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Abstract: The general relativity vacuum black holes (BHs) can be scalarised in models where a scalar
field non-minimally couples to the Gauss-Bonnet (GB) invariant. Such GB scalarisation comes in
two flavours, depending on the GB sign that triggers the phenomenon. Hereafter these two cases
are termed GB± scalarisation. For vacuum BHs, only GB+ scalarisation is possible in the static case,
while GB− scalarisation is spin induced. But for electrovacuum BHs, GB− is also charged induced.
We discuss the GB− scalarisation of Reissner-Nordström and Kerr-Newman BHs, discussing zero
modes and constructing fully non-linear solutions. Some comparisons with GB+ scalarisation are
given. To assess the generality of the observed features, we also briefly consider the GB± scalarisation
of stringy dilatonic BHs and coloured BHs which provide qualitative differences with respect to the
electrovacuum case, namely on the distribution and existence of regions triggering GB− scalarisation.
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1. Introduction

It is conceivable that deviations from General Relativity (GR) occur only for sufficiently
large curvatures. One explicit realization of this idea is the phenomenon of spontaneous
scalarisation. The original idea proposed the scalarisation of neutron stars in scalar-tensor
models [1]. More recently, it gained a new guise in which the scalarisation of the GR
vacuum BH solutions becomes possible, in the context of extended scalar-tensor models
that include the Gauss-Bonnet (GB) quadratic curvature invariant R2

GB, as first pointed out
in [2–4]. In the following we shall dub the latter GB scalarisation.
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GB scalarisation circumvents well-known no-hair theorems (see [5] for a review) due to
a certain class of non-minimal couplings between a real scalar field φ and the GB invariant.
The phenomenon occurs for BHs in an appropriate mass range, defined by a dimensionful
coupling in the model. Moreover, it can be triggered either if R2

GB > 0—hereafter dubbed
GB+ scalarisation [6–21]—or if R2

GB < 0—hereafter dubbed GB− scalarisation. For the
Kerr family of GR, the latter only occurs for sufficiently fast spinning BHs [22–24], which
justifies the terminology spin-induced scalarisation [22]. By contrast, in the case of GB+

scalarisation, Kerr BHs can also scalarise, but rotation actually suppresses the effects
of scalarisation [17,25].

Enlarging the model to include charged BHs, however, GB− scalarization ceases to rely
solely on rotation. This can already be illustrated in electrovacuum GR. The Kerr-Newman
solution develops a negative GB invariant for either sufficiently large dimensionless an-
gular momentum j or sufficiently large dimensionless charge q. Thus, sufficiently near
extremality, Kerr-Newman BHs develop regions with R2

GB < 0—Figure 1. One may expect
that the boundary of the region with R2

GB < 0 marks the onset of the solutions prone
to GB− scalarisation, as for the Kerr case [26]. We shall confirm this expectation below,
explicitly constructing some of the GB− scalarised Kerr-Newman solutions and comparing
them with the corresponding GB+ scalarised solutions.

Figure 1. GB invariant (in units of mass) of a Kerr-Newman BH with mass M, angular momentum J
and charge Q, evaluated at the horizon’s poles (r = rh and θ = 0), as a function of the dimensionless
parameters j = J/M2 and q = Q/M. Near extremality, R2

GB < 0.

The discussion of the previous paragraph shows that, within electrovacuum BHs, GB−

scalarisation can be spin-induced or charge-induced (or both). Let us remark, however,
that such GB charge-induced scalarisation is different from the scalarisation of charged
BHs introduced in [27], where the non-minimal coupling occurs between the scalar field
and the Maxwell field, with the GB term (or any curvature corrections) being absent.

Additionally, the aforementioned observations on the GB− scalarisation of Kerr-
Newman BHs show this process occurs even for spherically symmetric, non-spinning
Reissner-Nordström (RN) BHs [28]. Moreover, the negative GB invariant always occurs
in the immediate vicinity of the horizon. One may ask whether these features are generic.
Is any charged BH model prone to GB− scalarisation sufficiently close to the maximal
allowed charge? And is the R2

GB < 0 region supporting the scalarisation always occuring
in the immediate vicinity of the horizon? Interestingly, neither of these features is generic,
as we shall illustrate by considering two alternative models of charged (spherical) BHs.

This paper is organized as follows. In Section 2 we detail the Einstein-Maxwell-scalar-
GB model and its equations of motion. A general discussion on the tachyonic instability
associated with the scalarisation is given, followed by the relevant physical quantities
for describing scalarised BHs. In Section 3 we consider the GB± scalarisation of the RN
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BH, first discussing the sign of the GB invariant for the electrovacuum RN BH and then
constructing both the linear scalar clouds and non-linear scalarised BHs. In Section 4 we
consider the GB± scalarisation of the Kerr-Newman BH. After a brief discussion on the sign
of the GB invariant, we discuss the construction of the solutions and provide a sample of
numerical results, focusing on the GB− scalarisation case. In Section 5 we briefly consider
Einstein-Maxwell-dilaton and Einstein-non-Abelian BHs, which yield two valuable lessons
concerning GB± scalarisation of charged BHs. We conclude with a brief discussion and
final remarks in Section 6.

2. The Einstein-Maxwell-Scalar-GB Model

We wish to consider the Einstein-Maxwell-scalar-GB (EMsGB) model, described by
the following action

SEMsGB =
∫

d4x
√
−g
[

1
4

R− 1
4

FµνFµν − 1
2

∂µφ∂µφ + ε
λ2

4
f (φ)R2

GB

]
, (1)

where R is the Ricci scalar with respect to the spacetime metric gµν, R2
GB is the GB invariant

R2
GB ≡ RαβµνRαβµν − 4RαβRαβ + 4R2 , (2)

Rαβµν is the Riemann tensor, Rαβ is the Ricci tensor, Fµν = ∂µ Aν − ∂ν Aµ is the Maxwell
field strength tensor where A = Aµdxµ is the U(1) gauge potential, f (φ) is a coupling
function of the real scalar field φ, λ is a constant of the theory with dimension of length
and ε = ±1 is chosen for GBε scalarisation.

Varying the action (1) with respect to the metric tensor gµν, we obtain the
Einstein equations,

Rµν −
1
2

gµνR = 2 T(eff)
µν . (3)

The effective energy-momentum tensor T(eff)
µν has three distinct components:

T(eff)
µν = T(s)

µν + T(M)
µν + T(GB)

µν , (4)

consisting of the (pure) scalar and Maxwell parts, respectively,

T(s)
µν = ∂µφ∂νφ− 1

2
gµν∂αφ∂αφ , T(M)

µν = FµαF α
ν −

1
4

FαβFαβ , (5)

and a third contribution due to the scalar-GB term in (1)

T(GB)
µν = −2ελ2Pµγνα∇α∇γ f (φ) , (6)

where

Pαβµν = −1
4

εαβρσRρσγδεµνγδ = Rαβµν + gανRβµ − gαµRβν + gβµRαν − gβνRαµ +
1
2
(

gαµgβν − gανgβµ

)
R ,

and εαβρσ is the Levi-Civita tensor. The scalar field equation is

∇2φ + ε
λ2

4
d f (φ)

dφ
R2

GB = 0 , (7)

while the (source-free) Maxwell equations have the usual form

∇µFµν = 0 . (8)
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2.1. GBε Scalarisation of Electrovacuum Solutions

Spontaneous scalarisation manifests itself at the linear level as a tachyonic instability.
Let us assume that φ = 0 solves (7), which will hold for a class of coupling functions. Then,
the field equations reduce to those of electrovacuum GR, and the corresponding solutions
provide solutions of the full model (1) as well. In particular, the Kerr-Newman geometry
will be a solution of this model. Thus, for concreteness we shall refer to the scalarisation of
the Kerr-Newman solution in the following; but a similar discussion would hold for any
GR electrovacuum solution.

Next, we consider scalar perturbations of the Kerr-Newman solution within the full
model (1). Assuming a small-φ expansion for the coupling function

f (φ) = f
∣∣
φ=0 +

1
2

d2 f
dφ2

∣∣∣
φ=0

φ2 +O(φ3) , (9)

the linearised scalar field Equation (7) around the Kerr-Newman solution becomes

(�− µ2
eff)φ = 0 , where µ2

eff = −ε
λ2

4
d2 f
dφ2

∣∣∣
φ=0

R2
GB , (10)

where � and R2
GB are computed for the scalar-free Kerr-Newman solution.

If µ2
eff is not strictly positive, the scalar field possesses a (spacetime dependent) tachy-

onic mass. Wherever this tachyonic mass is supported, such region potentially supports a
spacetime instability, which is precisely the GB scalarisation. To simplify the discussion,

we assume without any loss of generality that d2 f /dφ2
∣∣∣
φ=0

is strictly positive. Then the

condition µ2
eff < 0 is equivalent to

εR2
GB > 0 . (11)

When this condition is obeyed in some region(s) outside the BH horizon, GBε scalari-
sation is triggered.

If the Kerr-Newman BH reduces to a Schwarzschild BH of mass M, then

µ2
eff = −ε

λ2

4
d2 f
dφ2

∣∣∣
φ=0

48M2

r6 , (12)

and only GB+ scalarisation is possible.

2.2. Physical Quantities of Interest for Scalarised BHs

When the above instability is present there is also a different class of solutions for
the model (1), besides the electrovacuum ones. These are the scalarised solutions. We are
interested in the case of stationary BHs. Generically, these solutions posses three global
charges: the mass M, the electric charge Q and the angular momentum J. For the solutions
in this work, there is also a “scalar charge” Qs, which is not, however, associated with a
conservation law. There are also a number of relevant horizon quantities: the Hawking
temperature TH , the horizon area AH , the entropy S, and the horizon angular velocity ΩH .
The BH entropy is the sum of two terms,

S = SE + SsGB , with SE =
1
4

AH , SsGB = ε
1
2

λ2
∫

H
d2x
√

h f (φ)R(2) , (13)

where R(2) is the Ricci scalar of the induced horizon metric h. The solutions satisfy the
Smarr law

M = 2ΩH J + 2THS + ΦQ + Ms , (14)
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where Φ is the electrostatic potential and Ms is a contribution of the scalar field

Ms =
1
2

∫
d3g
√
−g(∂aφ)2 . (15)

Also, the solutions satisfy the first law of BH thermodynamics

dM = THdS + ΩHdJ + ΦdQ , (16)

in which there is no contribution from the scalar field.
In this work we shall focus on the quadratic coupling function,1

f (φ) =
φ2

2
, (17)

which is the simplest choice of f (φ) that guarantees that φ = 0 satisfies the scalar Equation (7).
It is useful to observe that the equations of the model are invariant under

the transformation

r → αr , λ→ αλ , (18)

with r the radial coordinate and α > 0 an arbitrary positive constant. Only quantities
invariant under (18) (e.g., Q/M or Q/λ) have a physical meaning. Following standard
terminology, we define the following reduced quantities:

q ≡ Q
M

, aH ≡
AH

16πM2 , tH ≡ 8πTH M , j ≡ J
M2 , (19)

which will be considered in what follows.

3. GBε Scalarisation of Reissner-Nordström BHs

Let us start by considering the spinless limit of the Kerr-Newman family, the RN BH.
The corresponding metric and gauge field can be written as (see e.g., [29])

ds2 = −N(r)σ(r)2dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , V = V(r)dt , (20)

where

σ(r) = 1 , N(r) = 1− 2M
r

+
Q2

r2 , V(r) =
Q
r

. (21)

This BH possess an event horizon at

r = rh = M +
√

M2 −Q2 . (22)

Thus, 0 6 q 6 1 and q = 1 for the extremal RN BH.
The GB invariant of the RN metric reads

R2
GB =

8
r8

[
6M2r2 − 12Q2Mr + 5Q4

]
. (23)

For Q 6= 0 this always becomes negative for some region with r > 0. This region,
however, is cloaked by the horizon unless the largest root of the quadratic equation in (the
square brackets in) (23) exceeds rh. This condition is

qQ
(

1 +
1√
6

)
> rh . (24)
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Using (22) one can easily show that is possible for

q > qc ' 0.957058 . (25)

Thus, for qc < q 6 1, a RN BH can undergo GB− scalarisation.

3.1. The Linear Scalar Clouds

At the onset of the tachyonic instability, the linearised scalar field Equation (10) on
the RN background allows solutions known as scalar clouds. These occur for a discrete set
of RN solutions, each solution corresponding to a particular harmonic scalar field mode.
To see this, we perform a harmonic decomposition of the scalar field,

φ = U(r)Y`m(θ, ϕ) , (26)

where Y`m are the real spherical harmonics and `, m are the associated quantum numbers
with the usual ranges, ` = 0, 1, . . . and −` 6 m 6 `. For a RN BH background (20) and (21),
the linearised scalar Equation (10) becomes a radial equation

[
r2N(r)U′(r)

]′
= `(`+ 1)U(r)− ε

λ2

r2

(
12M2

r2 +
10Q4

r4 − 24MQ2

r3

)
, (27)

where a prime denotes a derivative w.r.t. the radial coordinate r.
This equation has the following asymptotic solutions: near the horizon

U(r) = u0 +
rh

Q2 − r2
h

[
−`(`+ 1) + ε

λ2

r2
h

(
3− 6Q2

r2
h

+
Q4

r4
h

)]
u0(r− rh) + . . . , (28)

where u0 is an arbitrary nonzero constant which, in numerics, we set to 1; and near
spatial infinity

U(r) =
Qs

r`+1 + . . . , (29)

where Qs is the scalar charge for ` = 0.
Solving (27) with the above asymptotic behaviours can be viewed as an eigenvalue

problem. For a given `, requiring the scalar field to smoothly interpolate between the
asymptotics (28) and (29), crossing n times the r-axis, selects a discrete set of RN parame-
ters. Thus, each scalar cloud is characterized by three ’quantum numbers’ (n, `, m), with
the radial function being degenerate in terms of m as a consequence of the spherical sym-
metry of the RN background. In this work we shall report results on nodeless spherically
symmetric fundamental solutions only2, i.e., with ` = m = n = 0.

Having chosen the clouds quantum numbers, taking λ as fixed scale set in the action,
and fixing the reduced charged q, the radial equation has a solution for a specific dimen-
sionless ratio λ/M. For instance, for ε = +1, ` = m = n = 0 and q = 0 the selected value
is λ/M ∼ 1.704, corresponding to the initial point of the blue dotted curve in Figure 2 (left
panel). This is the zero mode of the GB+ instability of Schwarzschild. It selects a mass scale.
Smaller masses (larger λ/M) describe BHs unstable against scalarisation; larger masses
(smaller λ/M) correspond to stable BHs.

The variation of λ/M with increasing q can be interpreted as follows. GB scalarisation
of Schwarzschild BHs may be attributed to a repulsive gravitational effect of the GB term,
which only becomes dominant for sufficiently small BHs (in terms of λ). Adding electric
charge introduces two competing effects. On the one hand the electric charge provides a
repulsive gravitational effect for RN BHs. This facilitates scalarisation, making it available
for larger BHs (larger M, smaller λ/M). On the other hand, the repulsive gravitational
effect of the GB invariant, which is at the source of the scalarisation phenomenon, becomes
supressed (and eventually the GB term even changes sign in some region), when increasing
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q. This supresses scalarisation, making it available only for smaller BHs (smaller M, larger
λ/M). The trend observed in the blue dotted curve in the main panel of Figure 2 (left
panel) suggest that for small q the RN charge repulsion dominates and for large q the GB
charge suppression becomes dominant. The inset, on the other hand, gives the behaviour
for ε = −1. In this case, as q increases, in the allowed (large q) interval, the GB behaviour
dominates, and due to the opposite sign it provides an ever more significant repulsive
contribution, thus faciliating GB− scalarisation, which therefore is available for larger
masses. We also remark that, for GB− scalarisation, the ratio λ/M appears to diverge as
q→ qc, while it stays finite as q→ 1.

Figure 2. (Left panel) Dimensionless ratio λ/M of the set of RN solutions supporting the ` = m = n = 0 scalar cloud vs.
the reduced electric charge q for ε = ±1. (Right panel) Typical radial profiles of the spherical, nodeless scalar clouds on a
RN BH background.

The profiles of typical scalar clouds are shown in Figure 2 (right panel). For ε = +1 and
moderate q we recover the picture found in the Schwarzschild case, Q = 0: a monotonically
decreasing profile starting with some finite value at the horizon (see the inset). This is
also true for the ε = −1 case (red curve in main panel). But for q > qc and ε = +1,
a new qualitative behaviour emerges: the maximal value of the scalar cloud can be attained
outside the horizon3—see the blue curve in the main panel.

3.2. The Non-Linear Spherically Symmetric Scalarised BHs

The linear scalar clouds just discussed can be continued to the non-linear regime.
Their backreaction originates scalarised BHs. We shall now discuss their construction for
the case of the spherical, nodeless scalar clouds.

The ansatz to obtain the scalarised BH solutions is (20), together with a radial scalar field

φ ≡ φ(r) . (30)

As in the usual electrovacuum case, the Maxwell Equation (8) yields a total derivative,
leading to a first integral

V′(r) = −Qσ(r)
r2 . (31)

This introduces the electric charge measured at infinity, Q. The scalar field satisfies
the equation

φ′′ +

(
2
r
+

N′

N
+

σ′

σ

)
φ′ − ελ2

r2Nσ

[
(3− 5N)N′σ′ + σ

(
(1− N)N′′ − N′2) + 2(1− N)Nσ′′

]
φ = 0 , (32)

while the equations for the metric functions N, σ are too involved and shall not be dis-
played here.
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We are interested in BH solutions with an event horizon located at r = rh > 0 . The
equations of the model are subject to the following boundary conditions.

N
∣∣
rh
= 0 , σ

∣∣
rh
= σh , φ

∣∣
rh
= φh , V

∣∣
rh
= 0 ; N

∣∣
∞ = 1 , σ

∣∣
∞ = 1 , φ

∣∣
∞ = 0 , V

∣∣
∞ = Φ , (33)

where σh, φh are constants fixed by numerics and Φ is the electrostatic potential at infinity.
The horizon data fix the Hawking temperature, the horizon area and the entropy of
the solutions,

TH =
σhN′(rh)

4π
, AH = 4πr2

h , S = πr2
h + ελ2 f (φh) . (34)

A local solution compatible with these asymptotics can be constructed both close to
the horizon (as a power series in (r− rh)) and at infinity (as a power series in 1/r). For
example, the first terms in the far field expression of the solutions read

N = 1− 2M
r

+
Q2 + Q2

s
r2 + . . . , φ(r) =

Qs

r
+ . . . , V(r) = Φ− Q

r
+ . . . , σ(r) = 1− Q2

s
2r2 + . . . . (35)

With the details just laid out we have numerically constructed the nonlinear continu-
ation of the scalar clouds solving the full equations of the EMsGB model, for both signs
of ε.

Technically, the construction of the scalarised BHs is a one parameter shooting problem
in terms of the value of the scalar field at the horizon φh. The input parameters are rh, Q
and λ. Fixing the length scale λ, this leads to a two dimensional parameter space for the
problem. The numerical results for several values of the ratio Q/λ are shown in Figure 3.

Figure 3. Charge-temperature (main panels panel) and charge-horizon area (insets) diagrams, in units set by mass, for several
illustrative families of GBε scalarised RN solutions, for both ε = +1 (left panel) and ε = −1 (right panel). The branches of
scalarised solutions bifurcate from the electrovacuum RN BHs (blue line) and terminate in critical configurations (red circles).

Figure 3 shows that for a given ratio Q/λ and both values of ε, one finds a continuum
of solutions which bifurcate from the corresponding RN BH supporting a scalar cloud with
these parameters. This line has a finite extent, ending in a critical configuration where the
numerical process fails to converge. A general explanation for this behaviour can be traced
back to the fact that the radicand of a square root in the horizon expansion of the scalar
field vanishes as the critical set is approached. This is a generic feature of GB-scalar models.
An exception here are the ε = +1 solutions emerging from RN BHs with q > qc, in which
case the critical configurations seem to possess a curvature singularity for some radius
outside the event horizon (see [28] for a discussion).

From Figure 3 one may highlight two qualitatively different features when comparing
ε = ±1. First, scalarisation reduces (increases) aH for ε = +1 (ε = −1). Secondly,
“overcharged” solutions with q > 1 exist for ε = −1 only.
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4. GBε Scalarisation of Kerr-Newman BHs

Let us now address the GBε scalarisation of the spinning, charged electrovacuum
Kerr-Newman BH. This is a solution of the model (1), with the coupling (17), together with
a vanishing scalar field, φ = 0. This BH is described by its ADM mass M, total angular
momentum per unit mass a = J/M and electric charge Q. In Boyer-Lindquist coordinates
it reads (see e.g., [29])

ds2 = −∆
Σ

(
dt− a sin2 θdϕ

)2
+ Σ

(
dr2

∆
+ dθ2

)
+

sin2 θ

Σ

[
adt−

(
Σ + a2 sin2 θ

)
dϕ
]2

, (36)

and
Aµdxµ = −Qr

Σ

(
dt− a sin2 θdϕ

)
, (37)

where
∆ ≡ r2 − 2Mr + a2 + Q2 , Σ ≡ r2 + a2 cos2 θ . (38)

The event horizon of this solution is located at

rh = M
(

1 +
√

1− j2 − q2
)

. (39)

This implies the Kerr-Newman bound, j2 + q2 6 1; an extremal BH saturates this bound.
The Kerr-Newman metric has a GB invariant

R2
GB =

48M2

Σ3

(
1− 2a2

Σ3

(
3r2 − a2 cos2 θ

)2 cos2 θ

)
(40)

+
8Q2

Σ6

{
r4(5Q2 − 12Mr) + a2 cos2 θ

[
2r2(−19Q2 + 60Mr) + 5a2(Q2 − 12Mr) cos2 θ

]}
.

We have studied4 the sign of this quantity as a function of the parameters (j, q)—Figure 1,
observing that the qualitative picture found in the Kerr (q = 0) or RN (j = 0) cases is still
valid for a Kerr-Newman BH. While R2

GB is positive for large values of the radial coordinate,
its sign close to the event horizon depends on the value of (j, q). That is, for fixed j (or q),
the GB invariant R2

GB always becomes negative in a region outside the horizon, for large
enough values of q (or j). In the presence of rotation, this region is located around the poles
of the horizon, θ = 0, π—Figure 4. In Figure 1 we show the region in the (j, q)-domain
where the GB invariant takes a negative sign at the poles of the horizon. Kerr-Newman
BHs with R2

GB < 0 have the potential to be scalarised for both signs of ε.

Figure 4. The GB invariant at the horizon (in units of mass) as a function of the θ−coordinate for
several Kerr-Newman BHs.
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4.1. Construction of the Scalarised Kerr-Newman BHs

To construct the GBε scalarised Kerr-Newman BHs, we shall use the ansatz in [23,25],
supplemented with a nonzero gauge field. The metric ansatz reads:5

ds2 = −e2F0 Ndt2 + e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2 r2 sin2 θ(dϕ−Wdt)2 , with N = 1− rh

r
, (41)

where the metric functions Fi, W, as well as the scalar field ansatz φ = φ(r, θ), depend on
r, θ only. The ansatz for the U(1) potential is

A = Aϕ sin θ(dϕ−Wdt) + Vdt , (42)

with two potentials, a magnetic one Aϕ and an electric one V, both depending on r, θ.
Setting Aϕ = V = 0 results in the spontaneously scalarised Kerr BHs in [23,25], albeit

with a different coupling function. The limit W = Aϕ = 0 results in the scalarised RN
BHs [27,31,32] discussed above, albeit for a different radial coordinate.

The general problem is solved subject to the following boundary conditions. Asymp-
totic flatness requires

lim
r→∞

Fi = lim
r→∞

W = 0 , and lim
r→∞

φ = lim
r→∞

Aϕ = 0 , lim
r→∞

V = Φ . (43)

Axial symmetry and regularity impose the following boundary conditions on the
symmetry axis, i.e., at θ = 0, π:

∂θ Fi = ∂θW = ∂θφ = ∂θV = Aϕ = 0 . (44)

Moreover, the absence of conical singularities implies also that F1 = F2 on the symme-
try axis.

The event horizon is located at a constant value of r = rh > 0. Only non-extremal
solutions can be studied within the metric ansatz (41). We proceed by introducing a new

radial coordinate x =
√

r2 − r2
H , which simplifies the boundary conditions at the horizon

and also the numerical treatment of the problem. This results in the following boundary
conditions at the horizon

∂xFi
∣∣
r=rh

= ∂xφ
∣∣
r=rh

= 0 , W
∣∣
r=rh

= ΩH , ∂x Aϕ

∣∣
r=rh

= V
∣∣
r=rh

= 0 , (45)

where the constant ΩH > 0 is the horizon angular velocity. Then, an approximate expansion
of the solution compatible with these boundary conditions can easily be constructed.

Specializing some of the aforementioned physical quantities of interest for the ansatz
in use, we obtain that the Hawking temperature and the event horizon area are determined
by the following horizon data,

TH =
1

4πrh
eF(0)

0 (θ)−F(0)
1 (θ) , AH = 2πr2

h

∫ π

0
dθ sin θ eF(0)

1 (θ)+F(0)
2 (θ) , (46)

with the near horizon expansion Fi = F(0)
i (θ) + x2F(2)

i (θ) + . . . , and i = 0, 1, 2.
The ADM mass M, the angular momentum J, the scalar ’charge’ Qs, together with the

the magnetic dipole momentum qm, the electrostatic potential Φ and the electric charge Q
are read off from the far field asymptotic of the metric and matter functions

gtt = −1 +
2M

r
+ . . . , gϕt = −

2J
r

sin2 θ + . . . , φ = −Qs

r
+ . . . , Aϕ =

qm sin θ

r
+ . . . , V = Φ− Q

r
+ . . . .

We remark that both the metric functions and the scalar field are invariant w.r.t. the
transformation θ → π − θ.



Universe 2021, 7, 483 11 of 17

4.2. Numerical Results

With the setup just described, we have employed a numerical approach similar to
the one in [23,25]. The typical numerical errors for the solutions so obtained and reported
below are of the order of 10−3.

The scalarised Kerr-Newman solutions possess four independent charges: the three
global charges shared with their electrovacuum counterparts, (M, J, Q), plus the scalar
charge Qs. In our approach, the input parameters are: the event horizon radius rh, the hori-
zon angular velocity ΩH , the asymptotic value of the electrostatic potential Φ (or the electric
charge Q), together with the coupling constant λ (which specifies the theory). Therefore,
after fixing the scale λ, we are left with a three dimensional parameter space. A full scan-
ning of such large parameter space of scalarised Kerr-Newman BHs is therefore a time
consuming task. Here we focus on illustrative sets of solutions which already capture the
generic behaviour. Moreover, although we have verified that spinning scalarised solutions
exist for both signs of ε, we shall focus on the results for the more novel case of spin/charge
scalarisation, ε = −1. In practice we have scanned the parameter space by varying both rh
and Q, for several different values of ΩH . Alternatively, we have varied both rh and ΩH ,
for fixed values of Q.

Our numerical results suggest that the solutions share most of the properties of the
scalarised Kerr BHs discussed in [23,24]. In Figure 5 we display the reduced quantities
(q, j) (left panel) and (j, M/λ) (right panel) for solutions with ΩHλ = 0.469 and illustrative
values of the ratio Q/λ. These scalarised solutions emerge from a Kerr-Newman BH
supporting a zero mode solution of the scalar equation—a scalar cloud—corresponding to
the blue squares in Figure 5. The profiles of such clouds (with the maximal value of the
scalar field normalised to one) are shown in Figure 6, for two different Kerr-Newman BHs.
One can see that, while for small values of the reduced angular momentum j, the profile of
the scalar field looks rather similar to that found in spherical case (see Figure 2 (right)), the
large-j ones have a strong θ-dependence, the minimal value of φ being always found in the
equatorial plane. The nonlinear continuation of the clouds (with constant Q/λ) results in
a sequence of solutions terminating at a critical configuration, as in the RN case reported
before, corresponding to the red circles in Figure 5. The main trend observed in Figure 5 is
that fixing Q and ΩH in units of λ, the scalarised BHs have more mass (and thus smaller q
and λ/M) and larger j.

Figure 5. Branches of GB− scalarised Kerr-Newman BHs in a q vs. j plot (left panel) and j vs. λ/M plot (right panel).
The branches are for a specific choice of ΩHλ = 0.469 and different choices of Q/λ. The blue squares correspond to
Kerr-Newman BHs with a vanishing scalar field, while the red circles correspond to critical configurations.
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Figure 6. The profile of typical scalar clouds are shown for two Kerr-Newman backgrounds with
different values of the reduced charge and angular momentum (q, j).

Although our scanning of the full parameter space was limited, extrapolating the
existing numerical data, we antecipate that the (three dimensional) domain of existence of
ε = −1 spinning, charged scalarised BHs is bounded by four sets of solutions: (i) the existence
surface, which corresponds to the set of Kerr-Newman solutions supporting scalar clouds;
(ii) the set of critical solutions, which form again a two dimensional surface; (iii) the static
configurations, J = 0, which corresponds to the ε = −1 scalarised RN solutions discussed
in the previous Section; and (iv) the neutral configurations, Q = 0, which were studied
with the choice of the coupling function (17) in [24]. As for the Q = 0 case, the existence
surface is universal for any expression of the coupling function allowing for scalarisation.
Concerning the set (ii) (critical solutions) the numerical process fails to converge as it is
approached, as in the static limit. The explanation for this behaviour can again be traced
back to the fact that the radicand of a square root in the horizon expansion of the solutions
vanishes as the critical set is approached. Note also that the sets (ii)–(iv) are not universal;
they depend on the choice of the coupling function f (φ).

5. Lessons from Alternative Charged BHs

It is interesting to test the generality of some of the results above concerning the
interplay between the introduction of charge and the scalarisation phenomenon. For this
purpose, in this Section we shall be considering the simpler case of static, spherically
symmetric, charged BHs in some alternative models, rather than electrovacuum.

As a first observation, we remark that for a finite mass, asymptotically flat solution,
the GB invariant R2

GB is strictly positive for large enough r. As with the RN BH, a sufficient
condition for the occurrence of GB induced scalarization for both signs of ε is that R2

GB < 0
at the horizon. In general, however, the sign of the GB invariant at the horizon depends on
the matter content. Indeed, for a generic spherically symmetric BH spacetime and using
the metric ansatz (20), a straightforward computation leads to the simple relation

R2
GB
∣∣
r=rh

=
12
r2

h
+ 16ρ2

(H) −
16
r2

h

[
2ρ(H) + pθ(H)

]
, (47)

where rh is the horizon radius, ρ(H) = −Tt
t (rh) and pθ(H) = Tθ

θ (rh). One can easily see that,
for a generic matter content, the above quantity has no definite sign.

One may then ask the following two questions: (1) is R2
GB

∣∣
r=rh

< 0 close to the maximal

charge for any charged BH model? (2) is R2
GB

∣∣
r=rh

< 0 a necessary condition for GB−

scalarisation for any charged BH model?
We will now show, by concrete illustrations, that both these questions have a

negative answer.
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5.1. Einstein-Maxwell-Dilaton BHs

To answer question (1) above, we have investigated the sign of the GB invariant (together
with its behaviour in the bulk) for the stringy generalisation of the RN BH—the Gibbons-
Maeda-Garfinkle-Horowitz-Strominger (GMGHS) family of BHs [33,34]. In our context, these
solutions are found for an action of the form

SEMdsGB =
∫

d4x
√
−g
[

1
4

R− 1
2

∂µψ∂µψ− 1
4

e−2αψFµνFµν − 1
2

∂µφ∂µφ + ε
λ2

4
f (φ)R2

GB

]
, (48)

describing an Einstein-Maxwell-dilaton-scalar-GB model, which includes an extra scalar
field (the dilaton ψ) with a non-minimally coupling with the Maxwell term, where α > 0 is
a constant of the theory. The GMGHS solution is found for φ = 0, with f (φ) satisfying the
condition (9). It is easy to prove that the behaviour found in the RN case (α = 0, ψ = 0)
is recovered for small enough values of α. In that case, for large enough values of the
electric charge R2

GB becomes negative in a region between horizon and some maximal
value of the radial coordinate. However, a direct computation shows that, for α > 0.9036
(for the conventions used in [34]), R2

GB is strictly positive at the horizon and also in the
bulk, irrespective of the value of the electric charge. Thus, as with Schwarzschild vacuum
BHs, GB− scalarisation of the GMGHS with large enough values of the dilaton coupling
constant becomes impossible. This suggests that it would be interesting to check the
status of GB− scalarisation of the rotating counterpart of the GMGHS BH, the well known
Kerr-Sen BH [35].

5.2. Einstein-Yang-Mills BHs

To answer question (2) above, we have investigated the sign of the GB invariant for
the case of Einstein–Yang-Mills (EYM) BHs with SU(2) non-Abelian hair (nA) [36–38]. In
our context, these solutions are found for an action of the form

SEYMsGB =
∫

d4x
√
−g
[

1
4

R− 1
4

F(a)
µν Fµν(a) − 1

2
∂µφ∂µφ + ε

λ2

4
f (φ)R2

GB

]
, (49)

with F(a)
µν the nA field strength and a = 1, 2, 3. These so called coloured BHs are asymptoti-

cally flat and possess a single global “charge”—the ADM mass, despite the presence of a
local magnetic field (see [39,40] for reviews). Another striking difference with respect to
their (magnetic) RN Abelian counterparts is the existence of a smooth solitonic limit [41],
obtained as the horizon size shrinks to zero. At the same time, there is no upper bound on
their horizon size. However, the large EYM BHs are essentially Schwarzschild solutions;
the contribution of the YM fields to the total ADM mass becomes negligible, albeit these
fields are still nontrivial.

Contact with question (2) above comes from observing that the GB invariant is always
positive at the horizon for these solutions. However, R2

GB may take negative values in
a shell which does not touch the horizon, i.e., for some range of the radial coordinate
rh < r1 < r < r2—see Figure 7 (left panel). This feature occurs for small enough BHs:
using the metric form (20) and the conventions in [39], we confirmed such shell is present
for 0 < rh 6 0.71, or, equivalently, 0 < aH 6 0.158.

Given this qualitative difference with the RN case, one could ask whether GBε scalari-
sation is still possible for both signs of ε. The answer is positive, and we have constructed
the corresponding GB scalar clouds, i.e., solved Equation (10) for a large set of EYM BH
backgrounds and both values of ε—see Figure 7 (right panel). As expected, ε = +1 scalar
clouds exist for all non-Abelian BHs. The value of the ratio λ/M ' 1.704 corresponding to
a Schwarzschild BH is approach asymptotically, as aH → 1 (i.e., large EYM BHs). Also,
scalar clouds with ε = −1 exist for all BHs with R2

GB < 0 in a shell outside the horizon.
Nonlinear continuations of these scalar clouds should exist, but we did not attempt to
construct them.
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This example makes clear that GBε scalarisation of BHs is not necessarily supported
and triggered in the immediate vicinity of the event horizon.

Figure 7. (Left panel) GB invariant as a function of the radial coordinate for an EYM BH with horizon radius rh = 0.6. One
notices a shell with R2

GB < 0, located outside the horizon. (Right panel) λ/M of the set of EYM BHs supporting scalar
clouds as a function of the reduced horizon area for ε = ±1.

6. Further Remarks

There is a well known analogy between the spinning vacuum Kerr BHs and the
electrically charged static RN solutions.6 They possess many similar properties at the level
of a thermodynamical description; in particular, both RN and Kerr BHs have an extremal
limit, with a finite horizon size. In the context of this work, it is interesting to note that the
GB invariant of a RN BH changes sign if q is large enough as the Kerr one changes sign
for sufficiently large j. Thus, it is natural to conjecture that the qualitative picture found
concerning the GBε scalarisation of Kerr BHs [22–25] should be essentially recovered when
replacing rotation by electric charge, with the existence of both ε = ±1 scalarised solutions.

In this work we have confirmed that this conjecture is true, and construct the corre-
sponding scalarised RN BHs. That is, we provide evidence for the following scenario: given
an expression for the coupling function f (φ), two classes of charged RN-scalarised solutions
may exist for the same global charges. The first one has ε = 1, and can be viewed as a
generalization of the Q = 0 solutions in [2–4]. The second has ε = −1, and in this case the
condition µ2

eff < 0 is supported by a large enough charge to mass ratio q > qc = 0.957058,
which implies R2

GB < 0 for some region outside the horizon. We have also presented a pre-
liminary investigation of the spinning generalisations of the above BHs, i.e., the scalarised
Kerr-Newman BHs.

In the last part of this work, we have addressed the generality of these results. First,
we established that the GB invariant of the stringy dilatonic generalisation of the RN BH
becomes strictly positive for large enough values of the dilaton coupling constant. Also, we
pointed out the possibility that the ε = −1 BH scalarisation may also appear in situations
where R2

GB is negative in a spherical shell outside and disconnected from the horizon. This
is the case of the coloured BHs in EYM theory.

In this paper, to simplify the picture, we have assumed the absence of a self-interaction
term for the scalar field in the action (1). GB+ scalarisation of spherical BHs including such
self-interactions is discussed e.g., in [42,43]. Our results could be generalised to include
such self-interactions.

The results in this paper emphasise that GB− scalarisation is not only spin induced,
but can also be induced by electromagnetic fields. Whereas electric charge is typically
neglected for astrophysical BHs, the astrophysical environment surrounding astrophysical
BHs has non-trivial electromagnetic fields, by virtue of the ionized matter in accretion
disks, sourcing, for instance, magnetic fields. Thus, it would be interesting to consider in
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detail if and under which conditions such environments, if sufficiently “heavy”, trigger
GB− scalarisation.
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Notes
1 For spherical symmetry, we have also explored the exponential coupling studied in [3,8], and observed that the

behaviour is qualitatively similar.
2 Similar solutions are likely to exist for any other values of the quantum numbers, some preliminary results being

found for the ` = 1, m = n = 0 case. An investigation of Q = 0, ` = 1 static solutions has been reported in [17].
3 This feature can be explained by studying Equation (27) [28].
4 An alternative expression for (40), in terms of P1 ≡ (1 +

√
1− j2 − q2)r/rh and P2 ≡ j cos θ, is

R2
GB =

48
M4

1
(P2

1 + P2
2 )

3

[
1− 2

(P2
1 + P2

2 )
3

(
P2

2 (3P2
1 − P2

2 )
2 + q2(P1(P4

1 − 10P2
1 P2

2 + 5P4
2 ) −

q2

12

(
5P4

1 − 38P2
1 P2

2 + 5P4
2

)))] ,

a form which has been employed in our study.
5 The Kerr-Newman BH can also be written in this coordinate system. The corresponding expressions in the Kerr limit

can be found in [30].
6 Since the electric-magnetic duality is still valid for the (Abelian) models in this work, the solutions possess a dual

magnetic description.
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