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Abstract: Perhaps the cosmological constant really is huge at the Planck scale, but is “hidden” by
Planck scale quantum fluctuations of spacetime. I briefly review this proposal and provide some
evidence, coming from a simplified midisuperspace model, that an appropriate “foamy” structure
can do the job of hiding a large cosmological constant, and can persist under time evolution.
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1. Spacetime Foam and the Cosmological Constant

Gravity is universal: it couples with equal strength to all forms of energy. This
principle, a version of the principle of equivalence, lies at the foundation of general
relativity, and in ordinary settings, it is exquisitely well tested [1]. But “all forms of
energy” should presumably include vacuum energy, the energy of quantum fluctuations
in empty space, whose gravitational interactions should take the form of a cosmological
constant Λ. We do not really know how to calculate this energy, but standard effective field
theory methods yield a value some sixty orders of magnitude higher than observational
limits [2–4].

Understanding this “cosmological constant problem” is a notoriously difficult task [5].
But vacuum energy comes from vacuum fluctuations, and it is possible that a solution
to the problem might come from the same place. More than sixty years ago, Wheeler
suggested that [6]

“. . . it is essential to allow for fluctuations in the metric and gravitational in-
teractions in any proper treatment of the compensation problem—the problem
of compensation of ‘infinite’ energies that is so central to the physics of fields
and particles.”

What if this is right?
A cosmological constant is the darkest of dark energy, detectable only through its

gravitational effects. Gravity, in turn, is the curvature of spacetime. So one way to interpret
Wheeler’s proposal is to ask whether very high curvature at the Planck scale can somehow
be hidden from view at larger distances.

If spacetime were Riemannian—that is, if the metric were positive definite—this would
be easy. At large scales, a golf ball has a curvature of about 2 cm−2. At small scales, though,
the dimples have a curvature some 500 times greater, with regions of positive and negative
curvature averaging out at larger distances. This is commonplace; in Wheeler’s analogy,
the surface of the ocean looks flat from an airplane, but up close, one can see complex
geometry, with “foam forming and breaking, breaking and forming” [7]. For a spacetime,
with its Lorentzian metric, things are a bit more complicated. Here, a cosmological constant
normally manifests itself as an accelerating expansion or contraction. But in this setting,
too, perhaps cancellations between expanding and contracting regions can occur.

A concrete realization of this idea was suggested in [8]. Let us start with a “typical”
spatial slice Σ at constant time. The geometry of such a slice is characterized by an
intrinsic metric qij and an extrinsic curvature Ki

j (or, equivalently, a metric and its conjugate
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momentum πi
j). Physically, the mean curvature K = Ki

i is the local expansion, that is, the
local Hubble constant, while the traceless part σi

j of Ki
j is the local shear; when we say we

are observing the cosmological constant, this is usually what we are really looking at.
This geometric data cannot be chosen arbitrarily, though. It must obey a set of

constraints, the Hamiltonian constraint

(3)R + K2 − Ki
jK j

i − 2Λ = 0 (1)

and the momentum constraint

Di(Ki
j − δi

jK) = 0, (2)

where Di is the covariant derivative compatible with qij. Note that these data have a time
reversal symmetry: if (qij, Kk

`) satisfies the constraints, so does (qij,−Kk
`).

Suppose, as Wheeler proposed, that Σ is “foamy,” having a complicated geometric and
topological structure near the Planck scale. A classical result of three-manifold topology
tells us that there is a nearly unique1 decomposition of the slice into elementary topological
pieces, called prime manifolds [9,10]. These elements are attached by connected sums; to
a physicist, this simply means they are joined by wormholes. More recently, Chrusciel,
Isenberg, and Pollack [11,12] showed that this “gluing” process can be made to respect
the constraints: nearly any pair of three-manifolds with metrics and extrinsic curvatures
satisfying (1) and (2) can be joined by a wormhole in a way that continues to satisfy the
constraints while changing the geometric data only in arbitrarily small regions around the
wormhole mouths.

Now suppose that spacetime foam exists, and that quantum gravity has no preferred di-
rection of time. Start with a random collection of three-manifolds Σ1, Σ2, . . . , ΣN with initial
data (gα, Kα). Join these to form a large, perhaps topologically complex, “foamy” manifold

Σ̃ = Σ1#Σ2# . . . #ΣN , (3)

where # denotes a connected sum, and where the geometric data is glued in the manner
of [11,12]. Since there is no preferred direction of time, for each factor Σα the data (g, K)
and (g,−K) are equally likely. Then, for any reasonable definition of averaging,

〈Ki
j〉 ∼ 0 (4)

for a large enough collection of elementary factors. Note that one cubic centimeter has
about 10100 Planck volumes, so for Planck-scale foam the number of factors in such an
average is enormous. We thus have a large class of initial data describing spacetimes whose
average expansion and shear vanish, even if the cosmological constant is much greater
than zero.

How typical is this situation? We don’t yet know. For a fixed spatial topology, the
specific connected sum geometries of [11,12] are probably fairly special, but there are also
other kinds of initial data in which positive and negative expansions cancel. For topological
fluctuations, the connected sum decomposition always exists, and time-reversed geometries
exist on each prime factor. More physically, local fluctuations should at least arguably
have an arbitrary sign of K—there is no obvious reason to impose a global direction of
time on a local quantum fluctuation—so if the usual spacetime foam picture of quasi-
independent Planck scale quantum fluctuations is correct, one might reasonably expect a
similar cancellation.

2. Evolution

So far, I have focused on the geometry of a single spatial slice. A crucial question
is whether an initial foamy structure is preserved by evolution. There are two natural
guesses. On the one hand, expanding regions should become larger over time, eventually
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dominating. On the other hand, there was nothing special about the choice of the slice Σ, so
if “foam” is typical, perhaps the foamy structure should reproduce itself, with expanding
regions themselves filling up with expanding and contracting bubbles.

A number of attempts have been made to answer this question classically [8,13–16],
with inconclusive results.2 What has become clear, though, is that the question ultimately
requires a quantum mechanical answer. Classically, initial data with local nontrivial
topology always evolves to form singularities [21,22], as does the connected sum data of
Chrusciel et al. [23]. If we hope to have a sensible global description, we cannot avoid
quantum effects.

This would be a hard task even if we had a complete quantum theory of gravity
with which to attempt the calculation. But while such a theory does not yet exist, it
is widely (although perhaps not universally) believed that any final quantum theory
of gravity will include some form of the Wheeler-DeWitt equation [24], at least as an
approximation. This equation is the quantum version of the constraints, obtained by
rewriting (1) and (2) as operator expressions acting on the wave function, with the usual
canonical quantization rule

πij → h̄
i

δ

δqij
, (5)

where the canonical momentum is

πij = − 1
2κ2
√

q(Kij − qijK). (6)

(I use the conventions of [25].) The full Wheeler-DeWitt equation is still far too
complicated to be tractable, but I will argue below that we can learn something from
simplified midisuperspace models.

First, though, we must confront a general issue, the notorious “problem of time” in
quantum gravity [26]. Ordinary quantum field theory takes place in a fixed spacetime,
and while there are some subtleties in the choice of time slicing [27], this background
provides a setting in which to define time evolution. In quantum gravity, on the other
hand, spacetime is dynamical, and there is no preferred choice of time coordinate. One
must instead construct “time” from physical observables, treating evolution as relational.
There are a number of attempts to do this, but the standard choices—volume as time [28],
extrinsic curvature as time [29], mean curvature flow [17], cosmological time [30]—require
spacetimes that are expanding everywhere, and simply don’t apply to the geometries
considered here. An alternative, proposed by Brown and Kuchař [31,32], is to introduce a
cloud of “clocks”, noninteracting particles whose proper time T can be used to determine
evolution. This is not ideal—the clocks back-react on the spacetime, and one must restrict
to quantum states in which this effect is small—but I do not know an alternative.

With this choice of time, the Wheeler-DeWitt equation becomes

i
√

q
dΨ[q]

dT
=

(
h̄2κ2
√

q
Gijkl

δ

δqij

δ

δqkl
− 1

2κ2
√

q ((3)R− 2Λ)

)
Ψ[q], (7)

Di
δΨ[q]
δqij

= 0, (8)

where Gijkl = qikqjl + qilqjk − qijqkl is the DeWitt metric on the space of metrics.

3. Midisuperspace

If we could solve the Wheeler-DeWitt equation, and find the correct inner product and
a suitable set of observables, we would have a quantum theory of gravity. We cannot. But
there are simplified settings in which much more progress can be made: minisuperspaces,
in which all but a finite number of geometric degrees of freedom are frozen out, and
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midisuperspaces, in which most of the geometric degrees of freedom are frozen out but an
infinite number are retained. As I showed in [33], a particular midisuperspace, the space of
locally spherically symmetric metrics, provides a good model for the foamy spacetimes
of Section 1, including a connected sum construction that contains both expanding and
contracting regions.

The classical properties of locally spherically symmetric spacetimes were investigated
extensively about 25 years ago [34–38]. Birkhoff’s theorem tells us that every point in such
a spacetime has a neighborhood isometric to some region of Schwarzschild-de Sitter space,
where for concreteness I will assume Λ > 0. However, as Morrow-Jones and Witt have
shown [34], patches of Schwarzschild-de Sitter can be glued together to build spacetimes
with far more complicated geometries and topologies.

Classically, the spatial metric of a locally spherically symmetric spacetime on a constant
time slice takes the form

ds2 = h2dψ2 + f 2(dθ2 + sin2 θ dϕ2), (9)

where h and f are functions of ψ and t. As shown in [34], the classical constraints can be
solved exactly to determine the two independent components of the extrinsic curvature,
Kψ

ψ and Kθ
θ , in terms of f and h. The solution depends on a single integration constant γ,

essentially a black hole mass, and is then unique up to sign. Patches of different geometries
(h, f ,±Kψ

ψ,±Kθ
θ) can then be glued together by connected summation in a process closely

analogous to that of Section 1, leading again to a manifold with the structure (3).
In [33], I considered the simplest case, a manifold with the spatial topology S1 × S2.

For the metric, this simply means imposing periodicity in ψ. Topologically, such a manifold
is formed by starting with a solid three-ball, cutting out a ball at the center to form a space
[0, 1]× S2, and then identifying the inner and outer boundaries {0} × S2 and {1} × S2. The
advantage of this construction is that it is easily generalized: instead of starting with a
single thick shell [0, 1]× S2, we can take a sequence of concentric thin shells

[0, ψ1]× S2, [ψ1, ψ2]× S2, . . . , [ψN , 1]× S2

and join them in an onion-like structure by connected summation. I showed in [33] that as
long as the integration constant γ obeys a suitable inequality, this construction allows a
mixture of shells of positive and negative expansion.

This construction thus mimics that of Chrusciel, Isenberg, and Pollack [11,12], but
in a setting simple enough that one can treat the Wheeler-DeWitt equation seriously.
Equation (7) becomes a Schrödinger-like equation

i
dΨ
dT

=

[
3κ2

64π2

(
1
f 2

δ

δh

)2
+

3
κ2

1
f 2

(
f ′2

h2 − 1
)
+

Λ
κ2 +

3γ

κ2 f 3

]
Ψ, (10)

while the momentum constraint (8) can essentially be solved and tells us that wave func-
tions should be built from integrals of the form

F[h, f ] =
∫

dψ hL[ f , D f , D2 f , . . . ] with D =
1
h

d
dψ

. (11)

4. WKB

We can now look for stationary states in the WKB approximation,

Ψ[ f , h; T] = Ψ̃[ f , h]e−iET with Ψ̃ = AeiS. (12)

The lowest order equation for S can be solved exactly, giving

S =
8π

κ2

∫
dψ σ[h, f ; ψ] f f ′

{√
1 + βh2 − tanh−1

√
1 + βh2

}
, (13)
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where

β =
f 2

f ′2

(
Λ̃
3
− 1

f 2 +
γ

f 3

)
with Λ̃ = Λ− κ2E, (14)

and where σ is a functional of h and f and a function of ψ such that{
σ2 = 1 almost everywhere
∂ψσ = 0 unless 1 + βh2 = 0.

(15)

Geometrically, σ is the sign of the expansion. As in the classical case, it is not deter-
mined by the constraints and can change between layers, jumping when 1 + βh2 passes
through zero.

The Wheeler-DeWitt equation (10) involves two functional derivatives at a single point,
leading to a divergence, and the equation for the amplitude A requires regularization. But
with a standard heat kernel regularization [39], we again have a closed form solution,

A = exp

{
α

2

∫
dψ

1√
β

tan−1(
√

βh)

}
, (16)

where α is a regularization parameter with dimensions of inverse length, which is plausibly
the inverse length of the S1 factor in the spatial geometry.

So we have solutions of the Wheeler-DeWitt equation; now we must interpret them.
Our wave functions depend on the spatial metric ( f , h), and a physical interpretation will
have to describe how probabilities vary over this space of three-metrics. As shown in [33],
the solutions (13)–(16) have several key features:

1. There are de Sitter-like regions, in which f is large and σ is fixed at either +1 or −1.
In these regions, the expansion is large, with a sign determined by σ. But as long as

0 < γ <
2

3
√

Λ̃
, (17)

the wave function also has support on multilayered “onion-like” regions, where the
sign of the expansion changes each time σ changes sign.

2. The de Sitter-like regions, and more generally regions with large expansion, have
probabilities that are strongly, although not exponentially, suppressed. Probabilities
are enhanced both for regions in which the sign of the expansion changes and for
“nearby” regions where the expansion is small.

3. For most of the configuration space, the solutions appear to be genuinely nearly time
independent: the small average expansion coming from “foamy” cancellations is
preserved under evolution.

This last point is crucial, and deserves further explanation. The states discussed here
are stationary, so it is trivially true that probabilities are time independent. But as we know
from the ordinary WKB approximation in quantum mechanics, this can be misleading. The
WKB wave function for a particle reflecting off a potential barrier, for instance, is stationary,
but the physical process clearly is not. Fortunately, there is a simple diagnostic for such a
situation: the probability current can reveal the flow of probability, and through that, the
hidden dynamics.

For quantum gravity, even in a Schrödinger-like picture of the sort used here, it is
difficult to write down a diffeomorphism-invariant probability current. But in [33], modes
are constructed that are at least invariant under spatial diffeomorphisms. They reveal the
hoped-for behavior: de Sitter-like regions show a clear probability flow, but in multilayered
foamy regions the current becomes extremely small.

There are, of course, still many open questions, even at the level of the simple midisu-
perspace model. Perhaps the most important involves the inner product. We know that
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the inner product on the space of solutions of the Wheeler-DeWitt equation must be gauge
fixed, and this process can influence the probability measure [40]. Some progress toward
understanding this measure was made in [33], where is was shown that it preserves the
symmetry between expanding and contracting solutions and thus does not prevent the
cancellations in foamy spacetimes. But further work is certainly needed.

As usual in quantum gravity, we also have a shortage of good observables. The extrin-
sic curvature, for instance, is a natural indicator of expansion, but it is not diffeomorphism
invariant and is not a good quantum observable. Quite generally, observables in quantum
gravity must be nonlocal [41], and such objects are hard to construct and interpret.

It should also be possible to look at more general topologies. The three-sphere S3

should be fairly easy, but more complicated topologies might also be tractable. What
would really be interesting would be to look at the possibility of topology change, restoring
Wheeler’s idea of spacetime foam as fluctuating topology as well as fluctuating geometry.
In particular, one might ask whether contracting “bubbles” will nucleate in an expanding
region, and expanding “bubbles” in a contracting region. This would call for a study
of Euclidean instantons in our midisuperspace, perhaps a feasible project, but one for
the future.
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Notes
1. For orientable three-manifolds, the prime decomposition is unique; for nonorientable manifolds, there is one free choice.

2. A related line of research asks about the asymptotic behavior of spacetimes with a positive cosmological constant [17–20]. Partial results exist, but
the work so far assumes a slice on which the expansion is constant, or at least everywhere positive, and thus does not apply to the foamy spacetimes
discussed here.
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