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Abstract: We have studied the possible isospin corrections on the skewness and kurtosis of net-
baryon and net-charge fluctuations in the isospin asymmetric matter formed in relativistic heavy-ion
collisions at RHIC-BES energies, based on a 3-flavor Polyakov-looped Nambu–Jona–Lasinio model.
With typical scalar–isovector and vector–isovector couplings leading to the splitting of u and d
quark chiral phase transition boundaries and critical points, we have observed considerable isospin
effects on the susceptibilities, especially those of net-charge fluctuations. Reliable experimental
measurements at even lower collision energies are encouraged to confirm the observed isospin
effects.
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1. Introduction

Studying the hadron-quark phase transition and exploring the phase structure of
quantum chromodynamics (QCD) matter are the fundamental goals of relativistic heavy-
ion collision experiments. Lattice QCD simulations predict that the transition between
the hadronic phase and the partonic phase is a smooth crossover at nearly zero baryon
chemical potential (µB ∼ 0) [1–3]. At larger µB, the transition can be a first-order one based
on investigations from theoretical models, see, e.g., studies from the Nambu–Jona–Lasinio
(NJL) model and its extensions [4–7]. The knowledge of the QCD critical point (CP) in-
between the smooth crossover and the first-order phase transition boundaries is important
in mapping out the whole QCD phase diagram [8]. In order to find the signature of the
QCD CP at finite µB, the Beam Energy Scan (BES) program at the Relativistic Heavy-Ion
Collider (RHIC) [9] has been carrying out “low-energy” relativistic heavy-ion collisions
and obtained many interesting results. However, heavy-ion collisions with neutron-rich
beams produce isospin asymmetric quark matter consisting of different net numbers of u
and d quarks, and the isospin degree of freedom is expected to be increasingly important at
lower collision energies with larger µB, related to the QCD phase structure at finite isospin
chemical potentials µI [10]. Based on studies from the statistical model [11–13], the µI can
be as large as 10 MeV at the chemical freeze-out stage of heavy-ion collisions at RHIC-BES
energies. The isospin effect is thus expected to influence the search of QCD CP signals in
heavy-ion collision experiments.

One of the characteristic feature of the CP is the divergence of fluctuations and the
correlation length. Experimentally, such fluctuations in the grand canonical ensemble can
be measured from event-by-event observables, such as particle multiplicities, net baryon
numbers, or net charge numbers, etc. The singular contribution to the quadratic variance
of these observables is related to the correlation length [14], which diverges at the CP in
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the ideal system but mostly limited by the finite size or the finite life time of the system.
Investigating the quark matter formed in relativistic heavy-ion collisions, the susceptibilities
of conserved quantities, which have their corresponding chemical potentials, carry informa-
tion of the QCD phase boundary as well as the position of the CP [15]. The above findings
have stimulated experimental measurements of non-Gaussian net-baryon, net-charge,
and net-strangeness fluctuations, characterized by the kurtosis and the skewness of their
event-by-event distributions, from

√
sNN = 7.7 to 200 GeV at RHIC [16–23], and theoretical

studies based on lattice QCD calculations [24,25] as well. For reviews on this topic, we refer
the reader to references [26,27]. However, the isospin effects on these fluctuations have
not been seriously investigated. While lattice QCD can explore the phase transition at
finite µI [28–30], it suffers from the fermion sign problem at finite µB [31–33]. It is of great
interest to investigate such isospin effects with an effective QCD model.

In the present study, we investigate the isospin effects on the net-baryon and net-
charge fluctuations based on the 3-flavor Polyakov-looped NJL (pNJL) model with isovector
couplings in both the scalar and vector channels [34], i.e., the scalar–isovector and vector–
isovector couplings. The isovector couplings lead to different potentials of u and d quarks
in isospin asymmetric quark matter, and server as a possible explanation of the elliptic
flow splitting between π+ and π− in relativistic heavy-ion collisions [35]. In addition,
the isovector couplings affect the equation of state of isospin asymmetric quark matter and
the properties of strange quark stars [36] as well as hybrid stars [34]. More importantly,
the isovector couplings also lead to the isospin splittings of chiral phase transition bound-
aries and critical points for u and d quarks in isospin asymmetric quark matter [34,37–39].
It is expected that such isospin splittings may affect the susceptibilities of conserved
quantities mentioned above.

2. PNJL Model with Isovector Couplings

The thermodynamic potential of the 3-flavor pNJL model with the scalar–isovector
and vector–isovector couplings at temperature T can be expressed as [34]

ΩpNJL = U (Φ, Φ̄, T)− 2Nc ∑
i=u,d,s

∫ Λ

0

d3 p
(2π)3 Ei

− 2T ∑
i=u,d,s

∫ d3 p
(2π)3 [ln(1 + e−3β(Ei−µ̃i)

+ 3Φe−β(Ei−µ̃i) + 3Φ̄e−2β(Ei−µ̃i)) (1)

+ ln(1 + e−3β(Ei+µ̃i) + 3Φ̄e−β(Ei+µ̃i)

+ 3Φe−2β(Ei+µ̃i))] + GS(σ
2
u + σ2

d + σ2
s )

− 4Kσuσdσs + GV(ρ
2
u + ρ2

d + ρ2
s )

+ GIS(σu − σd)
2 + GIV(ρu − ρd)

2.

In the above, the temperature-dependent effective potential U (Φ, Φ̄, T) as a function of the
Polyakov loop Φ and Φ̄ is expressed as [5]

U (Φ, Φ̄, T) = −b · T{54e−a/TΦΦ̄ + ln[1− 6ΦΦ̄ (2)

− 3(ΦΦ̄)2 + 4(Φ3 + Φ̄3)]},

with a = 664 MeV and b = 0.015Λ3 [5], where Λ = 750 MeV is the cutoff value in the
momentum integral of the second term in Equation (1). The factor 2Nc with Nc = 3
represents the spin and color degeneracy, and β = 1/T represents the temperature. GS and
GV are respectively the scalar-isoscalar and vector-isoscalar coupling constants, K is the
coupling constant of the six-point Kobayashi-Maskawa-t’Hooft (KMT) interaction, and GIS
and GIV are respectively the strength of the scalar–isovector and vector–isovector couplings
that break the SU(3) symmetry while keeping the isospin symmetry. For the ease of
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discussions, we define RIS = GIS/GS and RIV = GIV/GS as the reduced strength of the
scalar–isovector and vector–isovector couplings. The energy Ei of quarks with flavor i is

expressed as Ei(p) =
√

p2 + M2
i , where Mi is the constituent quark mass. In the mean-field

approximation, quarks can be considered as quasiparticles with constituent masses Mi
determined by the gap equation

Mi = mi − 2GSσi + 2Kσjσk − 2GISτ3i(σu − σd), (3)

where mi is the current quark mass, σi stands for the quark condensate, (i, j, k) is any per-
mutation of (u, d, s), and τ3i is the isospin quantum number of quark flavor i, i.e., τ3u = 1,
τ3d = −1, and τ3s = 0. As shown in Equation (3), σd and σs contribute to the constituent
quark mass of u quarks as a result of the six-point interaction and the scalar–isovector
coupling. Similarly, the effective chemical potential expressed as

µ̃i = µi + 2GVρi + 2GIVτ3i(ρu − ρd) (4)

has also the contribution from quarks of other isospin states through the vector–isovector
coupling. The net quark number density of flavor i can be calculated from

ρi = 2Nc

∫
( fi − f̄i)

d3 p
(2π)3 , (5)

where

fi =
1 + 2Φ̄ξi + Φξ2

i
1 + 3Φ̄ξi + 3Φξ2

i + ξ3
i

(6)

and

f̄i =
1 + 2Φξ ′i + Φ̄ξ ′i

2

1 + 3Φξ ′i + 3Φ̄ξ ′i
2 + ξ ′i

3 (7)

are the effective phase-space distribution functions for quarks and antiquarks in the pNJL
model, with ξi = e(Ei−µ̃i)/T and ξ ′i = e(Ei+µ̃i)/T .

In the present study, we adopt the values of parameters [7,40] as mu = md = 3.6 MeV,
ms = 87 MeV, GSΛ2 = 3.6, and KΛ5 = 8.9. While the lattice QCD calculations of the
susceptibility favor GV = 0 [41,42], a finite GV leads to different dynamics of quarks and
antiquarks and helps to explain the elliptic flow splittings between protons and antiprotons
in RHIC-BES experiments [43]. On the other hand, the effect of GV on the position of the
critical point and the susceptibility is well known [4–7]. Since the purpose is not to study
the effect of GV on the structure of the phase diagram, it is set to 0 in the present study.
The numerical calculation is based on the following equations

∂ΩpNJL

∂σu
=

∂ΩpNJL

∂σd
=

∂ΩpNJL

∂σs
=

∂ΩpNJL

∂Φ
=

∂ΩpNJL

∂Φ̄
= 0, (8)

in order to obtain the values of σu, σd, σs, Φ, and Φ̄ at the minimum thermodynamic
potential in the pNJL model.

3. Isospin Properties of Higher-Order Susceptibilities

In the following, we consider fluctuation moments of conserved quantities, such as
net-baryon and net-charge fluctuations, from the above 3-flavor pNJL model. The nth-
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order susceptibility representing the cumulant of a given conserved quantity in the grand
ensemble can be expressed as the derivative of the thermodynamic potential as [26]

χ
(n)
X =

∂n(−Ω/T)
∂(µX/T)n , (9)

where µX represents the baryon (µB) or the charge (µQ) chemical potential.
Numerically, the isospin chemical potential µI and the charge chemical potential µQ are
equal to each other [24,44]. In the present study, we use the empirical relation between the
isospin chemical potential and the baryon chemical potential, i.e., µI = −0.293− 0.0264µB
with both µB and µI in MeV, determined from the statistical model fits of the particle
yield in Au+Au collisions at center-of-mass energy

√
sNN from 7.7 GeV to 200 GeV [11–13].

For the strangeness chemical potential, we take the empirical relation as
µS = 1.032 + 0.232µB [11–13]. Note that the chemical potentials of u, d, and s quarks
in the 3-flavor pNJL model can be expressed in terms of µB, µI , and µS. The relations be-
tween these chemical potentials give some constraints on the quark and antiquark number
densities in the phase diagram, and they are used to illustrate qualitatively the isospin
effect from the isovector interactions. The higher-order susceptibilities are related to the
skewness S and kurtosis κ measured experimentally in relativistic heavy-ion collisions
through the relations [26]

Sσ =
χ(3)

χ(2)
, κσ2 =

χ(4)

χ(2)
, (10)

where σ is the variance of the conserved quantity. The subscript of the net baryon (B)
or the net charge (Q) is omitted in the above equations. We note that from Equation (1)
the Polyakov-loop interaction only contributes to the single quark fluctuations, while the
fluctuations of the flavor mixed states are from the KMT interaction, the scalar–isovector
interaction, and the vector–isovector interaction. While the pNJL model has the deficiency
of lacking of hadronic effects, in the present study we are interested in the region close
to the chiral phase transition boundary as well as the critical point. It is noteworthy that
the pNJL model has been used to study the phase diagram and the susceptibility of net-
baryon and net-charge fluctuations in many works [5,6,45–55]. Since the hadronic effects
become dominate at lower beam energies or temperatures, there are also studies on the
susceptibilities based on pure hadronic models or both hadronic models and quark models,
see, e.g., references [56–62].

We begin our discussion on the higher-order net-baryon and net-charge susceptibilities
from the 3-flavor pNJL model in the µB− T plane with various isovector coupling constants,
as shown in Figure 1. As shown in Figure 3 of reference [34], RIS = 0.14 and RIV = 0.5
lead to the splittings of u and d quark chiral phase transition boundaries as well as their
critical points, which are plotted in all panels of Figure 1 for references. These chiral phase
transition boundaries indicate where there are dramatic changes of the quark mass or the
quark condensate in Equation (3). As also discussed in reference [34], the splitting of the
chiral phase transition related to the effective quark mass splitting is mostly sensitive to
RIS, while the RIV term has only the secondary effect. We note that generally the relativistic
heavy-ion collision system goes through a trajectory in the 3-dimensional phase diagram
(T, µB, µI). The empirical relation µI = −0.293− 0.0264 µB extracted from chemical freeze-
out is only well valid near the phase boundary, and this is exactly the region where we are
interested. As seen in Figure 1, chiral phase transition boundaries separate the red and
blue areas for skewness results, representing respectively the positive and negative values
of Sσ. For kurtosis results, however, the chiral phase transition boundaries go through the
blue areas, and the critical points stand at the ends of the blue areas. It is also interesting to
see that the skewness of net-charge fluctuations gives the different orders of the red and
blue areas compared to that of net-baryon fluctuations.
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Figure 1. (color online) Skewness and kurtosis of net-baryon (B) (a,b,e,f) and net-charge (Q) (c,d,g,h) fluctuations in the
µB − T plane with finite scalar–isovector (a–d) and vector–isovector (e–h) coupling constants and the empirical relation
µI = −0.293− 0.0264µB with both µB and µI in MeV. The chiral phase transition boundaries and the corresponding critical
points (CP) of u (black) and d (white) quarks are plotted in all panels for reference.

In relativistic heavy-ion collision experiments, the net-baryon and net-charge fluctu-
ations are measured at the chemical freeze-out. It is well-known that the pseudocritical
temperature from lattice QCD calculations at zero baryon density is the same as that
extracted from the statistical model at top RHIC energy or LHC energy, leading to the
conclusion that the chemical freeze-out happens right after the hadron-quark phase transi-
tion in ultra-relativistic heavy-ion collisions. In heavy-ion collisions at RHIC-BES energies,
when the chemical freeze-out happens is not well determined. There are several empir-
ical criteria for the chemical freeze-out in relativistic heavy-ion collisions, such as fixed
energy per particle at about 1 GeV, fixed total density of baryons and antibaryons, fixed
entropy density over T3, as well as the percolation model and so on (see reference [63] and
references therein). In order to compare qualitatively the higher-order susceptibilities from
the pNJL model with experimental results, we obtain the hypothetical chemical freeze-out
lines by rescaling µB of the averaged chiral phase transition boundaries of u and d quarks
with factors of 0.98, 0.95, and 0.90, corresponding respectively to the dash-dotted, dashed,
and dotted curves in Figure 2. We note that a similar assumption of the chemical freeze-out
lines was made in reference [64], and the present hypothetical chemical freeze-out lines
are always below the chiral phase transition boundaries of both u and d quarks. For the
net-baryon susceptibility shown in the upper panels of Figure 2, it is seen that Sσ(B) has
one positive peak while κσ2(B) has a positive and a negative peak along the chemical
freeze-out lines, and the peaks are sharper if the hypothetical chemical freeze-out lines
are closer to the chiral phase transition boundary, as also shown in many previous works.
The critical point of the d quark chiral phase transition is always at the low-temperature or
low-energy side of the positive peaks for both Sσ(B) and κσ2(B), and the distance between
the positive peaks and the critical point is related to that between the chemical freeze-out
line and the chiral phase transition boundary. For the net-charge susceptibility shown
in the lower panels of Figure 2, we have also observed sharper peaks if the hypothetical
chemical freeze-out line is closer to the chiral phase transition boundary. It is seen that
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Sσ(Q) has a negative peak at lower temperatures/energies and a positive peak at higher
temperatures/energies, and the broad positive peak of κσ2(Q) turns to two positive peaks
and a negative one if the hypothetical chemical freeze-out line is very close to the chiral
phase transition boundary. Again, the critical point of the d quark chiral phase transition is
at the low-temperature or low-energy side of the negative peak for Sσ(Q) or the positive
peak for κσ2(Q).

Figure 2. (color online) Density plot of Sσ (a,b,e,f) and κσ2 (c,d,g,h) in the µB − T plane as well as those along the different
hypothetical chemical freeze-out lines with the scalar–isovector coupling constant RIS = 0.14 and the empirical relation
µI = −0.293 − 0.0264 µB with both µB and µI in MeV. The solid line represents the averaged chiral phase transition
boundary for u and d quarks, while the other lines are hypothetical chemical freeze-out lines by rescaling µB of the solid
line with factors of 0.98, 0.95, and 0.90. The upper panels are the net-baryon (B) susceptibilities while the lower panels are
the net-charge (Q) susceptibilities.

In order to compare the higher-order susceptibilities with and without the isospin
effect, we display in Figure 3 the skewness and kurtosis of net-baryon and net-charge
fluctuations with four representative scenarios of isospin chemical potentials and isovec-
tor couplings: µI = 0, RIS = 0, RIV = 0; µI = −0.293− 0.0264µB, RIS = 0, RIV = 0;
µI = −0.293 − 0.0264µB, RIS = 0.14, RIV = 0; µI = −0.293 − 0.0264µB, RIS = 0,
RIV = 0.5, with both µI and µB in MeV. In order to illustrate the largest possible isospin
effect, the susceptibilities are calculated along the closest hypothetical chemical freeze-out
line to the phase boundary, i.e., using the rescaling factor of 0.98. It is seen that even
without isovector couplings, the skewness and kurtosis can be slightly different for µI = 0
and µI 6= 0, especially for net-charge susceptibilities. With finite isovector coupling con-
stants, the isospin effect is largely enhanced. The peaks of the net-baryon susceptibilities
move to the low-temperature or low-energy side, especially for RIS = 0.14. The general
shape of the net-baryon susceptibility is qualitatively consistent with the experimental
data [17,65]. The net-baryon susceptibility is not a unique probe of the isospin effect, since it
is largely affected by other effects as well, such as the vector-isoscalar coupling (GV term in
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Equation (1)) [5,6]. On the other hand, the isospin couplings affect dramatically the net-
charge susceptibilities. It is seen that the isovector couplings lead to a negative peak at
lower temperatures/energies for Sσ(Q). For κσ2(Q), the isovector couplings lead to two
peaks and RIS = 0.14 is the only scenario that leads to negative values. The experimen-
tal results from STAR and PHENIX Collaborations for net-charge susceptibilities are not
consistent with each other yet [18,19]. So far the experimental results for Sσ(Q) seem to
be positive above

√
sNN = 7.7 GeV from both STAR and PHENIX measurements, and it

is of great interest to distinguish different scenarios if reliable measurements are done at
even lower collision energies. For the κσ2(Q) results, the STAR results lead to negative
values at lower

√
sNN [18] while the PHENIX results remain positive at all energies [19].

It is again of great interest to check experimentally whether another peak appears at even
lower collision energies, as seen from the κσ2(Q) results with RIS = 0.14.
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Figure 3. (color online) Sσ and κσ2 for net-baryon (B) (a,b) and net-charge (Q) (c,d) fluctuations along the closest hypothetical
chemical freeze-out line to the phase boundary with four representative scenarios of isospin chemical potentials and
isovector couplings.

The scalar–isovector and vector–isovector coupling constants GIS and GIV are con-
sidered as free parameters. In the above study we mainly focused on the extreme case of
RIS = 0.14 and RIV = 0.5, which lead to the maximum splitting of u and d quark chiral
phase transition boundaries as well as their critical points. As shown in reference [34],
for even larger isovector coupling constants, the d quark chemical potential near the phase
boundary is comparable to the cutoff value Λ in the momentum integral. For complete-
ness, we have also compared results from negative values of isovector coupling constants,
i.e., µI = −0.293 − 0.0264µB, RIS = −1, RIV = 0; µI = −0.293 − 0.0264µB, RIS = 0,
RIV = −1 with others in Figure 4. The negative isovector couplings have negligible ef-
fects on the phase diagram at finite isospin chemical potentials as shown in reference [34],
and they have respectively negligible and small effects on the net-baryon and net-charge
susceptibilities as shown in Figure 4.

While the present study relies on an ideal thermodynamic calculation, it gives the
intuitive picture of the isospin effect. To take into account the detailed hadronic effects
on the susceptibilities, such as hadronic rescatterings, resonance decays, and the global
conservation law, etc., one may need to employ transport models and use the same cuts as
in the experimental analysis. Such study goes beyond the present scope.
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Figure 4. (color online) (a–d) Similar to Figure 3 but results from RIS = −1 and RIV = −1 are compared with others.

4. Summary and Outlook

Based on the 3-flavor Polyakov-looped Nambu–Jona–Lasinio model with the scalar–
isovector and vector–isovector couplings, we have studied the higher-order susceptibilities
of net-baryon and net-charge fluctuations in isospin asymmetric matter formed in rela-
tivistic heavy-ion collisions at RHIC-BES energies. Despite a few assumptions made in
the study, the isospin effect on the susceptibilities as a result of the isovector interactions
is robust. While negative isovector couplings will not affect much the phase diagram
and the susceptibilities, positive values of the isovector coupling constants seperate the
u and d quark chiral phase transition boundaries as well as their critical points at finite
isospin chemical potentials. This moves the peaks of the net-baryon susceptibilities to
the low-temperature or low-energy side, and largely changes the shape of the net-charge
susceptibilities, i.e., an additional negative peak appears in the skewness results and two
positive peaks appear in the kurtosis results along the hypothetical chemical freeze-out
line, if it is very close to the chiral phase transition boundary.

The peak of the susceptibility reveals the position of the critical point, which is
affected not only by the isovector couplings but by the vector-isoscalar coupling as well.
Additional constraints from observables are needed to extract values of these coupling
constants from the theoretical side. In order to have a more direct comparison with the
experimental data, one has to employ transport models [43] that take into account detailed
hadronic effects and apply the same cuts as in the experimental analysis. A recent lattice
QCD calculation using Taylor expansion of the chemical potentials disfavors the critical
point at µB/T < 2 and T > 135 MeV [66]. On the experimental side, the peak at lower
temperatures/energies is not observed or confirmed yet. It is of great interest to confirm
our findings by measuring the net-charge susceptibility at even lower collision energies.
Efforts from both the theoretical and experimental sides may be helpful in extracting the
strength of the isovector couplings or even the information of the isospin dependence of
the QCD phase diagram.
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