or single-species superfluids at finite temperature. In fact, in global
thermodynamic equilibrium every normal component has to move rigidly [29,55]. Furthermore, if the heat bath does not rotate (which is our case),
all the normal currents need to be at rest with respect to it, in order to minimize the free energy at fixed winding number of φ [19,56]. For the
microscopic counterpart of this result, computed directly in a vortex configuration, see [57].
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We can collect together all these considerations in the foregoing expression for the
Joukowski lift force (which is fully chemical-gauge invariant):

NF J
ν =

Yµρvρν

(Yµρ + λuρ)vρν

bρvρν

in the thermalised (Thouless) regime, J2 → 0
in the intermediate (Oseen) regime
in the fast (Sonin) regime, J2 → ∞

(142)

where λ ∼ 1/ ln2(J2 J2) and J2 is the second component of Jν in our preferred tetrad, see
Appendix B.1. To convert the dependence on uv, which is the speed at which the Wexler
experiment is performed, into a dependence on J2, we have used the fact that in drag
models the larger J2 the faster the motion of the vortices in the reference frame of u is
supposed to be.

We remark again that the behaviour in the Thouless limit has been derived rigorously
from multifluid thermodynamics. Furthermore, the Oseen results are unlikely to be modi-
fied qualitatively by the change of physical setting. However, one still needs to verify with
a microscopic model that the Sonin results extend naturally to the neutron-star context.
Therefore, the third line of Equation (142) should be considered more an educated guess
than a rigorous statement.

Finally, note that, in this set of ideas, there seems to be no room for the widely adopted
prescription of Langlois et al. [8]

NF J
ν = nρvρν. (143)

However, due to the intrinsic chemical-gauge dependence of this formula, one may
always fix the gauge in such a way as to mimic any of the lines of Equation (142). In partic-
ular, starting from the currents pν and nν, counting respectively protons and neutrons, one
may perform the gauge transformation (74). In this way

ñT = nT
eff, (144)

and any calculation performed using the prescription (143) remains valid. One should
simply reinterpret the current nν as the effective neutron current

nν
eff = nT

effu
ν + Jν, (145)

and the proton current as the rest of the baryon current.
Although the gauge transformation (74) can, in principle, be made only locally (it can

be made globally only if Z = const), using the model of Langlois et al. [8] by interpreting
the neutron density via (144) may still constitute a good approximation for most practical
purposes. In fact, extensions of the hydrodynamic model discussed here to the case where
the gauge-fixing parameter a can vary from point to point (see e.g., Carter et al. [18])
should not lead to significant corrections in glitch models, where the currents are typically
assumed to be circular [28,59–61]. In this particular approximation, the right hand side of
equation (2.35) in Carter et al. [18] vanishes and the conservation of the “free” neutron
current is recovered, restoring the consistency with the model of Langlois et al. [8].

7. Conclusions

We have analyzed some formal aspects of the effective two-fluid hydrodynamic
description of the inner crust of a neutron star initiated by Langlois et al. [8], which is based
on the simplifying assumptions of absence of elastic stresses, viscosity and heat conduction.
It also neglects the effects coming from the vortex-array elasticity. Not surprisingly, as
a consequence of these assumptions, it is easy to establish a connection between this
relativistic two-fluid effective description and the relativistic HVBK hydrodynamics for a
single superfluid at finite temperature of Gusakov [10].

The new ingredient we added is the inclusion of all the possible (geometrically al-
lowed) force terms in the phenomenological equation for vortex motion (the PEVM, i.e.,
Equation (44) or (30)), that allows to give a physical meaning to the purely geometric
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expression for the vortex velocity (30): in fact, the two HVBK coefficients /α and /β can be
written in terms of the various coefficients that appear in the PEVM (see (55)), which, in
principle, should be more directly linked to the basic processes that give rise to dissipation
and hydrodynamic lift in a vortex surroundings [44].

The physical interpretation of such terms is, however, not so straightforward because
of a fundamental ambiguity present into the two-fluid formalism, known as chemical
gauge, which has its roots into the problem of identifying some of the confined neutrons
as part of the collectively-comoving normal baryon current [18,19,46]. Different choices
of chemical basis (i.e., different definitions of the fundamental currents of the theory, nν

and pν) lead to different equations of motion when the action principle of Carter and
Khalatnikov [46] is applied. Furthermore, different PEVM, derived by using different
chemical gauge choices, always differ from one another by a Generalised Iordanskii force
(i.e., the Iordanskii force rescaled by a prefactor Z , that in principle should be computed
from microphysics and is related to the circulation C p of the normal component around a
vortex, see (87)).

Since our general PEVM contains a priori this Iordanskii force term, we analysed the
controversy regarding the value of Z : in the context of neutron star physics this Iordanskii
force term is necessary to guarantee the chemical gauge covariance of the hydrodynamic
equations.

We find that, by appropriately setting the intensity of the Generalised Iordanskii
force (i.e., by imposing that Z , or C p, is zero), it is possible to recover the PEVM con-
sidered by Langlois et al. [8] in their model of vortex-mediated mutual friction, see
also [11,28]. This prescription, however, turns out to be chemical-gauge dependent and
therefore ambiguous.

On the other hand, following the analysis of Carter et al. [29], we find that it is
possible to obtain two gauge-independent prescriptions for the Jukowski lift force that can
be interpreted as the neutron-star analogues of respectively the Stone [25], Sonin [30] result
for the the Iordanskii force and the Thouless et al. [26] model in its absence. The latter
turns out to be consistent with the weak-drag limit of the HVBK equations proposed by
Gusakov [10].

In the context of neutron stars, where the subject is even more complicated than in
superfluid 4He, the only way to compute Z and solve the controversy is to make a detailed
microscopic model of the vortex core, in a way to compute the circulation C p of the normal
momentum.

To facilitate the inclusion of a possible Iordanskii force in hydrodynamic models, we
have shown that it is possible to encapsulate the parameter Z within the definition of
an effective neutron density which plays exactly the same role of the physical neutron
density in the PEVM postulated by Langlois et al. [8]. In this way, one does not need to
modify the equations of e.g., a glitch model, but only to redefine the neutron density (and
therefore the neutron average velocity) appropriately, similarly to what can be done with
the entrainment coupling [28,60,61].

Finally, we revised the thought experiment of Wexler [21], which, in combination
with the early result of Thouless, allowed to conclude that there is no contribution to the
Jukowski lift force (i.e., the total transverse force acting on a vortex) that is dependent on the
normal fluid velocity. We extended the original experiment to a special relativistic context,
by using the thermodynamic tools developed in [19,53]. This leads us to conclude that a
possible resolution of the apparent mismatch between the results of Sonin and collaborators
and the one of Thouless and collaborators on the Iordanskii force may be due to the fact
that they are pertinent to different (and opposite) dynamical regimes (a quasi-static one,
consistent with the result of Thouless, and a fast one, consistent with the result of Sonin
and Stone).

Given the still high level of uncertainty in quasiparticle and vortex kinetic theory,
it is difficult to predict which regime is expected to be dominant in neutron star crusts.
However, in the absence of more rigorous arguments, one may consider that the typi-
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cal time-scale for the excitation of new Kelvin waves on a vortex can be estimated by
considering the typical time ∼ 10−15 s needed to move between two pinning sites (see
Figure 5 in [14]), which is likely to be much shorter than any possible relaxation time-scale
towards thermodynamic equilibrium (although a clear estimate of such a time-scale is
still unknown). Therefore, we are tempted to opt for the Sonin regime for neutron star
applications, but defer to future work a more detailed analysis of the problem.
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Appendix A. Recovering the Standard Formulation of the HVBK Vortex Velocity

We show that the expression (24) for uv is equivalent to the vorticity conservation
law of the HVBK hydrodynamics in the absence of vortex tension. Furthermore, we find
the relationship between the coefficients u(J)

v ,D and the standard HVBK kinetic coeffi-
cients α and β used, for instance, by Gusakov [10]. In the Appendix A.1 we derive a
preliminary geometric identity, which is then used in Appendix A.2 to establish a con-
nection with Equation (57) of [10], which is the relativistic generalization of the HVBK
vorticity-conservation equation.

Appendix A.1. A Preliminary Identity

We consider the four-vector q, defined with the aid of the projector h as

qν = hνλvλσ Jσ hνρ = gνρ + uνuρ . (A1)

We can use Equation (14) to obtain the identity

qν = kN hνλ ελσαβ uα
v lβ Jσ . (A2)

Expanding uv according to Equation (24), we obtain

qν = kN hνλελσαβlβ Jσ
(
Γv uα + u(J)

v Jα + u(l)
v lα +D εαρµτ Jρuµlτ

)
. (A3)

The last three terms in the round bracket do not give any contribution. In fact, the
terms proportional to u(J)

v and u(l)
v vanish due to the antisymmetry of the Levi-Civita tensor.

On the other hand, the triplet l, J, ?(J ∧ u ∧ l) is orthogonal to u: when contracted with the
Levi-Civita, they produce a vector which is proportional to u, which contracted with hνλ

returns zero (this proves that also the term proportional to D vanishes). Hence, we find

qν = kNΓv hνλελσαβuαlβ Jσ = kNΓv εν
σαβuαlβ Jσ . (A4)
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Finally, by employing Equation (17), we obtain the useful identity

ενρσλ Jρuσlλ =
1

kNT
hνλvλσ Jσ . (A5)

Appendix A.2. Recovering the HVBK Hydrodynamics of Gusakov

Let us define an auxiliary vector V through the equation

uν
v = ΓvVν + u(l)

v lν . (A6)

If we contract this relation with vνρ and recall the Formula (14), we obtain

Vνvνρ = 0 . (A7)

If we manage to prove that V coincides with the vector V(L) introduced by Gusakov [10]
in Equation (57), then (A7) is Equation (58) of [10], which he showed to be the relativistic
analogue of the vorticity conservation equation in HVBK hydrodynamics (in the absence
of the vortex energy-density contribution to the stress-energy tensor).

If we combine (A6) with (24) and (A5) we immediately obtain

Vν = uν +
u(J)

v
Γv

Jν +
D

kNTΓv
hνλvλσ Jσ . (A8)

We see that it coincides with (57) of [10] provided that we make the identifications

u(J)
v

Γv
= −µTα

D
Γv

= µT β , (A9)

with µT = −µνuν, which are the relations we were looking for.
However, we find it more convenient to work with the coefficients

/α = µTα /β = µT β , (A10)

which, inserted in (A9), satisfy the relations

u(J)
v = −Γv/α D = Γv/β . (A11)

Appendix B. Tetrad Calculations

We summarise the properties of the tetrad we introduce in Section 3.4 and perform
explicitly the tetrad calculations which are omitted from the main body.

Appendix B.1. Tetrad Formulary

The tetrad ea is constructed imposing

e0 = u e2 =
J − g(J, l) l√

g(J, J)− g(J, l)2
e3 = l . (A12)

The vector e1 is uniquely determined by the requirements orthonormality and right-
handed orientation,

e1 = − ?(J ∧ u ∧ l)√
g(J, J)− g(J, l)2

. (A13)
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It is immediate to see that in this basis

u = (1, 0, 0, 0)

l = (0, 0, 0, 1)

uv = (Γv, Γv∆1, Γv∆2, 0)

J = (0, 0, J2, J3)

n = (nT , 0, J2, J3) .

(A14)

We can easily write some of the components appearing in the above decomposition as
covariant expressions, e.g.,

Γv = −uν
vuν J2 =

√
Jν Jν − (Jνlν)2 J3 = Jνlν nT = −nνuν . (A15)

As a direct application, let us rewrite (30) in this tetrad; it is immediate to see that it
becomes

uv = (Γv, Γv/β J2,−Γv/α J2, 0) . (A16)

This allows us to link the HVBK coefficients with the components of uv, namely

∆1 = /β J2 ∆2 = −/α J2 . (A17)

Appendix B.2. The PEVM in the Tetrad Formalism

Our goal is to write explicitly the tetrad components of the general PEVM in (52).
Let us start with the left-hand side. As a first step, we notice that

nT
effu

a + Ja = (nT
eff , 0 , J2 , J3) , (A18)

and contracting with (16) we obtain

(nT
effu

a + Ja)vab = kNΓv

(
∆1 J2 , nT

eff∆
2 − J2 , −nT

eff∆
1 , 0

)
. (A19)

Under the assumption of slow relative motion between the two components, we can
neglect the quadratic terms in relative speed and make the approximations Γv ≈ 1 and
∆1 J2 ≈ 0. Recalling (A17), we arrive at the final expression for the left-hand side of (52),

(nT
effu

a + Ja)vab ≈ kNJ2
(

0 , −nT
eff/α − 1 , −nT

eff/β , 0
)

. (A20)

Now, let us move to the right-hand side of the PEVM in (52). Considering that

R′na +RnT
effu

a = (RnT
eff +R

′nT , 0 , R′ J2 , R′ J3) , (A21)

we immediately see (working directly in the limit of small relative speeds) that

uva(R′na +RnT
effu

a) ≈ −RnT
eff −R

′nT

la(R′na +RnT
effu

a) = R′ J3.
(A22)

Since ⊥ab = ηab + uvauvb − lalb, which is a consequence of (32), we finally obtain the
explicit expression of the right-hand side of (52):

kN⊥ab(R′na +RnT
effu

a) ≈ kNJ2
(

0 , −RnT
eff/β−R

′nT/β , R′ +RnT
eff/α +R′nT/α , 0

)
. (A23)

Imposing the equality of the two sides, Equations (A20) and (A23) we obtain the
system (53), which is what we wanted to prove.
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Appendix C. Mesoscopic Models for the Flow around a Vortex

In this appendix we discuss the mesoscopic physical assumptions that lead to respec-
tively (92), discussed in Appendix C.1, and (100), discussed in Appendix C.2. Here, all
the quantities are considered to be mesoscopic variables, and the hydrodynamic descrip-
tion is applied at the inter-vortex separation scale. Hence, the physical setting is the one
considered by Carter et al. [29].

Appendix C.1. Induced Circulation in the Normal Component

Here we discuss the implications of assuming that the motion of the vortex perturbs
the normal component in such a way that

µT

∮
uσdxσ = k. (A24)

In addition, we work under the same assumptions made by Sourie and Chamel [27],
namely of homogeneous thermodynamic variables far away from the vortex.

We start with the observation that χν can be written as a linear combination of µν

and uν, since these are the only two relevant (linearly independent) covectors of the
mesoscopic model,

χν = Lµν + Guν, (A25)

where L and G are two linear combination coefficients which should be treated as ho-
mogeneous constants (provided that we are sufficiently far away from the vortex core).
Contracting (A25) with −uν we find

χT = LµT + G. (A26)

On the other hand, if we integrate (A25) around a closed loop, far away from the
vortex and surrounding the vortex only once, we obtain

C p = Lk + G k
µT

, (A27)

where we have used (85) and (A24). Combining (A27) with (A26), recalling (87), we
finally obtain

Z =
C p

k
=

χT
µT

. (A28)

Given that we have used only chemical-gauge covariant assumptions, this formula
must be in turn chemical-gauge covariant. This can be explicitly checked by noting that, if
we contract both sides of Equation (65) with ũν = uν, we obtain

χ̃T = (1− a)χT + aµT µ̃T = µT , (A29)

whose ratio is
χ̃T
µ̃T

= (1− a)
χT
µT

+ a . (A30)

This transformation rule, however, is the same as (73), proving the covariance of (A28).

Appendix C.2. Thermodynamic Equilibrium

Here we discuss the implications of assuming that the fluid is in thermodynamic
equilibrium (for a fixed position of the vortex line) in a neighbourhood of the vortex. We
will show that this leads to Equation (100) for C p.

We start from the observation that in thermodynamic equilibrium the normal four-
velocity is rigid. Since we know that, in the setting of [29], the fluid is asymptotically
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non-rotating, we can conclude that there is a (macroscopically local, but mesoscopically ex-
tended) inertial frame (t, x1, x2, x3) surrounding the vortex line in which uν is static, namely

u0 = 1 uj = 0. (A31)

Thus, if we pull back Equation (95) on t = const hypersurfaces, we obtain

χj = Anj µj = Y−1nj, (A32)

which implies
χj = AYµj. (A33)

For the analysis of [29] to be valid, we need to impose (local) irrotationality of both
the momenta, which is most easily realised if we require

∂j(AY) = 0. (A34)

This condition is automatically valid in diffusive equilibrium. In fact, working in the
aforementioned inertial frame, we can always write the deviation of AY from homogeneity
as a perturbation, taking as independent thermodynamic variables χT , µT and wνwν:

δ(AY) =
∂(AY)

∂χT
δχT +

∂(AY)
∂µT

δµT +
∂(AY)

∂(wνwν)
δ(wνwν). (A35)

However, if χT and µT are homogeneous (which is the condition of diffusive equilib-
rium), we have to impose

δχT = 0 δµT = 0, (A36)

which implies

δ(AY) =
∂(AY)

∂(wνwν)
δ(wνwν). (A37)

Since this is a second order in the relative velocity between the species we can neglect
it, proving that AY is homogeneous up to the first order.

Finally, taking a loop (surrounding the vortex once) which lies entirely inside t = const
hypersurface, we can combine (A33) and (A34) to obtain

C p = AYk, (A38)

which is what we wanted to prove.
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