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Abstract: We propose an experimental setup to test the effect of curved spacetime upon the extraction
of entanglement from the quantum field vacuum to a pair of two-level systems. We consider
two superconducting qubits coupled to a dc-SQUID array embedded into an open microwave
transmission line, where an external bias can emulate a spacetime containing a traversable wormhole.
We find that the amount of vacuum entanglement that can be extracted by the qubits depends on the
wormhole parameters. At some distances qubits which would be in a separable state in flat spacetime
would become entangled due to the analogue wormhole background.
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1. Introduction

The vacuum of a quantum field is an entangled state [1,2]. Vacuum fluctuations exhibit correlations
between different space-time regions, even if they are spacelike separated. This fact underlies many
important predictions of Quantum Field Theory in general backgrounds, such as the Dynamical
Casimir Effect [3] and Unruh–Hawking radiation [4–9]. From a more applied viewpoint, it seems
natural to ask if these correlations can be exploited as a resource for Quantum Information tasks.
This question can be addressed by two alternative approaches. On the one hand, moving boundary
conditions can turn vacuum fluctuations into real particles via the dynamical Casimir effect, which has
recently been experimentally observed [10]. These particles are produced in quantum-correlated
pairs [11–15]. On the other hand, entanglement can in principle be swapped to qubits [16–19]
after an interaction with the field. Despite several proposals, the latter possibility has never been
confirmed experimentally.

In general, the scenario for extracting vacuum entanglement can be described as follows. At least
two qubits are prepared in an uncorrelated state and interact for a finite time with a quantum field
initially in the vacuum state. If t is the interaction time, r is the distance between the qubits, and v is the
propagation velocity of the field quanta, entanglement from the vacuum will be swapped to the qubits
if their state is entangled after t < r/v. For t > r/v, the qubits might exchange real photons, which
might act as an additional source of correlation. An obvious experimental challenge is to achieve the
desired interaction time, which requires control of the interaction on timescales that are typically out of
reach. However, recent developments in the analysis of quantum information in relativistic scenarios
show that the entanglement of relativistic quantum fields is sensitive to acceleration, gravity, and the
dynamics of spacetime [20]. It seems natural to ask if we can exploit these properties to relax the
experimental requirements necessary for extracting vacuum entanglement. Indeed, the extraction of
vacuum entanglement in curved spacetimes have been theoretically considered, for instance in [21–23].
However, for experiments it is necessary to adopt an analogue gravity viewpoint [24–28] and search
for experimental platforms where curved spacetimes can be simulated.

Circuit QED [29,30] can be a natural framework to address the interaction of two-level systems
with a quantum field. Superconducting qubits can be coupled to transmission lines, giving rise to
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an artificial one-dimensional matter-radiation interaction enjoying experimental accessibility and
tunability of physical parameters. Exploiting these advantages, fundamental quantum-field problems
typically considered as ideal can be accessible to experimental test. For instance, the ultrastrong
coupling regime [31–35] has already been leveraged in order to propose an experimental test of the
vacuum entanglement extraction to a pair of spacelike separated artificial atoms [18]. Moreover,
effective spacetime metrics can be implemented as well by means of suitable modulations of the
effective speed of light in the electromagnetic medium [36].

One important example of nontrivial curved background is the Ellis metric [37], representing an
spacetime which contains a traversable wormhole [38]. We do not have any experimental evidence of
the presence of traversable wormholes in the universe, although observational-based bounds have
been determined [39]. Indeed, the existence of traversable wormholes would entail a challenge to
the theoretical notion of causality [38,40–42]. This led Hawking to pose the “chronology protection
conjecture” [41], which is formulated within the semiclassical framework of quantum field theory in
curved spacetime. According to this conjecture, quantum effects would prevent the creation of closed
timelike curves in spacetimes such as Ellis, thus ruling out the possibility of time traveling to the
past. The conjecture could only be totally proved or disproved with a full theory of quantum gravity,
which remains elusive. From a strictly classical viewpoint, traversable wormholes would require
exotic energy sources, namely, these sources would violate the weak energy condition [40]. Moreover,
quantum constraints can be inferred in the form of “quantum inequalities” [43]. However, as unlikely
as the existence of traversable wormholes might be, it is not completely forbidden on theoretical
grounds. Furthermore, it has been suggested that phenomena typically attributed to black holes
might as well be produced by exotic objects such as Ellis wormholes. If wormholes existed, even the
origin of the detected gravitational waves could be questioned [44,45] together with the identity of the
objects in the center of the galaxies [46]. On the other hand, the existence of closed timelike curves
would have a significant impact on classical and quantum computing [47] and wormholes are at the
core of the “EPR-ER” conjecture [48]. For all these reasons there is renewed interest in the theoretical
characterization of these objects [49–51] and in their detection by gravitational lensing [52,53], and other
classical methods [54], or by quantum techniques [55,56]. Finally, classical [57–60] and quantum
simulators of Ellis and other wormhole spacetimes have been discussed in quantum setups such as
superconducting circuits [61], trapped ions [51], or Bose–Einstein condensates [62].

In this paper, we consider a setup of two superconducting qubits coupled to a dc-SQUID array
embedded into an open transmission line, with an external bias emulating the required traversable
wormhole metric [61]. We show that the vacuum entanglement that can be extracted by the two-level
systems depends upon the wormhole parameters. The features of this dependence are in turn sensitive
to the distance between the qubits. We find a regime of distance where the presence of the wormhole
entangles the artificial atoms, which would remain separable if the spacetime were flat.

2. Model and Results

A traversable 1-D section of a spacetime containing a massless traversable wormhole can be
describd by the following line element [40,61]:

ds2 = −c2 dt2 +
1

1− b(r)
r

dr2, (1)

where the shape function b(r) encodes the wormhole features and is a function of the radius r only.
The value b0 of r such that b (r = b0) = r = b0 determines the throat of the wormhole. The proper radial
position with respect to the throat is [40] l = ±

∫ r
b0

dr′(1− b(r′)/r′)−1/2, which defines two different
“universes” or branches in a single universe for l > 0 (r from ∞ to b0) and l < 0 (r from b0 to ∞).
Therefore, as r → ∞ there are two asymptotically flat spacetime regions l → ±∞, which are connected
only by the throat of a wormhole in l = 0 (r = b0).
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An example of interest is [37,38,49,50]:

b(r) =
b2

0
r

, (2)

which leads to l2(r) = r2 − b2
0.

It is shown in [61] that the equations of motion of a quantum field in the spacetime given by
Equation (1) is equivalent to the one in ds2 = −c2 (1 − b(r)

r ) dt2 + dr2, where we can also define

an r-dependent speed of propagation given by: c2(r) = c2 (1− b(r)
r ). Furthermore, this effective

speed of light can be mimicked for the electromagnetic flux field propagating in a dc-SQUID
array embedded in an open transmission line [63–66], with a particular profile of the external
field. In particular, in order to simulate the spacetime given by Equation (1) the profile must
be: φext(r) =

φ0
π arccos (1− b(r)

r ). The position x along the transmission line can be related to the
coordinate r via |x| = r− b0, x ∈ (−∞, ∞). Thus x = 0 at the throat r = b0 and has different signs
at both sides. Notice that l2 = |x|(|x|+ 2b0). Thus, we can rewrite the flux profile as a function of x:

φext(x) = φ0
π arccos (1− b2

0
(|x|+b0)2 ). It is shown in [61] that in the particular wormhole spacetimes given

by Equation (2) it is possible to achieve a simulated wormhole throat radius in the sub-mm range.
Now we assume that two superconducting qubits couple to the SQUID-embedded transmission

line described above. The qubit-line coupling strength can be abruptly switched on and off and
can reach the ultrastrong coupling regime. In flat spacetime, the extraction of entanglement from
the quantum vacuum to a pair of superconducting qubits was analyzed in [18]. The Hamiltonian,
H = H0 + HI , splits into a free part H0 for qubits and field H0 = 1

2 h̄Ω(σz
A + σz

B) + ∑k ω(k)a†
k ak and a

standard interaction among them HI ∝ ∑α=A,B σx
AV(χα). V is the quantum field, which is written in

terms of the creation and annihilation operators V(χ) ∝
∫

dk
√

Nωk

[
eikχak + H.c.

]
. Here χA and χB

would be the constant positions of the atoms in a coordinate system in which the spacetime metric
is flat. In the flat spacetime case of [18] those are the standard laboratory coordinates {t, x}. In the
effective curved spacetime that we are considering here they are {t, l}.

We consider the initial state |ψ(0)〉 = |eg〉 ⊗ |0〉, with qubit A in the excited state, while qubit B
is in its ground state and the field is in the vacuum state. The evolution in the interaction picture is
given by:

|ψ(t)〉 = T [e−i
∫ t

0 dt′HI(t′)/h̄]|eg〉 ⊗ |0〉, (3)

where T is the time ordering operator. We compute the corresponding two-qubit reduced density
matrix ρ12 after an interaction time t in second-order perurbation theory beyond the Rotating Wave
Approximation and tracing over the field [18]. The amount of entanglement of the X-state can be
computed by several means. We choose one of the most standard measures for two-qubit systems,

namely the concurrence, which is: C(ρ12) = 2
[
|X| −

(
∑k |A1,k|2 ∑k |B1,k|2

)1/2]
, where X stands for

the amplitude of photon exchange and ∑k |A1,k|2, ∑k |B1,k|2 for the probability of emission of a photon
by qubits 1 and 2, respectively. Using the techniques in [18] we compute these magnitudes as a
function of three dimensionless parameters, ξ, K1, and K2. The first one, ξ = c t/ρ, (ρ being the
constant distance between the qubits ρ = |χa − χb|) allows us to discriminate between two different
spacetime regions, namely, the qubits are effectively spacelike separated if ξ < 1 and timelike separated
otherwise. The remaining parameters are the dimensionless coupling strengths for qubits 1 and 2:
Km = (gm/Ωm)

2 . We will restrict our analysis to KmΩm t � 1 where our perturbative approach
remains valid. We assume that g1 = g2 = g and Ω1 = Ω2 = Ω, and thus K1 = K2 = K.

The results of [18] are directly valid to the coordinate system {t, l}, for which the metric is flat.
It is therefore necessary to transform the parameter ξ to the laboratory coordinates. For simplicity,
we assume that the qubit position are symmetric with respect to the throat:

xB = |xA| = −xA. (4)
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Then, by using the relation between x and l:

lB − lA = 2xB
√

1 + 2ξb, (5)

where we introduce a dimensionless parameter:

ξb =
b0

xB
, (6)

relating the throat size with the qubit distance in the laboratory coordinates ρx = 2xB.
Thus, from Equation (5) we get the relation between the qubit distance in free-falling and
laboratory coordinates:

ρl = ρx
√

1 + 2ξb. (7)

Moreover, while in the flat coordinate system the time that takes the light to travel between qubits
is merely (lB − lA)/c, in the laboratory this time will be given by:

tAB =
∫ xB

xA

dx
c(x)

=
lB − lA

c
− 2

b0

c
arcsinh(

1√
2ξB

) +

b0

c
log
(

1 +
1

ξB
(1 +

√
1 + 2ξB)

)
. (8)

Thus, the new parameter:

ξx =
t

tAB
(9)

will define the light cone in the laboratory system. If ξx < 1, light cannot travel between the qubits.
By means of Equation (8), we can relate ξx with the light cone parameter in free-falling coordinates:

ξl =
ct

lB − lA
. (10)

We get:

ξl = (11)
1

1
ξx

+ ξB
ξF

arcsinh( 1√
2ξB

)− ξB
2ξF

log
(

1 + 1
ξB
(1 +

√
1 + 2ξB)

) ,

where we introduce ξF, which would be the light cone parameter in flat spacetime:

ξF =
ct

2xB
. (12)

Note that in the absence of a wormhole (b0 = 0), from Equation (11) we get ξl = ξx = ξF,
as expected. Generally speaking, it is expected that the extraction of entanglement decay with the
distance mimicking the decay of vacuum correlations of the field. By inserting Equations (7) and (11)
in the flat-spacetime results, we show in Figure 1 the dependence of the entanglement dynamics on
the wormhole parameter b0. As expected, it is highly dependent on the qubit distance, since vacuum
correlations decay with distance. Indeed, we find three separate regimes. For ultrashort qubit distances
ρx � λ—where λ = 2πc/Ω would be the wavelength of the qubit transition in flat spacetime—there is
entanglement between qubits both inside and outside the light cone which seems to be independent of
the existence and size of a wormhole throat. As ρx is increased the dynamics of entanglement becomes
sensitive to the wormhole. First, the effect is detrimental: At distances at which there is entanglement
generation around the light cone in the absence of a wormhole—in agreement with the flat-spacetime
results [18]—entanglement vanishes quickly as εb increases. However, for larger distances ρx ' λ
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some entanglement is generated for timelike separated qubits only if εb 6= 0. Therefore, qubits which
would be in a separable state in flat spacetime would get entangled due to the existence of the curved
background. Since εx > 1, we cannot say that this is a pure transference of vacuum entanglement,
since there could have been photon exchange between the qubits. However, it is still interesting that
the effect is a consequence of the presence of an effective curved spacetime. The topological link
between the qubits provided by the wormhole enhances photon exchange, making it strong enough to
generate quantum correlations.

ρx = λ /12000 ρx = λ /8 ρx = λ

Figure 1. Concurrence vs. the light-cone parameter εx and the wormhole parameter εb for
three different qubit distances and K = 7.5 · 10−3. For the shortest distance (left), the effect of the
presence of the analogue wormhole is mostly irrelevant. For medium distances (middle), entanglement
appears in the flat-spacetime case and quickly vanishes as b0 grows (see the inset). For larger
distances (right), we find the opposite scenario: There is entanglement only in the presence of the
effective wormhole.

This entanglement generation between qubits due to an analogue curved spacetime is the main
result of this work. We believe that it is within reach of circuit QED technology. Superconducting
transmon qubits has been coupled to transmission lines formed by thousands of SQUIDS [67]. In [61]
we showed that it is possible to simulate wormholes with b0 in the sub-mm range by means of an
inhomogenuous external magnetic field bias. On the other hand, we need b0 to be slightly larger
than the wavelength λ, since b0/λ ' b0/ρx = b0/(2xb) = εb/2 and interesting effects show up for
εb ≥ 5. This means that λ in the sub-mm range is required. For qubits of Ω = 2π× 10 GHz this means
propagation speed velocities c for the field of around 106 m/s. These speeds has been experimentally
reported in SQUID arrays [68]. Another experimental challenge would be the preparation of a pure
initial quantum vacuum for the field. However, for realistic temperatures of 30 mK [69] the number
of thermal photons at 5 mK is as low as 3 · 10−4 so the effect of thermal noise should be negligible.
In order to test the effects of effective curved spacetime on the extraction of vacuum entanglement,
the experiment should be repeated with and without external bias (wormhole) and the comparison of
the results should follow our predictions. A fully detailed experimental description would lie beyond
the scope of the current theoretical work.

3. Conclusions

In summary, we proposed a setup of two superconducting qubits coupled to a SQUID array
transmission line to test the extraction of entanglement from the vacuum of a quantum field in curved
spacetime, in particular, the Ellis wormhole metric, simulated by means of a suitable external bias of
the SQUID array. It was found that different regimes in which, according to the distance between the
qubits, the presence of the Ellis wormhole could be irrelevant, detrimental to entanglement generation,
or beneficial. We think that the latter was the most interesting scenario. In particular, it was found
that when the distance between the qubits was similar to the wavelength of the qubit transition,
there was no entanglement extraction unless the wormhole throat was significantly larger than a
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certain value (εb ≥ 5). This means that a pair of qubits which would be separable in flat spacetime
would become entangled due to the effective curved background. We have shown that this would be
in principle observable with current circuit QED technology. Therefore, we found that the analysis of
analogue quantum simulators of quantum field theory in curved spacetime was not only interesting
from a theoretical viewpoint and has possible experimental applications as a valuable resource for
quantum technologies.
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