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Abstract: We elevate the field theoretical similarities between Maxwell and Weyl vector fields into
a full local scale/gauge invariant Weyl/Maxwell mutual sourcing theory. In its preliminary form,
and exclusively in four dimensions, the associated Lagrangian is dynamical scalar field free, hosts no
fermion matter fields, and Holdom kinetic mixing is switched off. The mutual sourcing term is then
necessarily spacetime curvature (not just metric) dependent, and inevitably Ricci linear, suggesting
that a non-vanishing spacetime curvature can in principle induce an electromagnetic current. In its
mature form, however, the Weyl/Maxwell mutual sourcing idea serendipitously constitutes a novel
variant of the gravitational Weyl-Dirac (incorporating Brans-Dicke) theory. Counter intuitively,
and again exclusively in four dimensions, the optional quartic scalar potential gets consistently
replaced by a Higgs-like potential, such that the co-divergence of the Maxwell vector field resembles
a conformal vacuum expectation value.

Keywords: Weyl gravity; Weyl vector field; Maxwell vector field; scale invariance; U(1) gauge
invariance; Ricci curvature; Holdom kinetic mixing; dilaton; Higgs potential

Within the framework of Riemann geometry, with tensor fields serving as the fundamental objects,
ordinary derivatives are consistently replaced by covariant derivatives to assure diffeomorphism
invariance. Going one step further into the territory of Weyl geometry [1,2], the tensor fields are
traded for so-called co-tensor fields, and the covariant derivatives are generalized into co-covariant
(also known as starred ?) derivatives, respectively. Resembling a U(1) local gauge theory, the star
derivation procedure mandatorily introduces a new player into the game, the Weyl vector field aµ(x).
The prototype theory in this category is Weyl-Dirac gravity [3–5], a local scale symmetric generalization
of Brans-Dicke theory [6]. A counter example is provided by C2 conformal gravity [7,8] which, owing
to the Weyl tensor Cµ

νλσ being an in-tensor (co-tensor of weight zero), solely in 4-dimensions, does not
require the presence of aµ(x). Other theoretical directions include two scalar gravity-anti-gravity
theories [9–12], and Kaluza-Klein reduced higher dimensional local scale symmetric theories [13–15].
However, while treated on equal canonical footing in the Lagrangian formalism, Maxwell vector field
Aµ(x) and Weyl vector field aµ(x) play completely different roles in theoretical physics.

From the geometric point of view, the differences between these two vector fields sharpens.
While Aµ(x) constitutes an in-vector, aµ(x) does not constitute a co-vector at all. However, in spite of
their physical and geometrical differences, these two vector fields do share a similar transformation
law under their corresponding local symmetries. To be specific,

Aµ(x)→ Aµ(x)− ∂µΦ(x) , (1)

aµ(x)→ aµ(x)− ∂µ ϕ(x) , (2)

with Φ taking values on a circle whereas ϕ on the real line. In turn, both their kinetic terms, namely
Fµν and fµν respectively, transform alike as Weyl in-scalars, and a Holdom-style kinetic mixing [16]
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becomes then field theoretically permissible. In this essay, however, with or without invoking the
kinetic mixing term, we elevate the apparent field theoretical similarities between Maxwell and Weyl
vector fields into a full local scale/gauge invariant mutual sourcing theory. In line with Einstein-Hilbert
and especially with Weyl-Dirac actions, and solely in a 4-dimensional spacetime, we show that the
scale symmetric Weyl/Maxwell mutual source mixing is necessarily spacetime curvature dependent
(not just metric dependent), and inevitably Ricci linear. This way, a non-vanishing spacetime curvature
becomes an unconventional source of the electromagnetic current.

Let our starting point be the familiar 4-dimensional action involving a linear electromagnetic
coupling term

IEM =
∫ (
LG −

1
4

F2 − Jµ Aµ

)√
−g d4x , (3)

with Jµ serving as the external electromagnetic source current, and LG denoting the yet unspecified
gravitational part of the Lagrangian. To keep gauge invariance manifest already at the Lagrangian level,
one may invoke a Lagrange multiplier η, and simply replace Aµ by Aµ − η;µ, such that η → η + Φ.
It is only at the stage when gauge fixing becomes permissible, e.g., at the level of the equations of
motion, that one may set η = 0. As dictated by the self consistency of the associated Maxwell equations
Fµν

;ν = Jµ, and directly by the variation with respect to η, the theory maintains gauge invariance only
provided Jµ is locally conserved Jµ

;µ = 0. The action Equation (3) is furthermore local scale invariant if
LG is such, and if Jµ happens to be a co-covariant vector of power

[Jµ] = −2 ⇐⇒ [Jµ] = −4 , (4)

where in our Weyl-Dirac notations,

[gµν] = 2 , [gµν] = −2 =⇒ [
√−g] = 4 , (5)

[Aµ] = 0 , [Aµ] = −2 =⇒ [Fµν] = 0 . (6)

The last formula deserves some attention. Consider a co-covariant vector Vµ of power [Vµ] = n,
and recall that its covariant derivative Vµ;ν does not form a co-tensor. Alternatively, one invokes
a co-covariant starred derivative, and show that the corresponding co-tensor role is then taken by

Vµ?ν = Vµ;ν − (n− 1)aνVµ + aµVν − gµνaλVλ . (7)

In particular, notice the antisymmetric combination

Vµ?ν −Vν?µ = Vµ;ν −Vν;µ + n(aµVν − aνVµ) , (8)

telling us that antisymmetric Fµν = Aµ;ν − Aν;µ = Aµ?ν − Aν?µ is in fact an in-tensor simply because
Aµ is an in-vector (meaning n = 0) to start with. By the same token, if Uµ is a co-contravariant vector
of power [Uµ] = n, its star derivative is given by

Uµ
?ν = Uµ

;ν − (n + 1)aνUµ + aµUν − gµ
νaλUλ . (9)

In particular, its co-divergence is given by

Uµ
?µ = Uµ

;µ − (n + 4)aµUµ . (10)

It is only for the special case of n = −4, that we face the advantage of Jµ
?µ = Jµ

;µ.



Universe 2020, 6, 151 3 of 7

The fact that Aµ and aµ share similar transformation laws under their corresponding local
symmetries, and exhibit kinetic terms of the one and the same structure, may prematurely suggest,
in analogy with Equation (3), an action á la

∫ [
LG −

1
4

f 2 − jµaµ

]√
−g d4x . (11)

The trouble is that, while fµν = aµ;ν − aν;µ turns out to be a legitimate in-tensor, the Weyl
vector aµ itself does not transform like a co-vector at all. Unlike the Weyl vector which transforms
a la Equation (2), a power n co-vector gets scaled by a factor enϕ(x). This is to say that the action
Equation (11) is not invariant under arbitrary local scale transformations.

In search of a tenable coupling term to replace the problematic jµaµ, we first recall that co-covariant
starred derivatives are generically linear in aµ. For example, let S be a co-scalar of power n, then

S?µ = S;µ − naµS , (12)

with the bonus of having [S?µ] = n as well. Thus, a coupling term of the form

Lint = jµS?µ ∝ jµaµ + ... (13)

can certainly do, but only provided (i) n 6= 0 on self consistency grounds, and (ii) The source current jµ

must constitutes a co-vector of the exact power

[jµ] = −(n + 4) ⇒ [jµ] = −(n + 2) . (14)

Now, aiming towards Weyl/Maxwell mutual sourcing, one would like to identify jµ with Aµ.
This is our goal, but for this to be the case, recalling that [Aµ] = 0, we must first find a suitable
candidate for S, such that

[Aµ] = 0 =⇒ [S] = −2 . (15)

What are the options?
At this stage, fundamental scalar fields are yet to be introduced. In fact, the option of not

introducing fundamental scalar fields into the theory is exclusively viable in four spacetime dimensions.
So, in the absence of scalar fields, the answer to the above question must come from the geometry of
the underlying 4-dim curved spacetime. The simplest curvature scalar to think of is no doubt the Ricci
scalar R. However, unfortunately, R cannot enter the game as is, but must be traded for its R̃ scale
symmetric co-scalar variant. In 4-dimensions, it is given by

R̃ = R + 6aµ
;µ − 6aµaµ . (16)

Note that we prefer the notation R̃, instead of the original R? or ?R, leaving the star symbol solely
for denoting co-derivation. The crucial observation now is that [R̃] = −2, and the same is true for
its co-derivative

R̃?µ = R̃;µ + 2aµR̃ . (17)

In turn, the master requirement Equation (15) can now be satisfied by naturally choosing S = R̃.
It is straightforward to verify that other powers of R̃, as well as higher order curvature co-scalars,
such as R̃µνR̃µν and R̃µνλσR̃µνλσ, will not do.

We can now close the circle. Rather than assigning external non-dynamical source currents Jµ and
jµ, we let the Maxwell vector field Aµ and the Weyl vector field aµ source each other. The result is the
simplest dynamical scalar free local gauge/scale invariant Weyl/Maxwell mixing theory described by
the action

I = −
∫ [1

4
F2 +

1
4

f 2 +
1
2

eAµR̃?µ

]√
−g d4x , (18)
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where e is a universal dimensionless constant. Recall that, in analogy with the note following
Equation (3), Aµ is to be replaced by Aµ − η?µ = Aµ − η;µ, with [η] = 0, whenever is needed
(like here) to make gauge invariance manifest already at the Lagrangian level. It is crucial to notice that
AµR̃ happens to be a co-contravariant vector of the special power [AµR̃] = −4. Hence, by recalling
Equation (10) twice, we find

AµR̃?µ = −Aµ
?µR̃ + (AµR̃)?µ = −(Aµ

;µ − 2Aµaµ)R̃ + (AµR̃);µ . (19)

Up to a total divergence, and by no coincidence, also up to a total co-divergence, Equation (18)
can be now re-written in the attractive R̃-linear form

I0 = −
∫ [1

4
F2 +

1
4

f 2 − 1
2

eAµ
?µR̃

]√
−g d4x (20)

The Weyl/Maxwell mutual sourcing can take a more conventional form by introducing yet
a non-dynamical real scalar field φ (accompanied by a suitable Lagrange multiplier λ, such that
[λ] = −2) into the theory

I1 = −
∫ [1

4
F2 +

1
4

f 2 − φ2R̃ + λ

(
φ2 − 1

2
eAµ

?µ

)]√
−g d4x . (21)

However, for the scalar field to become dynamical, a supplementary in-scalar kinetic term is
mandatory, and following Dirac, the Brans-Dicke coefficient ω of such a term can be fully arbitrary,
not necessarily critical. This leads us to

I2 = −
∫ [1

4
F2 +

1
4

f 2 − φ2R̃ + ωgµνφ?µφ?ν + λ

(
φ2 − 1

2
eAµ

?µ

)]√
−g d4x , (22)

which, up to the λ-term, establishes contact with the Weyl-Dirac theory.
With such an observation in hand, the latest action needs not be the final word, as the Weyl-Dirac

theory is known to further allow for a quartic scalar potential. Consequently, we cannot resist replacing
the quadratic φ2-constraint by a quartic φ4 potential, and by consistently doing so, trading the auxiliary
co-scalar λ for a dimensionless constant coefficient Λ. The resulting theory reads

I3 = −
∫ [1

4
F2 +

1
4

f 2 − φ2R̃ + ωgµνφ?µφ?ν + Λ
(

φ2 − 1
2

eAµ
?µ

)2
]√
−g d4x (23)

with e = 0 signaling the exact Weyl-Dirac limit. In fact, and perhaps counter intuitively,

v2 ≡ 1
2

eAµ
?µ = e(

1
2

Aµ
;µ − aµ Aµ) (24)

highly resembles (and can be referred to as) a conformal vacuum expectation value. The former
constraint φ2 = 1

2 eAµ
?µ is now realized as the minimum (for Λ > 0) of a tenable Higgs potential.

We note here again that, in all evolving action versions I0,1,2,3, in order to make gauge invariance
manifest already at the Lagrangian level, one consistently replaces Aµ by Aµ − η?µ = Aµ − η;µ.
While the presence of the η is mandatory as long as the U(1) coupling is non-minimal, it can eventually
be integrated out by gauge fixing. The situation may look somewhat reminiscent of the Stueckelberg
action for a massive vector field, but recall that the present theory is a priori free of any mass scale.
As far as the physical interpretation of η is concerned, it should be clarified that it cannot be regarded
a new independent dynamical scalar field. The reason being that it is just the one and only combination
Aµ − η;µ which actually enters the Lagrangian.

We modestly aimed towards Weyl/Maxwell mutual sourcing, and have automatically been driven
into its unified Weyl/Dirac/Maxwell/Higgs embedding. Gravity just cannot stay out of the game.
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There may be however a price to pay. While the situation is apparently somewhat similar to the
Weyl-Dirac theory, the differential equations of motion are beyond second order (a counter example is
provided by the non-trivial local scale invariant extension of the 4-dim Gauss-Bonnet theory). If this is
the case, then the Ricci linear coupling may introduce ghosts and render the minimal theory sick.

It has not escaped our attention that, while sticking to 4-dimensions, one is always free to add
curvature quadratics terms, for example LG = R̃2 or LG = C2 without violating local scale invariance.
Another pretentious attempt would be to add Equation (20) to the standard Einstein-Hilbert LG = R,
which obviously does not respect Weyl scale symmetry. This would mean revising Einstein-Maxwell
into Einstein-Weyl/Maxwell theory, and modifying even the Reissner-Nordstrom solution accordingly.
Such generalizations are however beyond the scope (and even beyond the rationale) of the present
paper. On pedagogical and simplicity grounds, however, we hereby set LG = 0 and first study the
action Equation (20) on its own merits.

At any rate, here are some distinctive features of the simplest Weyl/Maxwell mutual sourcing
theory I0 prescribed by the action Equation (20):

• The highlight is, roughly speaking, the construction of the Maxwell conserved current Jµ from
spacetime curvature (involving aµ dependence). The variation with respect to Aµ is straight
forward, giving rise to the conformal conservation law(

Fµν − 1
2

egµνR̃
)

?ν

= 0 , (25)

where one can make use of the identity Fµν
?ν = Fµν

;ν . Self consistency (and gµν
?ν = 0) then dictates

the complementary co-scalar constraint

gµνR̃?µ?ν = 0 . (26)

Here again, owing to [R̃?µ] = −2, one can take advantage of gµνR̃?µ?ν = gµνR̃?µ;ν, and recall
Equation (16) to further probe the structure of the Maxwell current

Jµ = e(aµR̃ +
1
2

R̃;µ) . (27)

An important question is then which conformal metrics might admit a non-vanishing R.H.S.
of Equation (27), or even better: Which geometries will not do so? Apart from some special
cases, e.g., conformal Schwarzschild and Schwarzschild-deSitter metrics [7], the general answer is
still unknown. We emphasize that the conservation of the co-vector Jµ needs not be considered
an external constraint, but rather be a legitimate consistency condition which does not break local
scale invariance. This only requires though, as noted earlier, the replacement of Aµ by Aµ − η;µ

• By the same token, the variation with respect to aµ leads to the field equation

f µν
?ν = jµ . (28)

It takes some algebra though to establish the analogy with the Maxwell current, and verify that
the Weyl current is indeed proportional to Aµ, and is given explicitly by

jµ = e(AµR̃ + 3Aν
?ν?µ) . (29)
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• The co-divergence of the Maxwell vector field resembles a dilaton, with the formal definition
being the coefficient of R̃ in the Lagrangian Equation (20), namely

φ2 =
1
2

eAµ
?µ = e(

1
2

Aµ
;µ − aµ Aµ) . (30)

The fact that the roots of such a dilaton-like configuration are electromagnetic in origin is
a natural consequence of the Weyl/Maxwell mutual sourcing. It is only in the intermediate
stages, as expressed by the successive actions I1,2, that φ becomes an independent scalar dilaton
field on its own merits. Later on, as demonstrated by actions I3, in analogy with the Higgs
mechanism, Equation (30) represents the vacuum of the theory.

• Finally, imitating Holdom’s U(1) ⊗ U′(1) kinetic mixing, one may switch on the analogous
scale/gauge symmetric Weyl/Maxwell kinetic mixing [17]

Lε =
1
2

εgµλgνσFµν fλσ , (31)

parametrized by some dimensionless coefficient ε. No dramatic effects are expected as long
as minimally coupled charged scalar fields or fermion fields are not introduced. Once they do
enter the theory, reflecting the opposite transformation laws of Aµ → −Aµ versus aµ → +aµ,
the discrete CP symmetry gets explicitly violated.

To summarize, the general idea of Weyl/Maxwell mutual sourcing has been formulated on two
field theoretical levels. They are: (1) A preliminary theory, free of fundamental scalars and fermion
fields, and (2) A full Weyl-Dirac variant theory incorporating a genuine real dilaton scalar field.
The main message is that the Weyl/Maxwell mutual sourcing term is necessarily spacetime curvature
(not just metric) dependent and inevitably Ricci linear, thereby suggesting that a non-vanishing
spacetime curvature can in principle induce an electric current. A central (and quite a novel) role
is played in the theory by the co-divergence of the Maxwell vector field Aµ

?µ. In the basic version,
prescribed by the action I0 (see Equation (20)), serving as the coefficient of the Ricci curvature term,
it effectively resembles a dilaton field φ2 whose roots are thus counter intuitively electromagnetic in
origin. The idea elegantly and most naturally fits into the Weyl-Dirac (incorporating Brans-Dicke)
theory. Originally, the latter exclusively allows for the quartic potential term Λφ4, but in the
Weyl/Maxwell mutual sourcing extension, prescribed by the action I3, it is consistently traded for the
Higgs-like potential Λ(φ†φ− 1

2 eAµ
?µ)

2 without upsetting the local scale invariance. In other words, Aµ
?µ

serves as (to be referred to) a conformal vacuum expectation value. Bearing in mind that a spontaneous
local scale symmetry breaking mechanism is still very much at large, we can only hope that the
theory discussed may hopefully contribute (currently under extensive investigation) in this field
theoretical direction.
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