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Abstract: We present a short review of possible applications of the Wheeler-De Witt equation to
cosmological models based on the low-energy string effective action, and characterised by an initial
regime of asymptotically flat, low energy, weak coupling evolution. Considering in particular a
class of duality-related (but classically disconnected) background solutions, we shall discuss the
possibility of quantum transitions between the phases of pre-big bang and post-big bang evolution.
We will show that it is possible, in such a context, to represent the birth of our Universe as a quantum
process of tunneling or “anti-tunneling” from an initial state asymptotically approaching the string
perturbative vacuum.

Keywords: string cosmology; quantum cosmology; Wheeler-DeWitt equation

1. Introduction

In the standard cosmological context the Universe is expected to emerge from the big
bang singularity and to evolve initially through a phase of very high curvature and density,
well inside the quantum gravity regime. Quantum cosmology, in that context, turns out
to be a quite appropriate formalism to describe the “birth of our Universe”, possibly in a
state approaching the de Sitter geometric configuration typical of inflation (see, e.g., [1] for
a review).

In the context of string cosmology, in contrast, there are scenarios where the Universe
emerges from a state satisfying the postulate of “asymptotic past triviality” [2] (see [3]
for a recent discussion): in that case the initial phase is classical, with a curvature and a
density very small in string (or Planck) units. Even in that case, however, the transition to
the decelerated radiation-dominated evolution, typical of standard cosmology, is expected
to occur after crossing a regime of very high-curvature and strong coupling. The birth of
our Universe, regarded as the beginning of the standard cosmological state, corresponds in
that case to the transition (or “bounce”) from the phase of growing to decreasing curvature,
and even in that case can be described by using quantum cosmology methods, like for a
Universe emerging from an initial singularity.

There is, however, a crucial difference between a quantum description of the “big
bang” and of the “big bounce”: indeed, the bounce is preceded by a long period of
low-energy, classical evolution, while the standard big bang picture implies that the space-
time dynamics suddenly ends at the singularity, with no classical description at previous
epochs (actually, there are no “previous” epochs, as the time coordinate itself ends at the
singularity). In that context the initial state of the Universe is unknown, and has to be
fixed through some ad hoc prescription: hence, different choices for the initial boundary
conditions are in principle allowed [4–9], leading in general to different quantum pictures
for the very early cosmological evolution. Such an approach, based in particular on “no-
boundary” initial conditions, has been recently applied also to the ekpyrotic scenario [10],
leading to the production of ekpyrotic instantons [11,12]. In the class of string cosmology
models considered in this paper, in contrast, the initial state is uniquely determined by
a fixed choice of pre-big bang (or pre-bounce) evolution (see, e.g., [13–17]), which starts
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asymptotically from the string perturbative vacuum and which, in this way, unambiguously
determines the initial “wave function” of the Universe and the subsequent transition
probabilities.

In this paper we report the results of previous works, based on the study of the
Wheeler–De Witt (WDW) equation [18,19] in the “minisuperspace” associated with a
class of cosmological backgrounds compatible with the dynamics the low-energy string
effective action [20–26]. It is possible, in such a context, to obtain a non-vanishing transition
probability between two different geometrical configurations—in particular, from a pre-
big bang to a post-big bang state—even if they are classically disconnected by a space-
time singularity. There is no need, to this purpose, of adding higher-order string-theory
contributions (like α′ and loop corrections) to the WDW equation, except those possibly
encoded into an effective (non-local) dilaton potential (but see [27,28] for high-curvature
contributions to the WDW equation). It will be shown, also, that there are no problems
of operator ordering in the WDW equation, as the ordering is automatically fixed by the
duality symmetry of the effective action. Other possible problems—of conceptual nature
and typical of the WDW approach to quantum cosmology—however, remain, like the the
validity of a probabilistic interpretation of the wave function [29], the existence and the
possible meaning of a semiclassical limit [30], the unambiguous identification of a time-like
coordinate in superspace (see however [23], and see [31] for a recent discussion).

Let us stress that this review is dedicated in particular to string cosmology back-
grounds of the pre-big bang type, and limited to a class of spatially homogeneous geome-
tries. It should be recalled, however, that there are other important works in a quantum
cosmology context which are also directly (or indirectly) related to the string effective
action, and which are applied to more general classes of background geometries not neces-
sarily characterised by spatial Abelian isometries, and not necessarily emerging from the
string vacuum.

We should mention, in particular, the quantum cosmology results for the bosonic
sector of the heterotic string with Bianchi-type IX geometry [32] and Bianchi class A ge-
ometry [33]; solutions for the WDW wave function with quadratic and cubic curvature
corrections [34] (typical of f (R) models of gravity), describing a phase of conventional
inflation; two-dimensional models of dilaton quantum cosmology and their supersymmet-
ric extension [35]; WDW equation for a class of scalar-tensor theories of gravity with a
generalised form of scale-factor duality invariance [36,37]. We think that discussing those
(and related) works should deserve by itself a separate review paper.

This paper is organized as follows. In Section 2 we present the explicit form of the
WDW equation following from the low-energy string effective action, for homogeneous
backgrounds with d Abelian spatial isometries, and show that it is free from operator-
ordering ambiguities thanks to its intrinsic O(d, d) symmetry. In Section 3, working in
the simple two-dimensional minisuperspace associated with a class of exact gravi-dilaton
solutions of the string cosmology equations, we discuss the scattering of the WDW wave
function induced by the presence of a generic dilaton potential. In Section 4 we show that
an appropriate quantum reflection of the wave function can be physically interpreted as
representing the birth of our Universe as a process of tunnelling from the string perturbative
vacuum. Similarly, in Section 5, we show that the parametric amplification of the WDW
wave function can describe the birth of our Universe as a process of “anti-tunnelling” from
the string perturbative vacuum. Section 6 is finally devoted to a few conclusive remarks.

2. The Wheeler-De Witt Equation for the Low-Energy String Effective Action

In a quantum cosmology context the Universe is described by a wave function evolving
in the so-called superspace and governed by the WDW equation [18,19], in much the
same way as in ordinary quantum mechanics a particle is described by a wave function
evolving in Hilbert space [38], governed by the Schrodinger equation. Each point of
superspace corresponds to a possible geometric configuration of the space-like sections of
our cosmological space-time, and the propagation of the WDW wave function through this
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manifold describes the quantum dynamics of the cosmological geometry (thus providing,
in particular, the transition probabilities between different geometric states).

The WDW equation, which implements the Hamiltonian constraint H = 0 in the
superspace of the chosen cosmological scenario, has to be obtained, in our context, from
the appropriate string effective action. Let us consider, to this purpose, the low-energy, tree-
level, (d + 1)-dimensional (super)string effective action, which can be written as [39–41]

S = − 1
2λd−1

s

∫
dd+1x

√
−g e−φ

(
R + ∂µφ∂µφ− 1

12
HµναHµνα + V

)
, (1)

where φ is the dilaton [42], Hµνα = ∂µBνα + ∂νBαµ + ∂αBµν is the field strength of the
NS-NS two form Bµν = −Bνµ (also called Kalb-Ramond axion), and λs ≡ (α′)1/2 is the
fundamental string length parameter. We have also added a possible non-trivial dilaton
potential V(φ).

For the purpose of this paper it will be enough to consider a class of homogeneous
backgrounds with d Abelian spatial isometries and spatial sections of finite volume, i.e.,
(
∫

ddx
√−g)t=const < ∞. In the synchronous frame where g00 = 1, g0i = 0 = B0i, and

where the fields are independent of all space-like coordinates xi (i, j = 1, .., d), the above
action can then be rewritten as follows [43,44]:

S =
∫

dt L(φ, M), L = −λs

2
e−φ

[
(φ̇)2 +

1
8

Tr Ṁ(M−1 )̇ + V
]

. (2)

Here a dot denotes differentiation with respect to the cosmic time t, and φ is the so-called
“shifted” dilaton field,

φ = φ− ln
√
−g, (3)

where we have absorbed into φ the constant shift − ln(λ−d
s
∫

ddx). Finally, M is the
2d × 2d matrix

M =

(
G−1 −G−1B

BG−1 G− BG−1B

)
, (4)

where G and B are, respectively, d × d matrix representations of the spatial part of the
metric (gij) and of the antisymmetric tensor (Bij). For constant V, or for V = V(φ), the
above action (2) is invariant under global O(d, d) transformations [43,44] that leave the
shifted dilaton invariant, and that are parametrized in general by a constant matrix Ω
such that

φ→ φ, M→ ΩT MΩ, (5)

where Ω satisfies

ΩTηΩ = η, η =

(
0 I
I 0

)
, (6)

and I is the d-dimensional identity matrix. It can be easily checked that, in the particular
case in which B = 0 and Ω coincides with η, Equation (5) reproduces the well-known
transformation of scale-factor duality symmetry [45,46].

From the effective Lagrangian (2) we can now obtain the (dimensionless) canoni-
cal momenta

Πφ =
δL

δφ̇
= −λsφ̇e−φ, ΠM =

δL
δṀ

=
λs

8
e−φ M−1ṀM−1, (7)

and the associated classical Hamiltonian:

H =
eφ

2λs

[
−Π2

φ
+ 8Tr(M ΠM M ΠM) + λ2

s Ve−2φ
]
. (8)

The corresponding WDW equation, implementing in superspace the Hamiltonian con-
straint H = 0 through the differential operator representation Πφ = ±iδ/δφ, ΠM =
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±iδ/δM, would seem thus to be affected by the usual problems of operator ordering, since
[M, ΠM] 6= 0.

The problem disappears, however, if we use the O(d, d) covariance of the action (2),
and the symmetry properties of the axion-graviton field represented by the matrix (4),
which satisfies the identity Mη = ηM−1. Thanks to this property, in fact, we can identi-
cally rewrite the axion-graviton part of the kinetic term appearing in the Lagrangian (2)
as follows:

Tr Ṁ(M−1 )̇ = Tr
(

ṀηṀη
)
. (9)

The corresponding canonical momentum becomes

ΠM = −λs

8
e−φ ηṀη, (10)

and the associated Hamiltonian

H =
eφ

2λs

[
−Π2

φ
− 8Tr(η ΠM η ΠM) + λ2

s Ve−2φ
]

(11)

has a flat metric in momentum space, and leads to a WDW equation[
δ2

δφ
2 + 8Tr

(
η

δ

δM
η

δ

δM

)
+ λ2

s Ve−2φ

]
Ψ(φ, M) = 0 (12)

which is manifestly free from problems of operator ordering.
Finally, it may be interesting to note that the quantum ordering imposed by the dualiy

symmetry of the effective action is exactly equivalent to the order fixed by the condition of
reparametrization invariance in superspace.

To check this point let us consider a simple spatially isotropic background, with Bij = 0
and scale factor a(t), so that Gij = −a2(t)δij. The effective Lagrangian (2) becomes

L(φ, a) = −λs

2
e−φ

(
φ̇

2 − d
ȧ2

a2 + V
)

, (13)

with associated canonical momenta

Πφ =
δL

δφ̇
= −λsφ̇e−φ, Πa =

δL
δȧ

= λsd
ȧ
a2 e−φ, (14)

and Hamiltonian constraint:

2λse−φ H = −Π2
φ
+

a2

d
Π2

a + λ2
s Ve−2φ = 0. (15)

The differential implementation of this constraint in terms of the operators Πφ → ±i∂/∂φ,
Πa → ±i∂/∂a has to be ordered, because [a, Πa] 6= 0. It follows that in general, for the
kinetic part of the Hamiltonian Hk = −Π2

φ
+ a2Π2

a/d, we have the following differen-
tial representation

Hk =
∂

∂φ
2 −

a2

d
∂2

∂a2 − ε
a
d

∂

∂a
, (16)

where ε is a numerical parameter depending on the imposed ordering. However, if
we perform a scale-factor duality transformation φ → φ, a → ã = a−1 (which exactly
corresponds to the class of transformations (5) for the particular class of backgrounds that
we are considering), we find

Hk(a) = Hk(ã) +
2
d
(ε− 1) ã

∂

∂ã
. (17)
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The duality invariance of the Hamiltonian thus requires ε = 1 (which, by the way, is
also the value of ε that we have to insert into Equation (16) to be in agreement with
the general result (12) if we consider the particular class of geometries with B = 0 and
G = −a2 I). See also [36,37] for the WDW equation with a generalised form of scale-factor
duality symmetry.

Let us now consider the kinetic part of the Hamiltonian operator (15), which is given
as a quadratic form in the canonical momenta ΠA = (Πφ, Πa), written in a 2-dimensional
minisuperspace with a non-trivial metric γAB and coordinates xA = (φ, a), such that:

Hk = −Π2
φ
+

a2

d
Π2

a ≡ γABΠAΠB, γAB(φ, a) = diag
(
−1,

d
a2

)
. (18)

If we impose on the differential representation of the Hamiltonian constraint the condition
of general covariance with respect to the given minisuperspace geometry [47], we obtain

Hk = −γAB∇A∇B = − 1√−γ
∂A(
√−γγAB∂B) ≡

∂

∂φ
2 −

a2

d
∂2

∂a2 −
a
d

∂

∂a
, (19)

and this result exactly reproduces the differential operator (16) with ε = 1. The duality
symmetry of the action, and the requirement of reparametrisation invariance in superspace,
are thus equivalent to select just the same ordering prescription, as previously anticipated.

3. Quantum Scattering of the Wheeler-De Witt Wave Function in Minisuperspace

For an elementary discussion of this topic, and for the particular applications we
have in mind—namely, a quantum description of the “birth” of our present cosmological
state from the string perturbative vacuum—we shall consider the homogeneous, isotropic
and spatially flat class of (d + 1)-dimensional backgrounds already introduced in the
previous section, with Bµν = 0, g00 = 1 and scale factor a(t). We shall thus work in a
two-dimensional minisuperspace, spanned by the convenient coordinates (φ, β) where
β =
√

d ln a. With such variables the effective Lagrangian (2) takes the form

L(β, φ) = −λs
e−φ

2

[
φ̇

2 − β̇2 + V(β, φ)
]
, (20)

and the momenta, canonically conjugate to the coordinates φ, β, are given by

Πφ =
δL

δφ̇
= −λsφ̇e−φ, Πβ =

δL
δβ̇

= λs β̇ e−φ. (21)

The Hamiltonian constraint (15) becomes

−Π2
φ
+ Π2

β + λ2
s V(β, φ) e−2 φ = 0, (22)

corresponding to an effective WDW equation[
∂2

φ
− ∂2

β + λ2
s V(β, φ) e−2φ

]
Ψ(β, φ) = 0. (23)

For V = 0 we have the free D’Alembert equation, and the general solution can be written
in terms of plane waves as

Ψ(β, φ) = ψ±β ψ±
φ
∼ e∓ikβe∓ikφ. (24)

Here k > 0, and ψ±β , ψ±
φ

are free momentum eigenstates, satisfying the eigenvalue equations

Πβ ψ±β = ±k ψ±β , Πφ ψ±
φ
= ±k ψ±

φ
. (25)
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Let us now recall that, for V = 0, the equations following from the effective La-
grangian (20) admit a class of exact solution describing four (physically different) cosmo-
logical phases, two expanding and two contracting, parametrized by [13,15–17]:

a(t) ∼ (∓t)∓1/
√

d, φ(t) ∼ − ln(∓t), (26)

They are defined on the disconnected time ranges [−∞, 0] and [0,+∞], and are related
by duality transformations a → a−1, φ → φ and time-reversal transformation, t → −t.
They may represent the four asymptotic branches of the low-energy string cosmology
solutions even in the presence of a non-vanishing dilaton potential, provided the effective
contribution of the potential is localized in a region of finite extension of the (φ, β) plane,
and goes (rapidly enough) to zero as φ, β→ ±∞.

The above solutions satisfy the condition

φ̇ = ±
√

d
ȧ
a
= ±β̇, (27)

so that, according to the definitions (21), they correspond to configurations with canonical
momenta related by Πβ = ±Πφ. By recalling that the phase of (expanding or contracting)
pre-big bang evolution is characterized by growing curvature and growing dilaton [15,16]
(namely, φ̇ > 0, Πφ < 0), while the curvature and the dilaton are decreasing in the

(expanding or contracting) post-big bang phase (where φ̇ < 0, Πφ > 0), we can conclude,
according to Equations (21), (25), that the classical solutions (26) of the string cosmology
equations admit the following plane-wave representation in minisuperspace in terms of
ψ±β , ψ±

φ
:

• expansion −→ β̇ > 0 −→ ψ+
β ,

• contraction −→ β̇ < 0 −→ ψ−β ,

• pre-big bang (growing dilaton) −→ φ̇ > 0 −→ ψ−
φ

,

• post-big bang (decreasing dilaton) −→ φ̇ < 0 −→ ψ+
φ

.

Let us now impose, as our physical boundary condition, that the initial state of our
Universe describes a phase of expanding pre-big bang evolution, asymptotically emerging
from the string perturbative vacuum (identified with the limit β → −∞, φ → −∞). It
follows that the initial state Ψin must represent a configuration with β̇ > 0 and φ̇ > 0,
namely a state with positive eigenvalue of Πβ and negative (opposite) eigenvalue of Πφ,
i.e., Ψin ∼ ψ+

β ψ−
φ

.
In such a context, a quantum transition from the pre- to the post-big bang regime can

be described as a process of scattering of the initial wave function induced by the presence
of some appropriate dilaton potential, which we shall assume to have non-negligible
dynamical effects only in a finite region localized around the origin of the minusuperspace
spanned by the (φ, β) coordinates. In other words, we shall assume that the contributions
of V(φ) to the WDW equation tend to disappear not only in the initial but also in the final
asymptotic regime where β→ +∞, φ→ +∞. As a consequence, also the final asymptotic
configuration Ψout, emerging from the scattering process, can be represented in terms of
the free momentum eigenstates ψ±β and ψ±

φ
.

However, unlike the initial state fixed by the chosen boundary conditions—and
selected to represent a configuration with Πβ > 0 and Πφ < 0—the final state is not
constrained by such a restriction and can describe in general different configurations. In
particular, the scattering process may lead to configurations asymptotically described by
a wave function Ψout which is a superposition of different momentum eigenstates: for
instance, waves with the same Πβ > 0 and opposite values of Πφ, i.e., Ψout ∼ ψ+

β ψ±
φ

(see
Figure 1, cases (a) and (b)); or waves with the same Πφ < 0 and opposite values of Πβ, i.e.,
Ψout ∼ ψ−

φ
ψ±β (see Figure 1, cases (c) and (d)).
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Figure 1. Four different classes of scattering processes for the incoming wave function describing a
phase of expanding pre-big bang evolution, asymptotically emerging from the string perturbative
vacuum (straight, solid line). The outgoing state is represented by a mixture of eigenfunctions of Πβ

and Πφ with positive and negative eigenvalues.
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Figure 1. Four different classes of scattering processes for the incoming wave function describing a
phase of expanding pre-big bang evolution, asymptotically emerging from the string perturbative
vacuum (straight, solid line). The outgoing state is represented by a mixture of eigenfunctions of Πβ

and Πφ with positive and negative eigenvalues. See the main text for a detailed explanation of the
four different cases (a–d) illustrated in this figure.

It may be interesting to note that those different configurations may be interpreted
as different possible “decay channels” of the string perturbative vacuum [24]. Also, it
should be stressed (as clearly illustrated in Figure 1) that one of the two components of
the outgoing wave function Ψout must always correspond to the “transmitted” part of the
incident wave Ψin, namely must correspond to a state with Πβ > 0 and Πφ < 0, represented
by ψ+

β ψ−
φ

. However, the “reflected” part of the wave function may have different physical
interpretations, also depending on the chosen identification of the time-like coordinate
in minisuperspace [23,25]: the β axis for the cases (a) and (d), the φ axis for the case (b)
and (c).

It turns out that only the cases (a) and (c) of Figure 1 represent a true process of
reflection of the incident wave along a spacelike coordinate (the axes φ and β, respectively).
In case (a), in particular, the evolution along β is monotonic, the Universe always keeps
expanding, and the incident wave Ψin is partially transmitted towards the pre-big bang
singularity (with unbounded growth of the curvature and of the dilaton, β → +∞, φ →
+∞), and partially reflected back towards the expanding, low-energy, post-big bang regime
(β → +∞, φ → −∞). As we shall show in Section 4, this type of quantum reflection can
also be interpreted as a process of “tunnelling” from the string perturbative vacuum.
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The cases (b) and (d) of Figure 1 are qualitatively different, as the final state is a super-
position of modes of positive and negative frequency with respect to the chosen timelike
coordinate (the axes φ and β, respectively). Namely, Ψout is a superposition of positive and
negative energy eigenstates, and this represents a quantum process of “parametric amplifi-
cation” of the wave function [48,49] or, in the language of third quantization [50–54]—i.e.,
second quantization of the WDW wave function—a process of “Bogoliubov mixing” of
the energy modes (see, e.g., [55,56]), associated with the production of “pairs of universes”
from the vacuum. For that process, the mode “moving backwards” with respect to the
chosen time coordinate has to be “reinterpreted”: as an anti-particle in the usual quantum
field theory context, as an “anti-universe” in a quantum cosmology context.

Such a re-interpretation principle produces, as usual, states of positive energy and
opposite momentum. It turns out, in particular, that the case (d) of Figure 1 describes—after
the correct re-interpretation—the production of universe/anti-universe pairs in which both
members of the pair have positive energy and positive momentum along the β axis. Hence,
they are both expanding: one falls inside the pre-big bang singularity (φ→ +∞), but the
other expands towards the low-energy post-big bang regime (φ→ −∞). As we shall show
in Section 5, this quantum effect of pair production can also be interpreted as a process of
“anti-tunnelling” from the string perturbative vacuum.

4. Birth of the Universe as a Tunnelling from the String Perturbative Vacuum

To illustrate the process of quantum transition from the pre- to the post-big bang
regime as a wave reflection in superspace we shall consider here the simplest (almost trivial)
case of constant dilaton potential, V = V0 = const ( see also [37], and see, e.g., [20] for more
general dynamical configurations). With this potential the classical background solutions
for the cosmological equations of the effective Lagrangian (20) are well known [57], and
can be written as

a(t) = a0

[
tanh

(
∓
√

V0t/2
)]∓1/

√
d
, φ = φ0 − ln

[
sinh

(
∓
√

V0t
)]

, (28)

where a0 and φ0 are integration constants.
These solutions have two branches, of the pre-big bang type (φ̇ > 0) and post-big bang

type (φ̇ < 0), defined respectively over the disconnected time ranges t < 0 and t > 0, and
classically separated by a singularity of the curvature and of the effective string coupling
(exp φ) at t = 0. For t→ ±∞ they approach, asymptotically, the free vacuum solution (26)
obtained for V = 0. It is important to note, also, that each branch of the above solution
can describe either expanding or contracting geometric configurations, which are both
characterized by a constant canonical momentum along the β axis, given (according to
Equation (21)), by

Πβ = λs β̇ e−φ = ±k, k = λs
√

V0 e−φ0 . (29)

Let us now apply the WDW Equation (23) to compute the (classically forbidden)
probability of transition from the pre- to the post-big bang branches of the solution (28).
We are interested, in particular, in the transition between expanding configurations, and
we shall thus consider the quantum process described by the case (a) of Figure 1, with a
wave function monotonically evolving along the positive direction of the β axis (also in
agreement with the role of time-like coordinate asssigned to β). In that case β̇ > 0, and
the conserved canonical momentum (29) is positive, Πβ > 0. By imposing momentum
conservation as a differential condition on the wave function,

ΠβΨk(β, φ) = i∂βΨk(β, φ) = k Ψk(β, φ), (30)

we can then separate the variables in the solution of the WDW Equation (23), and we obtain

Ψ(β, φ) = e−ikβψk(φ),
(

∂2
φ
+ k2 + λ2

s V0e−2φ
)

ψk(φ) = 0. (31)
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The general solution of the above equation can now be written as a linear combination
of Bessel functions [58], AJν(z) + BJ−ν(z), of index ν = ik and argument
z = λs

√
V0 exp(−φ). Consistently with the chosen boundary conditions for the pro-

cess illustrated in case (a) of Figure 1 (namely, with the choice of an initial wave function
asymptotically incoming from the string perturbative vacuum), we have now to impose
that there are only right-moving waves (along φ) approaching the high-energy region and
the final singularity in the limit β → +∞, φ → +∞. Namely, waves of the type ψ−

φ
—see

Equations (24) and (25)—representing a state with φ̇ > 0 and Πφ < 0. By using the small
argument limit of the Bessel functions [58],

lim
φ→+∞

J±ik

(
λs
√

V0 e−φ
)
∼ e∓ikφ, (32)

we can then eliminate the Jν(z) component and uniquely fix the WDW solution (modulo
an arbitrary normalization factor Nk) as follows:

Ψk(β, φ) = Nk J−ik

(
λs
√

V0 e−φ
)

e−ikβ. (33)

Let us now consider the wave content of this solution in the opposite, low-energy
limit φ→ −∞, where the large argument limit of the Bessel functions gives [58]

lim
φ→−∞

Ψk(β, φ) =
Nk e−ikβ

(2πz)1/2

[
e−i(z−π/4)ekπ/2 + ei(z−π/4)e−kπ/2

]
≡ Ψ−k (β, φ) + Ψ+

k (β, φ), (34)

and where the two wave components Ψ−k and Ψ+
k are asymptotically eigenstates of Πφ with

negative and positive eigenvalues, respectively. Hence, we find in this limit a superposition
of right-moving and left-moving modes (along φ), representing, respectively, the initial,
pre-big bang incoming state Ψ−k (with Πφ < 0, i.e., growing dilaton), and the final, post-big
bang reflected component Ψ+

k (with Πφ > 0, i.e., decreasing dilaton). Starting from an
initial pre-big bang configuration, we can then obtain a finite probability for the transition
to the “dual” post-big bang regime, represented as a reflection of the wave function in
minisuperspace, with reflection coefficient

Rk =

∣∣Ψ+
k (β, φ)

∣∣2∣∣Ψ−k (β, φ)
∣∣2 = e−2πk. (35)

The probability for this quantum process is in general nonzero, even if the corresponding
transition is classically forbidden.

It may be interesting to evaluate Rk in terms of the string-scale variables, for a region
of d-dimensional space of given proper volume Ωs. By computing the constant momentum
k of Equation (29) at the string epoch ts, when β̇(ts) =

√
d(ȧ/a)(ts) '

√
dλ−1

s , and using
the definition (3) of φ, we find

Rk ∼ exp

{
−2π

√
d

g2
s

Ωs

λd
s

}
, (36)

where the proper spatial volume is given by Ωs = ad(ts)
∫

ddx, and where gs = exp(φs/2)
is the effective value of the string coupling when the dilaton has the value φs ≡ φ(ts). Note
that, for values of the coupling gs ∼ 1, the above probability is of order one for the formation
of spacelike “bubbles” of unit size (or smaller) in string units. In general, the probability
has a typical “instanton-like” dependence on the coupling constant, Rk ∼ exp(g−2

s ).
It may be observed, finally, that an exponential dependence of the transition proba-

bility is also typical of tunnelling processes (induced by the presence of a cosmological
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constant Λ) occurring in the context of standard quantum cosmology, where the tunnelling
probability can be estimated as [6,29,59,60]

P ∼ exp

{
− 4

λ2
PΛ

}
(37)

(λP is the Planck length). That scenario is different because, in that case, the Universe
emerges from the quantum era in a classical inflationary configuration, while, in the string
scenario, the Universe is expected to exit (and not to enter) the phase of inflation thanks to
quantum cosmology effects.

In spite of such important differences, it turns out that the string cosmology result (36)
is formally very similar to the result concerning the probability that the birth of our
Universe may be described as a quantum process of “tunneling from nothing” [6,29,59,60].
The explanation of this formal coincidence is simple, and based on the fact that the choice
of the string perturbative vacuum as initial boundary condition implies—as previously
stressed—that the are only outgoing (right-moving) waves approaching the singularity
at φ → +∞. This is exactly equivalent to imposing tunneling boundary conditions, that
select “... only outgoing modes at the singular space-time boundary” [29,60]. In this sense, the
process illustrated in this Section can also be interpreted as a tunneling process, not “from
nothing” but “from the string perturbative vacuum”.

5. Birth of the Universe as Anti-Tunnelling from the String Perturbative Vacuum

In this Section we shall illustrate the possible transition from the pre- to the post-big
bang regime as a process of parametric amplification of the WDW wave function, also
equivalent—as previously stressed—to a quantum process of pair production from the
vacuum. We shall consider, in particular, an example in which both the initial and final
configurations are expanding, like in the case (d) of Figure 1.

What we need, to this purpose, is a WDW equation with the appropriate dilaton
potential, able to produce an outgoing configuration which is a superposition of states
with positive and negative eigenvalues of the momentum Πβ (see Figure 1). Since we are
starting from an initial expanding (pre-big bang) regime, it follows that the contribution
of the potential has to break the traslational invariance of the effective Hamiltonian (22)
along the β axis (i.e., [Πβ, H] 6= 0), otherwise the final configuration described in case (d)
of Figure 1 would be forbidden by momentum conservation.

We shall work here with the simple two-loop dilaton potential already introduced
in [26], possibly induced by an effective cosmological constant Λ > 0, appropriately
suppressed in the low-energy, classical regime, and given explicitly by

V(β, φ) = Λ θ(−β) e2φ = Λ θ(−β) e2φ+2
√

dβ. (38)

The Heaviside step function θ has been inserted to mimic an efficient damping of the
potential outside the interaction region (in particular, in the large radius limit β→ +∞ of
the expanding post-bb configuration). The explicit form and mechanism of the damping,
however, is not at all a crucial ingredient of our discussion, and other, different forms of
damping would be equally appropriate.

With the given potential (38) the effective Hamiltonian is no longer translational
invariant along the β direction, but we still have [Πφ, H] = 0, so that we can conveniently
separate the variables in the WDW Equation (23) by factorizing the eigenstates (25) of the
canonical momentum Πφ, and we are lead to

Ψ(β, φ) = eikφψk(β),
[
∂2

β + k2 − λ2
s Λ θ(−β) e2

√
dβ
]
ψk(β) = 0. (39)

The above WDW equation can now be exactly solved by separately considering the two
ranges of the “temporal coordinate” β, namely β < 0 and β > 0.
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For β < 0 the contribution of the potential is non vanishing, and the general solu-
tion is a linear combination of Bessel functions Jµ(σ) and J−µ(σ), of index µ = ik/

√
d

and argument σ = iλs
√

Λ/d e
√

dβ. As before, we have to impose our initial boundary
conditions requiring that, in the limit β→ −∞, the solution may asymptotically represent
a low-energy pre-big bang configuration with Πβ = −Πφ = k, namely (according to
Equations (24) and (25)):

lim
β→−∞

Ψ(β, φ) ∼ ψ+
β ψ−

φ
∼ eikφ−ikβ. (40)

By using the small argument limit (32), and imposing the above condition, we can then
uniquely fix (modulo a normalization factor Nk) the solution of the WDW Equation (39),
for β < 0, as follows:

Ψk(β, φ) = eikφ Nk J−ik/
√

d

(
iλs
√

Λ/d e
√

dβ
)

, β < 0. (41)

In the complementary regime β > 0 the potential (38) is exactly vanishing, and the
general outgoing solution is a linear superposition of eigenstates of Πβ with positive and
negative eigenvalues, represented by the frequency modes ψ±β of Equations (24) and (25).
We can then write

Ψk(β, φ) = eikφ
[

A+(k)e−ikβ + A−(k)eikβ
]
, β > 0, (42)

and the numerical coefficients A±(k) can be fixed by the two matching conditions imposing
the continuity of Ψk and ∂βΨk at β = 0.

Let us now recall that the so-called Bogoliubov coefficients |c±(k)|2 = |A±(k)|2/|Nk|2,
determining the mixing of positive and negative energy modes in the asymptotic outgoing
solution [55,56], also play the role of destruction and creation operators in the context
of the third quantization formalism [50–54], thus controlling the “number of universes”
nk = |c−(k)|2 produced from the vacuum, for each mode k. It turns out, in particular,
that such a transition from the initial vacuum to the final standard regime, represented
as a quantum scattering of the initial wave function, is an efficient process only when the
final wave function is not damped but, on the contrary, turns out to be “parametrically
amplified” by the interaction with the effective potential barrier [48,49]. This is indeed
what happens for the solutions of our WDW Equation (39), provided the dilaton potential
satisfies the condition k < λs

√
Λ [26] (as can be checked by an explicit computation of our

coefficients A±(k)).
In order to illustrate this effect we have numerically integrated Equation (39),

with the boundary conditions (40), for d = 3 spatial dimensions. The results are
shown in Figure 2, where we have plotted the evolution in superspace of the real part of
the WDW wave function, for different values of k (the behavior of the imaginary part is
qualitatively similar). We have used units where λ2

s Λ = 1, so that the effective potential
barrier of Equation (39) is non-negligible only for very small (negative) values of β (the
grey shaded region of Figure 2). Also, we have imposed on all modes the same formal
normalization |Ψk|2 = 1 at β→ −∞, to emphasize that the amplification is more effective
at lower frequency.
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Figure 2. Evolution in superspace of the Wheeler–De Witt (WDW) solution which illustrates the
anti-tunnelling effect produced by the effective potential barrier (grey shaded region) due to the
dilaton potential (38). The wave function is not damped but parametrically amplified provided
k < λs

√
Λ, and the effect is larger for smaller k.

Concerning this last point, we can find an interesting (and reasonable) interpretation
of the condition k < λs

√
Λ by considering the realistic case of a transition process occurring

at the string scale, with β̇ ∼ λs, with coupling constant gs, and for a spatial region of proper
volume Ωs. In that case, by using the result (36) for the momentum k expressed in terms of
string-scale variables, we can write the condition of efficient parametric amplification in
the following form:

k ∼ g−2
s (Ωs/λd

s )<∼ λs
√

Λ. (43)

It implies that the birth of our present, expanding, post-big bang phase can be efficiently
described as a process of anti-tunnelling—or, in other words, as a forced production of
pairs of universes—from the string perturbative vacuum, in the following cases: initial
configurations of small enough volume in string units, and/or large enough coupling gs,
and/or large enough cosmological constant in string units. Quite similar conclusions were
obtained also in the case discussed in the previous section.

In view of the above results, we may conclude that, for an appropriate initial con-
figuration, and if triggered by the appropriate dilaton potential, the decay of the initial
string perturbative vacuum can efficiently proceed via parametric amplification of the
WDW wave function in superspace, and can be described as a forced production of pairs
of universes from the quantum fluctuations. One member of the pair disappears into the
pre-big bang singularity, the other bounces back towards the low-energy regime. The
resulting effect is a net flux of universes that may escape to infinity in the post-big bang
regime (as qualitatively illustrated in Figure 3), with a process which can describe the birth
of our Universe as “anti-tunnelling from the string perturbative vacuum”.
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Figure 3. Birth of the universe represented as an anti-tunneling (parametric amplification) effect of the
wave function in superspace, or – in the language of third quantization – as a process of pair production
from the string perturbative vacuum.
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6. Conclusions

The quantum cosmology scenarios reported in this review are based on the low-energy,
tree-level string effective action, which is physically appropriate to describe early enough
and late enough cosmological phases, approaching, respectively, the initial perturbative
vacuum and the present cosmological epoch.

Such an action cannot used to classically describe the high-curvature, strong coupling
regime without the inclusion of higher-order corrections. However, when at least some
of these corrections and of possible non-perturbative effects are accounted for by an
appropriate dilaton potential, the WDW equation obtained from the low-energy action
action permits a quantum analysis of the background evolution, and points out new
possible interesting ways for a Universe born from the string vacuum to reach more
standard configurations, and evolve towards the present cosmological regime. In such a
context, the possible (future) detection of a stochastic background of cosmic gravitons with
the typical imprints of the pre-big bang dynamics (see, e.g., [61]) might thus represent also
an “indirect” indication that some quantum cosmology mechanism has been effective to
trigger the transition to the cosmological state in which we are living.
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