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Abstract: Temperature and velocity-dependent 1S0 pairing gaps, chemical potentials and entrainment
matrix in dense homogeneous neutron–proton superfluid mixtures constituting the outer core of
neutron stars, are determined fully self-consistently by solving numerically the time-dependent
Hartree–Fock–Bogoliubov equations over the whole range of temperatures and flow velocities for
which superfluidity can exist. Calculations have been made for npeµ in beta-equilibrium using the
Brussels–Montreal functional BSk24. The accuracy of various approximations is assessed and the
physical meaning of the different velocities and momentum densities appearing in the theory is
clarified. Together with the unified equation of state published earlier, the present results provide
consistent microscopic inputs for modeling superfluid neutron-star cores.
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1. Introduction

Different superfluid and superconducting phases are predicted to exist in neutron
stars (see, e.g., [1] for a review). In particular, the (electrically charge neutral) outer core is
expected to be made of a neutron–proton superfluid mixture in beta-equilibrium with a
normal gas of leptons. More speculative superfluid phases involving other particles such
as hyperons or quarks might occur in the innermost region of the core of a neutron star
but will not be considered here. Although the interior of the star is highly degenerate,
thermal effects may still play an important role in the rotational evolution of the star [2–4].
This stems from the fact that the critical temperatures Tcq above which superfluidity is
destroyed (q = n, p for neutrons and protons respectively) are much smaller than the Fermi
temperatures TFq, and may thus be comparable to the actual temperature T of the star.
Superfluidity leads to a very complicated dynamics, characterized by the coexistence of
different flows (see, e.g., [5] for a recent review). The core of a neutron star involves at least
three distinct fluids: the neutron and proton superfluids, as well as a normal fluid made of
leptons and excitations. Due to nuclear interactions, the neutron and proton superfluids in
the core do not flow freely. They are mutually coupled by entrainment effects of the same
kind as the ones discussed by Andreev and Bashkin [6] in the context of superfluid 4He-3He
mixtures: the mass currents ρqρqρq are expressible as linear combinations of the velocity vNvNvN of
the normal fluid and of the so-called “superfluid velocities” VqVqVq as

ρnρnρn =
(
ρn − ρnn − ρnp

)
vNvNvN + ρnnVnVnVn + ρnpVpVpVp , (1)

ρpρpρp =
(
ρp − ρpp − ρpn

)
vNvNvN + ρppVpVpVp + ρpnVnVnVn , (2)
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where ρq = mnq is the mass density of nucleon of charge type q with associated nucleon
number density nq (ignoring the small difference between neutron and proton masses,
which is denoted simply by m). As shown by Carter and Khalatnikov in the context of
Landau’s canonical two-fluid model of superfluid 4He [7] (see also [8]), VqVqVq are not true
velocities but physically represent average nucleon momenta per unit mass. Indeed, it
can be easily seen that the true velocities should be defined in terms of the mass currents
as vqvqvq = ρqρqρq/ρq and in general these velocities do not coincide with VqVqVq. To avoid any
misinterpretation, the superfluid “velocities” are thus written with a capital letter. Please
note that vNvNvN is a true velocity. The importance of entrainment effects is measured by the
(symmetric) matrix ρqq′ , which is a key microscopic input for modeling the dynamics of
neutron stars, see, e.g., [5] and references therein. The entrainment matrix is expected
to depend not only on the composition and the baryon density n = nn + np, but also
on the superfluid velocities as well as the temperature, and this may have an impact on
neutron-star oscillations [9–12]. The influence of temperature and velocity on entrainment
effects has been previously studied within Landau’s theory [13–15]. However, the Landau
parameters, the critical temperatures, and the composition had to be given. Recently, we
have derived the entrainment matrix self-consistently for arbitrary superfluid velocities
and temperatures within the nuclear-energy-density functional theory by solving exactly
the time-dependent Hartree–Fock–Bogoliubov (TDHFB) equations [16,17]. The expressions
we have obtained are quite general and applicable to a wide variety of functionals.

In this paper, we have calculated various properties of homogeneous neutron–proton
superfluid mixtures in the outer core of neutron stars by solving numerically the self-
consistent TDHFB equations using the Brussels–Montreal functional BSk24 [18] for which
unified equations of state are already available [19–22] as well as gravitoelectric and gravit-
omagnetic tidal Love numbers up to ` = 5 [23,24]. More importantly, unlike most available
functionals, BSk24 has been accurately calibrated to realistic microscopic calculations of
1S0 pairing gaps in infinite homogeneous nuclear matter (at zero temperature and in the
absence of currents). We have determined within the same microscopic framework not
only the entrainment matrix but also the 1S0 pairing gaps and chemical potentials of the
superfluid mixture without any approximation, varying the superfluid velocities, the tem-
perature and the baryon density. In this way, we have also been able to assess the accuracy
of various approximations. We have focused on 1S0 nuclear superfluid phases, which are
reliably predicted to exist in the outer core of neutron stars (see, e.g., [25] and references
therein). We have not considered 3PF2 neutron superfluidity. As a matter of fact, it has
been recently shown that in regions where both types of pairing can potentially exist, the
3PF2 superfluid phase is completely excluded by the 1S0 phase unless strong magnetic
fields are present [26].

The formalism to describe nuclear superfluidity is presented in Section 2. After
briefly recapitulating the general principles of the TDHFB theory in Section 2.1 and the
functionals in Section 2.2, the exact solution in homogeneous nuclear matter is given in
Section 2.3, where explicit expressions for various quantities entering the calculations of
superfluid properties are derived. The physical interpretation of the different velocities
and momentum densities are clarified in Section 2.4. In Section 2.5, it is shown how the
TDHFB theory can be recast into Landau’s theory after introducing a series of approxi-
mations. Applications to neutron stars are presented in Section 3. The main features of
the Brussels–Montreal functionals are recapitulated in Section 3.1. After describing our
numerical implementation of the TDHFB equations in Section 3.2, detailed numerical
results for various properties of the superfluid mixture are presented and analyzed in
Sections 3.3–3.8. The accuracy of various approximations and interpolations are also
discussed. Our conclusions are given in Section 4.
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2. Nuclear Superfluidity within the Time-Dependent Hartree–Fock–Bogoliubov
Theory
2.1. General Principles

The TDHFB theory [27] provides a unified microscopic framework for studying the
dynamics of various nuclear systems, ranging from atomic nuclei to the dense nuclear
matter present in neutron stars—the main focus of this work.

Introducing the one-body density matrix nij
q = 〈cj†

q ci
q〉 = nji∗

q and pairing tensor

κ
ij
q = 〈cj

qci
q〉 = −κ

ji
q defined in terms of thermal averages of products of creation (ci†

q ) and
destruction (ci

q) operators for nucleons of charge type q in a quantum state i (using the
symbol † for Hermitian conjugation and ∗ for complex conjugation), and assuming that
the energy E of a nucleon-matter element of volume V is a function of nij

q , κ
ij
q and κ

ij∗
q lead

to the following equations of motion [27]:

ih̄
∂nij

q

∂t
= ∑

k

(
hik

q nkj
q − nik

q hkj
q + κik

q ∆kj∗
q − ∆ik

q κ
kj∗
q

)
, (3)

ih̄
∂κ

ij
q

∂t
= ∑

k

[
(hik

q − λqδik)κ
kj
q + κik

q (h
kj∗
q − λqδkj)− ∆ik

q nkj∗
q − nik

q ∆kj
q

]
+ ∆ij

q , (4)

where λq denote the chemical potentials. The matrices hij
q and ∆ij

q , defined by

hij
q =

∂E

∂nji
q
= hji∗

q , (5)

∆ij
q =

∂E

∂κ
ij∗
q

= −∆ji
q , (6)

generally depend themselves on nij
q , κ

ij
q and κ

ij∗
q and must therefore be determined

self-consistently.

2.2. Functionals of Local Densities and Currents

The class of energy functionals E(nij
q , κ

ij
q , κ

ij∗
q ) that we consider here depend on the

density matrices and pair tensors only through the following local densities and currents:

(i) the nucleon densities at position rrr at time t (σ = ±1 distinguishing the two spin
states),

nq(rrr, t) = ∑
σ=±1

nq(rrr, σ; rrr, σ; t) , (7)

(ii) the kinetic-energy densities (in units of h̄2/2m) at position rrr and time t,

τq(rrr, t) = ∑
σ=±1

∫
d3r′r′r′ δ(rrr− r′r′r′)∇ ·∇′′′nq(rrr, σ; r′r′r′, σ; t) , (8)

(iii) the momentum densities (in units of h̄) at position rrr and time t,

jqjqjq(rrr, t) = − i
2 ∑

σ=±1

∫
d3r′r′r′ δ(rrr− r′r′r′)(∇∇∇−∇′∇′∇′)nq(rrr, σ; r′r′r′, σ; t) , (9)



Universe 2021, 7, 470 4 of 34

(iv) the abnormal densities at position rrr and time t

ñq(rrr, t) = ∑
σ=±1

ñq(rrr, σ; rrr, σ; t) , (10)

where
nq(rrr, σ; r′r′r′, σ′; t) = ∑

i,j
nij

q ϕ
(q)
i (rrr, σ)ϕ

(q)
j (r′r′r′, σ′)∗ , (11)

ñq(rrr, σ; r′r′r′, σ′; t) = −σ′∑
i,j

κ
ij
q ϕ

(q)
i (rrr, σ)ϕ

(q)
j (r′r′r′,−σ′) , (12)

are the so-called normal and abnormal density matrices respectively [28], and ϕ
(q)
i (rrr, σ) is

the single-particle wavefunction associated with the state i. The abnormal densities are the
local order parameters of the neutron and proton superfluid phases [17]. These densities are
complex and the gradient of their respective phase φq(rrr, t) defines the superfluid velocities
as follows:

VqVqVq(rrr, t) =
h̄

2m
∇∇∇φq(rrr, t) . (13)

The matrices (5) and (6) can be alternatively expressed as [17]

hij
q (t) = ∑

σ

∫
d3rrr ϕ

(q)
i (rrr, σ)∗hq(rrr, t)ϕ

(q)
j (rrr, σ) , (14)

∆ij
q (t) = −∑

σ

σ
∫

d3rrr ϕ
(q)
i (rrr, σ)∗∆q(rrr, t)ϕ

(q)
j (rrr,−σ)∗ , (15)

where

hq(rrr, t) = −∇∇∇ · h̄2

2m⊕q (rrr, t)
∇∇∇+ Uq(rrr, t)− i

2

[
IqIqIq(rrr, t) · ∇∇∇+∇∇∇ · IqIqIq(rrr, t)

]
, (16)

h̄2

2m⊕q (rrr, t)
=

δE
δτq(rrr, t)

, Uq(rrr, t) =
δE

δnq(rrr, t)
, IqIqIq(rrr, t) =

δE
δjqjqjq(rrr, t)

, (17)

∆q(rrr, t) = 2
δE

δñq(rrr, t)∗
= 2

δE
δ|ñq(rrr, t)|2 ñq(rrr, t) . (18)

The last equality in Equation (18) arises from the requirement that the energy must be
real. Please note that the pair potential ∆q(rrr, t) is a complex field sharing the same phase
φq(rrr, t) as the abnormal density ñq(rrr, t). Let us recall that this phase enters through the
definition of the superfluid velocities (13).

2.3. Application to Homogeneous Systems

Considering a homogeneous neutron–proton superfluid mixture with stationary flows
in the normal-fluid rest frame where vNvNvN = 000, the TDHFB equations can be solved ex-
actly [17]. In particular, the entrainment matrix reads (δqq′ denotes the Kronecker symbol
and ρ = ρn + ρp is the total mass density)

ρqq′ = ρq
(
1−Yq

)( m
m⊕q

δqq′ +
Iqq′

h̄

)
, (19)
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with

m
m⊕q

= 1 +
2ρ

h̄2

(
δEj

nuc

δX0
− δEj

nuc

δX1

)
+

4ρq

h̄2
δEj

nuc

δX1
, (20)

Inn =
2
h̄

ρn(1−Yn)Θ

[
δEj

nuc

δX1

(
8
h̄2

δEj
nuc

δX0
m⊕p npYp − 1

)
− δEj

nuc

δX0

]
, (21)

Ipp =
2
h̄

ρp
(
1−Yp

)
Θ

[
δEj

nuc

δX1

(
8
h̄2

δEj
nuc

δX0
m⊕n nnYn − 1

)
− δEj

nuc

δX0

]
, (22)

Inp =
2
h̄

ρp
(
1−Yp

)
Θ

(
δEj

nuc

δX1
− δEj

nuc

δX0

)
, (23)

Ipn =
2
h̄

ρn(1−Yn)Θ

(
δEj

nuc

δX1
− δEj

nuc

δX0

)
, (24)

Θ ≡
[

1− 2
h̄2

(
δEj

nuc

δX0
+

δEj
nuc

δX1

)(
m⊕n nnYn + m⊕p npYp

)

+

(
4
h̄2

)2 δEj
nuc

δX0

δEj
nuc

δX1
m⊕n nnm⊕p npYnYp

]−1

. (25)

Here Ej
nuc represents the nuclear-energy terms contributing to the mass currents.

Galilean invariance requires that these terms depend on the following combinations:

X0(rrr, t) = n0(rrr, t)τ0(rrr, t)− j0j0j0(rrr, t)2 , (26)

X1(rrr, t) = n1(rrr, t)τ1(rrr, t)− j1j1j1(rrr, t)2 . (27)

The subscripts 0 and 1 denote isoscalar and isovector quantities, respectively, namely
sums over neutrons and protons for the former (e.g., n0 ≡ n = nn + np) and differences
between neutrons and protons for the latter (e.g., n1 = nn − np). The temperature and
velocity-dependent functions Yq are defined by (kB being the Boltzmann constant)

Yq(T,VqVqVq) ≡
h̄

m⊕q nqV2
q

1
V ∑

kkk
kkk ·VqVqVq tanh

 E
(q)
kkk

2kBT

 , (28)

where we have introduced the effective superfluid velocities

VqVqVq ≡
m

m⊕q
VqVqVq +

IqIqIq

h̄
, (29)

and E
(q)
kkk represent the energies of quasiparticle excitations, given by

E
(q)
kkk = h̄kkk ·VqVqVq +

√
ε
(q)2
kkk + ∆2

q , (30)
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with

ε
(q)
kkk =

h̄2kkk2

2m⊕q
+

1
2

m⊕q

(
VqVqVq +

IqIqIq

h̄

)
·
(
VqVqVq −

IqIqIq

h̄

)
+ Uq − λq . (31)

In turn, the vector IqIqIq is expressible in terms of the superfluid velocities as follows

IqIqIq = ∑
q′
Iqq′Vq′Vq′Vq′ . (32)

The pairing gaps (as defined as the nonvanishing matrix elements of the pair potential,
see [17] ) are obtained from the self-consistent equations

∆q(T,VqVqVq) = −
2
V

δE
δ|ñq|2 ∑

kkk

∆q(T,VqVqVq)√
ε
(q)2
kkk + ∆q(T,VqVqVq)2

tanh

 E
(q)
kkk

2kBT

 , (33)

where it is understood that the summation must be regularized to remove ultraviolet
divergences, as will be discussed below. The gap equations must be solved together with
the particle number conservation conditions

nq =
1
V ∑

kkk

1−
ε
(q)
kkk√

ε
(q)2
kkk + ∆2

q

tanh

 E
(q)
kkk

2kBT

 . (34)

As can be seen from Equation (31), Equations (28), (33) and (34) all depend on the
reduced chemical potentials defined by

µq = λq −Uq −
1
2

m⊕q

(
VqVqVq +

IqIqIq

h̄

)
·
(
VqVqVq −

IqIqIq

h̄

)
(35)

so that neither the pairing gaps nor the entrainment matrix require the explicit form of the
potentials Uq.

From now on, we will take the continuum limit, i.e., we will replace discrete summa-
tions over wave vectors kkk by integrations as follows:

1
V ∑

kkk
· · · →

∫ d3kkk
(2π)3 · · · =

∫ dΩkkk
4π

∫ +∞

−µq
dεD(ε)· · · (36)

with Ωkkk the solid angle in kkk-space and D(ε) the density of single-particle states per one
spin state given by

D(ε) =
m⊕q

2π2h̄3

√
2m⊕q (ε + µq) . (37)

Integrating over solid angle and changing variables, Equation (28) can thus be ex-
pressed as

Yq =
3
8

T̄q

V̄2
q

∫ +∞

0
dx
√

x log
{[

1 + e−
(
E(q)

x −2V̄q
√

x
)

/T̄q
][

1 + e−
(
E(q)

x +2V̄q
√

x
)

/T̄q
]}

+
3
16

T̄2
q

V̄3
q

∫ +∞

0
dx
{

Li2

[
−e−

(
E(q)

x −2V̄q
√

x
)

/T̄q
]
− Li2

[
−e−

(
E(q)

x +2V̄q
√

x
)

/T̄q
]}

(38)

where

E(q)
x =

√(
x− µ̄q

)2
+ ∆̄2

q , (39)
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Li2(x) =
∫ 1−x

1

log u
1− u

du is the dilogarithm function, and we have introduced the dimen-

sionless ratios

T̄q ≡
T

TFq
, V̄q ≡

Vq

VFq
, µ̄q ≡

µq

εFq
, ∆̄q ≡

∆q

εFq
. (40)

The Fermi temperature is defined by TFq = εFq/kB with the Fermi energy

εFq =
h̄2k2

Fq

2m⊕q
(41)

and Fermi wave number kFq = (3π2nq)1/3; the Fermi velocity is given by

VFq =
h̄kFq

m⊕q
. (42)

Similarly, the gap Equation (33) and the particle number conservation Equation (34)
become, respectively

∆q = −
m⊕q kFq

2π2h̄2
T̄q

V̄q

δE
δ|ñq|2

∆q

∫ (µq+εΛ)/εFq

0

dx

E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+

V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
−

V̄q

T̄q

√
x

)]
, (43)

4
3

=
∫ +∞

0
dx

{
√

x−
T̄q

V̄q

x− µ̄q

2E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+

V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
−

V̄q

T̄q

√
x

)]}
, (44)

and εΛ is a cutoff above the Fermi level to regularize the ultraviolet divergences
(see Section 3.1). Expressing the hyperbolic functions in terms of the exponential function,
we can alternatively rewrite (43) and (44) as

∆q = −
m⊕q kFq

π2h̄2
δE

δ|ñq|2
∆q

∫ (µq+εΛ)/εFq

0
dx
√

x

E(q)
x

×

1 +
T̄q

2V̄q
√

x
log

1 + e−
(
E(q)

x +2V̄q
√

x
)

/T̄q

1 + e−
(
E(q)

x −2V̄q
√

x
)

/T̄q

 , (45)

4
3

=
∫ +∞

0
dx
√

x

{
1−

x− µ̄q

E(q)
x

×

1 +
T̄q

2V̄q
√

x
log

1 + e−
(
E(q)

x +2V̄q
√

x
)

/T̄q

1 + e−
(
E(q)

x −2V̄q
√

x
)

/T̄q

 . (46)

We have made use of the identity log[cosh(a + b) sech(a− b)] = 2b+ log
[
1 + e−2(a+b)

]
− log

[
1 + e−2(a−b)

]
.
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It is worth remarking that although the pairing gaps and the entrainment matrix
depend in general on the directions of the superfluid velocities VqVqVq, this dependence is
entirely contained in the norm of the effective superfluid velocitiesVqVqVq. Using Equations (29)
and (32), it can be seen that the two kinds of velocities are related by

VqVqVq = ∑
q′=n,p

(
m

m⊕q
δqq′ +

Iqq′

h̄

)
Vq′Vq′Vq′ . (47)

It is important to realize that this relation is highly non-linear because the matrix
elements Iqq′ , defined by Equations (21)–(25), depend themselves on the effective super-
fluid velocities through the functions Yq. For this reason, the mapping between VnVnVn, VpVpVp
and VnVnVn,VpVpVp is quite complicated. It is, therefore, much more convenient to express the
results in terms of VqVqVq instead of VqVqVq. In particular, it can be seen that the neutron (proton)
pairing gaps depend only the norms of neutron (proton) effective superfluid velocity. It is
only when the chemical potentials λq are needed rather than the reduced ones µq that the
directions of the superflows become important since λq are obtained from Equation (35)
using Equation (32), namely

λn = µn +

(
1
2

m
m⊕n

+
Inn

h̄

)
mVnVnVn

2 +
Inp

h̄
mVnVnVn ·VpVpVp + Un , (48)

λp = µp +

(
1
2

m
m⊕p

+
Ipp

h̄

)
mVpVpVp

2 +
Ipn

h̄
mVpVpVp ·VnVnVn + Up . (49)

The potentials Uq are functions of the nucleon densities nq, the momentum densities
jqjqjq and the kinetic densities τq. The momentum density jqjqjq can be expressed as [17]

jqjqjq =
ρq

h̄

(1−Yq)VqVqVq −
m⊕q
m
Yq ∑

q′=n,p

Iqq′

h̄
Vq′Vq′Vq′

 . (50)

Using Equation (8), we find for the kinetic-energy density:

τq =
3
4
(3π2)2/3n5/3

q

∫ (µq+εΛ)/εFq

0
dx x

{
√

x−
T̄q

V̄q

x− µ̄q

2E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+

V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
−

V̄q

T̄q

√
x

)]}

+
1
2

(
2m⊕q

h̄2

)
ρqVqVqVq ·

(
VqVqVq − 2YqVqVqVq

)
. (51)

In the regime T̄q � 1, V̄q � 1, ∆̄q � 1 and µ̄q ≈ 1, the second term in the right-hand
side of Equation (51) becomes negligible and the integral reduces to the Thomas-Fermi
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expression τq ≈ 3
5 (3π2)2/3n5/3

q . The kinetic-energy density can be equivalently expressed
in terms of the exponential function as

τq =
3
4
(3π2)2/3n5/3

q

∫ (µq+εΛ)/εFq

0
dx x3/2

{
1−

x− µ̄q

E(q)
x

×

1 +
T̄q

2V̄q
√

x
log

1 + e−
(
E(q)

x +2V̄q
√

x
)

/T̄q

1 + e−
(
E(q)

x −2V̄q
√

x
)

/T̄q


+

1
2

(
2m⊕q

h̄2

)
ρqVqVqVq ·

(
VqVqVq − 2YqVqVqVq

)
. (52)

2.4. Physical Interpretation of the Different Velocities and Momentum Densities

Using Equation (66) of [17], it can be immediately seen that the true velocities as-
sociated with the transport of nucleons (mass) are related to the effective superfluid
velocities (29) through the relation

vqvqvq ≡
ρqρqρq

ρq
= (1−Yq)VqVqVq . (53)

Let us recall that these velocities are measured relative to the normal-fluid rest frame.
At zero temperature and subcritical superflow of nucleons of type q, the functions Yq
will be shown to vanish in Section 3.5: in this case, the effective superfluid velocity thus
actually represents the true velocity vqvqvq = VqVqVq. At finite temperatures, the excitation of
quasiparticles entails a finite fraction Yq > 0: nucleons thus move with a lower speed at
T > 0 than at T = 0. If nucleons of type q are nonsuperfluid, Yq = 1 as we will see in
Section 3.5, therefore their true velocity vanishes vq = 0: nucleons move with the normal
fluid (however, the other nucleon species can flow with a different velocity if it is superfluid).
The function Yq thus measures the relative importance of quasiparticle excitations for the
transport of nucleons of type q.

As already mentioned earlier, the superfluid “velocity” VqVqVq defined by the gradient
of the phase of the condensate through Equation (13) represents the momentum per unit
mass of the superfluid. The superfluid momentum density of the nucleon species q, given
by ρqVqVqVq, does not coincide with the momentum density h̄jqjqjq introduced in Equation (54).
This stems from the fact that the latter not only accounts for the superfluid momentum
density but also includes the contribution from quasiparticles. This can be directly seen
from Equation (50), which can be equivalently written as

h̄jqjqjq = ρqVqVqVq −Yqρq
m⊕q
m

VqVqVq . (54)

The second term can be interpreted as the momentum density of quasiparticles.
Indeed, this contribution vanishes if Yq = 0, i.e., in the absence of quasiparticle excitations.
It is only in this limiting case that the total momentum density h̄jqjqjq coincides with the
superfluid momentum density ρqVqVqVq. In general, it can be shown using the self-consistent
solutions of the TDHFB equations presented in the previous section that the total mass
current is equal to the total momentum density

ρnρnρn + ρpρpρp = h̄(jnjnjn + jpjpjp) , (55)

as required by Galilean invariance (this identity can be more easily demonstrated using the
general expression of the mass currents [16]).

The distinction between the different velocities and momentum densities becomes
irrelevant if both nucleon species are nonsuperfluid since Yn = Yp = 1 implies that vnvnvn, vpvpvp,
h̄jnjnjn/ρn and h̄jpjpjp/ρp all vanish in the fluid rest frame, i.e., all nucleons move with the normal
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fluid, as expected. Likewise, in the limiting case of a single superfluid constituent at zero
temperature and subcritical superflow, we have vqvqvq = VqVqVq = VqVqVq = h̄jqjqjq/ρq.

2.5. Landau’s Approximations

The neutron–proton superfluid mixture can be alternatively described using Landau’s
theory [13–15]. The TDHFB theory can be reduced to a similar form after introducing
a series of approximations. Specifically, assuming that the critical temperatures and the
critical superfluid velocities are small compared to their Fermi counterpart,

• instead of solving Equation (44), the reduced chemical potentials (35) are approxi-
mated by their associated Fermi energies (µq ≈ εFq), thus ignoring any dependence
on temperature, currents, and pairing gaps;

• the single-particle energies (31) are calculated at zero temperature, in the absence of
currents ignoring any dependence on the pairing gaps, and expanding linearly around
the Fermi surface (denoting by Q̆ the approximate expression for a quantity Q)

ε
(q)
kkk ≈ ε̆

(q)
kkk ≡ h̄VFq(k− kFq) ; (56)

• the quasiparticle energies (30) are similarly expanded as

E
(q)
kkk ≈ Ĕ

(q)
kkk + h̄kFqVq cos θkkk , Ĕ

(q)
kkk =

√
ε̆
(q)2
kkk + ∆̆2

q ; (57)

• the density of single-particle states D(ε) in kkk-space integrations (36) is approximated
by its value on the Fermi surface, D(ε) ≈ D̆(0) with

D̆(0) =
kFqm̆⊕q
2π2h̄2 ; (58)

• the derivatives of the nuclear-energy terms Ej
nuc entering Equations (20)–(25), are

evaluated in the absence of currents;

In previous studies [13–15], the pairing gaps ∆̆q were obtained in the weak-coupling
approximation ∆̆q � εFq, εΛ at zeroth order from the following approximate equation (see
Appendix A)

log

 ∆̆q

∆̆(0)
q

 ≈ ∫ +∞

0

dx

Ĕ(q)
x

{
T̄q

2V̄q
log

[
cosh

(
Ĕ(q)

x

2T̄q
+

V̄q

T̄q

)
sech

(
Ĕ(q)

x

2T̄q
−

V̄q

T̄q

)]
− 1

}
, (59)

or in terms of the exponential function

log

 ∆̆q

∆̆(0)
q

 ≈ T̄q

2V̄q

∫ +∞

0

dx

Ĕ(q)
x

log

1 + e−
(
Ĕ(q)

x +2V̄q

)
/T̄q

1 + e−
(
Ĕ(q)

x −2V̄q

)
/T̄q

 , (60)

where ∆̆(0)
q denotes the pairing gaps at T = 0 in the absence of currents. The latter

were determined using the BCS relation [29] (introducing the Euler–Mascheroni constant
γ ' 0.577216)

∆̆(0)
q =

kBπ

eγ
T̆(0)

cq , (61)

by fixing arbitrarily the associated critical temperatures T̆(0)
cq .
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Moreover, the functions Yq were replaced by the functions Φq of [15], which can be
expressed as

Φq =
3
4

T̄q

V̄2
q

∫ +∞

0
dx log

{[
1 + e−

(
Ĕ(q)

x −2V̄q

)
/T̄q
][

1 + e−
(
Ĕ(q)

x +2V̄q

)
/T̄q
]}

+
3
8

T̄2
q

V̄3
q

∫ +∞

0
dx
{

Li2

[
−e−

(
Ĕ(q)

x −2V̄q

)
/T̄q
]
− Li2

[
−e−

(
Ĕ(q)

x +2V̄q

)
/T̄q
]}

, (62)

where

Ĕ(q)
x =

√√√√x2 +

(
∆̆q

εFq

)2

. (63)

Introducing the critical effective superfluid velocities [30]

V̆(0)
cq =

e
2

∆̆(0)
q

h̄kFq
, (64)

the approximate pairing gap Equation (59) and the functions (62) can be equivalently
expressed in terms of the reduced temperature T̃q ≡ T/T̆(0)

cq and the reduced effective

superfluid velocity Ṽq ≡ Vq/V̆(0)
cq as follows:

log

 ∆̆q

∆̆(0)
q

 ≈ ∫ +∞

0

dy

Ẽ(q)
y

 2
π

eγ−1 T̃q

Ṽq
log

cosh

π

2
e−γ

 Ẽ(q)
y

T̃q
+

e
2
Ṽq

T̃q


× sech

π

2
e−γ

 Ẽ(q)
y

T̃q
− e

2
Ṽq

T̃q

− 1

 , (65)

or using Equation (60)

log

 ∆̆q

∆̆(0)
q

 ≈ 2
π

eγ−1 T̃q

Ṽq

∫ +∞

0

dy

Ẽ(q)
y

log

1 + e−πe−γ
(
Ẽ(q)

y + e
2 Ṽq

)
/T̃q

1 + e−πe−γ
(
Ẽ(q)

y − e
2 Ṽq

)
/T̃q

 , (66)

and

Φq =
12
π

eγ−2 T̃q

Ṽ2
q

∫ +∞

0
dy log


1 + exp

−πe−γ

 Ẽ(q)
y

T̃q
− e

2
Ṽq

T̃q


×

1 + exp

−πe−γ

 Ẽ(q)
y

T̃q
+

e
2
Ṽq

T̃q

 (67)

+
24
π2 e2γ−3 T̃2

q

Ṽ3
q

∫ +∞

0
dy

Li2

− exp

−πe−γ

 Ẽ(q)
y

T̃q
− e

2
Ṽq

T̃q


− Li2

− exp

−πe−γ

 Ẽ(q)
y

T̃q
+

e
2
Ṽq

T̃q

 ,
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with

Ẽ(q)
y =

√√√√√y2 +

 ∆̆q

∆̆(0)
q

2

. (68)

These alternative formulations show that ∆̆q/∆̆(0)
q and Φq are universal functions

of suitably rescaled temperature and effective superfluid velocity, independently of the
nucleon species under consideration, the composition, and the details of the adopted
nuclear-energy-density functional.

3. Application to Neutron Stars

Although the entrainment matrix can be written in the deceptively simple analyti-
cal form (19), its dependencies on the temperature and on the superfluid velocities re-
main implicit and highly nontrivial. To obtain actual values, numerical solutions of
Equations (43) and (44) are needed. In this work, we have considered the Brussels–Montreal
functionals, whose main features are described in Section 3.1. Results are presented in the
subsequent sections.

3.1. Brussels–Montreal Functionals

The Brussels–Montreal functionals from BSk16 and beyond (see [31,32] for a brief
overview) were constructed from extended Skyrme effective nucleon-nucleon interactions,
whose parameters were precision-fitted to essentially all experimental nuclear data on
atomic masses and charge radii while ensuring realistic properties of homogeneous nuclear
matter (neutron-matter equation of state, effective masses, symmetry energy, incompress-
ibility coefficient, pairing gaps).

The functional derivatives of the energy Ej
nuc with respect to X0 and X1 appearing in

the effective masses, the matrix Iqq′ and the entrainment matrix are expressible in terms of
the parameters of the effective interaction as [16]

δEj
nuc

δX0
=

3
16

t1 +
1
4

t2

(
5
4
+ x2

)
+

3
16

t4nβ +
1
4

t5

(
5
4
+ x5

)
nγ (69)

δEj
nuc

δX1
= −1

8
t1

(
1
2
+ x1

)
+

1
8

t2

(
1
2
+ x2

)
− 1

8
t4

(
1
2
+ x4

)
nβ +

1
8

t5

(
1
2
+ x5

)
nγ . (70)
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The potentials in homogeneous matter read (recalling the shorthand notations n ≡ n0,
jjj ≡ j0j0j0 and τ ≡ τ0)

Uq = t0

[(
1 +

1
2

x0

)
n−

(
1
2
+ x0

)
nq

]
+

1
4

t1

[(
1 +

1
2

x1

)
τ −

(
1
2
+ x1

)
τq

]

+
1
4

t2

[(
1 +

1
2

x2

)
τ +

(
1
2
+ x2

)
τq

]

+
1
12

t3nα−1

[(
1 +

1
2

x3

)
(2 + α)n2 −

(
1
2
+ x3

)2nnq + α ∑
q′=n,p

n2
q′

]

+
1
4

t4nβ−1

[(
1 +

1
2

x4

)
(1 + β)nτ −

(
1
2
+ x4

)nτq + β ∑
q′=n,p

nq′τq′

] (71)

+
1
4

t5nγ−1

[(
1 +

1
2

x5

)
(1 + γ)nτ +

(
1
2
+ x5

)nτq + γ ∑
q′=n,p

nq′τq′

]

+
1
8

t4βnβ−1

[
(x4 − 1)jjj2 + 4

(
1
2
+ x4

)
jqjqjq · (jqjqjq − jjj)

]

− 1
8

t5γnγ−1

[
3(x5 + 1)jjj2 + 4

(
1
2
+ x5

)
jqjqjq ·
(
jqjqjq − jjj

)]

+
1
4 ∑

q′=n,p

∂vπq′

∂nq
ñ2

q′ .

The functional derivative of the energy E with respect to the square modulus of the
abnormal density ñq is related to the strength vπq of the effective pairing interaction as

δE
δ|ñq|2

=
1
4

vπq . (72)

In most existing functionals, vπq is expressed [33] as the sum of a constant “volume”
term and a “surface term” proportional to the density n to some power with parameters
adjusted empirically to reproduce the average pairing gaps in some finite nuclei [34]. Such
functionals may thus lead to unreliable predictions when applied to homogeneous nuclear
matter [35]. On the contrary, the pairing strengths vπ q[nn, np] < 0 of the Brussels–Montreal
functionals were determined so as to reproduce the 1S0 pairing gaps in infinite homo-
geneous neutron matter and in symmetric nuclear matter at T = 0 and in the absence
of currents (these reference gaps will be denoted by ∆̂NM and ∆̂SM respectively), as ob-
tained from many-body calculations using realistic potentials (see [35–37] for details). Very
accurate analytical expressions for the pairing strengths were obtained in [38]:

vπq[nn, np
]

= −
4π2h̄2Σq

mkFq

[
log

(
64m⊕q Σq

m
εFqεΛ

∆̂2
q

)

+ 2

√
1 +

εΛ

εFq

m
m⊕q Σq

− 2 log

(
1 +

√
1 +

εΛ

εFq

m
m⊕q Σq

)
− 4

]−1

. (73)

The parameters Σq are used here to distinguish Brussels–Montreal functionals
BSk17-29 [18,36,39–41] which neglect self-energy corrections (Σq = 1) from the most
recent series BSk30-32 [32] which include them (Σq = m/m⊕q ). Since reference pairing gaps
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∆̂(nn, np) for arbitrary composition are needed, the following interpolation ansatz was
adopted in [36] for BSk17 and subsequent functionals:

∆̂q(nn, np) = ∆̂SM(n)(1− |η|)± ∆̂NM(nq) η
nq

n
, (74)

where η = (nn − np)/n and the upper (lower) sign is to be taken for q = n(p). Because
this parametrization is empirical, we have found that ∆̂q(nn, np) may become negative
depending on the composition and density n. In such cases, we merely set ∆̂q(nn, np) = 0.
As for the nucleon mass, it is defined as m = 2(1/mn + 1/mp)−1.

For numerical calculations, we will adopt the Brussels–Montreal functional BSk24 [18].
The reference pairing gaps were taken from the extended Brueckner–Hartree–Fock calcula-
tions of [42]. The associated parameters are indicated in Tables 1 and 2. The reference gaps
can be conveniently represented as

∆̂SM(n) = H(kmax − kF)∆0
k3

F
k2

F + k2
1

(kF − k2)
2

(kF − k2)2 + k2
3

, (75)

∆̂NM(nq) = H(kmax − kFq)∆0
k2

Fq

k2
Fq + k2

1

(kFq − k2)
2

(kFq − k2)2 + k2
3

, (76)

where kF = (3π2n/2)1/3, H is the Heaviside unit-step function, and k1, k2, k3 and kmax are
fitted parameters. The functional BSk24 has been recently employed for determining the
composition and the equation of state of dense matter throughout all regions of a neutron
star [19,20] including the pasta mantle [21] and allowing for strong magnetic fields [22].
More importantly, as shown in [23,43,44], this functional turns out to be in very good agree-
ment with existing astrophysical observations including those from the binary neutron-star
merger GW170817 [45] as well as from PSR J0740+6620 and PSR J0030+0451 by the Neutron
star Interior Composition Explorer (NICER) [46–49]. Results for the entrainment matrix at
finite temperatures but in the absence of superflows have been recently published in [11]
within Landau’s theory using values for the Landau parameters calculated for the Brus-
sels–Montreal functionals including BSk24 and setting arbitrarily the critical temperatures.
We will present here consistent numerical results for the pairing gaps, chemical potentials
and entrainment matrix for arbitrary temperatures and superfluid velocities in different
regions of neutron-star cores.

Table 1. Parameters of the functional BSk24 [18]. The unit of length is femtometer and the unit of
energy is megaelectronvolt.

t0 −3970.29
t1 395.766
t2 10−5

t3 22648.6
t4 −100.000
t5 −150.000
x0 0.894371
x1 0.0563535
x2 −0.138961 × 109

x3 1.05119
x4 2.00000
x5 −11.0000
α 1/12
β 1/2
γ 1/12
εΛ 16.0
Σq 1
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Table 2. Parameters of the reference gaps from [37]. The unit of length is femtometer and the unit of
energy is megaelectronvolt. With kind permission of The European Physical Journal (EPJ).

∆0 k1 k2 k3 kmax

∆̂SM 133.779 0.943146 1.52786 2.11577 1.51
∆̂NM 14.9003 1.18847 1.51854 0.639489 1.52

3.2. Numerical Implementation

The TDHFB equations are solved as follows. We first compute the pairing gaps ∆(0)
q

at zero temperature and in the absence of currents by solving Equations (43) and (44) for
T = 0 and Vq = 0 via a root-finding method with a precision of 10−8, searching around the
approximate solutions µq ≈ εFq and the following expression given by Equation (14) in [38]:

∆(0)
q ≈

8√εFqεΛ

1 +
√

1 + εΛ/εFq

exp

[
1

vπqD̆(0)
+

√
1 +

εΛ

εFq
− 2

]
. (77)

In a second stage, we use this solution to determine iteratively the pairing gaps ∆q
and the reduced chemical potentials µq at finite temperature T > 0 and for given effective
superfluid velocitiesVnVnVn andVpVpVp. An initial guess for ∆q is obtained by solving Equation (59)

using for ∆̆(0)
q the gap obtained previously. With this first estimate of the gap, Equation (44)

is solved using the Newton-Raphson method and µq ≈ εFq as the initial guess. Substituting
these first estimates for ∆q and µq in the right-hand side of Equation (43) leads to a new
estimate for the pairing gap ∆q, which is injected in Equation (44) to refine the chemical
potential µq. The process is repeated until the difference in the pairing gaps between

two successive iterations lies below 10−4∆(0)
q . Having found ∆q and µq, the functions Yq

are calculated from Equation (38). The entrainment matrix can be easily inferred from
Equations (19)–(25) together with Equations (69) and (70).

3.3. 1S0 Pairing Gaps

The 1S0 neutron and proton pairing gaps ∆(0)
q for npeµ matter in beta-equilibrium at

T = 0 and Vq = 0 are displayed in Figures 1 and 2 at densities relevant for the outer core of
neutron stars above the crust-core transition at density ncc = 0.08076 fm−3 ≈ 0.5n0, where
n0 = 0.1578 fm−3 is the nuclear saturation density with the corresponding mass density
ρ0 = mn0 = 2.654× 1014 g cm−3. We have made use of the composition calculated in [19].

The approximate formula (77) is found to be in excellent agreement with the exact
results, the deviations being contained within the thickness of the solid lines. With neutron-
star matter containing only a few percents of protons, the reference pairing gaps for neu-
trons (74) are approximately given by that in pure neutron matter ∆̂n(nn, np) ≈ ∆̂NM(nn),
as obtained from the many-body calculations of [42] using realistic potentials. On the
contrary, the reference pairing gaps for protons are mainly determined by the interpola-
tion ∆̂p(nn, np) ≈ ∆̂NM(np)np/n. This explains why the proton gaps ∆p are significantly
smaller than the neutron ones ∆n unlike those usually employed in neutron-star studies, as
e.g., in [4]. This result could reveal a deficiency of the interpolation (74). On the other hand,
the proton pairing gaps remain highly uncertain (see, e.g., [25,50,51]). Recent many-body
calculations [52] taking into account medium-polarization effects through self-energy and
vertex corrections lead to very small proton pairing gaps in neutron-star matter of compa-
rable magnitudes to those plotted in Figure 2. This study also shows that the three-body
interactions, especially those between two protons and one neutron, reduce consider-
ably the domain of temperatures and densities over which protons are superfluid (see
also [53,54]).
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Figure 1. 1S0 neutron pairing gaps (in MeV) at zero temperature and in the absence of currents for
npeµ matter in beta-equilibrium as a function of the baryon density n in units of saturation density
n0. The pairing gaps obtained from (77) are indistinguishable from the exact ones.
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Figure 2. Same as Figure 1 for 1S0 proton pairing gaps.

The variations of the neutron and proton pairing gaps with temperature and effective
superfluid velocity are found to be essentially independent of density when considering
the dimensionless ratios ∆q/∆(0)

q , T/T(0)
cq and Vq/V(0)

cq , with

T(0)
cq =

eγ

kBπ
∆(0)

q , (78)

V(0)
cq =

e
2

∆(0)
q

h̄kFq
. (79)

As shown in Figures 3 and 4, the gaps for both neutrons and protons decrease mono-
tonically with increasing temperature and effective superfluid velocity due to the excitation
of quasiparticles. For vanishing effective superfluid velocities Vq = 0 (i.e., in the absence
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of mass flow ρqρqρq = 000), the temperature dependence of the pairing gaps is well fitted by the
following expression [55]:

∆q(T ≤ T(0)
cq ,Vq = 0)

∆(0)
q

=
eγ

π

√
1− T

T(0)
cq

1.456
T

T(0)
cq

− 0.157
√

T

T(0)
cq

+ 1.764

 . (80)
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Figure 3. 1S0 nucleon pairing gap relative to that at zero temperature and in the absence of super-

flow, as a function of the normalized effective superfluid velocity Vq/V(0)
cq for different normalized

temperatures T/T(0)
cq .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T/T(0)

cq  
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

q/
(0

)
q

 

q/ (0)
cq = 0

q/ (0)
cq = 0.10

q/ (0)
cq = 0.25

q/ (0)
cq = 0.50

q/ (0)
cq = 0.75

q/ (0)
cq = 0.90

q/ (0)
cq = 0.99

Figure 4. 1S0 nucleon pairing gap relative to that at zero temperature and in the absence of superflow,

as a function of the normalized temperature T/T(0)
cq for different normalized effective superfluid

velocities Vq/V(0)
cq .
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This same formula was applied in [13] to evaluate the entrainment matrix. At zero
temperature, the pairing gap remains equal to ∆(0)

q until the effective superfluid velocity
Vq reaches Landau’s critical velocity VLq, which for BCS condensates is given by [56]

VLq =
∆(0)

q

h̄kFq
. (81)

Beyond this point, the pairing gap decreases with increasing effective superfluid
velocity and vanishes for Vq = V(0)

cq . We find that this behavior is well reproduced by the
following interpolating formula:

∆q(T = 0,VLq ≤ Vq ≤ V(0)
cq )

∆(0)
q

= 0.5081

√√√√1−
Vq

V(0)
cq

3.312
Vq

V(0)
cq

− 3.811

√√√√V(0)
cq

Vq
+ 5.842

 . (82)

The maximum relative error does not exceed 0.13%.
The critical temperature and critical effective superfluid velocity delimiting the super-

fluid and normal phases, plotted in Figure 5 is well fitted by the following expression:

Tcq

T(0)
cq

(Vq ≤ V(0)
cq ) '

1−

 Vq

V(0)
cq

2


2/5

. (83)

This interpolation is valid for both neutrons and protons. The errors are contained
within the thickness of the lines in Figure 5.
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Figure 5. Phase diagram for the nucleon species q in terms of the normalized temperature T/T(0)
cq

and the normalized effective superfluid velocity Vq/V(0)
cq .

The universality observed in the superfluid properties of both neutrons and protons
(after a suitable choice of normalizations) is the consequence of the weak-coupling regime,
as discussed in Section 2.5. Indeed, as shown in Equation (65), the normalized pairing
gaps ∆̆q/∆̆(0)

q are independent of the pairing strength vπq (hence also of the associated

pairing cutoff εΛ) and depend only on the rescaled temperature T/T(0)
cq and effective

superfluid velocity Vq/V(0)
cq . Estimating the exact pairing gaps ∆(0)

q from Equation (77) and
substituting in Equation (65) lead to a very good approximation for the exact pairing gaps
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∆q/∆(0)
q at finite temperatures and arbitrary effective superfluid velocities. The largest

absolute deviations are found at the crust-core interface: they are of order of 10−3 for
neutrons and lie within the numerical errors for protons.

3.4. Reduced Chemical Potentials

The TDHFB theory allows the determination of the chemical potentials consistently
with the pairing gaps. Let us recall that in Landau’s theory adopted in previous
studies [13–15], the reduced chemical potential µq was approximated by the corresponding
Fermi energy εFq; effects induced by pairing, temperature, and currents were therefore
ignored. To assess the precision of this approximation, we have computed µq numerically
by solving simultaneously Equations (43) and (44) varying the temperature and the neutron
effective superfluid velocity. The largest relative errors between µq and the Fermi energy
εFq we have found (at the crust-core interface) are 0.14% for neutrons and 0.052% for pro-
tons. Such errors have been obtained for low temperatures and small effective superfluid
velocities for which pairing effects are the most important. Focusing on these conditions,
we have plotted in Figure 6 the ratio µq/εFq as a function of density. As expected, the
higher the density, the more precise are Landau’s approximations. To a large extent, the
small deviations between µq and εFq stem from the rather small pairing gaps predicted by
the functional BSk24. Larger deviations cannot be excluded if another functional is adopted.
In any case, let us recall that both Equations (43) and (44) should be solved simultaneously
to obtain fully consistent pairing gaps and chemical potentials.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
n/n0 

0.9984
0.9986
0.9988
0.9990
0.9992
0.9994
0.9996
0.9998
1.0000

q/
Fq

Neutron
Proton

Figure 6. Reduced chemical potentials µq relative to the corresponding Fermi energy for npeµ matter
in beta-equilibrium at baryon densities prevailing in neutron-star cores in units of the saturation
density n0. Results obtained at T = 0 and for Vq = 0.

3.5. Functions Yq

Having computed the pairing gaps ∆q as well as the reduced chemical potentials µq at
finite temperatures and for arbitrary effective superfluid velocities by solving
Equations (43) and (44), we can now evaluate the functions Yq from Equation (38). When

expressed in terms of the dimensionless ratios T/T(0)
cq and Vq/V(0)

cq , results are found to be
essentially independent of density and are summarized in Figures 7 and 8.
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Figure 7. Yq as a function of the normalized effective superfluid velocity Vq/V(0)
cq for different

normalized temperatures T/T(0)
cq . The legend of the curves is the same as in Figure 3.
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q

Figure 8. Yq as a function of the normalized temperature T/T(0)
cq for different normalized effective

superfluid velocities Vq/V(0)
cq . The legend of the curves is the same as in Figure 4.

The functions Yq are well approximated by the functions Φq defined by Equation (62)

where the pairing gaps ∆̆q are computed from Equation (59) and provided ∆̆(0)
q are evalu-

ated from Equation (77). Since the deviations decrease with increasing density, we have
focused on the crust-core interface. The absolute errors are found to be at most of order
10−3 for Yn and 10−4 for Yp. It follows from Equation (67) that the function Yq is universal.
In the absence of superflow Vq = 0, the temperature dependence of the functions Yq can
be well fitted by the following expression [57] (errors not exceeding 2.6%):
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Yq(T ≤ T(0)
cq ,Vq = 0) '

0.9443 +

√√√√√0.05572 +

0.1886
π

eγ

∆q(T)

∆(0)
q

T(0)
cq

T

2


1/2

× exp

1.753−

√√√√√1.7532 +

 π

eγ

∆q(T)

∆(0)
q

T(0)
cq

T

2
 (84)

with ∆q(T) computed using the interpolation (80).

3.6. Effective versus True Superfluid Velocities

The results we have presented so far have been conveniently expressed in terms of
the effective superfluid velocities VqVqVq, which are related to the original superfluid velocities
VqVqVq by Equations (29) and (32). These relations are highly nontrivial, recalling that the
coefficients Iqq′ , defined by (21)–(25), depend on Vq through the functions Yq.

So far, we have treated the effective superfluid velocities as free parameters. In reality
however, VnVnVn and VpVpVp are determined by the dynamics of the star, as pointed out in the
previous analysis of entrainment effects in [15]. In particular, in the study of low-frequency
oscillations, it is a very good approximation to assume that the electric current in the
normal frame vanishes, as shown in the classical work of [58]. Considering that leptons
are co-moving with quasiparticle excitations, the previous condition reads vpvpvp = 000 (in the
normal frame). It immediately follows from Equation (53) thatVpVpVp = 000. In the following, we
will restrict to this case as in [15] since it is of most physical interest. Under such condition,
the vectors VnVnVn and VpVpVp are aligned, and are given by

VnVnVn =

[
1− 2

h̄2

(
δEj

nuc
δX0

+
δEj

nuc
δX1

)(
m⊕p np + m⊕n nnYn

)
+

16

h̄4
δEj

nuc
δX0

δEj
nuc

δX1
m⊕p npm⊕n nnYn

]

×Ξ
m⊕n
m

VnVnVn, (85)

VpVpVp =

[
2
h̄2

(
δEj

nuc
δX0

− δEj
nuc

δX1

)
(1−Yn)m⊕n nn

]
Ξ

m⊕p
m

VnVnVn, (86)

Ξ =

[
1− 2

h̄2

(
δEj

nuc

δX0
+

δEj
nuc

δX1

)(
m⊕p np + m⊕n nn

)
+

16
h̄4

δEj
nuc

δX0

δEj
nuc

δX1
m⊕p npm⊕n nn

]−1

. (87)

These superfluid velocities depend on the baryon density n, the temperature T and the
neutron effective superfluid velocity VnVnVn. Please note that under Landau’s approximations,
the norm of (85) reduces to Equation (79) of [15] (these authors adopted the notation Φ̃q for
Yq, m∗n for the neutron effective mass m⊕n , Ṽn for the neutron effective superfluid velocity

Vn and vn for the neutron true superfluid velocity Vn; the Landau parameters Fqq′
1 are given

by Equation (100) of [17]).
Results for the norms, considering npeµ matter in beta-equilibrium, are displayed in

Figures 9 and 10 for two different densities. These superfluid velocities are only defined
in the superfluid phase, for effective superfluid velocities and temperatures lower than
their associated critical values given by (83). Indeed, in the normal phase, the abnormal
densities ñq vanish identically and the associated superfluid velocities are therefore ill
defined. However, this has no physical implications since the superfluid velocities are
irrelevant in this case.
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Although the neutron superfluid velocity is roughly equal to the effective superfluid
velocity, Vn ≈ Vn, the proton superfluid velocity exhibits a more complicated behavior as a
function of Vn. From Equation (86), we have Vp ∝ (1−Yn)Vn. For sufficiently low neutron
effective superfluid velocities, Yn ≈ 0 therefore Vp increases linearly with Vn. However,
Yn increases with Vn leading to a decrease of Vp (for Vn ' VLn), which vanishes when

Vn = V(0)
cn corresponding to Yn = 1.
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Figure 9. Upper panel: neutron superfluid velocity Vn relative to the corresponding critical velocity

as a function of the normalized effective neutron superfluid velocity Vn/V(0)
cn in npeµ matter in

beta-equilibrium at the crust-core interface for different temperatures. Results were obtained for
Vp = 0. Lower panel: same for the proton superfluid velocity Vp.
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Figure 10. Same as Figure 9 at saturation density n0. Please note that for the proton superfluid

velocity Vp, results for temperatures T ≤ T(0)
cp are all contained within the thickness of the solid line.

3.7. Entrainment Matrix

Having computed the pairing gaps, chemical potentials, and functions Yq we can
now determine the entrainment matrix from Equation (19). To better see the influence of
temperature and superflows, results will be compared to those obtained at zero temperature
and in the limit of small currents (conditions for which pairing can be ignored) using
the following expression that we have previously calculated within the time-dependent
Hartree–Fock (TDHF) theory [16]:

ρTDHF
np = ρTDHF

pn = − 2
h̄2 ρnρp

(
δEj

nuc

δX0
− δEj

nuc

δX1

)
, (88)

ρTDHF
nn = ρn − ρTDHF

np , (89)

ρTDHF
pp = ρp − ρTDHF

pn . (90)
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These matrix elements are shown in Figure 11 for npeµ matter in beta-equilibrium at
densities relevant for the outer core of neutron stars. Results within the TDHFB theory
for finite temperatures and different neutron effective superfluid velocities (recalling that
we set Vp = 0 as discussed in Section 3.6) are plotted in Figures 12–14 at the crust-core
interface, and in Figures 15–17 at the saturation density.

Quite remarkably, the entrainment matrix at T = 0 remains independent of the
neutron effective superfluid velocity provided the latter does not exceed Landau’s critical
velocity. In other words, the expressions obtained in [16] in the limit of vanishing small
effective superfluid velocities are actually exact for any effective superfluid velocity lying
below Landau’s critical value. This can be traced back to the vanishing of the function Yq
for Vq ≤ VLq, as can be seen in Figure 7. This also entails that the entrainment matrix does
not depend on the pairing gaps in this regime, thus justifying a posteriori our application
of the TDHF theory [16] instead of TDHFB [17] since the gaps can thus artificially be set to
zero. However, the TDHFB theory is still required for the determination of the actual value
for VLq.

At finite but sufficiently low temperatures, the entrainment matrix remains weakly
dependent on the neutron effective superfluid velocity provided Vq ≤ VLq. For higher
neutron effective superfluid velocities, the entrainment matrix elements ρnn and ρnp = ρpn
are reduced, even at T = 0. The element ρpp is essentially independent of Vn. The influence
of T and Vn becomes increasingly important as these parameters approach their critical
value. In particular, ρnn and ρnp = ρpn both vanish when Vn = V(0)

cn : neutron superfluidity
is destroyed and the neutron mass is thus entirely transported by the normal fluid, as can
be seen from Equation (1). On the other hand, protons remain superconducting but are
no longer entrained by neutrons: the two species are dynamically uncoupled. The proton
mass current (2) thus reduces to the familiar expression for a single superfluid.
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Figure 11. Entrainment matrix elements (normalized by the saturation density ρ0 = n0m) for npeµ

matter in beta-equilibrium at zero temperature and in the limit of small currents at baryon densities
prevailing in neutron-star cores in units of the saturation density n0.
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Figure 12. Dimensionless entrainment matrix element ρnn/ρTDHF
nn as a function of the normalized

effective superfluid velocity Vn/V(0)
cn and the normalized temperature T/T(0)

cn for npeµ matter in
beta-equilibrium at the crust-core interface and for Vp = 0.
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Figure 13. Dimensionless entrainment matrix element ρpp/ρTDHF
pp as a function of the normalized

temperature T/T(0)
cp , for npeµ matter in beta-equilibrium at the crust-core interface and for Vp = 0.

Results obtained for different neutron effective superfluid velocities are indistinguishable.
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Figure 14. Dimensionless entrainment matrix element ρnp/ρTDHF
np as a function of the normalized

effective superfluid velocity Vn/V(0)
cn and the normalized temperature T/T(0)

cp , for npeµ matter in
beta-equilibrium at the crust-core interface and for Vp = 0.

3.8. Chemical Potentials

Knowing the relation between the effective superfluid velocitiesVqVqVq and the superfluid
velocities VqVqVq, given by Equations (85) and (86) respectively, and using Equation (71) for the
potentials Uq together with Equation (50) for the momentum densities jqjqjq and Equation (51)
for the kinetic-energy densities τq, we can compute the true chemical potentials λq from
Equations (48) and (49). Results for Vp = 0 (as discussed in Section 3.6) are plotted in
Figure 18 for n = ncc and in Figure 19 for n = n0 respectively. Although the chemical
potentials λq are found to be very weakly dependent on the temperature and on the neutron
effective superfluid velocity (in the regime for which superfluidity exists), they deviate
substantially from their corresponding Fermi energies εFq due to the contribution from the
potential Uq.
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Figure 15. Same as Figure 12 at the saturation density n0 using the same notation for the meaning of
the different curves.
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Figure 16. Same as Figure 13 at the saturation density n0.
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Figure 17. Same as Figure 14 at the saturation density n0.
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Figure 18. Cont.
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Figure 18. Upper panel: neutron chemical potential λn normalized to the associated Fermi energy εFn

as a function of the normalized neutron effective superfluid velocity Vn/V(0)
cn and of the normalized

temperature T/T(0)
cn for npeµ matter in beta-equilibrium at the crust-core interface and for Vp = 0.

Lower panel: same for the proton chemical potential λp.
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Figure 19. Same as Figure 18 at the saturation density n0. Please note that for the proton chemical

potential λp, results for temperatures (ranging from 0 to T(0)
cp ) are all contained within the thickness of

the solid line.
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4. Conclusions

We have studied the neutron–proton superfluid mixture present in the outer core
of a neutron star in the framework of the nuclear-energy-density functional theory. In
particular, we have calculated consistently the 1S0 pairing gaps ∆q of each nucleon species
q, their chemical potentials λq, and the entrainment matrix elements ρqq′ relating the mass
currents ρqρqρq to the so-called superfluid “velocities” VqVqVq (actually representing superfluid
momenta per unit mass) in the normal-fluid rest frame.

To this end, we have solved numerically the self-consistent TDHFB equations with
the Brussels–Montreal functional BSk24 [18] for npeµ matter in beta-equilibrium over the
whole range of temperatures and velocities for which nuclear superfluidity can exist using
the composition published in [19]. We have considered the full TDHFB equations without
any approximation. In particular, the vector potentials IqIqIq and the contributions from the
momentum densities h̄jqjqjq to the potentials Uq and to the kinetic densities τq have been fully
taken into account. We have shown that h̄jqjqjq represents the total momentum density of a
given nucleon species q, accounting not only for the superfluid momentum density ρqVqVqVq
but also for the momentum density carried by the quasiparticles, as shown in Equation (54).
Because the true velocity vqvqvq = ρqρqρq/ρq of the nucleon species q in the normal frame is related
to the effective superfluid velocity VqVqVq introduced in Equation (29) through Equation (53),
VqVqVq appears as the natural variable to characterize the superflow of the nucleon species q.

The 1S0 proton pairing gaps ∆(0)
p at zero temperature and in the absence of flows

are found to be significantly smaller than the neutron gaps ∆(0)
n , unlike those generally

considered in neutron-star simulations. Although proton gaps are mainly determined by
the empirical interpolation (74) between the reference gaps in symmetric nuclear matter and
pure neutron matter, they turn out to be consistent with recent diagrammatic calculations
taking into account medium-polarization effects and considering both two- and three-body
interactions [52]. We have shown that the gaps ∆(0)

q are accurately reproduced by the
approximate formula (77).

The normalized 1S0 pairing gaps ∆q/∆(0)
q and the fraction Yq of quasiparticles are

found to be universal functions of T/T(0)
cq and Vq/V(0)

cq , with the critical temperature and
critical velocity given by Equations (78) and (79) respectively, in the sense that they depend
neither on the composition nor on the density, and are the same for both neutrons and
protons. This result can be understood from the fact that 1S0 nucleon superfluidity in
the core of neutron stars is in the (weak-coupling) BCS regime. We have found that the
temperature dependence of the normalized pairing gaps in the absence of flows is well
fitted by Equation (80) proposed in [55]. We have obtained new accurate interpolating
formulas for describing the velocity-dependence of the normalized pairing gaps at zero
temperature (82), as well as for the critical temperatures (83). For arbitrary temperatures
and velocities, the pairing gaps can be determined with a very good accuracy by solving
numerically Equation (59) instead of the full TDHFB equations.

We have found that the approximations reducing the TDHFB equations to Landau’s
theory provide accurate results for the entrainment matrix ρqq′ provided the critical temper-

atures T(0)
cq in the absence of superflow are given. Moreover, the reduced chemical potentials

µq defined by Equation (35) are well approximated by the corresponding Fermi energies εFq
given by Equation (41). However, this conclusion may change depending on the functional,
especially if the adopted one predicts stronger pairing. Moreover, numerical solutions of
the full TDHFB equations are still required for calculating the chemical potentials λq.

Together with the results published in [19–22] for the composition and the equation
of state, our calculations provide consistent microscopic inputs for modeling the global
structure and dynamics of superfluid neutron stars. Although we have considered the
specific functional BSk24 because it has been shown to be in excellent agreement with
existing nuclear data and astrophysical observations [23,44], we have also derived all
the necessary equations to evaluate superfluid properties for any other functional of the
Brussels–Montreal type (this includes all the functionals based on standard Skyrme effective
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nucleon-nucleon interactions). Extension of the TDHFB theory to account for 3PF2 neutron
superfluidity in the inner core of massive neutron stars is left for future studies.

Author Contributions: Conceptualization, N.C. and V.A.; methodology, V.A. and N.C.; software,
V.A.; validation, V.A. and N.C.; formal analysis, V.A.; investigation, V.A.; resources, N.C.; data
curation, V.A.; writing—original draft preparation, V.A. and N.C.; writing—review and editing, N.C.
and V.A.; visualization, V.A.; supervision, N.C.; project administration, N.C.; funding acquisition,
N.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Fonds de la Recherche Scientifique (Belgium)
under Grant No. PDR T.004320. This work was also partially supported by the European Cooperation
in Science and Technology action (EU) CA16214.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

TDHFB time-dependent Hartree–Fock–Bogoliubov
TDHF time-dependent Hartree–Fock
NM (Pure) Neutron matter
SM Symmetric matter

Appendix A. Weak-Coupling Approximation

Adopting Landau’s approximations discussed in Section 2.5, the gap equation reads

∆̆q ≈ −
1
2

vπqD̆(0)
∫ εΛ/εFq

xmin

dx
∆̆q

Ĕ(q)
x

T̄q

2V̄q
log

[
cosh

(
Ĕ(q)

x

2T̄q
+

V̄q

T̄q

)
sech

(
Ĕ(q)

x

2T̄q
−

V̄q

T̄q

)]
, (A1)

where the pairing strength is given by Equation (73), the density of single-particle states by
Equation (58) and Landau’s quasiparticle energy by Equation (63). The lower bound of the
integral consistent with the approximate single-particle energies (56) is xmin = −2.

Focusing on the superfluid phase (T < Tcq) such that ∆̆q 6= 0, dividing Equation (A1)
by ∆̆q yields

1 +
1
2

vπqD̆(0)
∫ εΛ/εFq

xmin

dx

Ĕ(q)
x

≈ −1
2

vπqD̆(0)
∫ εΛ/εFq

xmin

dx

Ĕ(q)
x

{
T̄q

2V̄q
log

[
cosh

(
Ĕ(q)

x
2T̄q

+
V̄q

T̄q

)
sech

(
Ĕ(q)

x
2T̄q
−

V̄q

T̄q

)]
− 1

}
. (A2)

Let us remark that
T̄q

2V̄q
log

[
cosh

(
Ĕ(q)

x

2T̄q
+

V̄q

T̄q

)
sech

(
Ĕ(q)

x

2T̄q
−

V̄q

T̄q

)]
→ tanh

(
Ĕ(q)

x

2T̄q

)
in

the limit V̄q → 0, and is equal to 1 when evaluated at T = 0 since Ĕ(q)
x > 0. Taking the limit

of Equation (A1) in the absence of currents and evaluating it at zero temperature, we thus
obtain the approximate gap equation for ∆̆(0)

q

∆̆(0)
q ≈ −1

2
vπqD̆(0)

∫ εΛ/εFq

xmin

dx ∆̆(0)
q

x2 +

 ∆̆(0)
q

εFq

2

−1/2

. (A3)
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We can divide both sides of Equation (A3) by ∆̆(0)
q . Therefore, the left-hand side of

Equation (A2) can be expressed as

1 +
1
2

vπqD̆(0)
∫ εΛ/εFq

xmin

dx

Ĕ(q)
x

= −1
2

vπqD̆(0)


∫ εΛ/εFq

xmin

dx

x2 +

 ∆̆(0)
q

εFq

2

−1/2

−
∫ εΛ/εFq

xmin

dx

Ĕ(q)
x

 (A4)

= −1
2

vπqD̆(0)

asinh

 εΛ

∆̆(0)
q

− asinh

 xminεFq

∆̆(0)
q

− asinh

(
εΛ

∆̆q

)
+ asinh

(
xminεFq

∆̆q

) .

Following [15], the weak-coupling approximation ∆̆q, ∆̆(0)
q � εΛ, εFq allows us to re-

place the inverse hyperbolic sine function by its asymptotic form asinh(u) ≈ log(2u).
Taking the limit εΛ/εFq → +∞ and xmin → −∞ and eliminating vπqD̆(0) leads to
Equation (59). Please note that unlike the original gap Equation (A1), the limit εΛ/εFq →
+∞ can be taken here since the integral does not exhibit any divergence.
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