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Abstract: Continuous gravitational waves are analogous to monochromatic light and could therefore
be used to detect wave effects such as interference or diffraction. This would be possible with strongly
lensed gravitational waves. This article reviews and summarises the theory of gravitational lensing
in the context of gravitational waves in two different regimes: geometric optics and wave optics, for
two widely used lens models such as the point mass lens and the Singular Isothermal Sphere (SIS).
Observable effects due to the wave nature of gravitational waves are discussed. As a consequence of
interference, GWs produce beat patterns which might be observable with next generation detectors
such as the ground based Einstein Telescope and Cosmic Explorer, or the space-borne LISA and
DECIGO. This will provide us with an opportunity to estimate the properties of the lensing system
and other cosmological parameters with alternative techniques. Diffractive microlensing could
become a valuable method of searching for intermediate mass black holes formed in the centres of
globular clusters. We also point to an interesting idea of detecting the Poisson–Arago spot proposed
in the literature.

Keywords: gravitational waves; gravitational lensing; Poisson–Arago spot; interference; microlensing

1. Introduction

With the first detection of gravitational waves (GWs) in 2015 from the coalescing
compact binary system [1], we have entered the long-expected era of GW astronomy.
A new window in the Universe has been opened. First, GW detections brought about
the confirmation of the existence of binary black hole (BBH) systems in nature. A half
of a century ago, the primary candidates for chirping signals were binary neutron stars
(BNS) due to sober expectations based on Hulse–Taylor-like BNS systems discovered so
far. Indeed, in 2017, the first of such coalescence was registered [2], and accompanying
electromagnetic signals spanning from gamma rays through optical rays and radio waves
were registered, allowing for the identification of the host galaxy and making a plethora
of various other tests possible. Further observing runs of the LIGO–Virgo–KAGRA net-
work considerably enriched the statistics of registered events. In the future, there will
be a qualitative boost when the third generation of ground-based detectors such as the
Einstein Telescope (ET) [3] or the Cosmic Explorer (CE) [4] as well as space-borne detectors
(LISA, DECIGO, TianQin) [5–10] become operative. First, the sensitivity of ground-based
detectors will be increased by an order of magnitude over the existing ones, allowing for
the exploration of a larger volume of the universe by three orders of magnitude. Second,
the satellite detectors will probe much lower frequencies of GWs (inaccessible from the
ground due to seismic noise), enabling the observation of adiabatic inspiralling signals
from binary systems much earlier than the coalescence phase probed by ground-based
detectors. This means that besides the already registered chirp signals, we would gain
access to almost monochromatic continuous GW signals.

In this paper we discuss some new opportunities that will be available when continu-
ous GW signals are registered. In the case of light, historically, there has been a dispute
about its nature: corpuscular vs. wave. The wave nature of light has been established
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with interference and diffraction patterns, which are best visible with monochromatic light.
By analogy, interference and diffraction patterns should be revealed in GWs as well. But
what sort of experiment could be performed in this context? We point to gravitationally
lensed GW signals as a promising physical setting to reveal the wave effects of GWs. The
first ideas of this kind were formulated by [11,12], where the proper treatment of this
phenomenon within the wave regime was presented.

The bending of light by the sun was the first classic test of general relativity. The
essence of light bending by massive bodies lies in the fact that paths of photons (light
rays) are null geodesics in spacetime, which is curved by the presence of mass. Since
Eddington’s expedition in 1919, this phenomenon has now evolved to a mature discipline
of extragalactic astronomy called gravitational lensing. Currently, this is routinely used
to study the structure of galaxies (lenses) and in cosmology. Gravitational waves, in the
geometric optics approximation, follow the null geodesics as well. Hence, one can expect
to see gravitationally lensed GW signals. Such signals coming from unresolved images
would interfere, producing characteristic patterns. In the next section, we will review the
strong lensing of GWs. Section 3 contains a discussion of some observable effects that are
particularly pronounced when the source emits continuous GWs. We summarise the article
in Section 4.

2. Gravitational Lensing of Gravitational Waves

As one of the successful predictions of general relativity, strong gravitational lensing
by galaxies has become one of the most important tools in studying cosmology [13], galaxy
structure, and evolution [14]. With the dawn of gravitational wave astronomy, the robust
prediction suggested that a considerable number of GW signals from inspiralling neutron
stars would be gravitationally lensed, and detected by third-generation, ground-based GW
detectors [15] or the planned space-based GW detectors LISA [16] and DECIGO [17].

2.1. Strong Gravitational Lensing in Brief

Strong gravitational lensing occurs whenever the source, the lens (a galaxy, a black
hole, a star), and the observer are almost aligned. In the particular case of perfect alignment,
the source will not be obscured by the lens but will instead be made visible as a glowing
ring—also known as the Einstein ring. In the case of axisymmetric lenses, the angular
radius of this ring, i.e., the Einstein radius, is the following:

θE =

√
4GMl

c2
Dls

Dl Ds
, (1)

where Dl is the angular diameter distance to the lens at redshift zl , Ds is the angular
diameter distance to the source at redshift zs, Dls is the angular diameter distance between
the lens and the source. Ml is the total projected mass of the lens contained within the
Einstein radius M(r < θE). For the point mass (or a very compact object), it is just the
total mass of the lens. Misalignment in this optical system by the angle β (angle between
directions to the source and to the lens) leads to the appearance of multiple images. Usually,
two or four images (with a spherically symmetric mass distribution) are formed at angular
separations of θi from the center of the lens. The typical separation between different
images is set by the Einstein radius, and their locations are described by the following
lens equation:

β = θ − α(θ) (2)

where α(θ) is the deflection angle determined by the projected mass distribution of the lens
(for detailed derivations, see [18]). The total time delay introduced by gravitational lensing
at the angular position θ from the lens is calculated as follows:

∆t =
1 + zl

c
Dl Ds

Dls

[
(θ − β)2

2
− φ(θ) + φm(β)

]
(3)
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where φ(θ) is the lens potential determining the deflection angle α(θ) = ∇θφ(θ). Term
φm(β) corresponds to the arrival time in a non-lensed case, and in practice, it is a constant
adjusted to ensure the extreme value of the time delay functional. Total time delay, or more
precisely the time delay functional, measures the delay between lensed signal arrival from
the image at position θ with respect to the (unmeasurable) arrival time from the source
if the lens was absent. Fermat’s principle implies that images correspond to stationary
points of the time delay functional, and one can see that condition ∇θ∆t = 0 is equivalent
to the lens Equation (2). The measurable quantity is the time delay difference ∆tij between
images at θi and θj. Another measurable quantity is the ratio of image magnifications.

The (signed) magnification is the inverse Jacobian of the lens equation: µ =
(

det
(

∂β
∂θ

))−1
.

The sign corresponds to the parity of the image, so |µ| is physically relevant, and since
the intrinsic luminosity is usually unknown, only magnification ratios are relevant. The
exception could be the lensed standard candles, where the absolute magnification could be
derived. In the optical system, image locations are another sort of observables, but in the
case of GWs, they are irrelevant.

For the purpose of this work, we refer to two of the simplest and most commonly used
analytic lens models: the point mass model and the singular isothermal sphere (SIS) model.
Their choice is dictated by two realistic scenarios: lensing by an isolated mass such as a
massive (with Ml < 107M�) black hole (BH) or an intervening galaxy (Ml∼109–1011M�).

In the case of axisymmetric point lenses, the typical separation between different
images is set by the Einstein radius (1). The dimensionless lens Equation (2) and its
corresponding solutions are as follows [18]:

y = x− 1
x
→

 x+ =
y+
√

y2+4
2

x− =
y−
√

y2+4
2

(4)

where y = β/θE, and x = θ/θE. Hence, two images could be produced at angular positions
θ+ = x+θE and θ− = x−θE, respectively. The magnification of images reads as follows:

µ± =

[
1−

(
1

x±

)4
]−1

. (5)

The time delay between images produced by a point mass lens is calculated with the
following equation [18]:

∆t =
4GMl(1 + zl)

c3

(
y
√

y2 + 4
2

+ ln

√
y2 + 4 + y√
y2 + 4− y

)
. (6)

Point mass lenses (also called Schwarzschild lenses) are representative of lensing by
stars (microlensing) and BHs with stellar or intermediate mass BHs.

It has been well-established that early type galaxies act as lenses in the majority
of the strongly gravitational lens systems detected. Even though their formation and
evolution are still not fully understood in detail, a singular isothermal sphere model (SIS)
can reasonably characterize the mass distribution of massive elliptical galaxies within the
effective radius [14,19–21]. In the case of the axisymmetric SIS model [22,23], its three-
dimensional density profile could be described as ρ(r) = σ2

v /2πGr2, where r is the distance
from the sphere center and σv is the velocity dispersion of the lens. In this case, the
dimensionless lens Equation (2) could be written as follows [18]:

y = x− x
|x| , (7)
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where x = θ/θE, y = β/θE, as above. When y < 1, the solutions are:

x± = y± 1. (8)

The corresponding angular positions of the images are θ± = β± θE, where:

θE = 4π
σ2

v
c2

Dls
Ds

. (9)

In this case, the magnifications of the images are the following:

µ± = 1± 1
y

. (10)

On the other hand, when y > 1, the lens equation only has one solution: x = y + 1. Its
corresponding magnification is µ = |x|/(|x| − 1).

For the SIS model, the time delay between different images reads as follows:

∆t =
32π2

c

(σv

c

)4 Dl Dls
Ds

(1 + zl)y. (11)

2.2. Wave Optics Regime

The above summarised results were obtained using the geometric optics approxima-
tion, which is excellent in most astrophysically relevant cases of the strong gravitational
lensing of electromagnetic waves. Indeed, this approximation is valid as long as the typical
length scale of the system is much larger than the wavelength, and the timescale of the
typical variations of the system are much larger than the period of the wave. In the case
of GWs, things become different: the frequency range probed by ground-based detectors
comprise 10 Hz < f < 10 kHz (to be lowered down to 1 Hz in the future third genera-
tion), while in the space-borne detectors, it will be 0.1 mHz < f < 100 mHz for LISA
and 1 mHz < f < 100 Hz for DECIGO. This corresponds to the GW wavelengths of 104 m
< λ < 107 m in ground-based and 106 m < λ < 1012 m in space-borne detectors.

In the wave optics regime, we consider the gravitational wave from a distant source
as propagating in the background spacetime g(L)

µν of the lens object characterized by the
gravitational potential U(r) << 1. The total metric, including the perturbation (due to
the GW signal) is given by gµν = g(L)

µν + hµν, where hµν = ψeµν. Since the polarization
tensor eµν is parallel transported along the null geodesic, we may neglect its change
(being of order ∼ U(r) << 1) and study the propagation equation of the scalar wave:

∂µ

(√
−g(L)g(L)µν∂νψ

)
= 0. For the monochromatic scalar wave ψ(r, t) = ψ̃(r)e−2πi f t in

the frequency domain, and remembering the weak potential assumption, this equation can
be cast to the form of the Helmholtz equation:(

∇2 + 4π2 f 2
)

ψ̃ = 16π2 f 2Uψ̃ (12)

The solution to the Helmholtz equation can be given in terms of the Kirchhoff inte-
gral [18], where it is convenient to introduce the dimensionless amplification factor:

F( f ) =
ψ̃L

ψ̃
(13)

which is the ratio of wave amplitudes with and without lensing. Then, the Kirchhoff
integral allows us to calculate the amplification factor at the observer [18] as:

F( f , β) =
1 + zl

c
Ds

Dl Dls

f
i

∫
d2θ exp[2πi f ∆t(θ, β)] (14)
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where ∆t is the lensing time delay given by Equation (3), and the cosmological nature of
distances in the optical system has been taken into account. The calculation of the integral (14)
can be simplified by switching from angles to dimensionless variables x and y (see above
after Equation (5)) and by introducing the new parameter w = 8πG

c3 Ml(θE)(1 + zl) f :

F(w, y) =
w

2πi

∫
d2y[exp[iwT(x, y)] (15)

where T(x, y) = (x−y)2

2 − φ(x)
θ2

E
. In general, the amplification factor (15) should be evaluated

numerically, but in two particular cases, it can be integrated analytically. In the point mass
lens model, the dimensionless lensing potential is φ(x) = lnx, and the analytical solution
to the diffraction integral is given by the following equation:

F( f ) = exp
[πw

4
+ i

w
2

(
ln
(w

2

)
− 2φm(y)

)]
Γ
(

1− i
2

w
)

1F1

(
i
2

w, 1; wy2
)

(16)

where φm(y) = 0.5(xm− y)2/2− lnxm with xm = (y+
√

y2 + 4)/2, and 1F1 is the confluent
hypergeometric function.

In the case of the SIS model, the Kirchhoff integral could be cast into an analytically
manageable form [12]:

F( f ) = −iw eiwy2/2
∫ ∞

0
dx xJ0(wxy) exp

[
iw
(

1
2

x2 − x + φm(y)
)]

(17)

where φm(y) = y + 1/2 and the J0 is the Bessel function of order zero.
Geometric optics formally corresponds to f → ∞; hence, w >> 1. In such a case,

the Kirchhoff integral can be calculated by using stationary phase approximation, and
dominant contributions will come from image positions. Hence, the amplification of the
wave intensity is as follows:

|F( f )|2 = |µ+|2 + |µ−|2 + 2|µ+µ−| sin (2π f ∆td) (18)

where the first two terms correspond to magnifications in geometric optics, and the last
one represents the interference between images.

3. Effects of the Gravitational Wave Lensing of Continuous Waves

Since the lensed images would not be resolved, they are expected to come from the
same location in the sky, separated in time by the lensing time delay ∆tij. In the case of
coalescences of compact binary systems, these are expected to be revealed as just two
signals with similar temporal patterns and amplitudes affected by magnification. This
picture is basically true for merging systems staying within the detectors’ sensitivity band
for a fraction of a second. However, if such a system could be monitored earlier, i.e., in
the adiabatic inspiral phase (an almost monochromatic signal), then the brighter image
(arriving earlier) could imprint its interference patterns on the strain of the fainter image.
In this section, we will discuss some of these effects stemming from the wave nature of
GWs, which could be observed. Here, we will review some fresh ideas that have already
appeared in the literature (and to which one of us contributed).

3.1. Beat Patterns

An interesting paper [24] discussed that if the lensed images from the coalescing binary
system could be detected simultaneously by the detector, then beat patterns would be
revealed prior to the merger signal. The merger signal would arrive first from the brighter
(more magnified) image, then the merger signal from the fainter one would be registered
after lensing time delay. If they stayed for a couple of seconds in the detector sensitivity
band, then one would see beat patterns. First of all, this condition is very restrictive for
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the strong lensing system configuration: time delay should be of order of minutes at most.
This means that the probability of detecting such an event from the ground is much lower
than the probability of detecting a strong lensed GW in general. However, the payoff of
such a detection should be considerable because, as the authors of [24] argue, one would be
able to measure the redshifted lens mass purely from the GW signal and measure the time
delay distance without reconstructing the Fermat potential. This is interesting enough, and
it is thus worth recalling the basic points here.

Suppose that we have a signal in time domain h(t), which is a superposition of two
differently magnified signals from two unresolved images:

h = µ+[A+ cos(ω1t + φ1) + A× sin(ω1t + φ1)]+
+µ−[A+ cos(ω2t + φ2) + A× sin(ω2t + φ2)]

(19)

where µ+ and µ− are their respective magnification, A+ and A× are the amplitudes,
and ω1, ω2, φ1, φ2 are angular frequencies and initial phases, respectively. These can be
rewritten as follows:

h = µsum

[
A+ cos(ω f t + φ f ) cos(ωbt + φb) + A× sin(ω f t + φ f ) cos(ωbt + φb)

]
+

+µdi f f

[
−A+ sin(ω f t + φ f ) sin(ωbt + φb) + A× cos(ω f t + φ f ) sin(ωbt + φb)

] (20)

with µsum = µ+ + µ−, µdi f f = µ+ − µ−, the frequencies ωb = ω1−ω2
2 and ω f = ω1+ω2

2
represent the beat and the average frequency, respectively, and phases φb, φ f are defined
in a similar manner. In the early inspiral phase (i.e., well before coalescence), when the
frequency evolves according to dω

dt = 192
5 M5/3(ω

2
)11/3 [25,26] and ωb << ω f ≈ ω1 ≈ ω2,

one has the following:

ωb =
96
5

(ω f

2

)11/3
M∆t (21)

whereM is the chirp mass of the binary system and ∆t is the lensing time delay (3) given
by formula (6) in the case of the point mass lens. Figure 1 illustrates the beat pattern
originating in the lensed coalescing system. One can see the evolution of the beat pattern
toward the coalescence. During the last stages of the inspiral phase, ω f increases and the
beat pattern disappears. In the case of the lensed continuous GW signals, the beat pattern
would be rigid. Now, if one uses the beat pattern defined by Equation (20) as a template
in the matched filtering method, then the ratio µsum

µdi f f
can be extracted from the data and

easily converted to the magnification ratio r =
∣∣∣ µ+

µ−

∣∣∣. The lensing time delay ∆t is directly
measurable, and in the case of registering two coalescence signals, the accuracy of such a
measurement would be unprecedented. In the case of almost monochromatic signals from
the inspiral phase long before the merger (accessible in low-frequency bands of DECIGO
and LISA), the time delay ∆t could still be extracted from the matched filtering using the
beat pattern template. The knowledge of the magnification ratio r will allow for interesting
inferences to be made. In the case of a point mass lens, after expressing the time delay (6)
in terms of r, one can see that the redshifted mass of the lens can be calculated as follows:

Ml(1 + zl) =
c3

2G
∆t
[

r− 1√
r

+ ln r
]−1

(22)

On the other hand, in the case of the SIS lens, the so-called time delay distance D∆t
can be obtained with the following equation:

D∆t ≡
Dl Dls

Ds
=

c5∆t
32π2σ4

v (1 + zl)

r− 1
r + 1

(23)

provided that the lens is identified and its redshift is known. This is also an important result,
demonstrating the breadth of information which can be extracted from the GW signal
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alone. Needless to say, time delay distance measurements have been used to determine the
Hubble constant in a way that is independent of the cosmic ladder or CMB techniques. It
has been shown in [27] that lensed GW signals from coalescing BNS systems would allow
for a percent accuracy in H0 measurements. Moreover, the time delay distance can be used
to test the cosmological model beyond the ΛCDM.

Figure 1. A diagram showing the beat pattern of a binary inspiral signal. Masses of the components
are m1 = 30M� and m2 = 20M�, the source is located at zs = 2, the lens at zl = 1 is assumed to be a
point mass of Ml = 106 M�. Time delay has been chosen as ∆t = 2.1 s, thus fixing the β parameter.

Given the promising applications of beat patterns, a natural question arises concerning
their detectability. In order to forecast the yearly rate of lensed GW signals from compact
binary systems, one usually assumes that both images, the faint one and the bright one,
should have an SNR above the threshold. From the perspective of beat patterns, an
additional demand is that time delays should be comparable to the time spent in the
sensitivity band of the detector. These factors modify the optical depth appropriately. Such
a self-consistent study of beat patterns detectability has been performed for the planned
DECIGO and B-DECIGO missions [24]. For the Einstein Telescope, there has been a series of
studies focused on the lensed GW signals in general. The initial one assumed that sources
should intrinsically have an SNR greater than or equal to the detection threshold [28]. Then,
this demand was relaxed in [15], updating the forecasts for intrinsically faint signals, which
could be registered because of magnification due to lensing. Then, the rotation of the Earth
was taken into account in [29] since it influences the detector’s orientation factors for the
signals separated by the lensing time delay. Robust predictions for the Einstein Telescope
are 50–100 lensed GW signals per year. Finally, the newest study [30] considered the third
generation of detectors in a network configuration with existing detectors and applied
realistic signal templates for the study. The conclusion was that a more realistic scenario
improves the detection rate. However, beat pattern detectability puts restrictions on the
time delay, so the results of these studies cannot be easily carried over. A dedicated study is
necessary. Let us also comment on the following issue. Namely, that the Einstein Telescope
is expected to register 105–106 BBH coalescences per year. This means that optimistically ET
would detect one such coalescence every minute. Whether such frequent chirping events
occurring simultaneously for some time before the merger would produce interference
patterns is an interesting question to be studied further.

3.2. Diffractive Microlensing

Besides the strong lensing discussed in the previous section, which in the case of an
electromagnetic window usually means multiple images of a quasar (or galaxy) lensed by
a galaxy, one can consider microlensing. It is again a strong lensing case (usually starlight
lensed by a star) where the images cannot be resolved, but the relative motion of the
elements of the optical system make the temporal changes in the total magnification of
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the source detectable. It was an ingenious idea of Paczyński [31] that two individually
unobservable effects (image separation and relative proper motion) can be combined to
give an observable effect. One can expect that the similar phenomenon could be detected in
the GW domain. In the paper [32], such a setting was proposed and discussed. In addition
to [32], fringes due to GW lensing were also studied in [33–35].

One can think of the gravitational lensing of GWs (in or close to the wave regime) as an
analogue of a one-slit or two-slit experiment with light. When the light is monochromatic
(such as a laser beam), a characteristic fringe pattern is visible on the screen. In astrophysical
scales, the “screen” has astronomical scales and is inaccessible directly. This corresponds to
a fixed y parameter. However, in the microlensing case, y changes in time (due to relative
motions) and one can explore the “screen” by watching the manifestation of fringes. The
peculiar motions of the lensing system mentioned above include the motion of the observer
vobs, the source vs, and the lens vl—all measured in the CMB frame combined to obtain the
effective velocity ve f f as given by the following equation [36]:

ve f f = vs −
1 + zs

1 + zl

Ds

Dl
vl +

1 + zs

1 + zl

Dls
Dl

vobs (24)

In lensing, since we are referring to angles in the sky, the effective velocity should be
converted to angular proper motion.

For the comparison between the size of the “barrier” (lens) and the wavelength of
the GW, one uses the parameter w = 8πG

c3 Ml(θE)(1 + zl) f introduced in section 2. Recall
that if w >> 1, the amplification factor in (14) simplifies to (18). The last term in (18) is
the interference term. If the amplitude of the diffraction fringes are to be detectable, the
parameter w should be large enough (but not too big). It has been proposed in [32] that
w > 1 is the reasonable condition for the fringe pattern to be detectable. To see a complete
diffraction or interference pattern, the observation period Tobs should be more than the
timescale over which the fringe pattern is affected due to the peculiar motion of the system;
we then denote the fringe timescale as t f . This timescale of the transit of fringes can be
denoted by t f =

tE
w , where tE is the Einstein radius crossing time. For galactic sources and

lens, it is given by the equation below:

tE ≈ 34.7 days

√
4

Dl
Ds

(
1− Dl

Ds

)( Ds

8kpc

)1/2
×
( M

M�

)1/2( ve f f

200 km s−1

)−1
(25)

Therefore, the criterion for detecting a fringe pattern can be summarised in three
conditions [32]:

1. w > 1, to have enough amplification;
2. y < 3, to detect fringes before they are damped;
3. ∆t > t f , to see a fringe pattern.

Let us say that the second condition means that the probability of microlensing is
almost an order of magnitude larger than that of the optical. It is because the cross-section
for lensing is proportional to the Einstein ring area πy2, and in the optical, y = 1 is the
threshold for microlensing.

Estimates of [37,38] suggest that a galactic bulge contains about 109 NSs and a globular
cluster contains 103 NSs, which could be the target population for the current and next-
generation gravitational detectors. In order to find the probability of observing a fringe
pattern from such a population of monochromatic sources, one would need to calculate the
optical depth, which gives the probability that a given source falls into the Einstein radius
of any lens located along the line of sight τ =

∫ Ds
0 n(Dl)πR2

EdDl . If we consider a source
population in the Milky Way bulge lensed by a constant density of stellar mass lenses in
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the galactic disc moving with a velocity vrot = 200 kms−1, the lensing probability is given
by the following equation [31,39]:

τ =
v2

rot
2c2 = fl × 10−6 (26)

where fl is the fraction of the lens larger than one solar mass, which is required to fulfil the
above-mentioned conditions for diffractive microlensing.

Currently, the issue of intermediate mass BHs and their existence has been debated.
They can be formed in the very cores of globular clusters. Therefore, it would be interesting
to focus on globular clusters as the hosts of gravitational lenses for lensing continuous
GWs. One such candidate is already known. M22 is a rich globular cluster with a projected
location pointing to the Galactic bulge—a perfect site of sources (spinning neutron stars
or binary systems). A typical velocity dispersion in a globular cluster is σv∼10 km s−1;
hence, the typical transverse velocity of the lens can be very well approximated by that of a
cluster as a whole ∼200 km s−1. Once again, ref. [40] showed that the optical depth for
microlensing in such a case is:

τ = fl
σ2

c2
2π

ϕ

Dls
Ds
≈ 2.4 10−4 fl

(
σv

10 km s−1

)2(1′

ϕ

)
Dls
Ds

(27)

where ϕ denotes the angular distance from the center of the cluster. Knowledge of the
distance and the transversal velocity of the lenses belonging to the cluster may result in
accurate estimates of their masses, breaking the degeneracies inherent to the microlensing
technique. The microlensing of the bulge star at Ds = 8.2 kpc by a low-mass object in the
globular cluster M22 located at Dl = 2.6 has been reported in [41]. Let us remark that
the inclusion of the ϕ term was motivated by the fact that in the optical system, only the
outskirts of the cluster can produce the microlensing of the bulge stars. Regions close to
the center would obscure the light of bulge stars. In the GW domain, this is completely
different—GWs can easily probe central parts of the cluster. This will significantly enhance
the optical depth. Moreover, the intermediate mass black holes (IMBHs) M∼102–104 M�
are expected to reside in the centres of globular clusters. Hence, diffractive microlensing
could open a new chapter in the search for IMBHs. One of the candidates among continuous
GW signals is a (slightly deformed) spinning neutron star. Their detection is fairly difficult
since the signal is strongly modulated by the Earth’s rotation and orbital motion. Moreover,
this modulation is different for every sky position. Diffraction and interference fringes
caused by an intervening mass acting as a lens and moving with respect to the source
also produce modulation. Luckily, the timescales of these effects are significantly different
from timescales involved in the motion of the detector. In the setting we have discussed
here, the directed search with the known position in the sky (in the case of globular cluster
lensing) can be applied. The GW signal coming from a rotating NS is so weak that in
order to detect it in the detector’s noise, one has to analyse months-long segments of
data. The implementation of the F-statistic [25] (or G-statistics [42]) consists of coherent
searches over two-day periods, and it is followed by a search for coincidences among the
candidates from the two-day segments. The timescales for fringe modulation are larger,
and one can expect that respective amplitude modulation could be detectable with current
techniques. In order to be able to make any rigorous statements, further research on mock
data involving real data analysis tools is required. One may hope that this approach should
be extended to other sources of continuous GWs such as binary systems that are observable
in low-frequency bands to be probed by DECIGO and LISA. This, however, also demands
dedicated studies.

3.3. Poisson–Arago Spot

One of the observable signatures of the wave nature of light, besides interference, is
diffraction. The French physicist, Fresnel, presented his work on diffraction in a competition
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sponsored by the French Academy of Sciences in 1818. It was a period when Newton’s
idea of the corpuscular theory of light was prevalent. One of the judges in the competition,
Poisson, in an attempt to disprove the wave nature of light, pointed out that according
to Fresnel’s theory, a parallel beam of light falling on a spherical obstacle would produce
a bright spot at the centre, as if the obstacle were not present. This was considered to
be an absurd result. Later, another French physicist, Arago, successfully conducted an
experiment, and the Poisson spot was seen. This phenomenon later came to be known
as Poisson’s spot or the Spot of Arago, which established the wave nature of light in
the 19th century. Therefore, a similar phenomenon should be expected of GWs, and a
strong lensing optical configuration appears to be the perfect candidate. The reason for the
appearance of the spot is that wavefronts originating at the boundary of a circular obstacle
interfere constructively. The same is expected from the Einstein ring of lensed GW. To some
extent, one can see analogous behaviour in the wave GW regime, when the amplification
calculated from the Kirchhoff integral (15) has a maximal value, when β = 0 [43]:

|F(w, β = 0)|2 =
πw

1− e−πw . (28)

An interesting and rigorous study of the Poisson–Arago spot that was produced when
GWs were passing in the background of a Schwarzschild BH was presented in [44]. This
strong-field scenario can be understood as an on-axis scattering problem using the Regge–
Wheeler equation [45,46], which describes the axial perturbations of the Schwarzschild
metric as a linear approximation [47], and the solutions are given by the confluent Heun
equation. The amplitude of the gravitational wave passing in the background of this
opaque disc is given by the following equation:

Φl =
1
r

∞

∑
l=2

(2l + 1)e−iωtPl(cos θ)Rls(r) (29)

where Pl(cos θ) denotes the Legendre polynomials and Rls is the l − th partial wave of the
GW, with the spin s = 2 and the angular momentum h̄

√
l(l + 1) measured with respect

to the scattering centre. For a Schwarzschild BH, the gravitational waves with the impact
parameters 3

√
3M fall into the black hole and will not reach infinity, i.e., BH can shield the

gravitational waves. Rls/r in (29) is an oscillatory function in the far zone, at which the
summation in l in Equation (29) becomes divergent. This issue can be solved in [48] by
using the Fresnel half-wave zone, according to which an effective contribution to diffraction
comes from the 1/4 zone, and the residues cancel each other. In the case of a small scattering
angle and at a large distance, Rls/r becomes:

Φl = e−iωteωr(1− θ2
4 )+πMωΓ(1− 2iωM)J0

(
2

√
M
r

ωrθ
)

(30)

The fringe pattern is determined by the function J0

(
2
√

M
r ωrθ

)
. The time delay

between successive bright or dark spots depends on the mass of the BH, the wavelength of
the gravitational wave, and the relative position of the system. The upper bound of the
wavelength is set by the radius of the opaque disc. For the supermassive black hole in our
galaxy of the radius 6× 1010 m, this corresponds to the frequency of f = 0.005 Hz. This is
within the sensitivity band of the planned space-based detectors such as LISA and TianQin.
There is no theoretical lower limit in this calculation; a realistic lower bound depends on
the sensitivity of the gravitational wave detector. For a gravitational wave at a frequency
of 100 Hz, with SMBH in our galaxy as an obstacle, the diffraction time delay between the
bright spot and the first dark fringe is 3.86 days, while that for the second bright fringe is
6.2 days. These effects will be observable with a sensitive ground-based detector.
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4. Conclusions

The gravitational lensing of GW signals has been discussed in many papers since its
first detection [48]. In particular, [49] put forward an idea that unexpectedly high masses
of BBHs detected by LIGO are consequences of the signals being lensed. These claims have
been subsequently refuted [50], but the interest in lensed GW remained. Some teams have
undertaken efforts to monitor ongoing LIGO–Vrigo–KAGRA detections for the possibility
of some signals being lensed by galaxy clusters [51] and with the hope of repeating the
Refsdal supernova story [52].

In this paper, we have discussed new opportunities for detecting wave effects in lensed
GW signals such as beat patterns (interference) and diffractive microlensing. The former
would allow for an independent measurement of the lens mass and the time-delay distance
purely from the GW signal. The latter would open a new opportunity to search for IMBHs
inside globular clusters and more generally, study the central parts of globular clusters—a
technique completely inaccessible through the electromagnetic window. Lensing in the
geometrical optics regime preserves the waveform, while the wave diffraction induces
amplitude and phase modulation in the frequency domain waveform. The emerging
opportunities to detect dark matter clumps at cosmological distances has been discussed
in [53]. The authors developed a dynamic programming-based algorithm to search for
amplitude and phase modulations imprinted in the waveform due to diffractive lensing.
The algorithm does not require a template bank for lensed waveforms, and its feasibility
has been demonstrated in simulated mock data. A more recent study, which delineated
the regime where wave effects are significant from the regime where geometric effects are
significant, was performed in [54]. For a detailed study on the effects of the microlens
population in galaxy scale lenses within the LIGO/VIRGO frequency band (10–104 Hz),
we refer the reader to [55]. Moreover, microlensing is affected by different parameters such
as stellar densities, distribution of microlens population around the source, Initial Mass
Function (IMF), and types of images [55].

The future third-generation detectors, such as the Einstein Telescope [3] or the Cosmic
Explorer [4], are expected to detect lensed GW signals routinely at the rate of 50–100 events
per year [28,29]. The prospects are also bright for the planned space-borne detectors such
as DECIGO, which will probe a volume of the Universe an order of magnitude larger
than the ET. In [17], it has been estimated that DECIGO would routinely register about
50 lensed GW signals per year. Remarkably, some of these sources will later enter the
band of ground-based detectors. Inspiralling sources detectable with the DECIGO would
exhibit slowly evolving frequency, hence being almost monochromatic and allowing for the
detection of patterns discussed in this paper. The expected rate of detecting beat patterns
by DECIGO was assessed in [56]. All the studies performed so far regrading lensed GW
signals in the wave regime have been focused on high frequency GWs detectable from
the ground. Such analyses involving mock data simulations should be extended to low
frequencies to be probed by DECIGO, LISA, and TianQin.

Finally, let us comment on the issue of non-linear GWs. Usually, gravitational waves
are studied in the weak-field approximation of the Einstein equations in vacuum. Thus,
with this limit, they evolve as linear waves. However, gravitational waves are intrinsically
non-linear, and both cylindrical and planar nonlinear GWs can be interpreted as soliton
solutions to the Einstein equations. For more recent discussions of non-linear GWs, see [57].
With the gravitational lensing of such waves, their interference or diffraction would result
in interesting phenomenology, certainly worth investigating in the future.
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