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Abstract: In the binary-driven hypernova model of long gamma-ray bursts, a carbon–oxygen star
explodes as a supernova in the presence of a neutron star binary companion in close orbit. Hypercriti-
cal (i.e., highly super-Eddington) accretion of the ejecta matter onto the neutron star sets in, making it
reach the critical mass with consequent formation of a Kerr black hole. We have recently shown that,
during the accretion process onto the neutron star, fast neutrino flavor oscillations occur. Numerical
simulations of the above system show that a part of the ejecta stays bound to the newborn Kerr
black hole, leading to a new process of hypercritical accretion. We address herein, also for this phase
of the binary-driven hypernova, the occurrence of neutrino flavor oscillations given the extreme
conditions of high density (up to 1012 g cm−3) and temperatures (up to tens of MeV) inside this disk.
We estimate the behavior of the electronic and non-electronic neutrino content within the two-flavor
formalism (νeνx) under the action of neutrino collective effects by neutrino self-interactions. We find
that in the case of inverted mass hierarchy, neutrino oscillations inside the disk have frequencies
between∼(105–109) s−1, leading the disk to achieve flavor equipartition. This implies that the energy
deposition rate by neutrino annihilation (ν + ν̄→ e− + e+) in the vicinity of the Kerr black hole is
smaller than previous estimates in the literature not accounting for flavor oscillations inside the disk.
The exact value of the reduction factor depends on the νe and νx optical depths but it can be as high
as ∼5. The results of this work are a first step toward the analysis of neutrino oscillations in a novel
astrophysical context, and as such, deserve further attention.

Keywords: accretion disk; neutrino physics; gamma-ray bursts; black hole physics

1. Introduction

Neutrino flavor oscillations are now an experimental fact [1], and in recent years,
their study based only on Mikheyev–Smirnov–Wolfenstein (MSW) effects [2,3] has been
transformed by the insight that refractive effects of neutrinos on themselves due to the
neutrino self-interaction potential are essential. Their behavior in a vacuum, in matter
or by neutrino self-interactions has been studied in the context of early universe evo-
lution [4–15], solar and atmospheric neutrino anomalies [16–24] and core-collapse super-
novae (SN) ([25–51] and references therein). We are interested in astrophysical situations
when neutrino self-interactions become more relevant than the matter potential. This im-
plies systems in which a high density of neutrinos is present and in fact most of the literature
on neutrino self-interaction dominance is concentrated on supernova neutrinos. It has
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been shown how collective effects, such as synchronized and bipolar oscillations, change
the flavor content of the emitted neutrinos when compared with the original content deep
inside the exploding star.

This article aims to explore the problem of neutrino flavor oscillations in the case of
long gamma-ray bursts (GRBs), in particular in the context of the binary-driven hypernova
(BdHN) scenario. Long GRBs are the most energetic and powerful cosmological transients
so far observed, releasing energies of up to a few 1054 erg in just a few seconds. Most of the
energy is emitted in the prompt gamma-ray emission and in the X-ray afterglow. We refer
the reader to [52] for an excellent review on GRBs and its observational properties.

The GRB progenitor in the BdHN model is a binary system composed of a carbon–
oxygen star (COcore) and a companion neutron star (NS) in tight orbit with orbital periods
in the order of a few minutes [53–58]. These binaries are expected to occur in the final
stages of the evolutionary path of a binary system of two main-sequence stars of masses
in the order of 10–15 M�, after passing from X-ray binary phase and possibly multiple
common-envelope phases (see [57,59] and references therein).

The COcore explodes as SN, creating at its center a newborn NS (νNS), and ejecting
the matter from its outermost layers. Part of the ejected matter falls back and accretes
onto the νNS, while the rest continues its expansion leading to a hypercritical accretion
(i.e., highly super-Eddington) process onto the NS companion. The NS companion reaches
the critical mass for gravitational collapse, hence forming a rotating black hole (BH). The
class of BdHN in which a BH is formed has been called type I, i.e., BdHN I [60].

One of the most important aspects of the BdHN model of long GRBs is that different
GRB observables in different energy bands of the electromagnetic spectrum are explained
by different components and physical ingredients of the system. This is summarized in
Table 1, taken from [61]. For a review on the BdHN model and all the physical phenomena
at work, we refer the reader to [62].

Table 1. Summary of the gamma-ray burst (GRB) observables associated with each BdHN I component and physical
phenomenon. Adapted from Table 1 in [61] with the permission of the authors. References in the table: a [60], b [57,62,63],
c [64], d [65,66], e [67], f [60,68].

BdHN Component/Phenomena

GRB Observable

X-Ray
Precursor

Prompt
(MeV)

GeV-TeV
Emission

X-Ray Flares
Early Afterglow

X-Ray Plateau
and Late Afterglow

SN breakout a ⊗
Hypercrit. acc. onto the NS b ⊗
e+e−: transparency
in low baryon load region c

⊗
Inner engine: BH + B + matter d ⊗
e+e−: transparency
in high baryon load region e

⊗
Synchrotron by νNS injected
particles on SN ejecta f

⊗
νNS pulsar-like emission f ⊗

The emission of neutrinos is a crucial ingredient, since they act as the main cooling
process that allows the accretion onto the NS to proceed at very high rates of up to
1 M� s−1 [57,59,63,69,70]. In [71], we studied the neutrino flavor oscillations in this
hypercritical accretion process onto the NS, all the way to BH formation. We showed that
the density of neutrinos on top the NS in the accreting "atmosphere" is such that neutrino
self-interactions dominate the flavor evolution, leading to collective effects. The latter
induce in this system quick flavor conversions with short oscillation lengths as small as
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(0.05–1) km. Far from the NS surface, the neutrino density decreases, and so the matter
potential and MSW resonances dominate the flavor oscillations. The main result has been
that the neutrino flavor content emerging on top of the accretion zone was completely
different compared to the one created at the bottom of it. In the BdHN scenario, part of the
SN ejecta stays bound to the newborn Kerr BH, forming an accretion disk onto it. In this
context, the study of accretion disks and their nuances related to neutrinos is of paramount
importance to shed light on this aspect of the GRB central engine. In most cases, the mass
that is exchanged in close binaries has enough angular momentum so that it cannot fall
radially. As a consequence, the gas will start rotating around the star or BH, forming a
disk. At this point, it is worth digressing to mention the case of short GRBs. They are
widely thought to be the product of mergers of compact-object binaries, e.g., NS–NS and/or
NS–BH binaries (see, e.g., the pioneering works [72–75]). It is then clear that, especially in
NS–NS mergers, matter can be kept bound and circularize around the new central remnant.
Additionally, in such a case, an accretion disk will form around the more massive NS or
the newborn BH (if the new central object overcomes the critical mass), and therefore the
results of this work become relevant for such physical systems.

The magneto-hydrodynamics that describe the behavior of accretion disks are too
complex to be solved analytically and full numerical analysis is time-consuming and
costly. To bypass this difficulty, different models make approximations that allow casting
the physics of an accretion disk as a two-dimensional or even one-dimensional problem.
These approximations can be can be pigeonholed into four categories: symmetry, tempo-
ral evolution, viscosity and dynamics. Almost all analytic models are axially symmetric.
This is a sensible assumption for any physical system that rotates. Similarly, most models
are time-independent, although this is a more complicated matter. A disk can evolve in
time in several ways. For example, the accretion rate Ṁ depends on the external source of
material which need not be constant, and at the same time, the infalling material increases
the mass and angular momentum of the central object, constantly changing the gravi-
tational potential. Additionally, strong winds and outflows can continually change the
mass of the disk. Nonetheless, Ṁ(x, t) = Ṁ = constant is assumed. Viscosity is another
problematic approximation. For the gas to spiral down, its angular momentum needs
to be reduced by shear stresses. These come from the turbulence driven by differential
rotation and the electromagnetic properties of the disk [76–79], but again, to avoid magneto-
hydrodynamical calculations, the turbulence is accounted for using a phenomenological
viscosity α = constant, such that the kinematical viscosity takes the form ν ≈ αHcs, where
cs is the local isothermal sound speed of the gas and H is the height of the disk measured
from the plane of rotation (or half-thickness). This idea was first put forward by [80] and
even though there is disagreement about the value and behavior of the viscosity constant,
and it has been criticized as inadequate [81–84], several thriving models use this prescrip-
tion. Finally, the assumptions concerning the dynamics of the disk are related to what
terms are dominant in the energy conservation equation and the Navier–Stokes equation
that describe the fluid (apart from the ones related to symmetry and time independence).
In particular, it amounts to deciding what cooling mechanisms are important, what external
potentials should be considered and what are the characteristics of the internal forces in the
fluid. The specific tuning of these terms breeds one of the known models: thin disks, slim
disks, advection-dominated accretion flows (ADAFs), thick disks, neutrino-dominated
accretion flows (NDAFs), convection-dominated accretion flows (CDAFs), luminous hot
accretion flows (LHAFs), advection-dominated inflow-outflow solutions (ADIOS) and
magnetized tori. The options are numerous and each model is full of subtleties, making
accretion flows around a given object an extremely rich area of research. For useful reviews
and important articles with a wide range of subjects related to accretion disks, see [85–99]
and references therein.

NDAFs are of special interest for GRBs. They are hyperaccreting slim disks, optically
thick to radiation that can reach high densities ρ ≈ 1010–1013 g cm−3 and high tempera-
tures T ≈ 1010–1011 K around the inner edge. Under these conditions, the main cooling
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mechanism is neutrino emission since copious amounts of (mainly electron) neutrinos
and antineutrinos are created by electron–positron pair annihilation, URCA and nucleon–
nucleon bremsstrahlung processes, and later emitted from the disk surface. These νν̄ pairs
might then annihilate above the disk producing an e−e+ dominated outflow. NDAFs were
proposed as a feasible central engine for GRBs in [100] and have been studied extensively
since [101–112]. In [103] and later in [107], it was found that the inner regions of the disk
can be optically thick to νeν̄e, trapping them inside the disk, hinting that NDAFs may be
unable to power GRBs. However, the system involves neutrinos propagating through
dense media, and consequently, an analysis of neutrino oscillations, missing in the above
literature, must be performed. Figure 1 represents the standard situation of the physi-
cal system of interest. The dominance of the self-interaction potential induces collective
effects or decoherence. In either case, the neutrino flavor content of the disk changes.
Some recent articles are starting to recognize their role in accretion disks and spherical
accretion [71,113–117]. In particular, refs. [113,117] calculated the flavor evolution of neu-
trinos once they are emitted from the disk, but did not take into account the oscillation
behavior inside the disk. The energy deposition rate above a disk by neutrino-pair annihi-
lation as a powering mechanism of GRBs in NDAFs can be affected by neutrino oscillation
in two ways. The neutrino spectrum emitted at the disk surface depends not only on the
disk temperature and density but also on the neutrino flavor transformations inside the
disk. Additionally, once the neutrinos are emitted, they undergo flavor transformations
before being annihilated.

Figure 1. Schematic representation of the physical system. Due to conditions of high temperature
and density, neutrinos are produced in copious amounts inside the disk. Since they have very low
cross-sectional areas, neutrinos are free to escape but not before experiencing collective effects due to
the several oscillation potentials. The energy deposition rate of the process ν + ν̄→ e−+ e+ depends
on the local distribution of electronic and non-electronic (anti)neutrinos, which is affected by the
flavor oscillation dynamics.

Our main objective is to propose a simple model to study neutrino oscillations inside
an accretion disk and analyze its consequences. Applying the formalism of neutrino
oscillations to non-symmetrical systems is difficult, so we chose a steady-state, α-disk as a
first step in the development of such a model. The generalizations to more sophisticated
accretion disks (see, e.g., [118–121]) can be subjects of future research.

This article is organized as follows. We outline the features of NDAFs and discuss in
detail the assumptions needed to derive the disk equations in Section 2. Then, in Section 3,
we discuss the general characteristics of the equation that drive the evolution of neutrino os-
cillations. We use the comprehensive exposition of the accretion disk of the previous section
to build a simple model that adds neutrino oscillations to NDAFs, while emphasizing how
the thin disk approximation can simplify the equations of flavor evolution. In Section 4 we
set the parameters of the physical system and give some details on the initial conditions
needed to solve the equations of accretion disks and neutrino oscillations. In Section 5 we
discuss the main results of our calculations and analyze the phenomenology of neutrino
oscillations in accretion disks. Finally, we present in Section 6 the conclusions of this work.
Additional technical details are presented in a series of appendices at the end.
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2. Hydrodynamics
2.1. Units, Velocities and Averaging

Throughout this article, we use Planck units c = G = h̄ = kB = ke = 1. To describe
the spacetime around a Kerr BH of mass M, we use the metric gµν in Boyer–Lindquist
coordinates, with a space-like signature, and with a dimensionless spin parameter a =
J/M2, which can be written as:

ds2 =
(

gtt −ω2gφφ

)
dt2 + gφφ(dφ−ω dt)2 + grr dr2 + gθθ dθ2, (1)

in coordinates (t, r, θ, φ). The covariant components (g)µν of the metric are

gtt = −
(

1− 2 M r
Σ

)
, grr =

Σ
∆

, gθθ = Σ,

gφφ =

(
r2 + M2a2 +

2 M3a2r
Σ

sin2 θ

)
sin2 θ, gtφ = −2 M2 a r

Σ
sin2 θ,

(2)

and its determinant is g = −Σ2 sin2 θ, with the well known functions Σ = r2 + M2a2 cos2 θ
and ∆ = r2 − 2Mr + M2a2. We denote the coordinate frame by CF. Note that these
coordinates can be used by an observer on an asymptotic rest frame. The angular velocity
of the locally non-rotating frame (LNRF) is

ω = −
gtφ

gφφ
=

2 a M2

(r3 + M2a2r + 2M3a2)
, (3)

and in Equation (2) it can be seen explicitly that if an observer has an angular velocity
ω = dφ/dt, it would not measure any differences between the ±φ directions. The LNRF
is defined by orthonormality and the coordinate change φLNRF = φ̃ = φ− ω t [122,123].
We assume that the disk lies on the equatorial plane of the BH (θ = π/2). This way
we represent the average movement of the fluid by geodesic circular orbits with angular
velocity Ω = dφ/dt = uφ/ut plus a radial velocity so that the local rest frame (LRF) of
the fluid is obtained by performing, first, an azimuthal Lorentz boost with velocity βφ̂ to
a co-rotating frame (CRF) [124], and then a radial Lorentz boost with velocity βr̃. Clearly,
the metric on the LNRF, CRF and LRF is diag(−1, 1, 1, 1). The expression for the angular
velocity of circular orbits is obtained by setting ṙ = r̈ = 0 in the r-component of the
geodesic equation

Ω± = ±
√

M(
r3/2 ±M3/2a

) , (4)

where (+) is for prograde orbits and (−) is for retrograde orbits. We will limit our
calculations to prograde movement with 0 ≤ a ≤ 1, but extension to retrograde orbits
is straightforward. Finally, we can get the components of the 4-velocity of the fluid by
transforming uLRF = (1, 0, 0, 0) back to the CF

uµ =

 γr̃γφ̂√
ω2gφφ− gtt

,
γr̃βr̃
√

grr
, 0,

γr̃γφ̂Ω√
ω2gφφ− gtt

, (5)

leaving βr̃ to be determined by the conservation laws. In Equation (5) we have replaced
βφ̂ with Equation (A3). A discussion on the explicit form of the transformations and some
miscellaneous results are given in Appendix A. We will also assume that the disk is in a
steady-state. This statement requires some analysis. There are two main ways in which it
can be false:
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First, as matter falls into the BH, its values M and a change [125,126], effectively
changing the spacetime around it. For the spacetime to remain the same (i.e., for M and a
to stay constant) we require Ω−1 � tacc = ∆M0/Ṁacc, where ∆M0 is the total mass of the
disk and Ṁacc is the accretion rate. The characteristic accretion time must be bigger than the
dynamical time of the disk so that flow changes due to flow dynamics are more important
than flow changes due to spacetime changes. Equivalent versions of this condition that
appear throughout disk accretion articles are tdym � tvisc and

βr � βφ < 1, (6)

where it is understood that the accretion rate obeys Ṁacc ≈ ∆M0/tacc. To put these
numbers into perspective, consider a solar mass BH (M = 1M�) and a disk with mass
between ∆M0 = (1− 10)M�. For accretion rates up to Ṁacc = 1M�/s the characteristic
accretion time is tacc . (1− 10) s, while Ω−1 ∼ (10−5 − 10−1) s between r = rISCO and
r = 2000M�. Consequently, a wide range of astrophysical systems satisfy this condition,
and it is equivalent to claiming that both ∂t and ∂φ are killing fields.

Second, at any point inside the disk, any field ψ(t, r, θ, φ) that reports a property of
the gas may variate in time due to the turbulent motion of the flow. Thus, to assume
that any field is time-independent and smooth enough in r for its flow to be described
by Equation (5) means replacing such field by its average over an appropriate spacetime
volume. The same process allows one to choose a natural set of variables that split the
hydrodynamics into r-component equations and θ-component equations. The averaging
process has been explained in [124,127,128]. We include the analysis here and try to
explain it in a self-consistent manner. The turbulent motion is characterized by the eddies.
The azimuthal extension of the largest eddies can be 2π, like waves crashing around an
island, but their linear measure cannot be larger than the thickness of the disk, and as
measured by an observer on the CRF, their velocity is in the order of βr̃ so that their
period along the r component is ∆t̃ ≈ (Thickness)/βr̃ (e.g., §33, [129]). If we denote
by H the average half-thickness of the disk as measured by this observer at r over the
time ∆t̃, then the appropriate volume V is composed by the points (t, r, θ, φ) such that
t ∈ [t∗ − ∆t/2, t∗ + ∆t/2], θ ∈ [θmin, θmax] and φ ∈ [0, 2π), where we have transformed ∆t̃
and ∆r̃ back to the CF using Equation (A4) as approximations. The values θmin and θmax
correspond to the upper and lower faces of the disk, respectively. Then, the average takes
the form

ψ(t, r, θ, φ) 7→ ψ(r, θ) = 〈ψ(t, r, θ, φ)〉 =

∫ t∗+∆t/2
t∗−∆t/2

∫ 2π
0 ψ(r, t, θ, φ)

√
−g

grr gθθ
dtdφ∫ t∗+∆t/2

t∗−∆t/2

∫ 2π
0

√
−g

grr gθθ
dtdφ

. (7)

The steady-state condition is achieved by requiring that the Lie derivative of the
averaged quantity along the killing field ∂t vanishes: L∂t〈ψ〉 = 0. Note that the thickness
measurement performed by the observer already has an error ∼M2a2H3/6r4 since it
extends the Lorentz frame beyond the local neighborhood, but if we assume that the disk
is thin (H/r � 1), and we do, this error remains small. At the same time, we can take all
metric components evaluated at the equator and use Equation (5) as the representative
average velocity. Under these conditions, we have θmax − θmin ≈ 2H/r, and the term√
−g/grr in Equation (7) cancels out. It becomes clear that an extra θ integral is what

separates the radial and polar variables. In other words, the r-component variables are the
vertically integrated fields

ψ(r, θ) 7→ ψ(r) =
∫ θmax

θmin

ψ(r, θ)
√

gθθdθ. (8)

The vertical equations of motion can be obtained by setting up Newtonian (with rela-
tivistic corrections) equations for the field ψ(r, θ) at each value of r (see, e.g., [99,127,130,131]).
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2.2. Conservation Laws

The equations of evolution of the fluid are contained in the conservation laws∇µTµν = 0
and ∇µ(ρuµ) = 0. The most general stress–energy tensor for a Navier–Stokes viscous fluid
with heat transfer is [132,133]

T =

Ideal Fluid︷ ︸︸ ︷
(ρ + U + P)u⊗ u + Pg +

Viscous Stress︷ ︸︸ ︷
(−2ησ − ζ(∇ · u)P) +

Heat flux︷ ︸︸ ︷
q⊗ u + u⊗ q, (9)

where ρ, P, U, ζ, η, q, P and σ are the rest-mass energy density, pressure, internal energy
density, dynamic viscosity, bulk viscosity, heat-flux 4-vector, projection tensor and shear
tensor, respectively, and thermodynamic quantities are measured on the LRF. We do
not consider electromagnetic contributions and ignore the causality problems associated
with the equations derived from this stress–energy tensor, since we are not interested in
phenomena close to the horizon [124]. Before deriving the equations of motion and to
add a simple model of neutrino oscillations to the dynamics of disk accretion, we must
make some extra assumptions. We will assume that the θ integral in Equation (8) can be
approximated by ∫ θmax

θmin

ψ
√

gθθdθ ≈ ψr(θmax − θmin) ≈ 2Hψ, (10)

for any field ψ. Additionally, we use Stokes’ hypothesis (ζ = 0). Since we are treating
the disk as a thin fluid in differential rotation, we will assume that, on average, the only
non-zero component of the shearing stress on the CRF is σr̃φ̃ (there are torques only on the
φ direction), and qθ̃ is the only non-zero component of the energy flux (on average the flux
is vertical). By uµσµν = 0 and Equation (A7) we have

σrφ =
γ3

φ̂

2
gφφ√

ω2gφφ − gtt

∂rΩ , σrt = −Ωσrφ. (11)

Finally, the turbulent viscosity is estimated to be ∼l∆u where l is the size of the
turbulent eddies and ∆u is the average velocity difference between points in the disk
separated by a distance l. By the same arguments in (§33, [129]) and in Section 2.2, l
can be at most equal to 2H and ∆u can be at most equal to the isothermal sound speed
cs =

√
∂P/∂ρ or else the flow would develop shocks [89]. The particular form of cs can be

calculated from Equation (15). This way we get

η = Πνturb = 2αΠHcs, (12)

with α ≤ 1 and Π = ρ + U + P. In a nutshell, this is the popular α-prescription put
forward by [80]. As we mentioned at the end of Section 2.1, on the CRF for a fixed value
of r, the polar equation takes the form of Euler’s equation for a fluid at rest where the
acceleration is given by the tidal gravitational acceleration. Namely, the θ component of
the fluid’s path-lines relative acceleration in the θ direction is

1
r

∂θ P ≈ ρr cos θ
[
R
(
u, ∂θ̃ , u

)
· ∂θ̃

]
θ=π/2

, (13)

with R being the Riemann curvature tensor. With uµ̃ ≈ (1, 0, 0, 0), Equations (10) and (A8)
and assuming that there is no significant compression of the fluid under the action of the
tidal force, integration of this equation yields the relation up to second order in π/2− θ:

P =
1
2

ρR θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

(
H2 − r2

(π

2
− θ
)2
)

, (14)

where we used the condition P = 0 at the disk’s surface. Hence, the average pressure
inside the disk is (cf. [99,107,131])
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P =
1
3

ρH2R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

. (15)

The equation of mass conservation is obtained by directly inserting into Equation (A13)
the averaged density and integrating vertically to obtain

2Hrρur = constant = − Ṁ
2π

, (16)

where the term 2Hrρur is identified as the average inward mass flux through a cylindrical
surface of radius r per unit of azimuthal angle, and thus must be equal to the accretion rate
divided by 2π. The same process applied to Equation (A12) yields the energy conserva-
tion equation:

ur
[

∂r(HU)− U + P
ρ

∂r(Hρ)

]
= 2ηHσrφσrφ − Hε, (17)

where factors proportional to H/r are ignored and we assume Π ≈ ρ to integrate the
second term on the left-hand side. ε is the average energy density measured on the LRF
(see the discussion around Equation (A16)). The first term on the right-hand side is the
viscous heating rate Fheat and the second term is the cooling rate Fcool. The last constitutive
equation is obtained by applying the zero torque at the last stable orbit condition. These re-
lations are calculated in Appendix A. We just replace the density in Equation (16) using
Equation (A21), obtaining

ur = −
4αHcsσr

φ

M f (x, x∗)
. (18)

2.3. Equations of State

We consider that the main contribution to the rest-mass energy density of the disk is
made up of neutrons, protons and ions. This way ρ = ρB = nBmB with baryon number
density nB and baryon mass mB equal to the atomic unit mass. The disk’s baryonic mass
obeys Maxwell–Boltzmann statistics, and its precise composition is determined by the
nuclear statistical equilibrium (NSE). We denote the mass fraction of an ion i by Xi = ρi/ρB
(if i = p or n then we are referring to proton or neutrons) and it can be calculated by the
Saha equation [134,135]

Xi =
AimB

ρ
Gi

(
TAimB

2π

)3/2
exp

Zi

(
µp + µC

p

)
+ Niµn − µC

i + Bi

T

, (19)

with the constraints:
∑

i
Xi = 1, ∑

i
ZiYi = Ye. (20)

In these equations, T, Ai, Ni, Zi, Ye, Yi, Gi, µi and Bi are the temperature, atomic num-
ber, neutron number, proton number, electron fraction (electron abundance per baryon),
ion abundance per baryon, nuclear partition function, chemical potential (including the
nuclear rest-mass energy) and ion binding energy. The µC

i are the Coulomb corrections
for the NSE state in a dense plasma (see Appendix C). The binding energy data for a
large collection of nuclei can be found in [136] and the temperature-dependent partition
functions are found in [137,138]. Even though we take into account Coulomb corrections
in NSE, we assume that the baryonic mass can be described by an ideal gas1,2 and

PB = ∑
i

Pi = nBT ∑
i

Xi
Ai

, UB =
3
2

PB. (21)

1 Since bulk viscosity effects appear as a consequence of correlations between ion velocities due to Coulomb interactions and of large relaxation times
to reach local equilibrium, the NSE and ideal gas assumptions imply that imposing Stokes’ hypothesis becomes de rigueur [133,139,140]

2 We will consider accretion rates of up to 1M� s−1. These disks reach densities of 1013 g cm−3. Baryons can be lightly degenerate at these densities
but we will still assume that the baryonic mass can be described by an ideal gas.
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The disk also contains photons, electrons, positrons, neutrinos and antineutrinos. As is
usual in neutrino oscillations analysis, we distinguish only between electron (anti)neutrinos
νe, (ν̄e) and x (anti)neutrinos νx(ν̄x), where x = µ + τ is the superposition of muon neutri-
nos and tau neutrinos. Photons obey the usual relations

Pγ =
π2T4

45
, Uγ = 3Pγ, (22)

while, for electrons and positrons we have

ne± =

√
2

π2 ξ3/2[F1/2,0(ξ, ηe±) + ξF3/2,0(ξ, ηe±)], (23a)

Ue± =

√
2

π2 ξ5/2[F3/2,0(ξ, ηe±) + ξF5/2,0(ξ, ηe±)], (23b)

Pe± =
2
√

2
3π2 ξ5/2

[
F3/2,0(ξ, ηe±) +

ξ

2
F5/2,0(ξ, ηe±)

]
, (23c)

with ξ = T/me and written in terms of the generalized Fermi functions

Fk,`(y, η) =

∞∫
`

xk√1 + xy/2
exp(x− η) + 1

dx. (24)

In these equations ηe± = (µe± −me)/T is the electron (positron) degeneracy parameter
without rest-mass contributions (not to be confused with η in Section 2.2). Since electrons
and positrons are in equilibrium with photons due to the pair creation and annihilation
processes (e−+ e+→ 2γ), we know that their chemical potentials are related by µe+ =
−µe− , which implies ηe+ = −ηe− − 2/ξ from the charge neutrality condition, and we obtain

nBYe = ne− − ne+ . (25)

For neutrinos, the story is more complicated. In the absence of oscillations and if the
disk is hot and dense enough for neutrinos to be trapped within it and in thermal equilib-
rium, nν, Uν, Pν can be calculated with Fermi–Dirac statistics using the same temperature T

ntrapped
ν(ν̄)

=
T3

π2F2,0

(
ην(ν̄)

)
, (26a)

Utrapped
ν(ν̄)

=
T4

π2F3,0

(
ην(ν̄)

)
, (26b)

Ptrapped
ν(ν̄)

=
Utrapped

ν(ν̄)

3
, (26c)

where it is understood that F (η) = F (y = 0, η) with ην(ν̄) = µν(ν̄)/T and the ultra-
relativistic approximation mν � 1 for any neutrino flavor is used. If thermal equilibrium is
has not been achieved, Equation (26) cannot be used. Nevertheless, at any point in the disk
and for given values of T and ρ, (anti)neutrinos are being created through several processes.
The processes we take into account are pair annihilation e− + e+ → ν + ν̄, electron or
positron capture by nucleons p + e− → n + νe or n + e+ → p + ν̄e, electron capture by
ions A + e−→ A′ + νe, plasmon decay γ̃→ ν + ν̄ and nucleon-nucleon bremsstrahlung
n1 + n2 → n3 + n4 + ν + ν̄. The emission rates can be found in Appendix D. The chemical
equilibria for these processes determine the values of ην(ν̄). In particular,
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ηνe = ηe− + ln
(

Xp

Xn

)
+

1−Q
ξ

, (27a)

ην̄e = −ηνe , (27b)

ηνx = ην̄x = 0, (27c)

satisfy all equations. Here, Q = (mn −mp)/me ≈ 2.531. Once the (anti)neutrino number
and energy emission rates (Ri, Qi) are calculated for each process i, the (anti)neutrino
thermodynamic quantities are given by

nfree
ν(ν̄) = H ∑

i
Ri,ν(ν̄), (28a)

Ufree
ν(ν̄) = H ∑

i
Qi,ν(ν̄), (28b)

Pfree
ν(ν̄) =

Ufree
ν(ν̄)

3
. (28c)

Remember we are using Planck units, so in these expressions there should be an H/c
instead of just an H. The transition for each (anti)neutrino flavor between both regimes
occurs when Equations (26b) and (28b) are equal, and it can be simulated by defining
the parameter

wν(ν̄) =
Ufree

ν(ν̄)

Ufree
ν(ν̄)

+ Utrapped
ν(ν̄)

. (29)

With this equation, the (anti)neutrino average energy can be defined as

〈Eν(ν̄)〉 =
(

1− wν(ν̄)

)Ufree
ν(ν̄)

nfree
ν(ν̄)

+ wν(ν̄)

Utrapped
ν(ν̄)

ntrapped
ν(ν̄)

. (30)

and the approximated number and energy density are

nν(ν̄) =

nfree
ν(ν̄)

, if wν(ν̄) < 1/2.

ntrapped
ν(ν̄)

, if wν(ν̄) ≥ 1/2.
(31a)

Uν(ν̄) =

Ufree
ν(ν̄)

, if wν(ν̄) < 1/2.

Utrapped
ν(ν̄)

, if wν(ν̄) ≥ 1/2.
(31b)

Pν(ν̄) =
Uν(ν̄)

3
. (31c)

Note that both Equations (28c) and (31c) are approximations since they are derived
from equilibrium distributions, but they help make the transition smooth. Besides, the neu-
trino pressure before thermal equilibrium is negligible. This method was presented in [107]
where it was used only for electron (anti)neutrinos. The total (anti)neutrino number and
energy flux through one the disk’s faces can be approximated by

ṅνj(ν̄j)
= ∑

j∈{e,x}

nνj(ν̄j)

1 + τνj(ν̄j)
, (32a)

Fνj(ν̄j)
= ∑

j∈{e,x}

Uνj(ν̄j)

1 + τνj(ν̄j)
, (32b)



Universe 2021, 7, 7 11 of 44

where τνi is the total optical depth for the (anti)neutrino νi(ν̄i). By collecting all the
expressions, we write the total internal energy and total pressure as

U = ∑
j∈{e,x}

(
Uνj + Uν̄j

)
+ UB + Ue− + Ue+ + Uγ , (33a)

P = ∑
j∈{e,x}

(
Pνj + Pν̄j

)
+ PB + Pe− + Pe+ + Pγ . (33b)

The (anti)neutrino energy flux through the disk faces contributes to the cooling term
in the energy conservation equation, but it is not the only one. Another important energy
sink is photodisintegration of ions. To calculate it we proceed as follows. The energy
spent to knocking off a nucleon of an ion i is equal to the binding energy per nucleon
Bi/Ai. Now, consider a fluid element of volume V whose moving walls are attached
to the fluid so that no baryons flow in or out. The total energy of photodisintegration
contained within this volume is the sum over i of (energy per nucleon of ion i)×(# of
freed nucleons of ion i inside V). This can be written as ∑i(Bi/Ai)n f ,iV, or, alternatively,
nBV ∑i(Bi/Ai)X f ,i. If we approximate Bi/Ai by the average binding energy per nucleon
B̄ (which is a good approximation save for a couple of light ions) the expression becomes
nBVB̄ ∑i X f ,i = nBVB̄X f = nBVB̄(Xp + Xn). We place the value of B̄ in Section 4.

The rate of change of this energy on the LRF, denoting the proper time by λ, is

d
dλ

[
nBVB̄

(
Xp + Xn

)]
= nBVB̄

d
dλ

(
Xp + Xn

)
. (34)

The derivative of nBV vanishes by baryon conservation. Transforming back to CF and
taking the average we find the energy density per unit time used in disintegration of ions

εions = nB B̄ur H∂r
(
Xp + Xn

)
. (35)

The average energy density measured on the LRF ε appearing in Equation (17) is

ε = εions +
1
H ∑

i∈{e,x}
(Fνi + Fν̄i ). (36)

Finally, a similar argument allows us to obtain the equation of lepton number conser-
vation. For any lepton `, the total lepton number density is ∑`∈{e,µ,τ}(n` − n ¯̀ + nν` − nν̄`).
Thus, with Equation (25), calculating the rate of change as before, using Gauss’s theorem
and taking the average, we get

ur H

nB∂rYe + ∂r ∑
`∈{e,x}

(nν`− nν̄`)

 = ∑
`∈{e,x}

(ṅν̄`− ṅν`), (37)

where the right-hand side represents the flux of lepton number through the disk’s surface.

3. Neutrino Oscillations

To study the flavor evolution of neutrinos within a particular system, a Hamiltonian
governing neutrino oscillation must be set up. The relative strengths of the potentials
appearing in such a Hamiltonian depend on four elements: geometry, mass content,
neutrino content and neutrino mass hierarchy. Geometry refers to the nature of net neutrino
fluxes and possible gravitational effects. Mass and neutrino contents refer to respective
distributions of leptons of each flavor (e, µ, τ) present in the medium. Finally, mass
hierarchy refers to the relative values of the masses m1, m2, m3 for each neutrino mass
eigenstates (see Table 2). We dedicate this section to a detailed derivation of the equations
of flavor evolution for a neutrino dominated accretion disk. To maintain consistency with
the traditional literature of neutrino oscillations, we will reuse some symbols appearing in
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previous sections. To avoid confusion, we point out that the symbols in this section are
independent of the previous sections unless we explicitly draw a comparison.

Table 2. Mixing and squared mass differences as they appear in [141]. Error values in parentheses
are shown in 3σ interval. The squared mass difference is defined as ∆m2 = m2

3 −
(
m2

2 + m2
1
)
/2 and

its sign depends on the hierarchy m1 < m2 < m3 or m3 < m1 < m2.

∆m2
21 = 7.37 (6.93− 7.96)× 10−5 eV2

|∆m2| = 2.56 (2.45− 2.69)× 10−3 eV2 Normal Hierarchy
|∆m2| = 2.54 (2.42− 2.66)× 10−3 eV2 Inverted Hierarchy
sin2 θ12 = 0.297 (0.250− 0.354)
sin2 θ23(∆m2 > 0) = 0.425 (0.381− 0.615)
sin2 θ23(∆m2 < 0) = 0.589 (0.383− 0.637)
sin2 θ13(∆m2 > 0) = 0.0215 (0.0190− 0.0240)
sin2 θ13(∆m2 < 0) = 0.0216 (0.0190− 0.0242)

3.1. Equations of Oscillation

The equations that govern the evolution of an ensemble of mixed neutrinos are the
Boltzmann collision equations

iρ̇p,t = C
(
ρp,t
)
, (38a)

i ˙̄ρp,t = C
(
ρ̄p,t
)
. (38b)

The collision terms should include the vacuum oscillation plus all possible scattering
interactions that neutrinos undergo through their propagation. For free streaming neutri-
nos, only the vacuum term and the forward-scattering interactions are taken into account
so that the equations become

iρ̇p,t =
[
Hp,t, ρp,t

]
, (39a)

i ˙̄ρp,t =
[
H̄p,t, ρ̄p,t

]
. (39b)

Here, Hp,t (H̄p,t) is the oscillation Hamiltonian for (anti)neutrinos and ρp,t (ρ̄p,t) is the
matrix of occupation numbers: (ρp,t)ij = 〈a†

j ai〉p,t for neutrinos and ((ρ̄p,t)ij = 〈ā†
i āj〉p,t

for antineutrinos), for each momentum p and flavors i, j. The diagonal elements are the
distribution functions fνi(ν̄i)

(p) such that their integration over the momentum space gives
the neutrino number density nνi of a determined flavor i at time t. The off-diagonal
elements provide information about the overlapping between the two neutrino flavors.
Taking into account the current–current nature of the weak interaction in the standard
model, the Hamiltonian for each equation is [142–144]

Hp,t = Ωp,t +
√

2GF

∫(
lq,t − l̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 +
√

2GF

∫(
ρq,t − ρ̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 , (40a)

H̄p,t = −Ωp,t +
√

2GF

∫(
lq,t − l̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 +
√

2GF

∫(
ρq,t − ρ̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 . (40b)

where GF is the Fermi coupling constant, Ωp,t is the matrix of vacuum oscillation fre-
quencies, lp,t and l̄p,t are matrices of occupation numbers for charged leptons built in a
similar way to the neutrino matrices, and vp,t = p/p is the velocity of a particle with
momentum p (either neutrino or charged lepton). As stated before, we will only consider
two neutrino flavors: e and x = µ + τ. Three-flavor oscillations can be approximated by
two-flavor oscillations as a result of the strong hierarchy of the squared mass differences
|∆m2

13| ≈ |∆m2
23| � |∆m2

12|. In this case, only the smallest mixing angle θ13 is considered.
We will drop the suffix for the rest of the discussion. Consequently, the relevant oscillations
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are νe 
 νx and ν̄e 
 ν̄x, and each term in the Hamiltonian governing oscillations becomes
a 2 × 2 Hermitian matrix. Now, consider an observer on the LRF (which is almost identical
to the CRF due to Equation (6) at a point r. In its spatial local frame, the unit vectors x̂, ŷ, ẑ
are parallel to the unit vectors r̂, θ̂, φ̂ of the CF, respectively. Solving Equation (39) in this
coordinate system would yield matrices ρ, ρ̄ as functions of time t. However, in our specific
physical system, both the matter density and the neutrino density vary with the radial
distance from the BH. This means that the equations of oscillations must be written in
a way that makes explicit the spatial dependence, i.e., in terms of the coordinates x, y, z.
For a collimated ray of neutrinos, the expression dt = dr would be good enough, but for
radiating extended sources or neutrino gases the situation is more complicated.

In Equation (39) we must replace the matrices of occupation numbers by the space-
dependent Wigner functions ρp,x,t (and ρ̄p,x,t) and the total time derivative by the Liouville
operator [145,146]:

ρ̇p,x,t =

Explicit Time︷ ︸︸ ︷
∂ρp,x,t

∂t
+

Drift︷ ︸︸ ︷
vp · ∇x ρp,x,t +

External Forces︷ ︸︸ ︷
ṗ · ∇p ρp,x,t . (41)

In this context, x represents a vector in the LRF. In the most general case, finding ρp,x,t
and ρ̄p,x,t means solving a 7D neutrino transport problem in the variables x, y, z, px, py, pz, t.
Since our objective is to construct a simple model of neutrino oscillations inside the disk, to
obtain the specific form of Equation (39) we must simplify the equations by imposing on it
conditions that are consistent with the assumptions made in Section 2.

• Due to axial symmetry, the neutrino density is constant along the z direction. More-
over, since neutrinos follow null geodesics, we can set ṗz ≈ ṗφ = 0.

• Within the thin disk approximation (as represented by Equation (10)) the neutrino
and matter densities are constant along the y direction and the momentum change
due to curvature along this direction can be neglected, that is, ṗy ≈ 0.

• In the LRF, the normalized radial momentum of a neutrino can be written as px =

±r/
√

r2 − 2Mr + M2a2. Hence, the typical scale of the change of momentum with ra-
dius is ∆rpx ,eff = |d ln px/dr|−1 = (r/M)

(
r2 − 2Mr + M2a2)/(Ma2 − r

)
, which obeys

∆rpx ,eff > rs for r > 2rin. This means we can assume ṗx ≈ 0 up to regions very close
to the inner edge of the disk.

• We define an effective distance ∆rρ,eff = |d ln(YenB)/dr|−1. For all the systems we
evaluated, we found that it is comparable to the height of the disk (∆rρ,eff ∼ 2− 5 rs).
This means that at any point of the disk we can calculate neutrino oscillations in a small
regions assuming that both the electron density and neutrino densities are constant.

• We neglect energy and momentum transport between different regions of the disk
by neutrinos that are recaptured by the disk due to curvature. This assumption is
reasonable except for regions very close to the BH but is consistent with the thin
disk model (see, e.g., [128]). We also assume initially that the neutrino content of
neighboring regions of the disk (different values of r) do not affect each other. As a
consequence of the results discussed above, we assume that at any point inside the
disk and at any instant of time an observer can describe both the charged leptons and
neutrinos as isotropic gases around small enough regions of the disk. This assumption
is considerably restrictive but we will generalize it in Section 5.

The purpose of these approximations is twofold. On one hand, we can reduce the
problem considerably, since they allow us to add the neutrino oscillations to a steady-state
disk model by simply studying the behavior of neutrinos at each point of the disk using the
constant values of density and temperature at that point. We will see in Section 5, that this
assumption would correspond to a transient state of an accretion disk, since very fast
neighboring regions of the disk start interacting. On the other hand, the approximations
allow us to simplify the equations of oscillation considering that all but the first term in
Equation (41) vanish, leaving only a time derivative. In addition, both terms of the form
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vq,t · vp,t in Equation (40) average to zero so that ρp,x,t = ρp,t and ρ̄p,x,t = ρ̄p,t. We are
now in a position to derive the simplified equations of oscillation for this particular model.
Let us first present the relevant equations for neutrinos. Due to the similarity between
Hp,t and H̄p,t, the corresponding equations for antineutrinos can be obtained analogously.
For simplicity, we will drop the suffix t since the time dependence is now obvious. In the
two-flavor approximation, ρp is a 2× 2 Hermitian matrix and can be expanded in terms
of the Pauli matrices σi and a polarization vector Pp = (Px, Py, Pz) in the neutrino flavor
space, such that

ρp =

(
ρee ρex
ρxe ρxx

)
=

1
2
(

fp1 + Pp ·~σ
)
, (42)

where fp = Tr[ρp] = fνe(p) + fνx (p) is the sum of the distribution functions for νe and νx.
Note that the z component of the polarization vector obeys

Pz
p = fνe(p)− fνx (p). (43)

Hence, this component tracks the fractional flavor composition of the system.
Appropriately normalizing ρp allows one to define a survival and mixing probability

Pp,νe→νe =
1
2

(
1 + Pz

p

)
, (44a)

Pp,νe→νx =
1
2

(
1− Pz

p

)
. (44b)

The Hamiltonian can be written as a sum of three interaction terms:

H = Hvacuum + Hmatter + Hνν. (45)

The first term is the Hamiltonian in vacuum [27]:

Hvacuum =
ωp

2

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
=

ωp

2
B ·~σ, (46)

where ωp = ∆m2/2p, B = (sin 2θ, 0,− cos 2θ) and θ is the smallest neutrino mixing angle
in vacuum. The other two terms in Equation (40) are special since they make the evolution
equations non-linear. Since we are considering that the electrons inside the form an isotropic
gas, the vector vq in the first integral is distributed uniformly on the unit sphere and the
factor vq · vp averages to zero. After integrating the matter Hamiltonian is given by

Hmatter =
λ

2

(
1 0
0 −1

)
=

λ

2
L ·~σ, (47)

where λ =
√

2GF(ne− − ne+) is the charged current matter potential and L = (0, 0, 1).
Similarly, the same product disappears in the last term and after integrating we get

Hνν =
√

2GF[P− P̄] ·~σ. (48)

Clearly, P =
∫

Pp dp/(2π)3. Introducing every Hamiltonian term in Equation (39),
and using the commutation relations of the Pauli matrices, we find the equations of
oscillation for neutrinos and antineutrinos for each momentum mode p:

Ṗp =
[
ωpB + λL +

√
2GF(P− P̄)

]
× Pp, (49a)

˙̄Pp =
[
−ωpB + λL +

√
2GF(P− P̄)

]
× P̄p, (49b)
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where we have assumed that the total neutrino distribution remains constant, ḟp = 0.
This shows how the polarization vectors can be normalized. By performing the transfor-
mations Pp/ fp 7→ Pp and P̄p/ f̄p 7→ P̄p, and multiplying and dividing the last term by the
total neutrino density Equation (49), we get

Ṗp =
[
ωpB + λL + µD

]
× Pp, (50a)

˙̄Pp =
[
−ωpB + λL + µD

]
× P̄p, (50b)

D =
1

nνe+ nνx

∫ (
fqPq − f̄qP̄q

) dq
(2π)3 . (50c)

These are the traditional forms of the equations in terms of the vacuum, matter and
self-interaction potentials ωp, λ and µ with

µ =
√

2GF ∑
i∈{e,x}

nνi . (51)

Different normalization schemes are possible (see, e.g., [36,49,144,147]). Assuming
that we can solve the equations of oscillation with constant potentials λ and µ simplifies
the problem even further. Following [29], with the vector transformation (a rotation around
the z axis of flavor space)

Rz =

 cos(λt) sin(λt) 0
− sin(λt) cos(λt) 0

0 0 1

, (52)

Equation (50) becomes

Ṗp =
[
ωpB + µD

]
× Pp, (53a)

˙̄Pp =
[
−ωpB + µD

]
× P̄p, (53b)

eliminating the λ potential, but making B time dependent. By defining the vector Sp = Pp + P̄p,
and adding and subtracting Equations (53a) and (53b) we get

Ṡp = ωpB×Dp + µD× Sp ≈ µD× Sp, (54a)

Ḋp = ωpB× Sp + µD×Dp ≈ µD×Dp. (54b)

The last approximation is true if we assume that the self-interaction potential is larger
than the vacuum potential ωp/µ � 1. We will show in Section 5 that this is the case for
thin disks. The first equation implies that all the vectors Sp and their integral S evolve in
the same way, suggesting the relation Sp =

(
fp + f̄p

)
S. By replacing in Equation (54b) and

integrating

Ṡ = µD× S, (55a)

Ḋ = 〈ω〉B× S. (55b)

where 〈ω〉 =
∫

ωp
(

fp + f̄p
)
dp/(2π)3 is the average vacuum oscillation potential. The fact

that in our model the equations of oscillations can be written in this way has an impor-
tant consequence. Usually, as it is done in supernovae neutrino oscillations, to solve
Equation (50) we would need the neutrino distributions throughout the disk. If neutrinos
are trapped, their distribution is given by Equation (26). If neutrinos are free, their tem-
perature is not the same as the disk’s temperature. Nonetheless, we can approximate the
neutrino distribution in this regime by a Fermi–Dirac distribution with the same chemical
potential as defined by Equation (27) but with an effective temperature Teff

ν . This tempera-



Universe 2021, 7, 7 16 of 44

ture can be obtained by solving the equation 〈Eν〉 = U
(
Teff

ν , ην

)
/n
(
Teff

ν , ην

)
which gives

Teff
νx ,ν̄x = 〈Eνx ,ν̄x 〉

180 ζ(3)
7π4 , (56a)

Teff
νe ,ν̄e =

〈Eνe ,ν̄e〉
3

Li3(− exp(ηνe ,ν̄e))

Li4(− exp(ηνe ,ν̄e))
, (56b)

where ζ(3) is Apéry’s constant (ζ is the Riemann zeta function) and Lis(z) is Jonquière’s
function. For convenience and considering the range of values that the degeneracy param-
eter reaches (see Section 6), we approximate the effective temperature of electron neutrinos
and antineutrinos with the expressions

Teff
νe =

〈Eνe〉
3

(
aη2

νe + bηνe + c
)

, (57a)

Teff
ν̄e =

〈Eν̄e〉
3

. (57b)

with constants a = 0.0024, b = −0.085, c = 0.97. However, Equation (55) allows us to
consider just one momentum mode, and the rest of the spectrum behaves in the same way.

4. Initial Conditions and Integration

In the absence of oscillations, we can use Equations (15), (17) and (37) to solve for the
set of functions ηe−(r), ξ(r) and Ye(r) using as input parameters the accretion rate Ṁ, the di-
mensionless spin parameter a, the viscosity parameter α and the BH mass M. From [99,107]
we learn that neutrino dominated disks require accretion between 0.01 M� s−1 and
1 M� s−1 (this accretion rate range varies depending on the value of α). For accretion rates
smaller than the lower value, the neutrino cooling is not efficient, and for rates larger than
the upper value, the neutrinos are trapped within the flow. We also limit ourselves to
the above accretion rate range, since it is consistent with the one expected to occur in a
BdHN (see, e.g., [57,63,70]). We also know that s high spin parameter, high accretion rate,
high BH mass and low viscosity parameter produce disks with higher density and higher
temperature. This can be explained using the fact that several variables of the disk, such
as pressure, density and height, are proportional to a positive power of M and a positive
power of the quotient Ṁ/α. To avoid this semi-degeneracy in the system, we reduce the
parameter space, and considering that we want to focus on the study of the oscillation
dynamics inside the disk, we fix the BH mass at M = 3M�, the viscosity parameter at
α = 0.01 and the spin parameter at a = 0.95 while changing the accretion rate. These values
also allow us to compare our results with earlier disk models. Equations (17) and (37)
are first-order ordinary differential equations, and since we perform the integration from
an external (far away) radius rout up to the innermost stable circular orbit rin, we must
provide two boundary conditions at rout. Following the induced gravitational collapse
(IGC) paradigm of GRBs associated with type Ib/c supernovae we assume that at the
external edge of the disk, the infalling matter is composed mainly by the ions present in
the material ejected from an explosion of a carbon–oxygen core, that is, mainly oxygen
and electrons. This fixes the electron fraction Ye(rout) = 0.5. We can also calculate the
average binding energy per nucleon that appears in Equation (34) using the data in [136].
To establish the NSE we consider H2, H3, HE3, HE4, LI6, LI7, BE7, BE9, BE10, B10, B11, C11,
C12, C13, C14, N13, N14, N15, O14, O15, O16, O17 and O18, and obtain the value of the
average binding energy per nucleon B̄ = 6.35 MeV. The second boundary condition can be
obtained by the relation (Tη + mB)

√
gtt = constant [148–150], with η being the degeneracy

parameter of the fluid. If we require the potentials to vanish at infinity and invoke Euler’s
theorem, we arrive at the relation in the weak field limit

M
rout

=
ρ + U + P− TS

ρ

∣∣∣∣
r=rout

. (58)



Universe 2021, 7, 7 17 of 44

For a classical gas composed of ions and electrons, this relation becomes

M
rout
.

U
ρ

∣∣∣∣
r=rout

. (59)

That is, the virial specific energy must be smaller or comparable to the energy per
baryon. Equation (59) can be used together with Equations (15) and (33) to solve for
ηe−(rout), ξ(rout). The value of rout is chosen to be at most the circularization radius of the
accreting material as described in [63,69]. We can estimate this radius by solving for r in
the expression of the angular momentum per unit mass for a equatorial circular orbits.
Hence, using Equation (5) we need to solve

uφ = M
x2 − 2x + a2

x3/2
√

x3 − 3x + 2a
∼ 3× 107 cm, (60)

where x =
√

r/M which yields rout ∼ 1800rs and the expression is in geometric units.
Finally, for the initial conditions to be accepted, they are evaluated by the gravitational
instability condition [151]: √

R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

Ω ≥ 2
√

3πρ. (61)

Integration of the equations proceeds as follows: With the initial conditions we
solve Equation (37) to obtain the electron fraction in the next integration point. With the
new value of the electron fraction we solve the differential algebraic system of
Equations (15) and (17) at this new point. This process continues until the innermost stable
circular orbit rin is reached.

To add the dynamics of neutrino oscillations we proceed the same as before, but at
each point of integration, once the values of Ye, η and ξ are found, we solve Equation (50)
for the average momentum mode to obtain the survival probabilities as a function of time.
We then calculate the new neutrino and antineutrino distributions with the conservation of
total number density and the relations

nnew
νe (t) = Pνe→νe(t)nνe + [1− Pνe→νe(t)]nνx , (62a)

nnew
νx (t) = Pνx→νx (t)nνx + [1− Pνx→νx (t)]nνe . (62b)

Since the disk is assumed to be in a steady-state, we then perform a time average
of Equation (62) as discussed in Section 2. With the new distributions, we can calculate
the new neutrino and antineutrino average energies and use them to re-integrate the
disk equations.

Neutrino emission within neutrino-cooled disks is dominated by electron and positron
capture, which only produces electron (anti)neutrinos. The second most important process
is electron–positron annihilation, but it is several orders of magnitude smaller. In Figure 2
we show the total number emissivity for these two processes for an accretion rate of
Ṁ = 0.1M� s −1. Other cases behave similarly. Moreover, although the degeneracy
parameter suppresses the positron density, a high degeneracy limit does not occur in
the disk and the degeneracy is kept low at values between about 0.2 and 3, as shown in
Figure 3. The reason for this is the effect of high degeneracy on neutrino cooling. Higher
degeneracy leads to a lower density of positrons, which suppresses the neutrino production
and emission, which in turn leads to a lower cooling rate, higher temperature, lower
degeneracy and higher positron density. This equilibrium leads, via the lepton number
conservation Equation (37), to a balance between electronic and non-electronic neutrino
densities within the inner regions of the disk. Given this fact, to solve the equations of
oscillations, we can approximate the initial conditions of the polarization vectors with

P = P̄ ≈ (0, 0, 1). (63)
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Figure 2. Total number emissivity for electron and positron capture (p+ e−→ n+ νe, n+ e+→ p+ ν̄e)
and electron–positron annihilation (e−+ e+ → ν + ν̄) for accretion disks with Ṁ = 0.1M� s−1

between the inner radius and the ignition radius.
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Figure 3. Cont.
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Figure 3. Properties of accretion disks in the absence of oscillations with M = 3M�, α = 0.01, a = 0.95. (a,b) The mass
fraction inside the disk. We have plotted only the ones that appreciably change. (c) The electron degeneracy parameter.
(d) The comparison between the neutrino cooling flux Fν and the viscous heating Fheat. (e) The baryon density. (f) The
temperature. (g,h) The neutrino number density. (i,j) The average neutrino energies.

5. Results and Analysis

In Figures 3 and 4, we present the main features of accretion disks for the param-
eters M = 3M�; α = 0.01; a = 0.95; and two selected accretion rates, Ṁ = 1M� s−1

and Ṁ = 0.01M� s−1. It exhibits the usual properties of thin accretions disks. High accre-
tion rate disks have higher density, temperature and electron degeneracy. Additionally, for
high accretion rates, the cooling due to photodisintegration and neutrino emission kicks in
at larger radii. For all cases, as the disk heats up, the number of free nucleons starts to in-
crease enabling the photodisintegration cooling at r ∼ (100–300)rs. Only the disintegration
of alpha particles is important, and the nucleon content of the infalling matter is of little
consequence for the dynamics of the disk. When the disk reaches temperatures ∼1.3 MeV,
the electron capture switches on, the neutrino emission becomes significant and the physics
of the disk is dictated by the energy equilibrium between Fheat and Fν. The radius at which
neutrino cooling becomes significant (called ignition radius rign) is defined by the condition
Fν∼Fheat/2. For the low accretion rate Ṁ = 0.01M� s−1, the photodisintegration cooling
finishes before the neutrino cooling becomes significant; this leads to fast heating of the
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disk. Then the increase in temperature triggers a strong neutrino emission that carries away
the excess heat generating a sharp spike in Fν surpassing Fheat by a factor of ∼3.5. This be-
havior is also present in the systems studied in [107], but there it appears for fixed accretion
rates and high viscosity (α = 0.1). This demonstrates the semi-degeneracy mentioned in
Section 5. The evolution of the fluid can be tracked accurately through the degeneracy
parameter. At the outer radius, ηe− starts to decrease as the temperature of the fluid rises.
Once neutrino cooling becomes significant, it starts to increase until the disk reaches the
local balance between heating and cooling. At this point, ηe− stops rising and is maintained
(approximately) at a constant value. Very close to rin, the zero torque condition of the disk
becomes important and the viscous heating is reduced drastically. This is reflected in a
sharp decrease in the fluid’s temperature and increase in the degeneracy parameter. For the
high accretion rate, an additional effect has to be taken into account. Due to high νe optical
depth, neutrino cooling is less efficient, leading to an increase in temperature and a second
dip in the degeneracy parameter. This dip is not observed in low accretion rates because
τνe does not reach significant values.
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Figure 4. Total optical depth (left scale) and mean free path (right scale) for neutrinos and antineu-
trinos of both flavors between the inner radius and the ignition radius for accretion disks with
(a) Ṁ = 1M� s−1 and (b) 0.01M� s−1.

With the information in Figure 3 we can obtain the oscillation potentials which we
plot in Figure 5. Since the physics of the disk for r < rign are independent of the initial
conditions at the external radius and for r > rign the neutrino emission is negligible,
the impact of neutrino oscillations is important only inside rign.
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Figure 5. Oscillation potentials as functions of r with M = 3M�, α = 0.01, a = 0.95 for accretion rates
(a) Ṁ = 1M� s−1 and (b) Ṁ = 0.01M� s−1, respectively. The vertical line represents the position of
the ignition radius.

We can see that the discussion at the end of Section 3.1 is justified since, for rin < r < rign,
the potentials obey the relation

〈ω〉 � µ� λ. (64)
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Generally, the full dynamics of neutrino oscillations are a rather complex interplay
between the three potentials, yet it is possible to understand the neutrino response in the
disk using some numerical and algebraic results obtained in [33,36,144] and references
therein. Specifically, we know that if µ� 〈ω〉, as long as the MSW condition λ ' 〈ω〉 is not
met (precisely our case), collective effects should dominate the neutrino evolution even if
λ� µ. On the other hand, if µ . 〈ω〉, the neutrino evolution is driven by the relative values
between the matter and vacuum potentials (not our case). With Equation (55) we can build
a very useful analogy. These equations are analogous to the equations of motion of a simple
mechanical pendulum with a vector position given by S, precessing around with angular
momentum D, subjected to a gravitational force 〈ω〉µB with mass µ−1. Using Equation (63)
obtains the expression |S| = S ≈ 2 + O(〈ω〉/µ). Calculating ∂t(S · S), it can be checked
that this value is conserved up to fluctuations of order 〈ω〉/µ. The analogous angular
momentum is D = P− P̄ = 0. Thus, the pendulum moves initially in a plane defined by B
and the z-axis, i.e., the plane xz. Then, it is possible to define an angle ϕ between S and the
z-axis such that

S = S(sin ϕ, 0, cos ϕ). (65)

The only non-zero component of D is the y-component. From Equation (55) we find

ϕ̇ = µD, (66a)

Ḋ = −〈ω〉S cos(ϕ + 2θ). (66b)

These equations can be equivalently written as

ϕ̈ = −k2 sin(2θ + ϕ), (67)

where we have introduced the inverse characteristic time k by

k2 = 〈ω〉µS, (68)

which is related to the anharmonic oscillations of the pendulum. The role of the matter
potential λ is to logarithmically extend the oscillation length by the relation [144]

τ = −k−1 ln

[
k

θ(k2 + λ2)
1/2

(
1 +
〈ω〉
Sµ

)]
. (69)

The total oscillation time can then be approximated by the period of an harmonic
pendulum plus the logarithmic extension

tosc =
2π

k
+ τ. (70)

The initial conditions of Equation (63) imply

ϕ(t = 0) = arcsin
(
〈ω〉
Sµ

sin 2θ

)
, (71)

so that ϕ is a small angle. The potential energy for a simple pendulum is

V(ϕ) = k2[1− cos(ϕ + 2θ)] ≈ k2(ϕ + 2θ)2. (72)

If k2 > 0, which is true for the normal hierarchy ∆m2 > 0, we expect small oscillations
around the initial position since the system begins in a stable position of the potential.
The magnitude of flavor conversions is in the order ∼〈ω〉/Sµ� 1. We stress that normal
hierarchy does not mean an absence of oscillations but rather imperceptible oscillations in
Pz. No strong flavor oscillations are expected. On the contrary, for the inverted hierarchy
∆m2 < 0, k2 < 0 and the initial ϕ indicates that the system begins in an unstable position
and we expect very large anharmonic oscillations. Pz (and P̄z) oscillates between two
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different maxima, passing through a minimum −Pz (−P̄z) several times. This implies total
flavor conversion: all electronic neutrinos (antineutrinos) are converted into non-electronic
neutrinos (antineutrinos) and vice versa. This has been called bipolar oscillation in the
literature [44]. If the initial conditions are not symmetric as in Equation (63), the asymmetry
is measured by a constant ς = P̄z/Pz if P̄z < Pz or ς = Pz/P̄z if P̄z > Pz so that 0 < ς < 1.
Bipolar oscillations are present in an asymmetric system as long as the relation

µ

|〈ω〉| < 4
1 + ς

(1− ς)2 , (73)

is obeyed [144]. If this condition is not met, instead of bipolar oscillation we get synchro-
nized oscillations. Since we are considering constant potentials, synchronized oscillations
are equivalent to the normal hierarchy case. From Figure 5 we can conclude that in the
normal hierarchy case, neutrino oscillations have no effects on neutrino-cooled disks under
the assumptions we have made. On the other hand, in the inverted hierarchy case, we ex-
pect extremely fast flavor conversions with periods of order tosc ∼ (10−9–10−5) s for high
accretion rates and tosc ∼ (10−8–10−5) s for low accretion rates, between the respective rin
and rign.

For the purpose of illustration we solve the equations of oscillations for the
Ṁ = 0.1M� s−1 case at r = 10rs. The electronic (anti)neutrino survival probability at
this point is shown in Figure 6 for inverted hierarchy and normal hierarchy, respectively.
On both plots, there is no difference between the neutrino and antineutrino survival proba-
bilities. This should be expected, since for these values of r, the matter and self-interaction
potentials are much larger than the vacuum potential, and there is virtually no differ-
ence between Equations (50a) and (50b). Additionally, as mentioned before, note that
the (anti)neutrino flavor proportions remain virtually unchanged for normal hierarchy,
while the neutrino flavor proportions change drastically for the inverted hierarchy case.
The characteristic oscillation time of the survival probability in inverted hierarchy found
on the plot is

tosc ≈ 8.4× 10−7 s, (74)

which agrees with the ones given by Equation (70) up to a factor of order one. Such a small
value suggests extremely quick νeν̄e → νx ν̄x oscillations. A similar effect occurs for regions
of the disk inside the ignition radius for all three accretion rates. In this example, the time
average of the survival probabilities yields the values 〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.92. With this
number and Equations (62) and (57), the (anti)neutrino spectrum for both flavors can be
constructed. However, more importantly, this means that the local observer at that point
in the disk measures, on average, an electron (anti)neutrino loss of around 8%, which is
represented by an excess of non-electronic (anti)neutrinos.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

(a) (b)

Figure 6. Survival provability for electron neutrinos and antineutrinos for the accretion disk with Ṁ = 0.1M� s−1 at
r = 10rs. The survival probabilities for neutrinos and antineutrinos in both plots coincide. (a) Inverted hierarchy and (b)
normal hierarchy.
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In Section 3.1 we proposed to calculate neutrino oscillations assuming that small
neighboring regions of the disk are independent and that neutrinos can be viewed as
isotropic gases in those regions. However, this cannot be considered a steady-state of the
disk. To see this, consider Figure 4. The maximum value of the neutrino optical depth is in
the order of 103 for the highest accretion rate, meaning that the time that takes neutrinos to
travel a distance of one Schwarzschild inside the disk radius obeys

trs � Max(τν)rs ≈ 10−2 s, (75)

which is lower than the accretion time of the disk as discussed in Section 2 but higher
than the oscillation time. Different sections of the disk are not independent, since they
very quickly share (anti)neutrinos created with a non-vanishing momentum along the
radial direction. Furthermore, the oscillation patterns between neighboring regions of the
disk are not identical. In Figure 7 we show the survival probability as a function of time for
different (but close) values of r for Ṁ = 0.1M� s−1. The superposition between neutrinos
with different oscillation histories has several consequences: (1) It breaks the isotropy of
the gas because close to the BH, neutrinos are more energetic and their density is higher,
producing a radially directed net flux, meaning that the factor vq,t · vp,t does not average to
zero. This implies that realistic equations of oscillations include a multi-angle term and a
radially decaying neutrino flux similar to the situation in SN neutrinos. (2) It constantly
changes the neutrino content at any value of r independently of the neutrino collective
evolution given by the values of the oscillation potentials at that point. This picture plus the
asymmetry that electron and non-electron neutrinos experience through the matter environ-
ment (electron (anti)neutrinos can interact through n + νe→ p + e− and p + ν̄e→ n + e+),
suggests that the disk achieves complete flavor equipartitioning (decoherence). We can
identify two competing causes, namely, quantum decoherence and kinematic decoherence.
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Figure 7. Survival provability for electron neutrinos and antineutrinos for the accretion disk with
Ṁ = 0.1M� s−1 at r = 9rs, 10rs, 11rs, 12rs.

Quantum decoherence is the product of collisions among the neutrinos or with a ther-
mal background medium can be understood as follows [152]. From Appendix D.2 we know
that different (anti)neutrino flavors posses different cross-sections and scattering rates Γνi ,ν̄i .
In particular, we have Γνx ≈ Γν̄x < Γν̄e < Γνe . An initial electron (anti)neutrino created
at a point r will begin to oscillate into νx(ν̄x). The probability of finding it in one of the
two flavors evolves as previously discussed. However, in each interaction n + νe→ p + e−,
the electron neutrino component of the superposition is absorbed, while the νx component
remains unaffected. Thus, after the interaction the two flavors can no longer interfere.
This allows the remaining νx to oscillate and develop a new coherent νe component which
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is made incoherent in the next interaction. The process will come to equilibrium only
when there are equal numbers of electronic and non-electronic neutrinos. That is, the con-
tinuous emission and absorption of electronic (anti)neutrinos generate non-electronic
(anti)neutrinos with an average probability of 〈Pνe→νe〉 in each interaction, and once the
densities of flavors are equal, the oscillation dynamic stops. An initial system composed of
νe, ν̄e turns into an equal mixture of νe, ν̄e and νx, ν̄x, reflected as an exponential damping of
oscillations. For the particular case in which non-electronic neutrinos can be considered
as sterile (do not interact with the medium), the relaxation time of this process can be
approximated as [153,154]

tQ =
1

2lνν̄〈ω〉2 sin2 2θ
+

2lνν̄λ2

〈ω〉2 sin2 2θ
, (76)

where lνν̄ represents the (anti)neutrino mean free path.
Kinematic decoherence is the result of a non-vanishing flux term such that at any point,

(anti)neutrinos traveling in different directions do not experience the same self-interaction
potential due to the multi-angle term in the integral of Equation (40). Different trajectories
do not oscillate in the same way, leading to a de-phasing and a decay of the average 〈Pν→ν〉,
and thus to the equipartitioning of the overall flavor content. The phenomenon is similar
to an ensemble of spins in an inhomogeneous magnetic field. In [35] it is shown that for
asymmetric νν̄ gas, even an infinitesimal anisotropy triggers an exponential evolution
towards equipartitioning, and in [36] it was shown that if the symmetry between neutrinos
and antineutrinos is not broken beyond the limit of 25%, kinematic decoherence is still the
main effect of neutrino oscillations. As a direct consequence of the νν̄ symmetry present
within the ignition radius of accretion disks (see Figure 3), an equipartition among different
neutrino flavors is expected. This multi-angle term keeps the order of the characteristic
time tosc of Equation (70) unchanged, and kinematic decoherence happens within a few
oscillation cycles. The oscillation time gets smaller closer to the BH due to the 1/µ1/2

dependence. Therefore, we expect that neutrinos emitted within the ignition radius will be
equally distributed among both flavors in about few microseconds. Once the neutrinos
reach this maximally mixed state, no further changes are expected. We emphasize that
kinematic decoherence does not mean quantum decoherence. Figures 6 and 7 clearly show
the typical oscillation pattern which happens only if quantum coherence is still acting on
the neutrino system. Kinematic decoherence, differently to quantum decoherence, is just
the result of averaging over the neutrino intensities resulting from quick flavor conversion.
Therefore, neutrinos are yet able to quantum oscillate if appropriate conditions are satisfied.

Simple inspection of Equations (70) and (76) with Figure 4 yields tosc � tQ. Clearly
the equipartition time is dominated by kinematic decoherence. These two effects are inde-
pendent of the neutrino mass hierarchy, and neutrino flavor equipartitioning is achieved
for both hierarchies. Within the disk dynamic, this is equivalent to imposing the condition
〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.5.

Figure 8 shows a comparison between disks with and without neutrino flavor equipar-
tition for the three accretion rates considered. The roles of an equipartition are to increase
the disk’s density, reduce the temperature and electron fraction and further stabilize the
electron degeneracy for regions inside the ignition radius. The effect is mild for low ac-
cretion rates and very pronounced for high accretion rates. This result is in agreement
with our understanding of the dynamics of the disk and can be explained in the following
way. In low accretion systems the neutrino optical depth for all flavors is τνν̄ . 1, and
the differences between the cooling fluxes, as given by Equation (32) are small. Hence,
when the initial (mainly electron flavor) is redistributed among both flavors, the total
neutrino cooling remains virtually unchanged and the disk evolves as if equipartition had
never occurred save the new emission flavor content. On the other hand, when accretion
rates are high, the optical depth obeys τνx ≈ τν̄x . τν̄e < τνe ∼ 103. The νe cooling is
heavily suppressed—the other factors, less so. When flavors are redistributed, the new νx
particles are free to escape, enhancing the total cooling and reducing the temperature. As
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the temperature decreases, so do the electron and positron densities, leading to a lower
electron fraction. The net impact of a flavor equipartition is to make the disk evolution less
sensitive to νe opacity, and thus, increase the total cooling efficiency. As a consequence,
once the fluid reaches a balance between F+ and Fν, this state is kept without being affected
by high optical depths and ηe− stays at a constant value until the fluid reaches the zero
torque condition close to rin. Note that for every case, inside the ignition radius, we find
τνx ≈ τν̄x . τν̄e < τνe so that the equipartition enhances, mainly, neutrino cooling Fν (and
not antineutrino cooling Fν̄). The quotient between neutrino cooling with and without an
equipartition can be estimated with

Feq
ν

Fν
≈ 1

2

(
1 +
〈Eνx 〉
〈Eνe〉

1 + τνe

1 + τνx

)
. (77)
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Figure 8. Comparison between the main variables describing thin disks with and without a neutrino flavor equipartition
for each accretion rate considered. Here ρosc, ηosc

e− , Yosc
e , Tosc are the density, electron degeneracy, electron fraction and

temperature of a disk with a flavor equipartition. Together with Figure 3, these plots completely describe the profile of a
disk under a flavor equipartition. (a) The ratio between baryon densities. (b) The ratio between degeneracy parameters.
(c) The ratio between electron fractions. (d) The ratio between temperatures.

This relation exhibits the right limits. From Figure 3 we see that 〈Eνe〉 ≈ 〈Eνx 〉. Hence,
If 1 � τνe > τνx , then Feq

ν = Fν and the equipartition is unnoticeable. However, if
1 < τνx < τνe then Feq

ν /Fν > 1. In our simulations, this fraction reaches values of 1.9 for
Ṁ = 1M� s−1 to 2.5 for Ṁ = 0.01M� s−1.

The disk variables at each point do not change beyond a factor of order five in the
most obvious case. However, these changes can be important for cumulative quantities,
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e.g., the total neutrino luminosity and the total energy deposition rate into electron–positron
pairs due to neutrino antineutrino annihilation. To see this we perform a Newtonian
calculation of these luminosities following [99,100,112,155–158], and references therein.
The neutrino luminosity is calculated by integrating the neutrino cooling flux throughout
both faces of the disk:

Lνi = 4π
∫ rout

rin

CcapFνi rdr. (78)

The factor 0 < Ccap < 1 is a function of the radius (called capture function in [126])
that accounts for the proportion of neutrinos that are re-captured by the BH, and thus, do
not contribute to the total luminosity. For a BH with M = 3M� and a = 0.95, the numerical
value of the capture function as a function of the dimensionless distance x = r/rs is well
fitted by

Ccap(x) =
(

1 +
0.3348
x3/2

)−1
, (79)

with a relative error smaller than 0.02%. To calculate the energy deposition rate, the disk
is modeled as a grid of cells in the equatorial plane. Each cell k has a specific value of
differential neutrino luminosity ∆`k

νi
= Fk

νi
rk∆rk∆φk and average neutrino energy 〈Eνi 〉k.

If a neutrino of flavor i is emitted from the cell k and an antineutrino is emitted from the
cell k′, and before interacting at a point r above the disk, each travels a distance rk and rk′ ,
then their contribution to the energy deposition rate at r is (see Appendix D.3 for details)

∆Qνi ν̄ikk′ = A1,i
∆`k

νi

r2
k

∆`k′
ν̄i

r2
k′

(
〈Eνi 〉

k + 〈Eν̄i 〉
k′
)(

1− rk · rk′

rkrk′

)2

+ A2,i
∆`k

νi

r2
k

∆`k′
ν̄i

r2
k′

(
〈Eνi 〉k + 〈Eν̄i 〉k

′

〈Eνi 〉k〈Eν̄i 〉k
′

)(
1− rk · rk′

rkrk′

)
.

(80)

The total neutrino annihilation luminosity is the sum over all pairs of cells integrated
in space

Lνi ν̄i = 4π
∫
A

∑
k,k′

∆Qνi ν̄ikk′d
3r, (81)

where A is the entire space above (or below) the disk.
In Table 3 we show the neutrino luminosities and the neutrino annihilation lumi-

nosities for disks with and without neutrino collective effects. In each case, the flavor
equipartition induces a loss in Lνe by a factor of ∼3, and a loss in Lν̄e luminosity by a
factor of ∼2. At the same time, Lνx and Lν̄e are increased by a factor ∼10. This translates
into a reduction of the energy deposition rate due to electron neutrino annihilation by a
factor of ∼7, while the energy deposition rate due to non-electronic neutrinos goes from
being negligible to be of the same order of the electronic energy deposition rate. The net
effect is to reduce the total energy deposition rate of neutrino annihilation by a factor of
∼3–5 for the accretion rates considered. In particular, we obtain factors of 3.03 and 3.66 for
Ṁ = 1 M� s−1 and Ṁ = 0.01 M� s−1, respectively, and a factor of 4.73 for Ṁ = 0.1 M�
s−1. The highest value corresponds to an intermediate value of the accretion rate because,
for this case, there is a νe cooling suppression (τνe > 1) and the quotient τνe /τνx is maximal.
By Equation (77), the difference between the respective cooling terms is also maximal.
In Figure 9 we show the energy deposition rate per unit volume around the BH for each
flavor with accretion rates Ṁ = 1 M� s−1 and Ṁ = 0.1 M� s−1. There we can see the
drastic enhancement of the non-electronic neutrino energy deposition rate and the reduc-
tion of the electronic deposition rate. Due to the double peak in the neutrino density for
Ṁ = 0.01 M� s−1 case (see Figure 3), the deposition rate per unit volume also shows two
peaks—one at rs < r < 2rs and the other at 10 rs < r < 11 rs. Even so, the behavior is
similar to the other cases.
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Figure 9. Comparison of the neutrino annihilation luminosity per unit volume ∆Qνi ν̄i = ∑k,k′ ∆Qνi ν̄ikk′ between disk without
(left column) and with (right column) flavor equipartitioning for accretion rates Ṁ = 1M� s−1 and Ṁ = 0.01M� s−1.
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Table 3. Comparison of total neutrino luminosities Lν and annihilation luminosities Lνν̄ between disks with and without
flavor equipartitions. All luminosities are reported in MeV s−1.

Without Oscillations With Oscillations (Flavor Equipartition)
Lνe Lν̄e Lνx Lν̄x Lνe ν̄e Lνx ν̄x Lνe Lν̄e Lνx Lν̄x Lνe ν̄e Lνx ν̄x

1 M� s−1 6.46× 1058 7.33× 1058 1.17× 1058 1.17× 1058 1.25× 1057 1.05× 1055 1.87× 1058 4.37× 1058 7.55× 1058 5.44× 1058 1.85× 1056 2.31× 1056

0.1 M� s−1 9.19× 1057 1.08× 1058 8.06× 1055 8.06× 1055 1.62× 1055 1.27× 1050 2.47× 1057 4.89× 1057 7.75× 1057 5.27× 1057 1.78× 1054 1.64× 1054

0.01 M� s−1 1.05× 1057 1.12× 1057 2.43× 1055 2.43× 1055 1.78× 1053 8.68× 1048 4.29× 1056 5.48× 1056 6.71× 1056 5.70× 1056 3.53× 1052 1.23× 1052

6. Discussion

The generation of a seed, energetic e−e+ plasma, seems to be a general prerequisite
of GRB theoretical models for the explanation of the prompt (MeV) gamma-ray emission.
The e−e+ pair annihilation produces photons leading to an opaque pair-photon plasma
that self-accelerates, expanding to ultrarelativistic Lorentz factors in the order of 102–103

(see, e.g., [159–161]). The reaching of transparency of MeV-photons at large Lorentz factor
and corresponding large radii is requested to solve the so-called compactness problem
posed by the observed non-thermal spectrum in the prompt emission [162–164]. There is a
vast literature on this subject, and we refer the reader to [165–170] and references therein
for further details.

Neutrino-cooled accretion disks onto rotating BHs have been proposed as a possible
way of producing the above-mentioned e−e+ plasma. The reason is that such disks emit a
large amount of neutrino and antineutrinos that can undergo pair annihilation near the
BH [100–112]. The viability of this scenario clearly depends on the energy deposition rate
of neutrino-antineutrinos into e−e+ and so on the local (anti)neutrino density and energy.

We have here shown that, inside these hyperaccreting disks, a rich neutrino oscilla-
tion phenomenology is present due to the high neutrino density. Consequently, the neu-
trino/antineutrino emission and the corresponding pair annihilation process around the
BH leading to electron–positron pairs, are affected by neutrino flavor conversion. Using the
thin disk and α-viscosity approximations, we have built a simple stationary model of gen-
eral relativistic neutrino-cooled accretion disks around a Kerr BH that takes into account
not only a wide range of neutrino emission processes and nucleosynthesis, but also the
dynamics of flavor oscillations. The main assumption relies on considering the neutrino
oscillation behavior within small neighboring regions of the disk as independent from each
other. This, albeit being a first approximation to a more detailed picture, has allowed us
to set the main framework to analyze the neutrino oscillations phenomenology in inside
neutrino-cooled disks.

In the absence of oscillations, a variety of neutrino-cooled accretion disks onto
Kerr BHs, without neutrino flavor oscillations, have been modeled in the literature (see,
e.g., [99,100,107,112,124] for a recent review). The physical setting of our disk model fol-
lows closely the ones considered in [107], but with some extensions and differences in some
aspects:

1. The equation of vertical hydrostatic equilibrium, Equation (15), can be derived in
several ways [124,127,131]. We followed a particular approach consistent with the
assumptions in [127], in which we took the vertical average of a hydrostatic Euler
equation in polar coordinates. The result is an equation that leads to smaller values of
the disk pressure when compared with other models. It is expected that the pressure
at the center of the disk is smaller than the average density multiplied by the local
tidal acceleration at the equatorial plane. Still, the choice between the assortment of
pressure relations is tantamount to the fine-tuning of the model. Within the thin disk
approximation, all these approaches are equivalent, since they all assume vertical
equilibrium and neglect self-gravity.

2. Following the BdHN scenario for the explanation of GRBs associated with Type Ic SNe
(see Section 2), we considered a gas composed of 16O at the outermost radius of the
disk and followed the evolution of the ion content using the Saha equation to fix the
local NSE. In [107], only 4He is present, and in [112], ions up to 56Fe are introduced.
The affinity between these cases implies that this particular model of disk accretion is
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insensible to the initial mass fraction distribution. This is explained by the fact that the
average binding energy for most ions is very similar; hence, any cooling or heating due
to a redistribution of nucleons, given by the NSE, is negligible when compared to the
energy consumed by direct photodisintegration of alpha particles. Additionally, once
most ions are dissociated, the main cooling mechanism is neutrino emission, which
is similar for all models; the modulo includes the supplementary neutrino emission
processes included in addition to electron and positron capture. However, during our
numerical calculations, we noticed that the inclusion of non-electron neutrino emission
processes can reduce the electron fraction by up to ∼8%. This effect was observed
again during the simulation of flavor equipartition alluding to the need for detailed
calculations of neutrino emissivities when establishing NSE state. We obtained similar
results to [107] (see Figure 3), but by varying the accretion rate and fixing the viscosity
parameter. This suggests that a more natural differentiating set of variables in the
hydrodynamic equations of an α-viscosity disk is the combination of the quotient
Ṁ/α and either Ṁ or α. This result is already evident in, for example, Figures 11 and
12 of [107], but was not mentioned there.

Concerning neutrino oscillations, we showed that for the conditions inside the igni-
tion radius, the oscillation potentials follow the relation 〈ω〉 � µ� λ, as is illustrated by
Figure 5. We also showed that within this region the number densities of electron neutrinos
and antineutrinos are very similar. As a consequence of this particular environment, very
fast pair conversions νeν̄e 
 νx ν̄x, induced by bipolar oscillations, are obtained for the
inverted mass hierarchy case with oscillation frequencies between 109 s−1 and 105 s−1.
For the normal hierarchy case, no flavor changes were observed (see Figures 6 and 7).
Bearing in mind the magnitudes of these frequencies and the low neutrino travel times
through the disk, we conclude that an accretion disk under our main assumption can-
not represent a steady-state. However, using numerical and algebraic results obtained
in [33,35,36] and references therein, we were able to generalize our model to a more real-
istic picture of neutrino oscillations. The main consequence of the interactions between
neighboring regions of the disk is the onset of kinematic decoherence in a timescale in the
order of the oscillation times. Kinematic decoherence induces a fast flavor equipartition
among electronic and non-electronic neutrinos throughout the disk. Therefore, the neutrino
content emerging from the disk is very different from the one that is usually assumed
(see, e.g., [113,117,171]). The comparison between disks with and without flavor equipar-
tition is summarized in Figure 8 and Table 3. We found that the flavor equipartition,
while leaving antineutrino cooling practically unchanged, it enhances neutrino cooling by
allowing the energy contained (and partially trapped inside the disk due to high opacity)
within the νe gas to escape in the form of νx, rendering the disk insensible to the elec-
tron neutrino opacity. We give in Equation (77) a relation to estimate the change in Fν

as a function of τνe τνx that describes correctly the behavior of the disk under the flavor
equipartition. The variation of the flavor content in the emission flux implies a loss in Lνe

and an increase in Lνx and Lν̄e . As a consequence, the total energy deposition rate of the
process ν + ν̄ → e− + e+ is reduced. We showed that this reduction can be as high 80%
and is maximal whenever the quotient τνe /τνx is also maximal and the condition τνe > 1
is obtained.

At this point, we can identify several issues which must still to be investigated in view
of the results we have presented:

First, throughout the accretion disk literature, several fits of the neutrino and neutrino
annihilation luminosity can be found (see, e.g., [99] and references therein). However,
all these fits were calculated without taking into account neutrino oscillations. Since we
have shown that oscillations directly impact luminosity, these results need to be extended.

Second, the calculations of the neutrino and antineutrino annihilation luminosities
we have performed ignore general relativistic effects, save for the correction given by
the capture function, and the possible neutrino oscillations from the disk surface to the
annihilation point. In [172], it has been shown that general relativistic effects can enhance
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the neutrino annihilation luminosity in a neutron star binary merger by a factor of 10.
In [100], however, it is argued that in BHs this effect has to be mild since the energy gained
by falling into the gravitational potential is lost by the electron–positron pairs when they
climb back up. Nonetheless, this argument ignores the bending of neutrino trajectories and
neutrino capture by the BH which can be significant for r . 10rs. In [173], the increment is
calculated to be no more than a factor of 2 and can be less depending on the geometry of the
emitting surface. However, as before, these calculations assume a purely νeν̄e emission and
ignore oscillations after the emission. Simultaneously, the literature on neutrino oscillation
above accretion disks (see, e.g., [113,117]) does not take int account oscillations inside the
disk and assume only νeν̄e emission. A similar situation occurs in works studying the effect
of neutrino emission on r-process nucleosynthesis in hot outflows (wind) ejected from the
disk (see, e.g., [174]).

It is still unclear how the complete picture (oscillations inside the disk→ oscillations
above the disk + relativistic effects) affects the final energy deposition. We are currently
working on the numerical calculation of the annihilation energy deposition rate using a
ray tracing code and including neutrino oscillations from the point of their creation until
they are annihilated—i.e., within the accretion disk and after its emission from the surface
of the disk and during its trajectory until reaching the annihilation point. These results
and their consequences for the energy deposition annihilation rate will be the subject of a
future publication.

The knowledge of the final behavior of a neutrino-dominated accretion disk with
neutrino oscillations requires time-dependent, multi-dimensional, neutrino-transport sim-
ulations coupled with the evolution of the disk. These simulations are computationally
costly even for systems with a high degree of symmetry, therefore a first approximation is
needed to identify key theoretical and numerical features involved in the study of neutrino
oscillations in neutrino-cooled accretion disks. This work serves as a platform for such
a first approximation. Considering that kinematic decoherence is a general feature of
anisotropic neutrino gases, with the simplified model presented here, we were able to
obtain an analytical result that agrees with the physics understanding of accretion disks.

In [171] it is pointed out that for a total energy in ν̄e of 1052 erg and an average neutrino
energy 〈Eν,ν̄〉 ∼ 20 MeV, the Hyper-Kamiokande neutrino-horizon is in the order of 1 Mpc.
If we take a total energy carried out by ν̄e in the order of the gravitational gain by accretion
(Eg ∼ 1052–1053 erg) in the more energetic case of binary-driven hypernovae and the
neutrino energies in Figure 3, we should expect the neutrino-horizon distance to be also
in the order of 1 Mpc. However, if we adopt the local binary-driven hypernovae rate
∼1 Gpc−3 yr−1 [175], it is clear that the direct detection of this neutrino signal is quite
unlikely. However, we have shown that neutrino oscillation can have an effect on e−e+

plasma production above BHs in GRB models. Additionally, the unique conditions inside
the disk and its geometry lend themselves to a variety of neutrino oscillations that can
have impacts on other astrophysical phenomena, not only in plasma production, but also
in r-process nucleosynthesis in disk winds. This, in particular, is the subject of a future
publication. As such, this topic deserves appropriate attention, since it paves the way for
new, additional astrophysical scenarios for testing neutrino physics.
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The following abbreviations are used in this manuscript:

BdHN Binary-Driven Hypernova
BH Black Hole
CF Coordinate Frame
COcore Carbon–Oxygen Star
CRF Co-rotating Frame
GRB Gamma-ray Burst
IGC Induced Gravitational Collapse
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LNRF Locally Non-Rotating Frame
MSW Mikheyev–Smirnov–Wolfenstein
NDAF Neutrino-Dominated Accretion Flows
NS Neutron Star
NSE Nuclear Statistical Equilibrium
SN Supernova

Appendix A. Transformations and Christoffel Symbols

For the sake of completeness, here we give the explicitly the transformation used
in Equation (5) and the Christoffel symbols used during calculations. The coordinate
transformation matrices between the CF and the LNRF on the tangent vector space is [123]

e µ
ν̂ =



1√
ω2 gφφ−gtt

0 0 0

0 1√
grr

0 0

0 0 1√
gθθ

0
ω√

ω2 gφφ−gtt
0 0 1√gφφ

, eν̂
µ =


√

ω2gφφ − gtt 0 0 0

0
√

grr 0 0
0 0

√
gθθ 0

−ω
√gφφ 0 0 √gφφ

, (A1)

so that the basis vectors transform as ∂ν̂ = eµ
ν̃∂µ, that is, with eT . For clarity,

coordinates on the LNRF have a caret (xµ̂), coordinates on the CRF have a tilde (xµ̃)
and coordinates on the LRF have two (x ˜̃µ). An observer on the LNRF sees the fluid ele-
ments move with an azimuthal velocity βφ̂. This observer then can perform a Lorentz boost
L

βφ̂ to a new frame. On this new frame an observer sees the fluid elements falling radially

with velocity βr̃, so it can perform another Lorentz boost Lβr̃ to the LRF. Finally, the trans-

formation between the the LRF and the CF coordinates xµ = e µ
ρ̂ (L

βφ̂)
ρ̂

α̃ (Lβr̃ ) α̃
˜̃ν x ˜̃ν = A µ

˜̃ν x ˜̃ν,
where the components of A are

A ˜̃ν
µ =


γr̃γφ̂

(√
ω2gφφ − gtt + βφ̂ω

√gφφ

)
−γr̃ βr̃√grr 0 −γr̃γφ̂βφ̂√gφφ

−γφ̂γr̃ βr̃
(√

ω2gφφ − gtt + βφ̂ω
√gφφ

)
γr̃
√

grr 0 γr̃γφ̂βr̃ βφ̂√gφφ

0 0
√

gθθ 0

−γφ̂

(
βφ̂
√

ω2gφφ − gtt + ω
√gφφ

)
0 0 γφ̂

√gφφ

. (A2)

Since Lorentz transformations do not commute, the transformation A raises the ques-
tion: what happens if we invert the order? In this case, we would not consider a co-rotating
frame but a cofalling frame on which observers see fluid elements, not falling, but rotat-
ing. The new transformation velocities βr′ , βφ′ are subject to the conditions βφ′ = γr′β

φ̂,
βr′ = βr̃/γφ̂ and γr′γφ′ = γr̃γφ̂. Although both approaches are valid, considering that the
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radial velocity is an unknown, the first approach is clearly cleaner. To obtain the coordinate
transformation between the CF and the CRF A µ

ν̃ and Aν̃
µ we can simply set βr̃ = 0 in

Equation (A2). With this, we can calculate

dφ̂

dt̂
= βφ̂ =

uµeφ̂
µ

uνet̂
ν

=

√
gφφ

ω2gφφ − gtt
(Ω−ω), (A3)

and

dr̃ =
√

grrdr, dt̃ =
γφ̂√

ω2gφφ − gtt

dt =
1√

−gtt − 2Ωgtφ −Ω2gφφ

dt, dθ̃ =
√

gθθdθ. (A4)

The non-vanishing Christoffel symbols are

Γt
tr =

M
(
r2 −M2a2 cos2 θ

)(
r2 + M2a2)

Σ2∆
, Γt

tθ = −M3a2r sin 2θ

Σ2 ,

Γt
rφ = −

M2a
(
3r4 + M2a2r2 + M2a2 cos2 θ

(
r2 −M2a2)) sin2 θ

Σ2∆
,

Γt
θφ =

2M4a3r cos θ sin3 θ

Σ2 , Γr
tt =

M∆
(
r2 −M2a2 cos2 θ

)
Σ3 ,

Γr
tφ = −

M2a∆
(
r2 −M2a2 cos2 θ

)
sin2 θ

Σ3 ,

Γr
rr =

r
Σ
+

M− r
∆

, Γr
rθ = − M2a2 sin θ

M2a2 cos θ + r2 tan θ
, Γr

θθ = − r∆
Σ

,

Γr
φφ =

(
MaΓr

tφ − Γr
θθ

)
sin2 θ, Γθ

tt = −Γt
θφ

csc2 θ

MaΣ
, Γθ

tφ =
M2ar

(
r2 + M2a2) sin 2θ

Σ3 ,

Γθ
rr =

M2a2 sin θ cos θ

Σ∆
, Γθ

tθ =
r
Σ

, Γθ
θθ = Γr

rθ ,

Γθ
φφ =

(
∆
Σ
+

2Mr
(
r2 + M2a2)2

Σ3

)
sin θ cos θ, Γφ

tr = −
M2a

(
r2 −M2a2 cos2 θ

)
Σ2∆

,

Γφ
tθ = −2M2ar cot θ

Σ2 , Γφ
rφ =

r(Σ− 2Mr)
Σ∆

+
MaΣ
∆2 Γr

tφ, Γφ
θφ = cot θ − Γt

tθ .

(A5)

Using the connection coefficients and the metric, both evaluated at the equatorial
plane we can collect several equations for averaged quantities. The expansion of the fluid
world lines is

θ = ∇µuµ =
2
r

ur + ∂rur. (A6)

There are several ways to obtain an approximate version of the shear tensor
(e.g., [124,176,177]) but by far the simplest one is proposed by [127]. On the CRF the
fluid four-velocity can be approximated by uµ̃ = (1, 0, 0, 0) by Equation (6). Both the fluid
four-acceleration aν = uµ∇µuν and expansion parameter, Equation (A6), vanish so that the
shear tensor reduces to 2σµ̃ν̃ = ∇µ̃uν̃ +∇ν̃uµ̃. In particular, the r-φ component is

σr̃φ̃ = −1
2

(
Γt̃

φ̃r̃ + Γt̃
r̃φ̃

)
= −1

4

(
2c r̃

t̃φ̃ + 2c φ̃

t̃r̃

)
=

1
2

c φ̃

r̃t̃ =
γ2

φ̂

2

√gφφ√
ω2gφφ − gtt

√
grr

∂rΩ, (A7)

where c α̃
µ̃ν̃ are the commutation coefficients for the CRF. Finally, of particular interest is the

θ̃ component of the Riemann curvature tensor

R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

=
M
r3

r2 − 4aM3/2r1/2 + 3M2a2

r2 − 3Mr + 2aM3/2r1/2 , (A8)

which gives a measurement of the relative acceleration in the θ̃ direction of nearly equato-
rial geodesics.
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Appendix B. Stress–Energy Tensor

Here we present some equations related to the stress–energy that we used in this
paper. Equation (9) for a zero bulk viscosity fluid in components is

Tµ
ν = Πuµuν + Pδ

µ
ν − 2ησ

µ
ν + qµuν + qνuµ, (A9)

whose (vanishing) covariant derivative is

∇µTµ
ν = uµuν∂µΠ + Πθuν + Πaν + ∂νP− 2η∇µσ

µ
ν + qµ∇µuν + uν∇µqµ + qνθ+ uµ∇µqν

= uµ

[
uν

(
∂µΠ− Π

ρ
∂µρ

)
− qν

ρ
∂µρ

]
+ Πaν + ∂νP− 2η∇µσ

µ
ν + qµ∇µuν + uν∇µqµ + uµ∇µqν,

(A10)

where baryon conservation is used ρθ = −uµ∂µρ. To get an equation of motion for the
fluid, we project along the direction perpendicular to uν

Pν
β∇µTµ

ν = uµ

[
uβ

(
∂µΠ− Π

ρ
∂µρ

)
−

qβ

ρ
∂µρ

]
+ Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uβ∇µqµ

+ uµ∇µqβ − uµuβ

[
∂µΠ− Π

ρ
∂µρ

]
+ uνuβ∂νP− 2ηuνuβ∇µσ

µ
ν − uβ∇µqµ + uνuβuµ∇µqν

= −
qβ

ρ
uµ∂µρ + Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uµ∇µqβ + uβuν∂νP− 2ηuνuβ∇µσ

µ
ν + uνuβuµ∇µqν

= −
qβ

ρ
uµ∂µρ + Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uµ∇µqβ + uβ

(
uν∂νP + 2ησµνσµν − qνaν

)
,

(A11)

where the identities qµuµ = uµaµ = σµνuν = 0, uµuν = −1, σµνσµν = σµν∇µuν are used.
Combining the Equations (A10) and (A11) we get

uµ

[
∂µU − U + P

ρ
∂µρ

]
= 2ησµνσµν − qµaµ −∇µqµ. (A12)

With Equation (A6) we can obtain an equation for mass conservation

0 =∇µ(ρuµ) = uµ∂µρ + ρθ = uµ∂µρ + ρ

(
2
r

ur + ∂rur
)

,

⇒ ∂r

(
r2ρur

)
+ r2uj∂jρ = 0, for j ∈ {t, θ, φ}. (A13)

Finally, we reproduce the zero torque at the innermost stable circular orbit condition
that appears in [128]. Using the killing vector fields ∂φ, ∂t and the approximation Π ≈ ρ,
we can calculate

0 = ∇ ·
(
T · ∂φ

)
= ∇µTµ

φ =
1√−g

∂µ

(√
−gTµ

φ

)
≈ 1

r2 ∂r

(
ρuruφr2 − 2ησr

φr2
)
+ uφ∂θqθ ,

⇒ ∂r

(
ρuruφr2 − 2ησr

φr2
)
= −r2uφ∂θqθ ,

⇒ ∂r

(
Ṁ
2π

uφ + 4rHησr
φ

)
= 2Huφε,

(A14)

where we integrated vertically and used Equation (16). Analogously, using Equation (11)
we obtain

∂r

(
Ṁ
2π

ut − 4rHΩησr
φ

)
= 2Hutε. (A15)

The vertical integration of the divergence of the heat flux is as follows: Since, on

average, q = qθ∂θ , we have ∇µqµ = ∂θqθ and by Equation (A2), qθ = rq
ˆ̂θ . Vertically

integrating yields ∫ θmax

θmin

∂θqθrdθ = rqθ
∣∣∣θmax

θmin

= 2q
˜̃θ = 2Hε, (A16)



Universe 2021, 7, 7 34 of 44

where q
˜̃θ is the averaged energy flux radiating out of a face of the disk, as measured by an

observer on the LRF, which we approximate as the half-thickness of the disk H times the
average energy density per unit proper time ε lost by the disk. With the variable change
z = 8πrHησr

φ/Ṁ and y = 4πHε/Ṁ the equations reduce to

∂r
(
uφ + z

)
= yuφ, (A17a)

∂r(ut −Ωz) = yut. (A17b)

Using the relation ∂rut = −Ω∂ruφ (see Equation (10.7.29) in [178]) and
∂r
(
ut + Ωuφ

)
= uφ∂rΩ we can combine the previous equations to obtain

z = −
y
(
ut + Ωuφ

)
∂rΩ

, (A18a)

∂r

(
AB2

)
= B∂ruφ, (A18b)

with A = y/∂rΩ and B = ut + Ωuφ. To integrate these equations we use the zero torque
condition z(r = r∗) = 0 where r∗ is the radius of the innermost stable circular orbit,
which gives the relation

y =
∂rΩ(

ut + Ωuφ
)2

∫ r

r∗

(
ut + Ωuφ

)
∂ruφdr =

∂rΩ(
ut + Ωuφ

)2

(
utuφ

∣∣r
r∗ − 2

∫ r

r∗
uφ∂rutdr

)
, (A19)

or, equivalently,

8πHrρνturbσr
φ ≈ 8πHrΠνturbσr

φ = − Ṁ(
ut + Ωuφ

)(utuφ

∣∣r
r∗ − 2

∫ r

r∗
uφ∂rutdr

)
. (A20)

Using Equation (5), the approximation γr̃ ≈ 1 and the variable change r = xM2 the
integral can be easily evaluated by partial fractions

8πHrρνturbσr
φ = ṀM f (x, x∗), (A21a)

f (x, x∗) =
x3 + a

x3/2
√

x3 − 3x + 2a

[
x− x∗ − 3

2
a ln
( x

x∗
)
+

1
2

3

∑
i=1

ax2
i − 2xi + a

x2
i − 1

ln
(

x− xi
x∗ − xi

)]
, (A21b)

where x1, x2, x3 are the roots of the polynomial x3 − 3x + 2a.

Appendix C. Nuclear Statistical Equilibrium

The results in this section appear in [179]. We include them here since they are
necessary to solve Equation (19). Neutrino dominated accretion disks reach densities above
∼107 g cm−3 and temperatures above ∼5× 109 K. For these temperatures, forward and
reverse nuclear reactions are balanced and the abundances in the plasma are determined
by the condition µi = Ziµp + Niµn, that is, the Nuclear Statistical Equilibrium. However,
for densities above 106 g cm−3, the electron screening of charged particle reactions can
affect the nuclear reaction rates. For this reason, to obtain an accurate NSE state it is
necessary to include Coulomb corrections to the ion chemical potential. The Coulomb
correction to the i-th chemical potential is given by

µC
i

T
= K1

[
Γi
√

Γi + K2 − K2 ln

(√
Γi
K2

+

√
1 +

Γi
K2

)]

+ 2K3

[√
Γi − arctan

√
Γi

]
+ Z1

[
Γi − Z2 ln

(
1 +

Γi
Z1

)]
+

Z3
2

ln

(
1 +

Γ2
i

Z4

)
, (A22)

and the ion coupling parameter in terms of the electron coupling parameter is Γi = ΓeZ5/3
i with

Γe =
e2

T

(
4πYenB

3

)1/3
. (A23)
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where e is the electron charge. The parameters Ki, Ci are given in Table A1.

Table A1. Constants appearing in Equation (A22). See [179].

K1 K2 K3 Z1 Z2 Z3 Z4

−0.907347 0.62849 0.278497 4.50× 10−3 170.0 −8.4× 10−5 3.70× 10−3

Appendix D. Neutrino Interactions and Cross-Sections

In this appendix we include the neutrino emission rates and neutrino cross-sections
used in the accretion disk model. These expressions have been covered in [180–186].
We also include the expression energy emission rate for νν̄ annihilation into electron–
positron pairs. Whenever possible we write the rates in terms of generalized Fermi func-
tions since some numerical calculations were done following [187]. We list in Table A2
some useful expressions and constants in Planck units. The numerical values can be found
in [141].

Table A2. Constants used throughout this appendix to calculate emissivities and cross-sections.
All quantities are reported in Planck units.

Symbol Value Name

Mw 6.584× 10−18 W boson mass
gw 0.653 Weak coupling constant
ga 1.26 Axial-vector coupling constant
α∗ 1

137 Fine structure constant
sin2 θW 0.231 Weinberg angle
cos2 θc 0.947 Cabibbo angle
GF 1.738× 1033 Fermi coupling constant
Cv,e 2 sin2 θW + 1/2 Weak interaction vector constant for νe

Ca,e 1/2 Weak interaction axial-vector constant
for νe

Cv,e Cv,e − 1 Weak interaction vector constant for νx

Ca,e Ca,e − 1 Weak interaction axial-vector constant
for νx

σ0 6.546× 1021 Weak interaction cross-section

Appendix D.1. Neutrino Emissivities

• Pair annihilation: e−+ e+→ ν + ν̄

This process generates neutrinos of all flavors but around 70% are electron neutri-
nos [71]. This is due to the fact that the only charged leptons in the accretion systems
we study are electrons and positrons, so creation of electron neutrinos occurs via either
charged or neutral electroweak currents while creation of non-electronic neutrinos can only
occur through neutral currents. Using the electron or positron four-momentum p = (E, p),
the Dicus cross-section for a particular flavor i is [180]

σD,i =
G2

F
12πEe−Ee+

[
C+,i

(
m4

e + 3m2
e pe− ·pe+ + 2(pe− ·pe+ )

2
)
+ 3C−,i

(
m4

e + m2
e pe− ·pe+

)]
. (A24)

The factors C±,i, are written in terms of the weak interaction vector and axial-vector
constants: C±,i = C2

v,i ± C2
a,i [141]. Representing the Fermi–Dirac distribution for electrons

(positrons) as fe−( fe+) with ηe∓ the electron (positron) degeneracy parameter including its
rest mass. The number and energy emission rates can be calculated by replacing Λ = 2
and Λ = Ee− + Ee+ in the integral [184]:

4

(2π)6

∫
ΛσD fe− fe+d3pe−d3pe+ , (A25)
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giving the expressions

Rνi+ν̄i =
G2

Fm8
e

18π
[C+,i(8U1V1 + 5U−1V−1 + 9U0V0 − 2U−1V1 − 2U1V−1)

+9C−,i(U−1V−1 +U0V0)], (A26a)

Qνi+ν̄i =
G2

Fm9
e

36π
[C+,i(8(U2V1 +U1V2) + 7(U1V0 +U0V1) + 5(U−1V0 +U0V−1)

−2(U2V−1 +U−1V2)) + 9C−,i(U0(V1 +V−1) +V0(U1 +U−1))]. (A26b)

The functions U,V can be written in terms of generalized Fermi functions

Uj =
√

2ξ3/2
j+1

∑
k=0

(
j + 1

k

)
ξkFk+1/2,0(ξ, ηe−), (A27a)

Vj =
√

2ξ3/2
j+1

∑
k=0

(
j + 1

k

)
ξkFk+1/2,0(ξ, ηe+). (A27b)

It is often useful to define the functions

εm
i =

2G2
F(me)

4

3(2π)7

∫
fe− fe+

(
Em

e− + Em
e+
)
σD,i d3pe−d3pe+ . (A28)

For m = 0 and m = 1 Equation (A28) gives the neutrino and antineutrino number
emissivity (neutrino production rate), and the neutrino and antineutrino energy emis-
sivity (energy per unit volume per unit time) for a certain flavor i, respectively (that is,
Equation (A26)). Hence, not only we are able to calculate the total number and energy
emissivity, but we can also calculate the neutrino or antineutrino energy moments with

〈Em
νi(ν̄i)
〉 =

εm
i

ε0
i

, for m ≥ 1. (A29)

• Electron capture and positron capture: p+ e−→ n+ νe, n+ e+→ p+ ν̄e and A+ e−→
A′ + νe

Due to lepton number conservation this process generated only electron (anti)neutrinos.
The number and energy emission rates for electron and positron capture by nucleons are

Rνe =
m5

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ3F7/2,χ(ξ, ηe− )

+(3− 2Q)ξ2F5/2,χ(ξ, ηe− ) + (1−Q)(3−Q)ξF3/2,χ(ξ, ηe− ) + (1−Q)2F1/2,χ(ξ, ηe− )
]
, (A30a)

Qνe =
m6

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ4F9/2,χ(ξ, ηe− )

+ξ3(4− 3Q)F7/2,χ(ξ, ηe− ) + 3(Q− 1)(Q− 2)ξ2F5/2,χ(ξ, ηe− )

+(1−Q)2(4−Q)ξF3/2,χ(ξ, ηe− ) + (1−Q)3F1/2,χ(ξ, ηe− )
]
, (A30b)

Rν̄e =
m5

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆pnξ3/2

[
ξ3F7/2,0(ξ, ηe+ )

+(3 + 2Q)ξ2F5/2,0(ξ, ηe+ ) + (1 +Q)(3 +Q)ξF3/2,0(ξ, ηe+ ) + (1 +Q)2F1/2,0(ξ, ηe+ )
]
, (A30c)

Qν̄e =
m6

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ4F9/2,0(ξ, ηe+ )

+ξ3(4 + 3Q)F7/2,0(ξ, ηe+ ) + 3(Q+ 1)(Q+ 2)ξ2F5/2,0(ξ, ηe+ )

+(1 +Q)2(4 +Q)ξF3/2,0(ξ, ηe+ ) + (1 +Q)3F1/2,0(ξ, ηe+ )
]
, (A30d)
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where ∆ij =
(
ni − nj

)
/
(
exp

(
ηi − ηj

)
− 1
)
, i, j ∈ {p, n} are the Fermi blocking factors in

the nucleon phase spaces and Q = (mn −mp)me ≈ 2.531 is the nucleon mass difference.
The number and energy emission rates for electron capture by an ion i are

Rνe ,i =

√
2m5

e G2
F cos2 θc

7π3 g2
AniκZi κNi ξ

3/2
[
ξ3F7/2,χ̄(ξ, ηe− )

+(3− 2Q)ξ2F5/2,χ̄(ξ, ηe− ) + (1−Q)(3−Q)ξF3/2,χ̄(ξ, ηe− )(1−Q)2F1/2,χ̄(ξ, ηe− )
]
, (A31a)

Qνe ,i =

√
2m6

e G2
F cos2 θc

7π3 g2
AniκZi κNi ξ

3/2
[
ξ4F9/2,χ̄(ξ, ηe− ) + ξ3(4− 3Q)F7/2,χ̄(ξ, ηe− )

+3(Q− 1)(Q− 2)ξ2F5/2,χ̄(ξ, ηe− ) + (1−Q)2(4−Q)ξF3/2,χ̄(ξ, ηe− ) + (1−Q)3F1/2,χ̄(ξ, ηe− )
]
. (A31b)

The lower integration limits in these expressions are given by χ = (Q− 1)/ξ and
χ̄ = (µn − µp + ∆)/T − 1/ξ where ∆ ≈ 2.457× 10−22 is the energy of the neutron 1 f5/2
state above the ground state. The functions κZi , κNi are

κZi =


0 if Zi ≤ 20.
Zi − 20 if 20 < Zi ≤ 28.
8 if Zi > 28.

, κNi =


6 if Ni ≤ 34.
40− Ni if 34 < Ni ≤ 40.
0 if Ni > 40.

(A32)

• Plasmon decay: γ̃→ ν + ν̄.

Rνe+ν̄e =
Cv,eσ0T8

96π3m2
e α∗

γ̃6(γ̃ + 1) exp(−γ̃), (A33a)

Qνe+ν̄e =
Cv,eσ0T9

192π3m2
e α∗

γ̃6
(

γ̃2 + 2γ̃ + 2
)

exp(−γ̃), (A33b)

Rνx+ν̄x =
Cv,xσ0T8

48π3m2
e α∗

γ̃6(γ̃ + 1) exp(−γ̃), (A33c)

Qνx+ν̄x =
Cv,xσ0T9

96π3m2
e α∗

γ̃6
(

γ̃2 + 2γ̃ + 2
)

exp(−γ̃), (A33d)

where γ̃ = γ̃0

√(
π2 + 3(ηe− + 1/ξ)2

)
/3 and γ̃0 = 2

√
α∗
3π ≈ 5.565× 10−2.

• Nucleon-nucleon bremsstrahlung n1 + n2 → n3 + n4 + ν + ν̄.

The nucleon-nucleon bremsstrahlung produces the same amount of neutrinos of all
three flavors. The number and energy emission rates can be approximated by (see, e.g., [186])

Rνi+ν̄i =
(

2.59× 1013
)(

X2
p + X2

n +
28
3

XpXn

)
n2

Bξ9/2, (A34a)

Qνi+ν̄i =
(

4.71× 10−9
)(

X2
p + X2

n +
28
3

XpXn

)
n2

Bξ10/2. (A34b)

Appendix D.2. Cross-Sections

We consider four interactions to describe the (anti)neutrino total cross-section.

• Neutrino annihilation: (ν + ν̄→ e−+ e+).

σνe ν̄e =
4
3

Kνe ν̄e σ0
〈Eνe〉〈Eν̄e〉

m2
e

with Kνe ν̄e =
1 + 4 sin2 θW + 8 sin4 θW

12
, (A35a)

σνx ν̄x =
4
3

Kνx ν̄x σ0
〈Eνx 〉〈Eν̄x 〉

m2
e

with Kνx ν̄x =
1− 4 sin2 θW + 8 sin4 θW

12
, (A35b)
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• Electron (anti)neutrino absorption by nucleons: (νe + n → e− + p and ν̄e + p →
e+ + n).

σνen = σ0

(
1 + 3g2

a
4

)(
〈Eνe〉

me
+Q

)2√√√√1− 1(
〈Eνe 〉

me
+Q

)2 , (A36a)

σν̄e p = 3.83× 1022
(
℘〈Eν̄e〉

me
−Q

)2√√√√1− 1(
℘〈Eν̄e 〉

me
−Q

)2

(
℘〈Eν̄e〉

me

)g(Eν̄e )

, (A36b)

g(Eν̄e) = −0.07056 + 0.02018 ln
(
℘〈Eν̄e〉

me

)
− 0.001953 ln3

(
℘〈Eν̄e〉

me

)
. (A36c)

where ℘ = 0.511.

• (anti)neutrino scattering by baryons: (ν + Ai → ν + Ai and ν̄ + Ai → ν̄ + Ai).

σp =
σ0〈E〉2

4m2
e

(
4 sin4 θW − 2 sin2 θW +

1 + 3g2
a

4

)
, (A37a)

σn =
σ0〈E〉2

4m2
e

1 + 3g2
a

4
, (A37b)

σAi =
σ0 A2

i 〈E〉2

16m2
e

[(
4 sin2 θW − 1

) Zi
Ai

+ 1− Zi
Ai

]
. (A37c)

• (anti)neutrino scattering by electrons or positrons: (ν + e± → ν + e± and ν̄ + e± →
ν̄ + e±).

σe =
3
8

σ0ξ
〈E〉
me

(
1 +

ηe + 1/ξ

4

)[
(Cv,i + n`Ca,i)

2 +
1
3
(Cv,i − n`Ca,i)

2
]

. (A38)

Here, n` is the (anti)neutrino lepton number (that is, 1 for neutrinos and−1 for antineu-
trinos, depending on the cross-section to be calculated), and in the last four expressions,
〈E〉 is replaced by the average (anti)neutrino energy of the corresponding flavor. With these
expressions, the total opacity for neutrinos or antineutrinos is

κνi(ν̄i)
=

∑i σini
ρ

, (A39)

where ni is the number density of the target particle associated with the process
corresponding to the cross-section σi. The (anti)neutrino optical depth appearing in
Equation (32) can then be approximated as

τνi(ν̄i)
=
∫

κνi(ν̄i)
ρdθ ≈ κνi(ν̄i)

ρH. (A40)

Appendix D.3. Neutrino-Antineutrino Pair Annihilation

Since the main interaction between νν̄ is the annihilation into e−e+, this process
above neutrino-cooled disks has been proposed as the origin of the energetic plasma
involved in the production of GRBs. Once the (anti)neutrino energy emissivity and
average energies are calculated it is possible to calculate the energy deposition rate of
the process νi + ν̄i → e− + e+ for each flavor i. Ignoring Pauli blocking effects in the
phase spaces of electron and positrons, the local energy deposition rate at a position r
by νν̄ annihilation can be written in terms of the neutrino and antineutrino distributions
fνi = fνi (r, Eν), fν̄i = fν̄i (r, Eν̄) as [155]
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Qνi ν̄i = A1,i

∫ ∞

0
dEνi

∫ ∞

0
dEν̄i E

3
νi

E3
ν̄i
(Eνi + Eν̄i )

∫
S2

dΩνi

∫
S2

dΩν̄i fνi fν̄i (1− cos θ)2,

+ A2,i

∫ ∞

0
dEνi

∫ ∞

0
dEν̄i E

2
νi

E2
ν̄i
(Eνi + Eν̄i )

∫
S2

dΩνi

∫
S2

dΩν̄i fνi fν̄i (1− cos θ),
(A41)

where we have introduced the constants appearing in Equation (80)

A1,i =
σ0

[
(Cv,i − Ca,i)

2 + (Cv,i + Ca,i)
2
]

12π2m2
e

,

A2,i =
σ0

[
2C2

v,i − C2
a,i

]
6π2m2

e
.

(A42)

In Equation (A41), θ is the angle between the neutrino and antineutrino momentum
and dΩ is the differential solid angle of the incident (anti)neutrino at r. The integral can be
re-written in terms of the total intensity (energy integrated intensity) Iν =

∫
E3

ν fνdEν as [156]

Qνi ν̄i = A1,i

∫
S2

dΩνi Iνi

∫
S2

dΩν̄i Iν̄i (〈Eνi 〉+ 〈Eν̄i 〉)(1− cos θ)2

+ A2,i

∫
S2

dΩνi Iνi

∫
S2

dΩν̄i Iν̄i

〈Eνi 〉+ 〈Eν̄i 〉
〈Eνi 〉〈Eν̄i 〉

(1− cos θ).
(A43)

The incident radiation intensity passing through the solid differential angle dΩ at r
is the intensity Ird ,ν emitted from the point on the disk rd diluted by the inverse square
distance rk = |r− rd| between both points. Finally, assuming that each point rd on the
disk’s surface acts as a half-isotropic radiator of (anti)neutrinos, the total flux emitted at
rd is Frd ,ν =

∫ π/2
0

∫ 2π
0 Ird ,ν cos θ′ sin θ′dθ′dφ′ = π Ird ,ν, with θ′, φ′ the direction angles at rd.

Collecting all obtains

Qνi ν̄i = A1,i

∫
rd,νi
∈disk

drd,νi

∫
rd,ν̄i
∈disk

drd,ν̄i

Frd ,νi

r2
k,νi

Frd ,ν̄i

r2
k,ν̄i

(〈Eνi 〉+ 〈Eν̄i 〉)(1− cos θ)2

+ A2,i

∫
rd,νi
∈disk

drd,νi

∫
rd,ν̄i
∈disk

drd,ν̄i

Frd ,νi

r2
k,νi

Frd ,ν̄i

r2
k,ν̄i

〈Eνi 〉+ 〈Eν̄i 〉
〈Eνi 〉〈Eν̄i 〉

(1− cos θ).
(A44)
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