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Abstract: We use an up-to-date compilation of Tully–Fisher data to search for transitions in the
evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at ≈3σ

level for a transition at critical distances Dc ' 9 Mpc and Dc ' 17 Mpc. We split the full sample in
two subsamples, according to the measured galaxy distance with respect to splitting distance Dc,
and identify the likelihood of the best-fit slope and intercept of one sample with respect to the best-fit
corresponding values of the other sample. For Dc ' 9 Mpc and Dc ' 17 Mpc, we find a tension
between the two subsamples at a level of ∆χ2 > 17 (3.5σ). Using Monte Carlo simulations, we
demonstrate that this result is robust with respect to random statistical and systematic variations of
the galactic distances and is unlikely in the context of a homogeneous dataset constructed using the
Tully–Fisher relation. If the tension is interpreted as being due to a gravitational strength transition,
it would imply a shift in the effective gravitational constant to lower values for distances larger than
Dc by ∆G

G ' −0.1. Such a shift is of the anticipated sign and magnitude but at a somewhat lower
distance (redshift) than the gravitational transition recently proposed to address the Hubble and
growth tensions ( ∆G

G ' −0.1 at the transition redshift of zt . 0.01 (Dc . 40 Mpc)).

Keywords: cosmology; galaxies; Tully–Fisher relation; gravitational transition

1. Introduction

The Tully–Fisher relation (TFR) [1] has been proposed as an empirical relation that
connects the intrinsic optical luminosity of spiral galaxies with their observed maximum
velocity vrot in the rotation curve as follows:

L = Avs
rot (1)

where s ' 4 is the slope in a logarithmic plot of (1), and A is a constant (log(A) is the zero
point or intercept). The constants s and A appear to depend very weakly on galaxy proper-
ties, including the mass to light ratio, the observed surface brightness, the galactic profiles,
HI gas content, size, etc. [2]. They clearly also depend, however, on the fundamental
properties of gravitational interactions as demonstrated below.

The baryonic Tully–Fisher relation (BTFR) is similar to Equation (1) but connects the
galaxy’s total baryonic mass (the sum of mass in stars and HI gas) MB with the rotation
velocity as follows:

MB = ABvs
rot (2)

where AB ' 50M� km−4 s4 [3]. This allows to include gas-rich dwarf galaxies that appear
in groups and have stellar masses below 109M�.

A simple heuristic analytical derivation for the BTFR can be obtained as follows [4].
Consider a star in a circular orbit of radius R around a galactic mass M rotating with
velocity v. Then, the following holds:

v2 = GeffM/R =⇒ v4 = (GeffM/R)2 ∼ M S G2
eff (3)
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where Geff is the effective Newton’s constant involved in gravitational interactions and S the
surface density S ≡ M/R2, which is expected to be constant [5]. From Equations (2) and (3),
the following is anticipated:

AB ∼ G−2
eff S−1 (4)

Therefore, the BTFR can, in principle, probe both galaxy formation dynamics (through, e.g.,
S) and possible fundamental constant dynamics (through Geff). An interesting feature of
the BTFR is that despite the above heuristic derivation, it appears to be robust, even in
cases when the galaxy sample includes low S and/or varying S galaxies [6,7]. In fact, no
other parameter appears to be significant in the BTFR.

The BTFR has been shown to have lower scatter [2,8,9] than the classic stellar TFR and
also to be applicable for galaxies with stellar masses lower than 109M�. It is also more
robust than the classic TFR [10–13] since the parameters AB (intercept) and s (slope) are
very weakly dependent on galactic properties, such as size and surface brightness [2].

The low scatter of the BTFR and its robustness make it useful as a distance indicator
for the measurement of the Hubble constant H0. A calibration of the BTFR using Cepheid
and TRGB distances leads to a value of H0 = 75± 3.8 km s−1 Mpc−1 [14].

This value of H0 is consistent with local measurements of H0, using SnIa calibrated with
Cepheids (H0 = 73.2± 1.3 km s−1 Mpc−1) [15], but is in tension with the value of H0 obtained
using the early time sound horizon standard ruler calibrated using the CMB anisotropy spec-
trum in the context of the standard ΛCDM model (H0 = 67.36± 0.54 km s−1 Mpc−1) [16].
The tension between the CMB and Cepheid calibrators is at a level larger than 4σ and
constitutes a major problem for modern cosmologies (for a recent review and approaches
see Refs. [17–21]).

The Hubble tension may also be viewed as an inconsistency between the value of the
standardized SnIa absolute magnitude M calibrated using Cepheids in the redshift range
0 < z < 0.01 (distance ladder calibration) and the corresponding M value calibrated using
the recombination sound horizon (inverse distance ladder calibration) for 0.01 < z < zrec.
Thus, a recently proposed class of approaches to the resolution of the Hubble tension
involves a transition [22,23] of the standardized intrinsic SnIa luminosity L and absolute
magnitude M at a redshift zt . 0.01 from M = (−19.24± 0.037) mag for z < zt (as implied
by Cepheid calibration) to M = (−19.4 ± 0.027) mag for z > zt (as implied by CMB
calibration of the sound horizon at decoupling) [24]. Such a transition may occur due to
a transition in the strength of the gravitational interactions Geff, which modifies the SnIa
intrinsic luminosity L by changing the value of the Chandrasekhar mass. The simplest
assumption leads to L ∼ MCh ∼ G−3/2

eff [25,26], even though corrections may be required
to the above simplistic approach [27].

The weak evolution and scatter of the BTFR can be used as a probe of galaxy formation
models as well as a probe of possible transitions of fundamental properties of gravitational
dynamics since the zero point constant AB is inversely proportional to the square of the
gravitational constant G. Previous studies investigating the evolution of the best-fit zero
point log AB and slope s of the BTFR have found a mildly high z evolution of the zero
point from z ' 0.9 to z ' 2.3 [28], which was attributed to the galactic evolution inducing
a lower gas fraction at low redshifts after comparing with the corresponding evolution of
the stellar TFR (STFR), which ignores the contribution of gas in the galactic masses.

Ref. [28] and other similar studies assumed a fixed strength of fundamental gravi-
tational interactions and made no attempt to search for sharp features in the evolution
of the zero point. In addition, they focused on the comparison of high redshift with low
redshift effects without searching for possible transitions within the low z spiral galaxy
data. Such transitions, if present, would be washed out and hidden from these studies,
due to averaging effects. In the present analysis, we search for transition effects in the
BTFR at z . 0.01 (distances D . 40 Mpc), which may be due to either astrophysical mecha-
nisms or to a rapid transition in the strength of the gravitational interactions Geff, due to
fundamental physics.
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In many modified gravity theories, including scalar tensor theories, the strength of
gravitational interactions Geff measured in Cavendish-type experiments measuring force F
between masses (F = Geff

m1 m2
r2 ), is distinct from the Planck mass corresponding to GN that

determines the cosmological background expansion rate (H2 = 8πGN
3 ρtot).

For example, in scalar tensor theories involving a scalar field φ and a non-minimal
coupling F(φ) of the scalar field to the Ricci scalar in the Lagrangian, the gravitational
interaction strength is as follows [29]:

Geff =
1
F

2F + 4F,2φ
2F + 3F,2φ

(5)

while the Planck mass related GN is as follows:

GN =
1
F

(6)

Most current astrophysical and cosmological constraints on Newton’s constant con-
strain the time derivative of Geff at specific times, assume a smooth power–law evolution
of Geff, or constrain changes of the Planck mass–related GN instead of Geff (CMB and
nucleosynthesis constraints [30]). Therefore, these studies are less sensitive in the detection
of rapid transitions of Geff at low z.

The current constraints on the evolution of Geff and GN are summarized in Table 1,
where we review the experimental constraints from local and cosmological time scales on
the time variation of the gravitational constant. The methods are based on very diverse
physics, and the resulting upper bounds differ by several orders of magnitude. Most
constraints are obtained from systems in which gravity is non-negligible, such as the
motion of the bodies of the solar system, and the astrophysical and cosmological systems.
They are mainly related in the comparison of a gravitational time scale, e.g., period of orbits,
with a non-gravitational time scale. One can distinguish between two types of constraints,
from observations on cosmological scales and on local (inner galactic or astrophysical)
scales. The strongest constraints to date come from lunar ranging experiments.

In the first column of Table 1, we list the used method. The second column contains
the upper bound

∣∣∆G
G

∣∣
max of the fractional change of G during the corresponding timescale.

Most of these bounds assume a smooth evolution of G. In the third column, we present
the upper bound on the normalized time derivative

∣∣ Ġ
G

∣∣
max. The fourth column is an

approximate time scale over which each experiment is averaging each variation, and the
fifth column refers to the corresponding study where the bound appears. Entries with a
star (∗) indicate constraints on GN , while the rest of the constraints refer to the gravitational
interaction constant Geff.

In the present analysis, we search for a transition of the BTFR best-fit parameter values
(intercept and slope) between data subsamples at low and high distances. We consider
sample dividing distances Dc ∈ [2, 60]Mpc, using a robust BTFR dataset [12,31–33], which
consists of 118 carefully selected BTFR datapoints, providing distance, rotation velocity
baryonic mass (D, Vf , MB) as well as other observables with their 1σ errorbars. We focus
on the gravitational strength Newton constant Geff and address the following questions:

• Are there hints for a transition in the evolution of the BTFR?
• What constraints can be imposed on a possible Geff transition, using BTFR data?
• Are these constraints consistent with the level of Geff required to address the Hub-

ble tension?

The structure of this paper is the following: In the next section, we describe the
datasets involved in our analysis and present the method used to identify transitions in the
evolution of the BTFR at low z. We also show the results of our analysis. In Section 3, we
summarize, present our conclusions and discuss possible implications and extensions of
our analysis.
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Table 1. Solar system, astrophysical and cosmological constraints on the evolution of the gravitational
constant. Methods with star (*) constrain GN , while the rest constrain Geff. The latest and strongest
constraints are shown for each method.

Method
∣∣∣∆Geff

Geff

∣∣∣
max

∣∣∣ Ġeff
Geff

∣∣∣
max

(yr−1) Time Scale (Yr) References

Lunar ranging 1.47× 10−13 24 [34]
Solar system 4.6× 10−14 50 [35,36]
Pulsar timing 3.1× 10−12 1.5 [37]

Strong Lensing 10−2 0.6 [38]
Orbits of binary pulsar 1.0× 10−12 22 [39]
Ephemeris of Mercury 4× 10−14 7 [40]
Exoplanetary motion 10−6 4 [41]
Hubble diagram SnIa 0.1 1× 10−11 ∼108 [42]

Pulsating white-dwarfs 1.8× 10−10 0 [43]
Viking lander ranging 4× 10−12 6 [44]

Helioseismology 1.6× 10−12 4× 109 [45]
Gravitational waves 8 5× 10−8 1.3× 108 [46]

Paleontology 0.1 2× 10−11 4× 109 [47]
Globular clusters 35× 10−12 ∼1010 [48]

Binary pulsar masses 4.8× 10−12 ∼1010 [49]
Gravitochemical heating 4× 10−12 ∼108 [50]

Strong lensing 3× 10−1 ∼1010 [38]
Big Bang Nucleosynthesis * 0.05 4.5× 10−12 1.4× 1010 [30]

Anisotropies in CMB * 0.095 1.75× 10−12 1.4× 1010 [51]

2. Search for Transitions in the Evolution of the BTFR

The logarithmic form of the BTFR (Equation (2)) is as follows:

y = logMB = s logvrot + logAB ≡ s x + b (7)

and a similar form for the TFR. Due to Equation (4), the intercept b ≡ logAB depends on
both the galaxy formation mechanisms through the surface density S and on the strength
of gravitational interactions through Geff.

A controversial issue in the literature is the type of possible evolution of the slope
and intercept of the TFR and the BTFR. Most studies have searched for possible evolution
in high redshifts (redshift range z ∈ [0, 3]) with controversial results. For example, sev-
eral studies found no statistically significant evolution of the intercept of the TFR up to
redshifts of z ∼ 1.7 [52–58], while other studies found a negative evolution of the inter-
cept up to redshift z ' 3 [59–66]. Similar controversial results in high z appeared for the
BTFR, where [60] found no significant evolution of the intercept since z ' 0.6, while [64]
found a positive evolution of the intercept between low-z galaxies and a z ' 2 sample.
In addition, cosmological simulations of disc galaxy formation based on cosmological
N-body/hydrodynamical simulations have indicated no evolution of the TFR based on
stellar masses in the range z ∈ [0.1] [67], indicating also that any observed evolution of the
TFR is an artifact of the luminosity evolution.

These studies have focused mainly on comparing high-z with low-z samples, making
no attempt to scan low redshift samples for abrupt transitions of the intercept and slope.
Such transitions would be hard to explain in the context of known galaxy formation
mechanisms but are well motivated in the context of fundamental gravitational constant
transitions, which may be used to address the Hubble tension [22,23]. Thus, in this section,
we attempt to fill this gap in the literature.

We consider the BTFR dataset shown in Appendix A based on the data from [12,31–33]
of the flat rotation velocity of galaxies vs. the baryonic mass (stars plus gas) consisting
of 118 datapoints, shown in Table A1. The sample is restricted to those objects for which
both quantities are measured to better than 20% accuracy and includes galaxies in the
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approximate distance range D ∈ [1, 130]Mpc. This is a robust low z dataset (z < 0.1) with
low scatter showing no evolution of velocity residuals as a function of the central surface
density of the stellar disks.

Our analysis is distinct from previous studies in two aspects:

• We use an exclusively low z sample to search for BTFR evolution.
• We focus on a particular type of evolution: sharp transitions of the intercept and slope.

In this context, we use the dataset shown in Table A1 of Appendix A [12,31–33], con-
sisting of the distance D, the logarithm of the baryonic mass logMB and the logarithm of
the asymptotically flat rotation velocity logvrot of 118 galaxies along with 1σ errors. We fix
a critical distance Dc and split this sample in two subsamples Σ1 (galaxies with D < Dc)
and Σ2 (galaxies with D > Dc). For each subsample, we use the maximum likelihood
method [68] and perform a linear fit to the data setting yi = log(MB)i, xi = log(vrot)i, while
the parameters to fit are the slope s and the intercept b of Equation (7). Thus, for each
sample j (j = 0, 1, 2 with j = 0 corresponding to the full sample and j = 1, 2 corresponding
to the two subsamples Σ1 and Σ2), we minimize the following:

χ2
j (s, b) =

Nj

∑
i=1

[
yi − (sj xi + bj)

]2

s2
j σ2

xi + σ2
yi + σ2

s
(8)

with respect to the slope sj and intercept bj. We fix the scatter to σs = 0.077, obtained by

demanding that
χ2

0,min
N0

= 1, where χ2
0,min is the minimized value of χ2 for the full sample

and N0 is the number of datapoints of the full sample. We thus find the best fit values of
the parameters sj and bj, (j = 0, 1, 2) and also construct the 1σ− 3σ likelihood contours
in the s − b parameter space for each sample (full, Σ1 and Σ2) for a given value of Dc.
We then evaluate the ∆χ2

kl(Dc) of the best fit of each subsample k, best fit with respect to
the likelihood contours of the other subsample l. Using these values, we also evaluate
the σ-distances (dσ,kl(Dc) and dσ,lk(Dc)) and conservatively define the minimum of these
σ-distances as follows:

dσ(Dc) ≡ Min[dσ,12(Dc), dσ,21(Dc)] (9)

For example, for the σ-distance of the best fit of Σ1 with respect to the likelihood contours
of Σ2, we have the following:

∆χ2
12(Dc) ≡ χ2

2(s1, b1)(Dc)− χ2
2,min(s2, b2)(Dc) (10)

and dσ,12 is obtained as a solution of the following equation [68]:

∆χ2
12 = 2 Q−1

[
M
2

, 1− Erf(
dσ,12√

2
)

]
(11)

where Q−1 is the inverse regularized incomplete Gamma function, M is the number of
parameters to fit (M = 2 in our case) and Erf is the error function.

Figure 1 shows the σ distance dσ(Dc) in the parameter space (b, s) as a function of
the split sample distance Dc. There are two peaks indicating larger than 3σ difference
between the two subsamples at Dc = 9 Mpc and Dc = 17 Mpc. In addition, a transition
of the σ distance dσ(Dc) at Dc ' 20 Mpc is apparent. This Monte Carlo simulation is
used to construct Figure 2 (right panel—green line—range), where we show the mean and
standard deviation range of the σ-distances obtained by the above-described 100 Monte
Carlo samples. Clearly, the random variation in the galactic distances cannot change the
qualitative features (high double peak at low Dc) of Figure 1 corresponding to the real
sample. The σ-distances obtained from such a typical Monte Carlo sample is shown in
Figure 2 (left panel green line).
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Figure 1. The σ-distance between the various Σ1 and Σ2 datasets as a function of the split distances
Dc. There are 2 clear peaks at Dc = 9 Mpc and Dc = 17 Mpc and a transition seems to have been
completed at Dc ' 20 Mpc. The anticipated plot would be a σ-distance that consistently varies in
the range up to about 2σ for all values of Dc. The observed peaks indicate either the presence of
systematics or the presence of interesting physics.
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0 10 20 30 40 50 60 70
Dc (Mpc)

Figure 2. Left panel: The σ-distances as a function of the split distances Dc for a sample dataset
with random distance values, normally distributed inside their individual 1− σ range (green line),
versus the σ-distances as a function of the split distances Dc for a homogeneous Monte Carlo sample
constructed using the best-fit BTFR (orange line). Right panel: The 68% range of the σ-distances
versus the split distances Dc produced by a Monte Carlo simulation of 100 sample datasets obtained
by randomly varying galaxy distance values with a Gaussian probability distribution (green band).
Superimposed is the 68% range of the σ-distances versus the split distances Dc obtained from
100 homogeneous Monte Carlo samples constructed using the best-fit BTFR (orange band). Evidently,
the characteristic two-peak form of the plot remains practically unchanged, even after the random
variation in the distances (green band), whereas no significant tension is present in the case of the
homogeneous Monte Carlo samples for any value of Dc (orange band).

The typical qualitative feature of dσ(Dc) corresponding to the real sample disappears
if we homogenize the sample by randomizing both the velocities and the galactic masses,
using the measured values of the velocities and the estimated values of the galactic masses
in the context of the best-fit BTFR. In order to construct such a homogenized BTFR sample
from the real sample, we use the following steps:
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• We assign to each galaxy a randomly chosen distance obtained from a Gaussian
distribution with mean equal to the measured distance and standard deviation equal
to the 1σ error of the measured distance.

• We assign to each galaxy a randomly chosen logvrot obtained from a Gaussian distri-
bution with mean equal to the measured logvrot and standard deviation equal to the
1σ error of the measured logvrot.

• For each galaxy, we use the random logvrot obtained in the previous step to calculate
the corresponding BTFR logMB, using the best-fit slope and intercept of the real full
dataset (first row of Table 2). We then obtain a random logMB for each galaxy from a
Gaussian distribution with mean equal to the BTFR calculated logMB and standard
deviation equal to the 1σ error of the measured logMB.

• We repeat the above process 100 times, thereby generating 100 homogeneous Monte
Carlo samples (HMCS) based on the SPARC dataset.

• For each HMCS, we find the σ distances dσ(Dc) and for each Dc, we find the mean σ
distance and its standard deviation over the 100 HMCS. We thus construct the orange
region in Figure 2 (right panel). A typical form of dσ(Dc) is shown as the orange line
of Figure 2 (left panel) selected from the 100 HMCS.

Clearly, the forms of dσ(Dc) generated from the homogenized Monte Carlo samples
have the expected property to be confined mainly between 0σ and 2σ in contrast to the
real measured sample, where dσ(Dc) extends up to 4σ or more. Thus, the real dataset is
statistically distinct from a homogeneous BTFR dataset.

Table 2. The best-fit values of the intercept and slope parameters corresponding to the likelihood
contours of Figure 3 alongside with their 1σ errors. The minimum ∆χ2 between the best fits of the
two samples is also shown. The corresponding σ-tension in parenthesis is obtained in the context
of two free parameters from Equation (11). Notice that, even though the parameter values appear
to be consistent, the value of ∆χ2 between the subsamples reveals the tension at Dc = 9 Mpc and
Dc = 17 Mpc.

Dc (Mpc) Intercept Slope ∆χ2
min

- 2.287± 0.18 3.7± 0.08 -

<9 2.461± 0.407 3.586± 0.216 23.7 (4.5σ)
>9 2.854± 0.379 3.46± 0.204 23.7 (4.5σ)

<17 2.467± 0.38 3.592± 0.17 17.0 (3.7σ)
>17 2.677± 0.368 3.548± 0.166 17.0 (3.7σ)
<40 2.327± 0.987 3.681± 0.419 2.9 (1.2σ)
>40 3.318± 0.816 3.283± 0.349 2.9 (1.2σ)

The two maxima of dσ are more clearly illustrated in Figure 3, where the likelihood
contours are shown in the parameter space s (slope)-b (intercept) for the full sample (upper
left panel) and for three pairs of subsamples Σi, including those corresponding to the peaks
shown in Figure 1 (Dc = 17 and Dc = 9). For both dσ maxima, the tension between the two
best-fit points is mainly due to the different intercepts, while the values of the slope are very
similar for the two subsamples. In contrast, for Dc = 40 Mpc, where the σ distance is much
lower (about 1σ, lower right panel), both the slope and the intercept differ significantly in
magnitude but the statistical significance of this difference is low. Notice that the use of
different statistics, such as the 1σ range of the best-fit intercept and slope shown in Table 2,
or the level of likelihood contour overlap in Figure 3 would not reveal the tension between
far and nearby subsamples. In contrast, the σ-distance statistic demonstrates the effect and
the Monte Carlo results of Figure 2 verify the fact that such a large σ-distance would be
rare in the context of a homogeneous sample.
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Figure 3. The best-fit contours of the slope and intercept for the entire dataset, as well for 3 different
cases of split distance (Dc). The red contours correspond to the dataset with galaxies that have a
distance below Dc, whereas the cyan contours correspond to galaxies with distances above Dc.

The statistical significance of the different Tully–Fisher properties between near and
far galaxies, which abruptly disappears for dividing distance Dc & 20 Mpc, could be an
unlikely statistical fluctuation, a hint for systematics in the Tully–Fisher data1, an indication
for an abrupt change in the galaxy evolution or a hint for a transition in the values of
fundamental constants and, in particular, the strength of gravitational interactions Geff.
The best-fit values of the intercept and the slope for the cases shown in Figure 3 are
displayed in Table 2 along with their 1σ errors.

The best-fit logMB − logvrot lines corresponding to Equation (7) for the near–far galac-
tic subsamples are shown in Figure 4, superimposed with the datapoints (red/blue corre-
spond to near/far galaxies). The full dataset corresponds to the upper-left panel. The dif-
ference between the two lines for Dc = 9 Mpc and Dc = 17 Mpc is evident, even though
their slopes are very similar. The statistical significance of this difference disappears for
larger values of the splitting distance (e.g., Dc = 40 Mpc), even though the slopes of the
two lines become significantly different in this case.
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Figure 4. The best-fit lines corresponding to the best fit slope and intercept parameters of the whole
galaxy dataset as well as each of the 2 datasets produced for 4 different split distances (Dc). The red
dashed line and datapoints correspond to the data below Dc, and the cyan ones belong to the data
over Dc for each case.

The Hubble diagram of the considered dataset along with the best-fit line (black dot-dashed
line) and the Hubble blue dashed line (z ≈ D

c H0) corresponding to H0 = 73 km s−1 Mpc−1

is shown in Figure 5. The distances to galaxies beyond 20 Mpc are determined using
the Hubble flow with H0 = 73 km/sec Mpc, and thus, there is no effect of their peculiar
velocities. Galaxies closer than about D ' 20 Mpc are clearly not in the Hubble flow and
their redshift is affected significantly by their in-falling peculiar velocities, which tend to
reduce their cosmological redshifts. The detected transitions at about 9 Mpc and 17 Mpc
correspond to cosmological redshifts of z . 0.005, which is lower than the transition
redshift required for the resolution of the Hubble tension (zt ' 0.07 is the upper redshift of
SnIa–Cepheid host galaxies).

0 20 40 60 80 100 120
0.000
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0.010

0.015
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0.030

0.035

D (Mpc)

z

H0 = 73 km s-1 Mpc-1

Figure 5. The distances alongside their errorbars versus the redshifts of each galaxy in our compila-
tion. The blue dashed line corresponds to the best fit line, and the black dot-dashed one is produced
by Equation (1) for H0 = 73 km s−1 Mpc−1.

In the context of the above-described analysis, we have ignored the possible systematic
uncertainties induced on the estimated baryonic masses MB, due to systematic uncertainties
in the measurement of galactic distances. In particular, different sub-samples of galaxies in
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the SPARC database are affected by different systematic uncertainties. The SPARC sample
includes galaxies with both direct and indirect distance measurements. Direct distance
measurements are based on standard candles (Cepheids and Tip of Red Giant stars), while
indirect measurements are based on the Hubble flow with Virgocentric infall correction.
Systematic uncertainties of indirectly measured distances affecting mainly galaxies beyond
15 Mpc are due to uncertainties in the Hubble constant H0 and in the a Virgocentric infall
model. H0 = 73 km/s/Mpc is assumed in estimating the distances of the Hubble flow
subsample of the SPARC sample along with the Virgocentric infall model used to correct
the Hubble flow distances. The anticipated shift in logMB due to an incorrect assumption
of the H0 value and/or the Virgocentric infall model is anticipated to be of the order of
0.1 dex, assuming a 5% change in H0 and a scaling of the estimated value of MB with
distance D as MB D−2.

Thus, the identified mismatch of the Tully–Fisher parameters between low- and high-
distance subsamples could, in principle, be due to such a systematic uncertainty of the
galactic baryonic masses of Hubble flow galaxies. In order to examine this possibility, we
have constructed new Monte Carlo samples where we not only vary randomly the distances
but also add a fixed shift of ∆logMB along the vertical axis (mass) for all the datapoints
where the mass is estimated using the Hubble flow with H0 = 73 km/s/Mpc. The distances
of these points are calculated using the Hubble flow, assuming H0 = 73 km s−1 Mpc−1,
and correcting for Virgo-centric infall. We have considered four cases of systematic shifts
(fixed values of ∆logMB): −0.1 dex, −0.05 dex, +0.05 dex and +0.1 dex. The results for
the σ-distance ranges in terms of the splitting distance Dc for each one of the above four
cases are shown in Figure 6. The corresponding likelihood contours for the subsamples
corresponding to Dc = 9 Mpc (maximum mismatch) are shown in Figure 7. Clearly, the
mismatch features at Dc = 9 Mpc and Dc = 17 Mpc remain in all four cases that explore
this type of systematic uncertainty. In particular, the 9 Mpc peak height varies from about
4σ for ∆logMB = 0.1 dex to about 3σ for ∆logMB = −0.1 dex. We thus conclude that this
type of systematic uncertainty is unable to wash out the mismatch effect we have identified.
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Figure 6. The 68% range of the σ-distances versus the split distances Dc produced by a Monte
Carlo simulation of 100 sample datasets. The simulations are performed for different values of
the shift ∆logMB, which represents the possible systematic errors present in the datapoints whose
distances are calculated using the Hubble flow, assuming H0 = 73 km s−1 Mpc−1, and correcting
for Virgo-centric infall. The same characteristic two-peak structure remains for all shifts considered,
indicating the robust nature of the identified effect.
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Figure 7. The likelihood contours of the slope and intercept for a sample splitting distance
Dc = 9 Mpc corresponding to the different values of the systematic shift ∆logMB shown in Figure 6.
The red contours correspond to the dataset with galaxies that have distance below 9 Mpc, whereas
the cyan contours correspond to galaxies with distances above 9 Mpc. The σ distance between the
two best fits varies between 3σ and 4σ.

If the intercepts’ transitions are interpreted as being due to a transition in Geff, we can
use Equation (4) along with the observed intercept transition amplitude shown in Table 2
to identify the magnitude and sign of the corresponding Geff transition. The intercept
transition at Dc = 17 Mpc indicated in Table 2 corresponds to the following:

∆ log AB ≡ log A>
B − log A<

B ' 0.2 (12)

Since AB is found to be higher at larger distances (early times), Geff should be lower,
due to Equation (4). The corresponding fractional change in Geff is easily obtained by
differentiating the logarithmic form of Equation (4) as follows:

∆ log AB =
∆AB
AB

= −2
∆Geff
Geff

=⇒ ∆Geff
Geff

' −0.1 (13)

This sign (weaker gravity at early times) and magnitude of the Geff transition is consistent
with the gravitational transition required for the resolution of the Hubble and growth
tensions in the context of the mechanism of Ref. [22].



Universe 2021, 7, 366 12 of 18

3. Conclusions-Discussion

We used a specific statistic on a robust dataset of 118 Tully–Fisher datapoints to
demonstrate the existence of evidence for a transition in the evolution of BTFR. This
evidence was verified by a wide range of Monte Carlo simulations that compare the
real dataset with corresponding homogenized datasets constructed using the BTFR. It
indicates a transition of the best-fit values of BTFR parameters, which is small in magnitude
but appears at a level of statistical significance of more than 3σ. It corresponds to a
transition of the intercept of the BTFR at a distance of Dc ' 9 Mpc and/or at Dc ' 17 Mpc
(about 80 million years ago or less). Such a transition could be interpreted as a systematic
effect or as a transition of the effective Newton constant with a 10% lower value at early
times, with the transition taking place about 80 million years ago or less. The amplitude
and sign of the gravitational transition are consistent with a recently proposed mechanism
for the resolution of the Hubble and growth tensions [22,23]. However, the time of the
transition is about 60 million years later than the time suggested by the above mechanism
(100–150 million years ago corresponding to Dc ' 30–40 Mpc and z ' 0.007–0.01).

The effect shown in our analysis could be attributed to causes other than a gravi-
tational transition. One such possible cause would be the presence of systematic errors
affecting the estimate of galactic masses or rotation velocities for particular distance ranges.
Even if this is the case, it is important to point out these inhomogeneities, which may
require further analysis to identify their origin. Alternatively, if the causes of the detected
mismatch are physical, they could also be due to variation of conventional galaxy forma-
tion mechanisms, which may involve other types of modifications of gravitational physics
(e.g., effects of MOND gravity). The BTFR is an observationally tight empirical correlation
and has therefore been used as a test of various modified gravity models (Refs. [71–73]
offer comprehensive reviews on the cosmological implications of such models), including
modified Newtonian dynamics (MOND) [74,75] and Grumiller modified gravity [76].These
models have been shown to be consistent with BTFR for specific values of their acceleration
parameters. The BTFR has also been used as a test of the properties of Cold Dark Matter
and galaxy formation mechanisms in the context of ΛCDM [77,78].

An interesting effect in the direction of the one observed in our analysis was also
reported in Ref. [79]. There, the authors found a transition of the Cepheid magnitude
behavior in the range of 10–20 Mpc, which could explain the Hubble tension (see Figure 4
of Ref. [79]). The authors claimed that this transition is probably due to dust property
variation, but there is currently a debate on the actual cause of this mismatch.

An important extension of this analysis is the search for similar transition signals and
constraints in other types of astrophysical and geophysical–climatological data of Earth
paleontology. For example, a wide range of solar system anomalies were discussed in
Ref. [80], which could be revisited in the context of the gravitational transition hypothesis.
Of particular interest, for example, is the ‘Faint young Sun paradox’ [81], which involves
an inconsistency between geological findings and solar models about the temperature of
the Earth about 4 billion years ago. Another interesting extension of this study would
be the use of alternative methods for the identification of transition-like features in the
data, e.g., the use of a Bayesian analysis tool, such as the internal robustness described in
Refs. [82,83].

Alternatively, other astrophysical relations that involve gravitational physics, such as
the Faber–Jackson relation between intrinsic luminosity and velocity dispersion of elliptical
galaxies or the Cepheid star period–luminosity relation, could also be screened for similar
types of transitions as in the case of BTFR. For example, the question to address in the
Cepheid case would be the following: ‘What constraints can be imposed on a transition-
type evolution of the absolute magnitude (Mv)-period (P) relation of Population I Cepheid
stars?’ This relation may be written as follows:

Mv = s (logP− 1) + b (14)

where s = −2.43± 0.12 and b = −4.05± 0.02 [84,85].
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In conclusion, the low z gravitational transition hypothesis is weakly constrained in
the context of current studies but it could lead to the resolution of important cosmological
tensions of the standard ΛCDM model. We have demonstrated the existence of hints for
such a transition in the evolution of the Tully–Fisher relation.
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Appendix A. Dataset of Galaxies Used

The following is the robust dataset of galaxies used in the analysis. We have used a
compilation of 118 datapoints from Refs. [12,31–33], for which MB, vrot and D were available.

Table A1. The robust compilation of galaxy data found in Refs. [12,31–33].

Galaxy Name Logvrot σLogvrot LogMB σLogMB D σD

(km/s) (km/s) (M�) (M�) (Mpc) (Mpc)

D631-7 1.76 0.03 8.68 0.05 7.72 0.39
DDO154 1.67 0.02 8.59 0.06 4.04 0.2
DDO161 1.82 0.03 9.32 0.26 7.5 2.25
DDO168 1.73 0.03 8.81 0.06 4.25 0.21
DDO170 1.78 0.03 9.1 0.26 15.4 4.62

ESO079-G014 2.24 0.01 10.48 0.24 28.7 7.17
ESO116-G012 2.04 0.02 9.55 0.27 13. 3.9
ESO563-G021 2.5 0.02 11.27 0.16 60.8 9.1

F568-V1 2.05 0.11 9.72 0.1 80.6 8.06
F571-8 2.15 0.02 9.87 0.19 53.3 10.7
F574-1 1.99 0.04 9.9 0.1 96.8 9.68
F583-1 1.93 0.04 9.52 0.22 35.4 8.85
IC2574 1.82 0.04 9.28 0.06 3.91 0.2
IC4202 2.38 0.02 11.03 0.13 100.4 10.

KK98-251 1.53 0.03 8.29 0.26 6.8 2.04
NGC0024 2.03 0.04 9.45 0.09 7.3 0.36
NGC0055 1.93 0.03 9.64 0.08 2.11 0.11
NGC0100 1.94 0.04 9.63 0.27 18.45 0.2
NGC0247 2.02 0.04 9.78 0.08 3.7 0.19
NGC0289 2.21 0.05 10.86 0.22 20.8 5.2
NGC0300 1.97 0.09 9.43 0.08 2.08 0.1
NGC0801 2.34 0.01 11.27 0.13 80.7 8.07
NGC0891 2.33 0.01 10.88 0.11 9.91 0.5
NGC1003 2.04 0.02 10.05 0.26 11.4 3.42
NGC1090 2.22 0.02 10.68 0.23 37. 9.25
NGC2403 2.12 0.02 9.97 0.08 3.16 0.16
NGC2683 2.19 0.03 10.62 0.11 9.81 0.49
NGC2841 2.45 0.02 11.03 0.13 14.1 1.4
NGC2903 2.27 0.02 10.65 0.28 6.6 1.98

https://github.com/GeorgeAlestas/Tully_Fisher_Transition
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Table A1. Cont.

Galaxy Name Logvrot σLogvrot LogMB σLogMB D σD

(km/s) (km/s) (M�) (M�) (Mpc) (Mpc)

NGC2915 1.92 0.04 9. 0.06 4.06 0.2
NGC2976 1.93 0.05 9.28 0.11 3.58 0.18
NGC2998 2.32 0.02 11.03 0.15 68.1 10.2
NGC3109 1.82 0.03 8.86 0.06 1.33 0.07
NGC3198 2.18 0.01 10.53 0.11 13.8 1.4
NGC3521 2.33 0.03 10.68 0.28 7.7 2.3
NGC3726 2.23 0.03 10.64 0.15 18. 2.5
NGC3741 1.7 0.03 8.41 0.06 3.21 0.17
NGC3769 2.07 0.04 10.22 0.14 18. 2.5
NGC3877 2.23 0.02 10.58 0.16 18. 2.5
NGC3893 2.25 0.04 10.57 0.15 18. 2.5
NGC3917 2.13 0.02 10.13 0.15 18. 2.5
NGC3949 2.21 0.04 10.37 0.15 18. 2.5
NGC3953 2.34 0.02 10.87 0.16 18. 2.5
NGC3972 2.12 0.02 9.94 0.15 18. 2.5
NGC3992 2.38 0.02 11.13 0.13 23.7 2.3
NGC4010 2.1 0.02 10.09 0.14 18. 2.5
NGC4013 2.24 0.02 10.64 0.16 18. 2.5
NGC4051 2.2 0.03 10.71 0.16 18. 2.5
NGC4085 2.12 0.02 10.1 0.15 18. 2.5
NGC4088 2.24 0.02 10.81 0.15 18. 2.5
NGC4100 2.2 0.02 10.53 0.15 18. 2.5
NGC4138 2.17 0.05 10.38 0.16 18. 2.5
NGC4157 2.27 0.02 10.8 0.15 18. 2.5
NGC4183 2.04 0.03 10. 0.14 18. 2.5
NGC4217 2.26 0.02 10.66 0.16 18. 2.5
NGC4559 2.08 0.02 10.24 0.27 7.31 0.2
NGC5005 2.42 0.04 10.96 0.13 16.9 1.5
NGC5033 2.29 0.01 10.85 0.27 15.7 4.7
NGC5055 2.26 0.03 10.96 0.1 9.9 0.5
NGC5371 2.32 0.02 11.27 0.24 39.7 9.92
NGC5585 1.96 0.02 9.57 0.27 7.06 2.12
NGC5907 2.33 0.01 11.06 0.1 17.3 0.9
NGC5985 2.47 0.02 11.08 0.24 50.35 0.2
NGC6015 2.19 0.02 10.38 0.27 17. 5.1
NGC6195 2.40 0.03 11.35 0.13 127.8 12.8
NGC6503 2.07 0.01 9.94 0.09 6.26 0.31
NGC6674 2.38 0.03 11.18 0.19 51.2 10.2
NGC6946 2.20 0.04 10.61 0.28 5.52 1.66
NGC7331 2.38 0.01 11.15 0.13 14.7 1.5
NGC7814 2.34 0.01 10.59 0.11 14.4 0.72
UGC00128 2.12 0.05 10.2 0.14 64.5 9.7
UGC00731 1.87 0.02 9.41 0.26 12.5 3.75
UGC01281 1.75 0.03 8.75 0.06 5.27 0.1
UGC02259 1.94 0.03 9.18 0.26 10.5 3.1
UGC02487 2.52 0.05 11.43 0.16 69.1 10.4
UGC02885 2.46 0.02 11.41 0.12 80.6 8.06
UGC02916 2.26 0.04 10.97 0.15 65.4 9.8
UGC02953 2.42 0.03 11.15 0.28 16.5 4.95
UGC03205 2.34 0.02 10.84 0.2 50. 10.
UGC03546 2.29 0.03 10.73 0.24 28.7 7.2
UGC03580 2.10 0.02 10.09 0.23 20.7 5.2
UGC04278 1.96 0.03 9.33 0.26 12.59 0.2
UGC04325 1.96 0.03 9.28 0.27 9.6 2.88
UGC04499 1.86 0.03 9.35 0.26 12.5 3.75
UGC05253 2.33 0.04 11.03 0.23 22.9 5.72
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Table A1. Cont.

Galaxy Name Logvrot σLogvrot LogMB σLogMB D σD

(km/s) (km/s) (M�) (M�) (Mpc) (Mpc)

UGC05716 1.87 0.06 9.24 0.22 21.3 5.3
UGC05721 1.9 0.04 9.01 0.26 6.18 1.85
UGC05986 2.05 0.02 9.77 0.27 8.63 2.59
UGC06399 1.93 0.03 9.31 0.14 18. 2.5
UGC06446 1.92 0.04 9.37 0.26 12. 3.6
UGC06614 2.3 0.11 10.96 0.12 88.7 8.87
UGC06667 1.92 0.02 9.25 0.13 18. 2.5
UGC06786 2.34 0.02 10.64 0.24 29.3 7.32
UGC06787 2.4 0.01 10.75 0.24 21.3 5.32
UGC06818 1.85 0.04 9.35 0.13 18. 2.5
UGC06917 2.04 0.03 9.79 0.14 18. 2.5
UGC06923 1.90 0.03 9.4 0.14 18. 2.5
UGC06930 2.03 0.07 9.94 0.13 18. 2.5
UGC06983 2.04 0.03 9.82 0.13 18. 2.5
UGC07125 1.81 0.03 9.88 0.26 19.8 5.9
UGC07151 1.87 0.02 9.29 0.08 6.87 0.34
UGC07399 2.01 0.03 9.2 0.27 8.43 2.53
UGC07524 1.9 0.03 9.55 0.06 4.74 0.24
UGC07603 1.79 0.02 8.73 0.26 4.7 1.41
UGC07690 1.76 0.06 8.98 0.27 8.11 2.43
UGC08286 1.92 0.01 9.17 0.06 6.5 0.33
UGC08490 1.9 0.03 9.17 0.11 4.65 0.53
UGC08550 1.76 0.02 8.72 0.26 6.7 2.
UGC08699 2.26 0.03 10.48 0.24 39.3 9.82
UGC09037 2.18 0.04 10.78 0.11 83.6 8.4
UGC09133 2.36 0.04 11.27 0.19 57.1 11.4
UGC10310 1.85 0.08 9.39 0.27 15.2 4.6
UGC11455 2.43 0.01 11.31 0.16 78.6 11.8
UGC11914 2.46 0.07 10.88 0.28 16.9 5.1
UGC12506 2.37 0.03 11.07 0.11 100.6 10.1
UGC12632 1.86 0.03 9.47 0.26 9.77 2.93
UGCA442 1.75 0.03 8.62 0.06 4.35 0.22
UGCA444 1.57 0.07 7.98 0.06 0.98 0.05

Note
1 A possible source of systematics is the Malmquist bias, which would imply that the detected more distant galaxies are also more

massive and may, therefore, display different slopes and intercepts in different mass bins [69,70].
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