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Abstract: Due to the accelerated expansion of the universe, the possibilities for the formation of
singularities has changed from the classical Big Bang and Big Crunch singularities to include a
number of new scenarios. In recent papers it has been shown that such singularities may appear
in inflationary cosmological models with a fractional power scalar field potential. In this paper we
enlarge the analysis of singularities in scalar field cosmological models by the use of generalised
power expansions of their Hubble scalars and their scalar fields in order to describe all possible
models leading to a singularity, finding other possible cases. Unless a negative scalar field potential
is considered, all singularities are weak and of type IV.
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1. Introduction

The formation of singularities is one of the major challenges for general relativity and
has lead to plenty of conjectures and results [1] in the field of mathematical relativity. Even
the term singularity comprises many different definitions, such as curvature singularities,
geodesic incompleteness and b-incompleteness. Concerning cosmological scenarios, until
the end of the 20th century, the only possibilities of formation of singularities were the initial
Big Bang singularity and, in the case of spatially closed cosmological models, the final Big
Crunch singularity, since energy conditions were enforced in these cosmological models.

However, the discovery that our universe is undergoing accelerated expansion, even
presently [2–8], triggered the search for either new ingredients for the energy content of
the universe (dark energy) [9,10] or for modifications of the general theory of gravity that
could cope with such a feature [11–13].

Since these modifications of the standard cosmological model have usually involved
violation of at least one energy condition, the main theorems on singularities were not
applicable and new types of singular behavior were added to the list, which was enlarged
from the original proposal [14] several times [15–17]. An updated list may be found
in [18,19] in terms of the scale factor a(t), the Hubble scalar H(t) and the equation of state
of the model:

• Type −1. “Grand bang/rip”. Ref. [18] The scale factor becomes null or diverges for
w = −1.

• Type 0. “Big bang”. The scale factor becomes null for w 6= −1.
• Type I. “Big rip” [20]. The scale factor diverges for w 6= −1.
• Type II. “Sudden singularities” [21–36], also named “quiescent singularities” [37]. The

derivatives of the scale factor diverge from second derivative on. Some special cases
are named "big brake" [38] and “big boost" [39].

• Type III. “Big freeze” [40] or “finite scale factor singularities”. The derivatives of the
scale factor diverge from first derivative on.

• Type IV. “Generalised sudden singularities [41]. The derivatives of the scale factor
diverge from a derivative higher than second onward.

• Type V. “w-singularities” [42,43]. No derivatives of the scale factor diverge, but the
barotropic index w = p/ρ in the equation of state does [44].
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• Type ∞. “Directional singularities” [45,46]. These happen at an infinite value of the
coordinate time, but they can be reached in finite proper time by only some observers.
In [1] they are dubbed p.p. curvature singularities (curvature singularities along a
parallelly transported basis) in a more general framework.

Some of these singularities (−1, 0, I, ∞) are strong [47–51] in the sense that they
distort finite objects, whereas others are weak (II,IV,V) and cannot be considered either the
beginning or the end of the universe.

On the other hand, such singular behavior has been shown not to appear just as
possible initial or final stages of the universe, but also in inflationary models [52,53].

In that paper the authors consider cosmological models endowed with a scalar field φ
under a potential V(φ) = Aφn, with A > 0, n > 0. These models have been thoroughly
studied for the integer n, since they provide classical examples of inflationary models for
even n. However, if we allow n to be a non-integer, a possibility that has been considered in
the literature [54,55], new features appear in the form of sudden, generalised singularities
of type IV:

• If k < n < k + 1, where k is a natural number, the derivatives of the Hubble scalar
diverge from the (k + 2)th onward.

These singularities are not singularities in the scalar polynomials of the curvature,
but in their derivatives and are named Ck scalar curvature singularities in [56]. They were
considered the first examples of realistic cosmological models wherein these singulari-
ties appeared.

In this paper we would like to enlarge the analysis of [56] by considering other scalar
field potentials, making use of generalised power expansions of the Hubble scalar, the
scalar field and the potential in the cosmic time coordinate. In Section 2 we perform the
power expansion of the Hubble parameter and the scalar field and derive the singularities
that may appear. Since the derivative of the Hubble parameter is to be negative, it is seen
that just singularities of types II, IV ad V may appear in these models. In Section 3 we
relate the expansion of the Hubble parameter and the expansion of the scalar field in order
to derive the form of the scalar field potential of the models as a power expansion in the
scalar field φ. A final section of conclusions is included, where we show the list of scalar
field models that develop singularities, which are seen to be of the weak type IV, unless a
negative potential is considered, which allows type II singularities. The list of potentials
leading to singularities includes and enlarges the one enclosed in [52,53].

2. Divergences in the Hubble Parameter and the Scale Factor

We focus on spatially flat homogeneous and isotropic spacetimes endowed with
a metric

ds2 = −dt2 + a2(t)
(

dr2 + r2
(

dθ2 + sin2 θdφ2
))

, (1)

denoting by a(t), the scale factor of the universe, using the cosmological time t as the
time coordinate. If we write down Einstein equations for these spacetimes, due to their
symmetry, we end up with just two equations,

ρ =
3ȧ2

a2 , p = −2ä
a
− ȧ2

a2 , (2)

where ρ(t) is the energy density and p(t) is the pressure of the content of the universe.
Derivatives with respect to t are denoted by a dot. The Hubble parameter, a measure of the
expansion of the universe, is defined as H = ȧ/a.

According to this, the equation of state for the content of the universe, p = wρ, can be
written in terms of a coefficient w,

w =
p
ρ
= −1

3
− 2

3
aä
ȧ2 , (3)
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which has been dubbed the barotropic index, which is closely related to the deceleration
parameter q,

q = − aä
ȧ2 =

1 + 3w
2

, (4)

and the rest of cosmographical parameters can be obtained in a similar fashion [57].
In the case of a scalar field φ subject to a potential V(φ), energy density splits into a

kinetic energy and a potential energy term,

ρ =
φ̇2

2
+ V(φ), (5)

and so does pressure,

p =
φ̇2

2
−V(φ). (6)

The Friedman equations for this configuration are then [58]

3H2 =
φ̇2

2
+ V(φ), Ḣ = − φ̇2

2
. (7)

Deriving the first equation and replacing Ḣ with the help of the second equation, we
get the evolution equation for the scalar field,

φ̈ + 3Hφ̇ + V′(φ) = 0. (8)

We expect a slow-rolling scenario, for which the potential V(φ) dominates over the
kinetic term φ̇2 in the first Friedman equation. If this is true, it requires a positive scalar
field potential.

The use of generalised power expansions in cosmological time has been shown useful
for analysing features such as singularities in cosmology [59]. Following this idea, we
assume a generalised power expansion for the Hubble parameter H(t) around a time t0,

H(t) = h0(t0 − t)ξ0 + h1(t0 − t)ξ1 + h2(t0 − t)ξ2 + · · · , (9)

with ξ0 < ξ1 < · · · . In order to have expansion, we require h0 > 0.
Since, according to the second Friedman Equation (7), the derivative of the Hubble

parameter,

Ḣ(t) = −ξ0h0(t0 − t)ξ0−1 − ξ1h1(t0 − t)ξ1−1 − ξ2h2(t0 − t)ξ2−1 − · · · , (10)

must be negative in order to allow a scalar field interpretation, the product ξ0h0 must be
positive. This restricts us to non-negative values for all the exponents ξi; and, if ξ0 = 0,
then ξ1h1 and hence h1 must be positive.

We can relate H(t) = ȧ(t)/a(t) to the scale factor a(t) in order to check for singularities
at t0. Since

ln a(t) = ln a0 −
h0

ξ0 + 1
(t0 − t)ξ0+1 − h1

ξ1 + 1
(t0 − t)ξ1+1 − · · · (11)

a(t) = a0e−
h0

ξ0+1 (t0−t)ξ0+1− h1
ξ1+1 (t0−t)ξ1+1−···, (12)

in terms of an integration constant a0 = a(t0).
This leads to several possibilities:

• ξ0 = 0: We require positive h0 and h1. We have finite a(t0) and H(t0) and we have
type II (ξ1 < 1) or IV (ξ1 ≥ 1) singularities at t0.

• ξ0 > 0: The exponent ξ0 + 1 and h0 are positive. The scale factor a(t0) is finite and
H(t0) vanishes. Depending on the value of ξ0 we have singularities at t0 of type II
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(ξ0 < 1) or of type IV (ξ0 ≥ 1) with a vanishing Hubble factor. If ξ0 ≥ 2 and every ξi
is natural, we would have a type V singularity.

3. Reconstruction of the Scalar Field Potential

We may reconstruct the scalar field potential V(φ) from the Friedman equations.
According to the second Friedman Equation (7),

φ̇(t) = ±
√
−2Ḣ(t) = ±

√
2h0ξ0(t0 − t)(ξ0−1)/2 + · · · (13)

the scalar field behaves as

φ(t) = φ0 ∓
2
√

2h0ξ0

ξ0 + 1
(t0 − t)(ξ0+1)/2 + · · · , (14)

in terms of an integration constant φ0, whereas we get the time evolution of the potential
from the first Friedman equation,

V(φ(t)) = 3H2(t) + Ḣ(t) = 3h2
0(t0 − t)2ξ0 + 6h0h1(t0 − t)ξ0+ξ1 + 3h2

1(t0 − t)2ξ1

+ 6h0h2(t0 − t)ξ0+ξ2 + 6h1h2(t0 − t)ξ1+ξ2 + 3h2
2(t0 − t)2ξ2 + · · ·

− ξ0h0(t0 − t)ξ0−1 − ξ1h1(t0 − t)ξ1−1 − ξ2h2(t0 − t)ξ2−1 − · · · .

For ξ0 < −1, the lowest order corresponds to the 2ξ0 term, whereas for ξ0 > −1 it
is the ξ0 − 1 one unless ξ0 = 0, but we have already excluded models with negative ξ0.
However, negative ξ0 has been considered for intermediate inflation models [60].

Additionally, according to the slow roll approximation, the 2ξ0 term is expected to
dominate over the ξ0 − 1 term. This would happen only for models with non-positive
ξ0. Hence the only inflationary models with positive potential are those with ξ0 = 0.
Inflationary models with ξ0 > 0 would have a negative scalar field potential.

Let us consider these cases:

• Non-natural ξ0 > 0: V(φ(t)) ' −ξ0h0(t0 − t)ξ0−1 ∝ (φ(t)− φ0)
η ∝ (t0 − t)(ξ0+1)η/2,

with η = 2(ξ0 − 1)/(ξ0 + 1). This means a leading power η ∈ (−2, 2) in the neg-
ative potential and vanishing H(t0). For η ∈ (−2, 0) we have a type II singularity.
Otherwise we have a type IV singularity.

• ξ0 = 0: This is the case of a finite H(t0),

H(t) = h0 + h1(t0 − t)ξ1 + · · · , (15)

Ḣ(t) = −ξ1h1(t0 − t)ξ1−1 + · · · , (16)

φ̇(t) ' ±
√

2h1ξ1(t0 − t)(ξ1−1)/2, (17)

where ξ1, h1 > 0. The expansions of the scalar field and the time evolution of the
potential are, in this case,

φ(t) = φ0 ∓
2
√

2h1ξ1

ξ1 + 1
(t0 − t)(ξ1+1)/2 + · · · , (18)

V(φ(t)) = 3h2
0 + 6h0h1(t0 − t)ξ1 + 3h2

1(t0 − t)2ξ1

+ 6h0h2(t0 − t)ξ2 + 6h1h2(t0 − t)ξ1+ξ2 + 3h2
2(t0 − t)2ξ2 + · · ·

− ξ1h1(t0 − t)ξ1−1 − ξ2h2(t0 − t)ξ2−1 − · · · ,

leading to several interesting subcases:
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• ξ1 < 1: V(φ(t)) ' −ξ1h1(t0 − t)ξ1−1 ∝ (φ(t)− φ0)
2(ξ1−1)/(ξ1+1), and V(φ) behaves

as a power (φ− φ0)
η with η ∈ (−2, 0). For such models H(t0) is finite, but not Ḣ(t0).

That is, a type II singularity, but with a negative potential.

The rest of the subcases correspond to type IV singularities and positive scalar field
potentials:

• Non-natural ξ1 > 1: V(φ(t)) ' 3h2
0 − ξ1h1(t0 − t)ξ1−1 ' 3h2

0 − αξ1h1

(φ(t)− φ0)
2(ξ1−1)/(ξ1+1), and the potential behaves as a positive constant plus a term

(φ− φ0)
η , with exponent η = 2(ξ1 − 1)/(ξ1 + 1) in the interval (0, 2). Ḣ(t0) vanishes

and H(n)(t0) diverges for η ∈
(

2(n−2)
n , 2(n−1)

n+1

)
, n ≥ 2.

• ξ1 = 1: Type IV singularities with finite Ḣ(t0) may arise in this case:

V(φ(t)) = 3h2
0 − h1 + 6h0h1(t0 − t) + 3h2

1(t0 − t)2 − ξ2h2(t0 − t)ξ2−1 · · · , (19)

and a leading linear evolution for the scalar field,

φ(t) = φ0 ∓
√

2h1(t0 − t) + · · · . (20)

Again, several possibilities arise:

– h1 6= 3h2
0:

For ξ2 ∈ (1, 2), the leading non-constant term in V(φ(t)) is the one with expo-
nent ξ2 − 1. The potential behaves as a constant plus a term (φ − φ0)

η , with
η = ξ2 − 1 ∈ (0, 1). The singularity appears for Ḧ(t0).
For ξ2 > 2 or ξ2 = 2, h2 6= 3h0h1, the leading non-constant term in V(φ(t)) is
the linear one. The potential behaves as a constant plus a linear term in φ. The
singularity would appear for

...
H(t0).

We may produce scalar field potentials with a higher leading power, besides the
constant term, by requiring some cancellations between terms. We reproduce
here the cases of quadratic, cubic and quartic powers:
For ξ2 = 2, h2 = 3h0h1,

V(φ(t)) = 3h2
0 − h1 + (18h2

0 + 3h1)h1(t0 − t)2 − ξ3h3(t0 − t)ξ3−1 + · · · , (21)

and the potential behaves as a constant plus a quadratic term in φ.
– h1 = −6h2

0, ξ2 = 2, h2 = −18h3
0:

V(φ(t)) = 9h2
0 − ξ3h3(t0 − t)ξ3−1 + 648(t0 − t)3 + · · · , (22)

For ξ3 ∈ (2, 4), the potential behaves as a constant plus a term φη , with η =
ξ3 − 1 ∈ (1, 3). The singularity appears for

...
H(t0) if η ∈ (1, 2) and for

....
H(t0) if

η ∈ (2, 3).
For ξ3 > 4, the potential behaves as a constant plus a cubic term in φ.
For ξ3 = 4, h3 = 162h5

0, ξ4 ∈ (4, 5),

V(φ(t)) = 9h2
0 − ξ4h4(t0 − t)ξ4−1 + 1944h6

0(t0 − t)4 + · · · , (23)

the potential behaves as a constant plus a term (φ− φ0)
η , with η = ξ4− 1 ∈ (3, 4).....

H(t0) is regular now.
For ξ3 = 4, h3 = 162h5

0, ξ4 > 5:

V(φ(t)) = 9h2
0 − ξ4h4(t0 − t)ξ4−1 + 1944h6

0(t0 − t)4 + · · · , (24)

and the potential behaves as a constant plus a quartic term in φ.
We see clearly that they follow the singularity pattern in [52,53] for the derivatives
of the Hubble parameter, despite the additional terms.
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We may further remove the constant term in the scalar field potential to recover
the cases in [52,53]. We produce some cases in order to show how the singular
derivatives of the Hubble parameter come up:

– h1 = 3h2
0:

V(φ(t)) = 18h3
0(t0 − t) + 27h4

0(t0 − t)2 − ξ2h2(t0 − t)ξ2−1 · · · (25)

For ξ2 ∈ (1, 2), the potential goes as (φ− φ0)
η with η = ξ2 − 1 ∈ (0, 1) and the

singularity appears for Ḧ(t0).
For ξ2 > 2, the potential is linear in φ. And the same happens for ξ2 = 2, h2 6= 9h3

0.
Ḧ(t0) is regular now.
For ξ2 = 2, h2 = 9h3

0,

V(φ(t)) = 81h4
0(t0 − t)2 + 162h5

0(t0 − t)3 − ξ3h3(t0 − t)ξ3−1 + · · · , (26)

we have for ξ3 ∈ (2, 3) a potential which goes as (φ−φ0)
η with η = ξ3− 1 ∈ (1, 2)

and a quadratic potential for ξ3 > 3 or ξ3 = 3, h3 6= 27h4
0.

...
H(t0) is regular in the

latter case.
For ξ2 = 2, h2 = 9h3

0, ξ3 = 3, h3 = 27h4
0,

V(φ(t)) = 324h5
0(t0 − t)3 + 729h6

0(t0 − t)4 − ξ4h4(t0 − t)ξ4−1 + · · · , (27)

we have for ξ4 ∈ (3, 4) a potential which goes as (φ−φ0)
η with η = ξ4− 1 ∈ (2, 3)

and a cubic potential for ξ4 > 4 or ξ4 = 4, h4 6= 81h5
0.

....
H(t0) is regular in the

latter case.

4. Conclusions

In the previous section we have identified the scalar field potentials that lead to
singularities. We may collect them from the cases that have arisen.

For scalar field potentials of the form, η0 < η1 < · · · ,

V(φ) = V0(φ− φ0)
η0 + V1(φ− φ0)

η1 + · · · . . . , (28)

we have obtained type IV singularities in higher derivatives of the Hubble parameter:

• V(φ) = V0 + · · · + Vn−2(φ − φ0)
n−2 + Vη(φ − φ0)

η + · · · , η ∈ (n − 2, n − 1), n =
2, 3, . . ., and finite Ḣ(t0): The first singular derivative of the Hubble parameter is
H(n)(t0). These include the cases studied in the paper by Barrow and Graham [52,53].

• V(φ) = V0 + Vη(φ− φ0)
η + · · · , η ∈ (0, 2) and vanishing Ḣ(t0): H(n)(t0) is singular

for η ∈
(

2(n−2)
n , 2(n−1)

n+1

)
, n ≥ 2.

Additionally, if we allow the scalar field potential to be negative:

• η0 ∈ (−2, 0): Type II singularity.
• η0 ∈ [0, 2) and vanishing H(t0): Type IV singularity.

Summarizing, we have performed a thorough analysis of the singularities that may
arise in scalar field cosmologies of the form (7) and obtained just Type IV singularities,
except in the case of a negative potential, for which Type II singularities may appear.

These results extend, and of course comprise, those in [52,53] for fractional power
scalar field potentials. Aside from the case of negative scalar field potentials and the
extension of the form of the potential with additional terms in natural powers of φ, we see
that, on considering a vanishing value of Ḣ(t0), singularities appear for potentials of the
form V(φ) = V0 + Vη(φ− φ0)

η + · · · , η ∈ (0, 2). Such singularities may appear on higher
derivatives of the Hubble parameter, starting at H(n)(t0), for n as large as required.

These singularities are weak [48,49,51] and in this sense they do not imply the end of
the universe, since finite objects may cross them without disruption and spacetime can be
extended beyond the singularity, which may be interpreted in terms of shock waves [61]
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propagating through spacetime. Energy conditions are not violated and energy density
and pressure remain finite and only higher derivatives diverge.
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