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Abstract: A common way to calculate the glitch activity of a pulsar is an ordinary linear regression
of the observed cumulative glitch history. This method however is likely to underestimate the errors
on the activity, as it implicitly assumes a (long-term) linear dependence between glitch sizes and
waiting times, as well as equal variance, i.e., homoscedasticity, in the fit residuals, both assumptions
that are not well justified from pulsar data. In this paper, we review the extrapolation of the glitch
activity parameter and explore two alternatives: the relaxation of the homoscedasticity hypothesis in
the linear fit and the use of the bootstrap technique. We find a larger uncertainty in the activity with
respect to that obtained by ordinary linear regression, especially for those objects in which it can be
significantly affected by a single glitch. We discuss how this affects the theoretical upper bound on
the moment of inertia associated with the region of a neutron star containing the superfluid reservoir
of angular momentum released in a stationary sequence of glitches. We find that this upper bound is
less tight if one considers the uncertainty on the activity estimated with the bootstrap method and
allows for models in which the superfluid reservoir is entirely in the crust.

Keywords: neutron stars; pulsars; superfluidity; hydrodynamics; general relativity

1. Introduction

To date, pulsar glitches are considered the most striking macroscopic manifestation
of the presence of a neutron superfluid in the inner crust and outer core of neutron stars
(see, e.g., [1] for a recent review). According to the current understanding, a rotating
neutron star is comprised of two components, a normal one—strongly coupled to the
magnetic field of the star and observed from Earth—and a superfluid one—which lags
behind the normal one during the spin-down process [2,3]. Due to an unknown trigger,
the two components can momentarily recouple (probably due to a mechanism known
as vortex-mediated mutual friction [4,5]): the transfer of angular momentum from the
neutron superfluid to the normal component results in a transient spin-up of the observable
component, giving rise to a glitch.

Glitching behaviour can be very different from pulsar to pulsar [6–8], and its infor-
mation can be encoded with a study of the glitch size and waiting time distributions (see,
e.g., [9–11]); however, the identification of precise trends is difficult due to the scarcity of
data for some objects: because of a combination of intrinsic physical properties and the
different time spans of observations, some objects have presented only one glitch, while
some others have displayed a statistically more relevant number of events (up to 45 in PSR
J0537-6910 [12] and 23 in Vela [13]).

Some information about the structure of a glitching pulsar and the processes regulating
this phenomenon can be obtained from its glitching behaviour, like the largest displayed
glitch [14] or the short-time angular velocity evolution after a glitch [15–18]. Furthermore,
it is possible also to obtain information about the neutron star structure (in particular, on
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the ratio between the moments of inertia of the normal and superfluid components [19–23])
from the observed activity parameter (i.e., the average spin-up due to glitches; see, e.g., [6])
of a pulsar. This parameter is particularly interesting as pulsar activity observations,
together with theoretical modelling of the thermo-rotational evolution of a pulsar, have
also been used to provide indirect mass estimates of isolated neutron stars [24–26].

Despite early models considered the superfluid neutrons in the core (see, e.g., [2,27]),
after the seminal work of Anderson and Itoh [3], the superfluid participating in the glitch
has been generally thought to be limited in the crust of the star, where vortex pinning
is possible [28–30]. In fact, pulsar activity measured in the Vela pulsar seemed at first to
be compatible with this idea of a crust-limited superfluid reservoir [19,20]. However, the
introduction in the model of entrainment—a non-dissipative interaction that couples the
two components [31]—and the calculation of this parameter in the neutron star crust [32]
have posed serious issues to the modelling: entrainment coupling in the crust diminishes
the effective angular momentum reservoir, making it difficult for a stellar model with a
crust-limited reservoir to display a Vela-like activity.

Currently, to justify the observed activity of Vela, the neutron star crust must be
sufficiently thick to store a significant amount of angular momentum, corresponding to a
fraction of crust moment of inertia in a range going from 1.6% up to ∼10%, depending on
the importance of the effect of crustal entrainment, which is currently under debate [33].
Alternatively, some models [17,24,26,34] also consider the possibility of a superfluid angular
momentum that extends in the outer core: quantised vortex lines in the core superfluid
could pin against the quantised flux lines of the proton superconductor ([35–37]; see
also [38] for a review), so that it would be possible to store angular momentum in a region
that is not just confined within the inner crust. However, there are some uncertainties about
the nature of the proton superconductor [39], as well as the nature of neutron vortices in
the outer core [40], so that pinning with flux tubes is quite uncertain to date.

Therefore, a reliable estimation of the glitch activity and its associated uncertainty
is crucial to validate the crustal origin of pulsar glitches. The problem is particularly
interesting for those pulsars that do not show a clear linear relation between the cumulative
glitch size and the observational time. In this paper, we will deal with this problem, trying
to find new ways to calculate glitch activity and in particular its uncertainty, stressing
some subtleties regarding the latter value. Finally, we will employ the calculated activity
parameter in a revised version of the original argument for the moment of inertia constraint
found in [20–22].

2. Extracting the Activity Parameter from Observations

We consider a certain pulsar that has undergone Ngl glitches with size ∆Ωi (with
i = 0, . . . , Ngl − 1) in a long observational time interval Tobs. The absolute activity of a
pulsar can be defined as:

Aa =
1

Tobs

Ngl−1

∑
i=0

∆Ωi . (1)

Strictly speaking, this definition of Aa refers to a particular time window Tobs. How-
ever, if the rate in (1) is almost constant when restricted to shorter time windows within
Tobs (stationarity hypothesis), then a unique activity Aa can be defined for a long period,
and (1) provides a reliable estimator for it (see, e.g., [41] for an analogous discussion on the
mean seismic rate of earthquakes in a given time window). It is useful to introduce also the
dimensionless activity parameter G, defined as (see, e.g., [22]):

G = |Ω̇∞|
−1Aa , (2)

where |Ω̇∞| is the absolute value of the secular spin-down rate of the pulsar, namely the
average angular velocity derivative in the period Tobs containing several glitches. The
variable G gives us an idea of the amount of spin-down reversed by glitches, and it allows
for a better comparison of pulsars with different spin-down rates [26].
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From the practical point of view, to use (1) with real data, the basic requirement is
that the pulsar should regularly be monitored during the interval Tobs, without missing
any glitch. This is in general not the case, but while large glitches can be easily detected,
very small glitches, easier to miss, should not contribute to the activity in a significant
way (unless they are extremely frequent). Furthermore, it is not always clear whether the
duration Tobs of the observational campaign has been long enough, so that Aa calculated
via (1) really reflects the true activity of the pulsar under study. For this reason, we consider
(1) as a theoretical definition of the true activity of a pulsar, in the limit of very long Tobs.
In the following, we will explore how to extract estimates of Aa from real data.

2.1. Ordinary Linear Regression on the Cumulative Glitch History

Let us assume that the information at our disposal consists only of a list of glitch
dates ti and amplitudes ∆Ωi. For simplicity, let us neglect the extra information that
is possibly contained in the value of Tobs, but note that Tobs > tNgl−1 − t0. Under this
assumption, the absolute activity is usually calculated by fitting the cumulative glitch
amplitude (see, e.g., [20,42]). In this case, the relationship between angular velocity and
time is described by the equation:

Ωi = Aa ti + q + εi , (3)

where q is the vertical intercept and εi are independent random variables with zero expec-
tation and the same variance (homoscedasticity). In the above formula, Ωi and ti represent
the angular velocity acquired by the star due to glitches and the time passed since the
first glitch,

Ωi =
i

∑
j=1

∆Ωj ti =
i

∑
j=1

∆tj , (4)

where ∆tj is the waiting time preceding the j-th glitch. This procedure sacrifices the
information relative to the first glitch amplitude, ∆Ω0, as the slope of the points in (4)
does not change for vertical translations. One possibility to partially solve this issue is
that of fitting the midpoints of the glitch steps drawn by the cumulative points (ti , Ωi),
instead of the points themselves [26,42]. An example of the activity fit performed using
this prescription is shown in Figure 1 for the six pulsars that have displayed the largest
number of glitches Ngl at the time of writing: the fit seems to capture the average slope
of the glitch series, at least for J0537-6910 and Vela. All the glitch sizes and waiting times
employed in this paper were retrieved from the Jodrell Bank Glitch Catalogue1 [8], while
the spin-down rates of the stars from the ATNFPulsar Catalogue2 [43].

The central assumption behind this standard linear regression procedure is that the
statistical properties of the processes underlying the glitch behaviour should not change
if the window of observation is translated in time (i.e., the glitch series observed in a
pulsar may be modelled as the outcome of a stationary stochastic process in the long
run [44]). If this is the case, then the available data set should correspond to a stationary
sequence of glitches where possible aftershocks and more quiet periods of activity are both
present many times, intertwined in such a way to produce an overall stationary spin-up
rate (eventually, also many very small and undetected glitches may be included, as their
contribution to the cumulative glitch amplitude is negligible). In this way, the activity
calculated on sub-intervals should fluctuate around the asymptotic value calculated by
considering an interval Tobs containing several glitches [41].

1 http://www.jb.man.ac.uk/pulsar/glitches/gTable.html.
2 https://www.atnf.csiro.au/research/pulsar/psrcat/.

http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
https://www.atnf.csiro.au/research/pulsar/psrcat/
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Figure 1. The glitch steps drawn by the cumulative points (|Ω̇∞|ti, Ωi), defined in (4), for the six pulsars with the largest
number of glitches Ngl , as reported by the Jodrell Bank Glitch Catalogue [8]. The activity is calculated with a least-squares
linear fit on the midpoints of the cumulative glitch sequence (see [42]), giving the blue curve with the associated uncertainty
on the slope. Following Montoli et al. [26], the plots are made by using the “nominal lag” t|Ω̇∞| on the horizontal axis
(a rescaling of time t, which gives a rough estimate of the typical angular velocity lag accumulated between the spinning
down normal component and a pinned superfluid component). In this way, the slope of the blue curves is the dimensionless
activity G.
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For some pulsars, however, the observational window is so limited and the number of
glitches detected so small that it may be unsafe to conclude that the observed value of Aa
corresponds to the value that would be extrapolated by looking at a longer sequence of
glitches. Practically, to be able to perform a standard linear regression on the cumulative
data, we have to demand that the available data fulfil two practical requirements [26].
Firstly, the number of glitches should be significant, say Ngl > 3. Secondly, at least two
glitches of size comparable to ∆Ωmax, the maximum glitch amplitude in the sequence,
should be present: a linear regression would poorly fit the set of data if the largest glitch
Ωmax is significantly larger than all the others. This last property can be quantified by
demanding that the parameter Nmax, defined as [25,26]:

Nmax = ∆Ω−1
max

Ngl−1

∑
i=0

∆Ωi > 1 where ∆Ωmax = max
i=0,...,Ngl−1

∆Ωi , (5)

be larger than ∼2 [26]. However, in view of the hypothesis of stationarity, even if the
glitches respect the above conditions, the ordinary least-squares linear regression may not
be a well justified method, at least from the theoretical point of view. In fact, the technical
point of how to extract Aa and the associated uncertainty, especially in the case of small
Ngl or Nmax, have not been discussed in detail yet.

2.2. Linear Regression on Heteroscedastic Data

Besides all the issues related to linear regression mentioned in the previous section,
there is one more linked to the fact that the data points in (4) are not independent, as they
arise from a cumulative construction. Hence, the resulting residuals (which have to be
minimised in the standard regression procedure) may not be independent and identically
distributed: the fit residuals will not have the same variance, so it is no longer possible to
assume homoscedasticity, which is a basic assumption of ordinary linear regression.

For this reason, we present here an alternative way to calculate the activity, but this
time relaxing the hypothesis of homoscedasticity, by following a procedure for fitting
cumulative data discussed by Mandel [45]. Let us assume that waiting times and glitch
sizes are related by:

∆Ωi = Aa ∆ti + εi . (6)

Note that the above equation may not be true in general, as there seems not to be a
correlation between glitch sizes and waiting times [46]. Using Equation (4), the cumulative
times and sizes follow a relation:

Ωi = Aa ti +
i

∑
j=1

ε j , (7)

which justifies our assumption of heteroscedasticity, as the deviations ∑i
j=1 ε j have different

variance for each i. It can be shown that the best unbiased linear estimator is given by [45]:

Aa =
∑i ∆Ωi

∑i ∆ti
=

∑i ∆Ωi
tNgl−1 − t0

i = 1, ..., Ngl − 1 (8)

which is similar to the definition in (1). The variance of this value is given by [45]:

Var(Aa) =
1

(Ngl − 1)(tNgl−1 − t0)
∑

i

(∆Ωi −Aa∆ti)
2

∆ti
i = 1, ..., Ngl − 1 (9)

We present in Table 1 the best estimator of the dimensionless activity G, with its
standard deviation obtained with this method. This value was obtained by neglecting the
first glitch size ∆Ω0 in each pulsar sequence, in order to have the same number of glitch
sizes and preceding waiting times. The most interesting feature we notice from the results
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is that the standard deviation when we assume homoscedasticity is almost one order of
magnitude smaller than that with heteroscedasticity.

Table 1. Dimensionless activities and their standard deviations, calculated for the six pulsars with
the largest number of glitches, with a least-squares linear fit on the cumulative midpoints assuming
homoscedasticity (Ghom), with a least-squares linear fit assuming heteroscedasticity (Ghet), with a
bootstrap on the size and waiting time samples separately (Grand), and on the pairs’ size, preceding
waiting time (Gpre), and size, following waiting time (Gpost).

Pulsar Ghom(%) Ghet(%) Grand(%) Gpre(%) Gpost(%)

0534+2200 0.0079 ± 0.0007 0.008 ± 0.006 0.008 ± 0.005 0.008 ± 0.005 0.008 ± 0.005
0537-6910 0.874 ± 0.003 0.85 ± 0.15 0.89 ± 0.11 0.86 ± 0.11 0.88 ± 0.03
0631+1036 1.77 ± 0.18 2.03 ± 1.95 2.11 ± 1.67 2.29 ± 1.80 1.80 ± 0.85
0835-4510 1.62 ± 0.02 1.6 ± 0.2 1.65 ± 0.3 1.6 ± 0.2 1.6 ± 0.2
1341-6220 1.52 ± 0.10 1.9 ± 0.6 2.0 ± 0.6 1.9 ± 0.6 1.9 ± 0.5
1740-3015 1.22 ± 0.04 1.3 ± 0.7 1.3 ± 0.5 1.3 ± 0.5 1.2 ± 0.45

2.3. Extracting the Activity from Glitch Size and Waiting Time Distributions

One alternative way to solve the issue in the calculation of the activity with the linear
fit requires employing the probability distributions for the waiting times and sizes of the
glitches of a particular pulsar. In this way, it is possible to relax the hypothesis of linear
dependence between waiting times and glitch sizes.

Probability distributions of glitch sizes and waiting times have been obtained in
several previous works [9–11], which show that—as a general trend—glitch sizes seem to
be consistent with a power-law distribution, while the waiting times are consistent with an
exponential distribution. Vela and PSR J0537-6910 are somehow exceptional, as they seem
be well described by a normal distribution in both size and waiting time.

Starting from the probability distribution of the waiting times ∆t and sizes ∆Ω, it is
possible to infer some information about the probability distribution PAN for the activity
parameter AN after N glitches. Note that AN and AM, for N 6= M, are different random
variables, distributed according to different laws, i.e., PAN 6= PAM .

Given the definition of activity, its distribution can be obtained by considering the
ratio of two random variables, the sum of sizes ∆Ω̃N and of waiting times ∆t̃N . The latter,
in turn, are the sum of random variables themselves, i.e., the single glitch size ∆Ωi and the
single waiting time ∆ti, so that their densities P∆Ω̃N

and P∆t̃N
can be obtained by means of

repeated convolutions,

∆Ω̃N =
N

∑
i=1

∆Ωi ⇒ ∆Ω̃N ∼ P∆Ω̃N
= P∆Ω ∗ . . . ∗ P∆Ω︸ ︷︷ ︸

N times

(10)

∆t̃N =
N

∑
i=1

∆ti ⇒ ∆t̃N ∼ P∆t̃N
= P∆t ∗ . . . ∗ P∆t︸ ︷︷ ︸

N times

(11)

Since AN = ∆Ω̃N/∆t̃N , its distribution can be obtained through:

PAN (a) =
∫ ∞

−∞
dx |x| P∆t̃N

(x) P∆Ω̃N
(xa) . (12)

The main advantage of this method is that, with only the assumption of independence
between sizes and waiting times in the stationary regime, it is possible to obtain the whole
probability distribution of AN .

Although this is a possible method to extract AN , it is troublesome to numerically
obtain this distribution, as a convolution of N probability distributions, albeit identical,
starts to be infeasible when N becomes large. The calculation can be simplified by obtaining
the first two moments of PAN , the mean and the variance, by employing a generalised
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version of the central limit theorem, the delta method (see Appendix A). This method
allows us to calculate the mean and the variance of PAN starting from the mean and
variance of the two distributions P∆Ω and P∆t. This procedure, however, is problematic if
P∆t or P∆Ω have a non-well-defined variance.

2.4. Estimating the Uncertainty of Activity: The Bootstrap Method

An attractive alternative to the methods described above, which does not build on
the linear assumption in (6), is the so-called “bootstrap method” [47]. The idea is that of
resampling with replacement the original data in order to calculate some statistics, as, e.g.,
the mean and standard deviation of the calculated activity. In our case, the samples are
two: the list of the waiting times ∆ti (of length Ngl − 1) and the list of sizes ∆Ωi (of length
Ngl). Of course, we have to draw the same number (Ngl − 1) of waiting time-size couples
in order to have a fair estimation of the activity and its standard deviation. To avoid the
homoscedasticity problem, the pulsar activity is calculated by employing the definition in
Equation (8) on each set of resampled data. We can also take into account the possibility of
a dependency between a glitch size and the preceding or the subsequent waiting time, so it
is useful to also bootstrap on the other two samples: the sample made up by ordered pairs
{(∆Ωi, ∆tpre

i )}i=1,...,Ngl−1, where ∆tpre
i is the waiting time preceding the glitch of size ∆Ωi,

and the sample comprised by ordered pairs {(∆Ωi, ∆tpost
i )}i=0,...,Ngl−2, where ∆tpost

i is the
waiting time following a glitch of size ∆Ωi.

Figure 2 shows the histograms obtained by resampling the data 104 times in all three
cases described above. In the same plot, also the dimensionless activities obtained as a
result of the ordinary linear regression on the cumulative glitch data are displayed.

We can see that the activity calculated by means of bootstrapping is compatible with
the results obtained from an ordinary linear regression, but it generally has larger standard
deviations (see also Table 1). It is interesting to notice the case of PSR J0537-6910, one of the
few stars that presents a significant correlation between the glitch size and the following
waiting time [48]. This correlation shows its effects also in Figure 2: the histogram for
J0537-6910, in the particular case of the sample of size-following waiting time pairs, is
much more peaked than the other two cases. At lower confidence, also PSR J0631+1036
shows a correlation between size and the following waiting time and Vela a correlation
between size and the preceding waiting time [46]. These correlations show their effect in
the histograms as well.

It is also interesting to notice the peculiar form of the PSR J0631+1036 activity distribu-
tion: it shows two clear peaks, one on very small values and one around G ≈ 0.02. This is
probably because of the particular glitch sequence of this star (see Figure 1): it displays two
very large glitches and many others with sizes several orders of magnitude smaller. Thus,
it is likely that the peak on smaller values was generated by sampling the small glitches
only, while the peak on larger values occurs when one or both large glitches were sampled.
Moreover, as a consequence of the particular glitch sequence for this star, the value of
Nmax for this star is smaller than the ones of the other stars in the sample: this value may
increase in the future, by observing large glitches, giving us a more reliable estimate of the
activity [26].

In Figure 3, we try to give an idea of how much the activity changes when a new
glitch occurs. The first point of each curve is the activity calculated with the linear fit on the
cumulative midpoints using the first ten glitches, assuming homoscedastic data. Then, we
update the activity value with the same method whenever a new glitch is displayed. We
also plot the activity parameter calculated with the ordinary linear regression and all the
glitches, along with its uncertainty. For PSR J0537-6910 and PSR J0631+1036, we present
the bootstrap estimate Gpost and its standard deviation; for Vela, we show the same with
Gpre; while for all the other pulsars, we present the case with uncorrelated glitch sizes
and waiting times (Grand). The idea is that of taking into account the size-waiting time
correlations, where present. We note that, except the very particular cases of Vela and
PRS J0537-6910, the activity evolution of each star generally lies outside the error region
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for the linear fit with homoscedastic data for all the glitch history, except—of course—the
latest glitch. The bootstrap uncertainty better describes the variance of the glitch history.
A notable exception is that of PSR J1341-6220, which is well below the error bar for both
the activity calculations, except for the last three glitches. This is because these glitches are
three of the largest ones displayed by this pulsar (see also Figure 1). In general, however,
it is interesting to notice how variable the activity parameter is. A single large glitch can
change its value (see, e.g., the Crab pulsar after its November 2017 glitch [49]). This fact
stresses the importance of having a much larger uncertainty on the activity, which is the
result of not assuming homoscedasticity in the linear fit or linear dependence between
glitch sizes and waiting times.
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Figure 2. Dimensionless pulsar activity G, calculated by sampling both the size and
waiting time samples randomly (in blue), by sampling the pair (∆Ω, ∆tpre) (in orange)
and the pair (∆Ω, ∆tpost) (in green). The results of the linear fit of the cumulative glitch
data are also plotted (in red; the shaded area is the 1σ region).
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Figure 3. Evolution of the glitch activity over time. The first point of each curve is the activity calculated employing
the linear fit on the cumulative midpoints of the first ten glitches, assuming homoscedasticity. The subsequent points
are calculated by gradually adding all the glitches that pulsar displayed. For each pulsar, the estimate of the activity via
ordinary linear regression with all glitches (in yellow) is shown, along with its uncertainty (shaded). We also present the
bootstrap estimates and their uncertainties in the Gpost case for PSR J0537-6910 and PSR J0631+1036 (green), Gpre for PSR
J0835-4510 (Vela, orange) and Grand for all other stars (blue).
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3. Moment of Inertia Constraint

The activity parameter allows extracting information on the moment of inertia fraction
of the superfluid reservoir in a glitching pulsar [19,20]. In this section, we present a revised
version of the constraint on the moment of inertia relative to the superfluid component
derived by Link et al. [20]; see also Andersson et al. [21] and Chamel [22] for the inclusion
of entrainment coupling between the normal and superfluid components. Our derivation
is presented in Appendix B and takes into account the non-rigid rotation of the superfluid
component, the stellar stratification and the non-uniform entrainment coupling between the
components. The constraint is given by Equation (A16), which can be written in terms of the
total moment of inertia I and of the moment of inertia of the superfluid component Iv as:

Iv

I − Iv
> G . (13)

Assuming that the superfluid reservoir extends in the layers between Rc (the crust-
core transition radius) and Rd (the neutron drip radius), the value of Iv in the slow-rotation
approximation is:

Iv =
8π

3

∫ Rd

Rc
dr r4eΛ(r)−Φ(r)[ρ(r) + P(r)]

yn(r)
1− εn(r)

Ωp −ω(r)
Ωp

, (14)

while the total moment of inertia I is the usual one in the slow rotation framework [14,50,51],
given in Equation (A19). In the above equation, yn is the superfluid neutron baryon density
(limited to the region where pinning is possible) divided by the total baryon density, i.e.,
yn(r) is different from zero only where the superfluid can pin to inhomogeneities and
maintain its state of motion while the normal component spins down: in this case, it is
limited to the crust. The other quantities appearing in (14) are introduced in Appendix B,
but it is important to remark here that the frame drag ω should contain a dependence on
the angular velocities of both components [14,51,52], which was neglected in the derivation
of (14).

The first measurements of the activity parameter of the Vela pulsar and the moment of
inertia fraction estimates for different equations of state (EoSs) seemed to be in accordance
with the constraint (13) with εn = 0 [20]. Only later, the entrainment parameter εn in the
crust of a neutron star was calculated in [32], by estimating the effects of Bragg scattering
on the superflow due to the presence of the crustal lattice. These calculations yield a
negative entrainment parameter εn ∼ −10 in a substantial portion of the inner crust, which
implies a severely hindered motion of the superfluid component. This would reduce the
amount of extra angular momentum stored in the crust between two glitches—and thus of
Iv—making the requirement in (13) more difficult to be met. As a result of that, the only
way for the star to acquire enough angular momentum between glitches to explain the
observed activity is to have a large region inside it to store angular momentum (larger
than the crust of the star) or to have an unreasonably small mass, around ∼ 0.5 M�. This
problem has been highlighted in several papers [21–24,53].

If we assume the superfluid region to be limited in the crust of the star and we fix
the microphysical parameters, namely the EoS and the entrainment parameter, then the
moment of inertia fraction in (13) is a function of the mass of the star only.

In Figure 4, we plot the quantity Iv/(I − Iv) appearing in (13) as a function of the
stellar mass for some EoSs and for the entrainment parameter calculated by Chamel [32],
assuming a superfluid reservoir limited to the crust.
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Figure 4. Activity constraint on the superfluid component moment of inertia plotted for some EoSs:
SLy4 [54], BSk20 and BSk21 [55], and the DDME2 EoS [56], glued with a SLy4 crust following the
method described in [57]. The entrainment parameter is that calculated in [32], and the superfluid
reservoir is limited in the crust of the star. The dimensionless activity parameter G—calculated with
the bootstrap method described in Section 2 (the case with random glitch sizes and waiting times)—is
also plotted for the Vela pulsar, along with the 1σ, 2σ and 3σ uncertainties.

As we can see, the constraint (13) imposes that the high G value of the Vela pulsar (PSR
J0835-4510) can be explained only if the mass of Vela is small, ranging from ≈ 1.1M� for
the BSk20EoS to ≈ 0.8M� for the SLy4EoS. Let us however consider also the 1σ uncertainty
region, calculated with the bootstrap method described in Section 2, with random waiting
times and glitch sizes. In this case for the BSk20 EoS, the Vela pulsar has an upper limit
on the mass of about 1.2M�. Note that this value is slightly above the minimum mass of
a neutron star estimated from the calculations of core-collapse supernovae (i.e., 1.17 M�;
see [58]) and the smallest mass measured in a neutron star (1.174± 0.004 M�, measured in
PSR J0453+1559, [59]). If we consider the 3σ uncertainty range, then we obtain a limit of
≈ 1.5M� for the same EoS. It is thus clear that a careful estimation of the activity parameter
and the associated error is crucial if one is to set strict quantitative constraints on the
moment of inertia involved in glitches and constrain the location of the superfluid reservoir.

A more careful estimate of the glitch activity parameter may thus play an important
role in resolving the tension between strong entrainment and models with a crust-limited
reservoir. Several other effects have, of course, been suggested and are likely to play a
role in this problem, including a maximally stiff EoS [60], a Bayesian analysis of the EoS
uncertainty [53] or an extension of the region where the neutron superfluid participates in
the glitch beyond the crust-core transition, based on the assumption that only the superfluid
in the 1S0 state participates in the glitch phenomenon and on an analysis of the temperature
of the star [24]. On the other hand, also different calculations of the entrainment parameter
have been proposed (e.g., [33,61,62]), which yield milder entrainment effects in the crust.
However, even if the high activity of Vela may be described in terms of a purely crustal
reservoir by assuming a weaker entrainment, an analysis of the 2016 Vela glitch points to the
need to invoke the neutron superfluid also in the core of the star [16,63,64], independently
of the presence of entrainment in the model [18].
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4. Conclusions

In this paper, we discussed different ways of calculating the activity parameter in
glitching pulsars. The most commonly used one is that of performing an ordinary linear
regression on the cumulative glitch data, which is justified if one considers the activity
parameter as an intrinsic characteristic of a glitching pulsar, and thus inferable from a
limited observation of its glitching behaviour (which, in general, may not be stationary).
While this last statement might be true, it is also true that a strong autocorrelation or
correlation between glitch sizes and waiting times has very rarely been observed [46,65].
Moreover, fitting the cumulative data may also affect the uncertainty calculated from a
ordinary linear regression, as the hypothesis of the homoscedasticity of the data cannot
be satisfied. Therefore, the main consequence of including these assumptions in the
fitting procedure (namely, the linear dependence of glitch sizes and waiting times and the
homoscedasticity of the cumulative data) is an underestimation of the activity uncertainty.
This is an important point, as in some pulsars, an additional single glitch (or a sequence of
a few glitches) can significantly affect its observed activity, especially for those objects with
low Nmax [26], like the Crab pulsar or PSR J0631+1036 (see Figure 3).

A first alternative to calculate the activity is the linear regression developed by
Mandel [45], where the hypothesis of the homoscedasticity of the data was relaxed: this
methodology is justified by the fact that cumulative data are not homoscedastic, since the
variance of the data should increase as data are cumulated. As a result, the uncertainty
of the activity parameter increases by about one order of magnitude with respect to that
calculated with an ordinary linear regression.

As a second step, we also relaxed the hypothesis of linear dependence between glitch
sizes and waiting times, by employing their probability distribution estimates. While
employing the size and waiting time distributions is arguably the best way to include the
information provided by observations of the pulsar in the activity parameter, it is also true
that a study of the probability distribution of the activity parameter is computationally very
challenging. Furthermore, an approximate version of this estimate, obtained by employing
a more general version of the central limit theorem, leads to difficulties, due to the fat-tailed
probability distribution of the glitch sizes.

We thus employed an alternative way to calculate the activity and its uncertainty, re-
laxing the hypothesis of linear dependence, by bootstrapping on the sizes and waiting time
data sets and calculating the activity by summing sizes and waiting times and calculating
the ratio. Much larger uncertainties are obtained, on the same order of magnitude of the
linear fit on heteroscedastic data. A qualitative explanation of why a bootstrap estimate
yields a larger uncertainty than the ordinary linear regression is the fact that the glitch
activity is dominated by a few large events, especially for pulsars with low Nmax/Ngl . 0.1,
which is again the case for the Crab pulsar and J0631+1036; see Table 1.

We then used these results to study a revised version of the constraint on the moment
of inertia of the superfluid component and on the mass of the star [20–22]. While the result
obtained in this way is essentially the same for the mean value of the activity (i.e., the
Vela activity does not allow a crust-limited reservoir and strong entrainment), the larger
uncertainty allows for models in which the crust is enough, i.e., models in which the
superfluid reservoir is located entirely in the crust for credible values of the star mass. For
example, a model of a 1.2M� neutron star described by the BSk20 EoS is within the 1σ
uncertainty region of the activity that we calculate.
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Appendix A. Activity Calculation with the Delta Method

We use the delta method (a generalisation of the central limit theorem) to extract the
mean and standard deviation of the activity parameter AN after N glitches, given a proba-
bility distribution of the sizes P∆Ω and waiting times P∆t of a pulsar. The method works
under the simplifying assumption that the sizes and the waiting times are independent
and identically distributed random variables. Let us recall the two random variables ∆Ω̃N
and ∆t̃N defined in Equations (10) and (11). The random variable AN is defined as:

AN = ∆Ω̃N/∆t̃N . (A1)

Its expectation value is given by (a ∈ R+ denotes the value assumed by AN):

E[AN ] =
∫

a PAN (a)da =
∫ ∆Ω̃N

∆t̃N

N

∏
i=1

P∆t(∆ti)d∆ti

N

∏
j=1

P∆Ω(∆Ωj)d∆Ωj . (A2)

The independence of the variables is loosely justified by observing the small correla-
tion and autocorrelation in glitch sizes and waiting times [46,65], while being identically
distributed is a working assumption. The above equation boils down to:

E[AN ] = E[∆Ω̃N ]E
[

1
∆t̃N

]
. (A3)

To calculate the variance of AN , let us first calculate, for the sizes ∆Ω̃N :

E(∆Ω̃2
N) = NE[∆Ω2] + N(N − 1)E[∆Ω]2 (A4)

E(∆Ω̃N)
2 = N2E[∆Ω]2 (A5)

Var[∆Ω̃N ] = N(E[∆Ω2]− E[∆Ω]2) = N Var[∆Ω] . (A6)

Now, using the above results, a simple direct calculation gives:

Var[AN ] = N Var[∆Ω]E

[
1

∆t̃2
N

]
+ N2 E[∆Ω]2 Var

[
1

∆t̃N

]
. (A7)

Let us now assume that P∆t̃N
converges to a normal distribution with mean Nθ and

variance Nσ2 as N → ∞. In this case, we can employ the delta method, which tells us
that any function g of the random variable ∆t̃N will be distributed normally with mean
g(Nθ) with variance N[g′(Nθ) σ]2. Note that this assumption is not true if glitch sizes are
described by a power law distribution with non-defined variance (but should hold for
those pulsars like PSR J0537-6910). Given the definition of ∆t̃N , we have that θ = E[∆t]
and σ2 = Var[∆t], and by considering the cases g(∆t̃N) = (∆t̃N)

−1 and g(∆t̃N) = (∆t̃N)
−2,

we obtain:

E
[

1
∆t̃N

]
≈ 1

N E[∆t]
E

[
1

∆t̃2
N

]
≈ 1

N2 E[∆t]2
Var
[

1
∆t̃N

]
≈ Var[∆t]

N3 E[∆t]4
(A8)

https://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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Given the first of the above relations, the expectation value of AN in (A3) can be
approximated as:

E[AN ] ≈
E[∆Ω]

E[∆t]
, (A9)

while the variance of AN in (A7) is given by:

Var[AN ] ≈ N−1
[

Var[∆Ω]

E(∆t)2 +
E[∆Ω]2

E[∆t]4
Var[∆t]

]
. (A10)

Appendix B. Derivation of the Moment of Inertia Constraint

Let us write the dynamics of the total angular momentum L of the pulsar (neglecting
temporal variations in the total moment of inertia I) as:

∂t L[Ωp, Ωnp] = ∆̇L + IΩ̇p = −I|Ω̇∞| , (A11)

where we assumed that the normal component is rigidly rotating with angular velocity Ωp,
while ∆L is the angular momentum reservoir due to the (non-rigid) angular velocity lag
Ωnp between the superfluid and the normal component [14]. Clearly, (A11) is valid only if
we are assuming that the rigid component and the fluid one share a common rotation axis.

It is useful to formally divide Ωp and ∆L into the contributions due to the smooth
relaxation (R) and an impulsive one from glitches (G),

Ω̇p = Ω̇G
p + Ω̇R

p ∆̇L = ∆̇LG
+ ∆̇LR . (A12)

During glitches, we have ∆̇LG
< 0 and Ω̇G

p > 0, while for the rest of the time, ∆̇LR
> 0

and Ω̇R
p < 0. We can average (A11) over a long time interval Tobs to get:

〈∆̇LG〉+ I〈Ω̇G
p 〉+ 〈∆̇LR〉+ I〈Ω̇R

p 〉 = −I|Ω̇∞| . (A13)

We can simplify the equation above by making two observations. Firstly, due to the
angular momentum conservation during a glitch, we must have that (note that 〈Ω̇G

p 〉 = A
by definition):

〈∆̇LG〉+ I〈Ω̇G
p 〉 = 0 ⇒ 〈∆̇LG〉 = −IA . (A14)

Secondly, over long time scales, the star spins down as a whole: the reservoir ∆L
fluctuates, but remains bounded (i.e., 〈∆̇L〉 = [∆L(Tobs)− ∆L(0)]/Tobs → 0 for Tobs → ∞),
so that:

〈∆̇L〉 = 〈∆̇LG〉+ 〈∆̇LR〉 ≈ 0 (A15)

if Tobs is long enough. Now, we do not know the details of the inter-glitch dynamics (R),
but it is possible to set an upper bound to ∆̇LR by considering the hypothetical perfect
pinning limit (P) in which the vortex creep is completely suppressed: 0 < ∆̇LR

< ∆̇LP and
Ω̇P

p < Ω̇R
p < 0. In this way, we obtain the constraint:

〈∆̇LP 〉 > IA or 〈Ω̇P
p 〉+A < −|Ω̇∞| . (A16)

Note that it is not important whether or not the perfect pinning is realized in a real
pulsar: what we are interested in is giving an estimate of ∆̇LP, or Ω̇P

p , in order to set a limit
on the real averaged dynamics in (A13).
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To do this, we follow the analysis in [14] and assume that the superfluid compo-
nent is non-rigidly rotating, so that the angular velocity lag is3 Ωnp(x, z, t). Since we are
considering a spacetime with circular symmetry, the spacetime metric reads:

ds2 = −e2Φdt2 + e2Λdr2 + r2dϑ2 + r2 sin2 ϑ (dϕ−ωdt)2 . (A17)

Following the analysis in [14], the angular momentum reservoir ∆L is:

∆L[Ωnp] =
∫

d3x x2 eΛ−Φ(ρ + P)yn Ωnp , (A18)

while we define the total moment of inertia as:

I =
∫

d3x x2 eΛ−Φ(ρ + P)(1− ω̃) , (A19)

where ω̃ = ω/Ωp, P is the pressure, ρ is the internal energy and yn is the fraction of neu-
trons in the region where pinning is possible. However, in (A11), we explicitly neglected the
temporal variations of I, but this is in sharp contrast with the fact that ω̃ = ω̃(r, θ, Ωp, Ωnp);
see (A19). Therefore, in the following, we will ignore the time variations of the rescaled
frame drag ω̃ for simplicity, although they may play a relevant role [51,52]. This amounts
to neglecting the dependence of ω̃ on the small lag Ωnp. In this way, in the limit of slow
rotation, we have that ω(r, Ωp) = ω̃(r)Ωp, where ω̃(r) is a fixed radial function [50]. For
our numerical estimates, we calculate ω̃(r) by following the slow rotation prescription
of Hartle [50] (in particular, all the structural functions ρ, P, Λ, Φ, εn and yn are radial
functions that can be obtained by solving the TOVequations [14,66]).

Since we have to invoke the perfect pinning condition (P), it is convenient to proceed
by using the lag between the normal component and the superfluid momentum, defined
as [14,18,66]:

Ωvp = (1− εn)Ωnp ⇒ ∆L[Ωnp] = ∆L[Ωvp/(1− εn)] , (A20)

where εn is the entrainment parameter [22,67]. All the relations obtained until now are valid
also in the presence of entrainment; the only difference is that ∆L is written as a function
of the rescaled lag Ωvp instead of Ωnp, by using Equation (A20). Let us also define the lag
derivative ∂tΩP

vp > 0, which sets an upper limit on the value of ∂tΩR
vp = (1− εn)∂tΩR

np
and is realised when the vortex configuration is perfectly pinned. The time derivative of
ΩP

vp reads [14]:

∂t(ΩP
vp + ΩP

p −ω(ΩP
vp, ΩP

p )) = 0 ⇒ ∂tΩP
vp = −Ω̇P

p + ∂tω(ΩP
vp, ΩP

p ) ≈ −Ω̇P
p (1− ω̃) . (A21)

Clearly, Equation (A11) must hold also if the perfect pinning condition is assumed in
the inter-glitch time, namely:

〈∆L[∂tΩP
np]〉+ IΩ̇P

p = −I|Ω̇∞| . (A22)

Employing Equation (A21) in the above relation, we find:

Ω̇P
p (I − Iv) = 〈Ω̇P

p 〉(I − Iv) = −I|Ω̇∞| , (A23)

where Iv = ∆L[1− ω̃], which coincides with the formula given in (14). Finally, let us now
come back to Equation (A16): by using the above result for 〈Ω̇P

p 〉, we finally obtain:

A− I
I − Iv

|Ω̇∞| < −|Ω̇∞| , (A24)

3 We define as (r, ϑ, ϕ) the spherical coordinates, with ϑ and ϕ being the polar and azimuthal angles, respectively; the cylindrical coordinates are
defined as (x, z, ϕ), with z being the ϑ = 0 axis.
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which is equivalent to the constraint in Equation (13). Let us remark that the present result
is based on the quasi-stationary approach used in [14,66], an approximation that can be
justified by the fact that the glitch rise time is expected to be orders of magnitude larger
than the hydrodynamical time scale, as discussed in [52].

Of course, an analogous result can be obtained in a completely rigorous way (since
there is no need to find approximations for the frame drag ω(Ωp, Ωnp) and its temporal
derivative) also in a Newtonian context: the form is still the one in (13), and Iv is given by
(14), but with ω = Λ = Φ = 0.
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