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Abstract: We study the cooling of isolated neutron stars with particular regard to the importance of
nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock
approach is used together with compatible neutron and proton pairing gaps. We then study the effect
of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent
description of all current cooling data can be achieved and a reasonable neutron star mass distribution
can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer
(BCS) gaps and no neutron 3P2 pairing.
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1. Introduction

A very important effect of nuclear superfluidity in a neutron star (NS) is the suppression of
standard neutrino cooling processes and the appearance of new ones, which then compete with each
other [1–4]. The superfluidity has therefore a decisive influence on the temperature evolution of an
isolated NS, and this can be compared with known observational data in order to deduce constraints
on the various pairing gaps and also on the nuclear equation of state (EOS). This article is dedicated to
this problem, and we will perform a detailed analysis of NS cooling with the above goal.

It is currently still not clear whether all NSs have a purely nucleonic substructure, that is, can be
considered to be built of individual neutrons and protons, or whether heavy NSs hide exotic baryons
like hyperons or even deconfined quark matter in their extremely dense interior. In this work we follow
the simple first assumption and consider purely nucleonic NSs. We model their internal structure by a
theoretical EOS that has been derived within the Brueckner-Hartree-Fock (BHF) many-body method,
fulfilling all current constraints imposed by observational data from nuclear structure, heavy-ion
collisions, NS global properties, and recently NS merger events [5–7]. Within this framework we then
investigate the cooling evolution of NSs, and in particular the effect of the proton 1S0 and the neutron
3P2 pairing gaps.

This investigation has been carried out in several previous publications [8–11], and we refine here
our analysis regarding the constraints on the pairing gaps deduced from comparison with cooling data.
In fact we have previously concluded that a good reproduction of all current cooling data is possible
by assuming the Bardeen-Cooper-Schrieffer (BCS) gap in the proton 1S0 channel, but not allowing
pairing in the neutron 3P2 channel. However, the BCS approximation disregards any medium effects
on the gaps, which are not supposed to be small in the dense NS matter. An accurate quantitative
theoretical computation of such effects is however still very difficult or impossible, and therefore we
investigate in this work empirically the effects of such modifications on the cooling evolution in order
to identify possible constraints that may be obtained in this way. In particular, we concentrate in this
article on the NS mass distribution that can be obtained by comparing theoretical cooling curves with
the currently available set of cooling data [12] (We do not yet utilize the very recent update of these
data [13] in this work), and which is therefore a functional of the pairing gaps.
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This paper is organized as follows. In Section 2 we give a brief overview of the theoretical
framework, namely the BHF formalism adopted for the nuclear EOS, the various cooling processes,
and the related nucleonic pairing gaps. Section 3 is devoted to the presentation and discussion of the
results for stellar structure, the cooling diagrams, and the derived mass distribution. Conclusions are
drawn in Section 4.

2. Formalism

2.1. Nuclear Equation of State

The nuclear EOS of the model is derived in the framework of the Brueckner-Bethe-Goldstone
theory, which is based on a linked-cluster expansion of the energy per nucleon of nuclear matter [14–16].
The basic ingredient in this many-body approach is the in-medium Brueckner reaction matrix G,
which is the solution of the Bethe-Goldstone equation (h̄ = c = 1)

G(E; ρ, x) = V + ∑
1,2

V
|12〉Q 〈12|
E− e1 − e2

G(E; ρ, x) , (1)

where V is the bare nucleon-nucleon (NN) interaction, E is the starting energy, and the multi-indices
1, 2 denote in general momentum, isospin, and spin. x = ρp/ρ is the proton fraction, and ρp and ρ are
the proton and the total baryon density, respectively. The propagation of intermediate baryon pairs is
determined by the Pauli operator Q and the single-particle (s.p.) energy

e1 = e(1; ρ, x) =
k2

1
2m1

+ U1 . (2)

The BHF approximation for the s.p. potential U using the continuous choice is

U1(ρ, x) = Re ∑
2<k(2)F

〈12|G(e1 + e2; ρ, x)|12〉a , (3)

where the matrix element is antisymmetrized. Due to the occurrence of U1 in Equation (2), the coupled
system of Equations (1)–(3) must be solved in a self-consistent manner for several Fermi momenta of
the particles involved. The corresponding BHF energy density is

ε = ∑
i=n,p

2 ∑
k<k(i)F

(
k2

2mi
+

1
2

Ui(k)
)

. (4)

It has been shown that the energy and the nuclear EOS can be calculated with good accuracy
in the Brueckner two-hole-line approximation with the continuous choice for the s.p. potential,
since the results in this scheme are quite close to the calculations which include also the three-hole-line
contribution [17–20]. In this scheme, the only input quantity needed is the bare NN interaction V
in the Bethe-Goldstone Equation (1). In the present work, we use the Argonne V18 potential [21] as
the two-nucleon interaction, supplemented by a consistent meson-exchange three-body force (TBF),
which allows to reproduce correctly the nuclear-matter saturation point [22–25] and other properties
of nuclear matter around saturation [26].

Further important ingredients in the cooling simulations are the neutron and proton effective
masses, which we actually used in our previous simulations presented in Reference [8]. In the BHF
approach, the effective masses can be expressed self-consistently in terms of the s.p. energy e(k) [27],

m∗(k)
m

=
k
m

[
de(k)

dk

]−1

. (5)
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As found in [8], their effect can be absorbed into a rescaling of the pairing gaps that we also
employ in this paper, and therefore we simply use the bare nucleon mass here. This is also convenient
for comparison with other works that use bare masses.

For completeness, we mention that the BHF method provides the EOS for homogeneous nuclear
matter, ρ > ρt ≈ 0.08 fm−3. For the low-density inhomogeneous crustal part we adopt the well-known
Negele-Vautherin EOS [28] for the inner crust in the medium-density regime (0.001 fm−3 < ρ < ρt),
and the ones by Baym-Pethick-Sutherland [29] and Feynman-Metropolis-Teller [30] for the outer crust
(ρ < 0.001 fm−3). The transition density ρt is adjusted to provide a smooth transition of pressure and
energy density between both branches of the betastable EOS [31]. The NS mass domain that we are
interested in, is hardly affected by the structure of this low-density transition region and the crustal
EOS: The choice of the crust model can influence the predictions of radius and related deformability to
a small extent, of the order of 1% for the value of a 1.4-solar-mass NS, R1.4 [31–33], which is negligible
for our purpose. Even neglecting the crust completely, NS radius and deformability do not change
dramatically [34].

In order to illustrate the bulk properties of the V18 EOS thus obtained, Figure 1 shows the
resulting NS mass-radius and mass-central density relations obtained in the standard way by
solving the TOV equations for betastable and charge-neutral matter. We remark that the value
of the maximum mass Mmax = 2.34 M� of the V18 EOS is larger than the current observational
lower limits [35–38]. Regarding the radius, we found in Reference [39,40] that for the V18 EOS
R1.4 = 12.33 km, which fulfils the constraints derived from the tidal deformability in the GW170817
merger event, R1.36 = 11.9± 1.4 km [6], see also similar compatible constraints on masses and radii
derived in References [41–47]. The V18 EOS is also compatible with estimates of the mass and
radius of the isolated pulsar PSR J0030+0451 observed recently by NICER, M = 1.44+0.15

−0.14 M� and
R = 13.02+1.24

−1.06 km [48], or M = 1.36+0.15
−0.16 M� and R = 12.71+1.14

−1.19 km [49]. The figure also shows the
density of the onset of direct Urca (DU) cooling, ρDU, and the one of the vanishing of the p1S0 BCS
gap, ρ1S0, to be introduced and discussed in the following, along with the pairing parameter sx.
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Figure 1. Neutron star gravitational mass vs central baryon density (left) and radius (right) for the V18
EOS. The density of the onset of DU cooling, ρDU, and the one of the vanishing of the p1S0 BCS gap,
ρ1S0, are indicated. The red-shaded region indicates blocking of the DU process. The effect on ρ1S0

of the pairing-range parameter sx, Equation (13), is also shown. Some experimental constraints from
NICER (blue area [48] or green area [49]) and GW170817 (red bar) [6] are included.
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2.2. Nuclear Cooling Processes

One of the main cooling regulators, besides the electromagnetic radiation from the surface, is the
neutrino emission from the NS core. For sufficiently hot NSs the latter is in fact the main ingredient of
the NS cooling theory [1,50–53]. Several different neutrino generation processes are possible inside
NSs, and their rates strongly depend on the NS EOS and composition and, very important, on the
superfluid properties of the stellar matter, that is, critical temperatures and gaps in the different pairing
channels. For instance, in a non-superfluid NS, the most powerful mechanism of neutrino emission is
the direct Urca (DU) process, which consists of a pair of charged weak-current reactions,

n→ p + l + ν̄l and p + l → n + νl , (6)

where l is a lepton, electron or muon, and νl is the corresponding neutrino. Those reactions are
allowed by energy and momentum conservation [54] only if k(n)F < k(p)

F + k(l)F , where k(i)F is the Fermi
momentum of the species i. This implies that the proton fraction should be sufficiently high for the
DU process to take place, and therefore the NS central density should be larger than some threshold
density. Thus different EOSs predict different DU threshold densities.

For some EOSs, DU processes are forbidden in all NSs up to the most massive ones, and then
other reactions come into play. In this case the basic neutrino emission mechanisms involve nucleon
collisions, the strongest one being the modified Urca (MU) process,

n + N → p + N + l+ ν̄l and p + N + l → n + N + νl , (7)

where N is a spectator nucleon that ensures momentum conservation. The nucleon-nucleon
bremsstrahlung (BS) reactions,

N + N → N + N + ν + ν̄ , (8)

with N a nucleon and ν, ν̄ an (anti)neutrino of any flavor, are also abundant in NS cores, and their rate
increases with the baryon density, but they are orders of magnitude less powerful than the DU ones,
thus producing a slow cooling [1].

For the V18 EOS used in this work, the DU process sets in at a proton fraction xp = 0.135
corresponding to a nucleon density ρDU = 0.37 fm−3 of beta-stable and charge-neutral matter, and an
associated NS mass MDU = 1.01 M�, as indicated in Figure 1. Therefore practically all NSs can
potentially cool very fast and slow cooling has to be achieved by superfluid suppression.

2.3. Pairing Gaps and Critical Temperatures

The neutrino cooling processes in NSs can be dramatically affected by the neutron and proton
superfluidity [1,4], and the knowledge of the pairing gaps ∆ in the 1S0 and 3PF2 channels in beta-stable
matter is essential for a correct description of the thermal evolution of a NS. These superfluids are
produced by the pp and nn Cooper pairs formation due to the attractive part of the NN potential, and
are characterized by a critical temperature Tc ≈ 0.567∆ for isotropic gaps. The occurrence of pairing
leads to two relevant effects in NS cooling, namely (i) a strong reduction when T < Tc of the emissivity
of the neutrino processes the paired component is involved in, with a corresponding reduction of the
specific heat of that component; (ii) onset of the “Cooper pair breaking and formation” (PBF) process
with associated neutrino-antineutrino pair emission. This process starts when the temperature reaches
Tc of a given type of baryons, becomes maximally efficient when T ≈ 0.8 Tc, and then is exponentially
suppressed for T � Tc [1]. As usual, we focus in this work on the most important proton 1S0 (p1S0)
and neutron 3PF2 (n3P2) pairing channels, while the n1S0 (crust only) gap is much less relevant for the
cooling [11], and the p3P2 gap is disregarded due to its uncertain properties at extreme densities.
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In the simplest BCS approximation, and detailing the more general case of pairing in the coupled
3PF2 channel, the pairing gaps are computed by solving the (angle-averaged) gap equation [55–60] for
the two-component L = 1, 3 gap function,(

∆1

∆3

)
(k) = − 1

π

∫ ∞

0
dk′k′2

1
E(k′)

(
V11 V13

V31 V33

)
(k, k′)

(
∆1

∆3

)
(k′) (9)

with
E(k)2 = [e(k)− µ]2 + ∆1(k)2 + ∆3(k)2 , (10)

while fixing the (neutron or proton) density,

ρ =
k3

F
3π2 = 2 ∑

k

1
2

[
1− e(k)− µ

E(k)

]
. (11)

Here e(k) = k2/2m is the s.p. energy, µ ≈ e(kF) is the chemical potential determined
self-consistently from Equations (9)–(11), and

VLL′(k, k′) =
∫ ∞

0
dr r2 jL′(k

′r)VTS
LL′(r) jL(kr) (12)

are the relevant potential matrix elements (T = 1 and S = 1; L, L′ = 1, 3 for the 3PF2 channel,
S = 0; L, L′ = 0 for the 1S0 channel) with the bare potential V = V18. The relation between

(angle-averaged) pairing gap at zero temperature ∆ ≡
√

∆2
1(kF) + ∆2

3(kF) obtained in this way and
the critical temperature of superfluidity is then Tc ≈ 0.567∆. (If no angle average is performed,
the prefactor varies slightly, see, for example, References [1,61], but the angle-average procedure is
usually an excellent approximation [56,62]).

However, in-medium effects might strongly modify these BCS results, as both the s.p. energy e(k)
and the interaction kernel V itself might include the effects of TBF and polarization corrections. It turns
out that in the p1S0 channel all these corrections lead to a suppression of both magnitude and density
domain of the BCS gap, see, for example, Figure 3 in Reference [63] and Figure 3 in Reference [64] in
the BHF context, or Figure 7 in Reference [4] and Figure 7 in Reference [65] for a collection of different
theoretical approaches, while for the n3P2 channel both TBF and polarization effects on V might be
attractive and change the value of the gaps even by orders of magnitude [66–68]. However, due to
the high-density nature of this pairing, all medium effects might be very strong and there is still no
reliable quantitative theoretical prediction for this gap.

We anticipate, however, that nonzero values of the n3P2 gap cannot reproduce the current
observational data in our cooling simulations, so that we exclude it ad-hoc from now on and concentrate
our study on the possible p1S0 gap function ∆(ρ). In this article we will not consider specific theoretical
models for the various medium effects, but we use in the cooling simulations the density dependence
of the 1S0 BCS pairing gap shown as solid black curve in Figure 2, modified by simple global scaling
factors sy and sx on either magnitude and extension of the gap, that is,

∆(ρ) ≡ sy∆BCS(ρ/sx) . (13)

The various trial gap functions are shown as colored curves in Figure 2 as a function of particle
(n or p) density with different scale factors sx = 0.4, 1.4(0.2) and sy = 0.2, 1.0(0.2) applied. The unscaled
gap (sx = sy = 1) vanishes at ρ ≈ 0.141 fm−3. As just noted, theoretical calculations point to a reduction
of both magnitude and density domain due to various in-medium effects for this type of pairing,
which the scaling procedure attempts to mimic in a general way. Thus scaling factors larger than one
appear very unrealistic. We include such choices only for the sake of a systematic investigation of their
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effect on the cooling. We now try to determine empirical optimal values of sx, sy by comparing the
theoretical results of our cooling simulations with the currently known cooling data.
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Figure 2. V18 BCS 1S0 pairing gap as a function of particle number density with different scale factors
sx and sy applied, see Equation (13).

2.4. Cooling Simulations

The NS cooling simulations are carried out using the widely known code NSCool [69], which solves
the general-relativistic equations of energy balance and energy transport,

1
4πr2e2Φ

√
1− 2Gm

r
∂

∂r
(e2ΦLr) = −Qν −

Cv

eΦ
∂T
∂t

, (14)

Lr

4πκr2 = −
√

1− 2Gm
r

e−Φ ∂

∂r
(TeΦ) , (15)

where Φ is the metric function, Qν, Cv, and κ are the neutrino emissivity, the specific heat capacity,
and the thermal conductivity, respectively. Local luminosity Lr and temperature T depend on radial
coordinate r and time t. In order to compute them, the code adopts an implicit scheme (Henyey scheme)
and solves the partial differential equations on a grid of spherical shells. The shell number is 1842
in this work. To facilitate the simulation, the star is divided artificially at a outer boundary with the
radius rb and density ρb = 1010 g/cm3. At ρ > ρb (r < rb), the matter is strongly degenerate and
thus the structure of the star is supposed to be unchanged with the time. The envelope (ρ < ρb)
includes the mass and composition change, for instance, due to the accretion, and is solved separately
in the code. Here, we use the envelope model obtained by Potekhin [70]. Each simulation starts
with a constant initial temperature profile, T̃ = TeΦ = 1010 K, and ends when T̃ drops to 104 K.
Regarding the most important ingredient – neutrino emissivity, this code comprises all relevant cooling
reactions: nucleonic DU, MU, PBF, and BS, including modifications due to p1S0 and n3P2 pairing.
Moreover, various processes in the crust are included, such as the most important electron-nucleus
bremsstrahlung, plasmon decay, electron-ion bremsstrahlung, and so forth.

3. Results

Due to the density-dependent proton fraction, the gap curves shown in Figure 2 correspond to
much wider domains of baryon density for the p1S0 gap in NS matter that are shown in Figure 3.
That figure also indicates the central densities for several NS masses (vertical lines) and the mass
ranges (shaded red regions) in which DU cooling is suppressed by the p1S0 gap. Varying the sx



Universe 2020, 6, 115 7 of 16

parameter thus allows to regulate the NS mass domain of DU blocking, as was also indicated in
Figure 1. For the BCS case, sx = sy = 1, the p1S0 gap disappears at ρ1S0 = 0.60 fm−3, corresponding to
M1S0 = 1.92 M�, whereas the values for other scale factors sx are listed in Table 1. From theoretical
investigations [4,63–65] values of sx > 1 seem unrealistic, but are nevertheless included in our
systematic analysis. For comparison also the unscaled n3P2 V18 BCS gap is shown in the figure.
It extends over the entire density (mass) range and therefore also would block DU cooling for all NSs.
However, the competing n3P2 PBF process provides too strong cooling for old objects, in disagreement
with some data, as will be seen later.

0

5

10

15
sx=0.6

 

1.
0M M

m
ax

2.
0M

C
ru

st

0.0

0.8

1.6

2.4

0

5

10

15

sx=0.8

 

C
ru

st

M
m

ax

1.
0M 2.
0M

0.0

0.8

1.6

2.4

0

5

10

15

sx=1.0

T
c  [10

9K]

C
ru

st

M
m

ax

2.
0M

1.
0M

0.0

0.8

1.6

2.4 
 [M

eV
]

0

5

10

15

sx=1.2

 

1.
0M

C
ru

st

M
m

ax

2.
0M

0.0

0.8

1.6

2.4

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

B [fm-3]

 

C
ru

st

sx=1.4 M
m

ax

2.
0M

1.
0M

0.0

0.8

1.6

2.4

0

5

10

15

20

 sy=1
 sy=0.8
 sy=0.6
 sy=0.4
 sy=0.2

sx=0.4

 

C
ru

st

M
m

ax

1.
0M

2.
0M

n3P20.0

0.8

1.6

2.4

Figure 3. V18 BCS p1S0 pairing gap in NS matter as a function of baryon density with different scale
factors sx and sy applied. The unscaled n3P2 gap is also shown for comparison in the top panel.
Vertical dotted lines indicate the central densities for different NS masses M/M� = 1.0, 1.1, 1.2, . . ..
The shaded red areas indicate the blocking of DU cooling.
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Table 1. NS matter baryon densities ρ1S0 for the vanishing of the p1S0 gap and corresponding NS
masses M1S0 with that central density, as a function of the scale parameter sx.

sx 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0

ρ1S0 [fm−3] 0.300 0.388 0.467 0.536 0.599 0.658 0.713 0.767 0.818 0.869 0.992 1.114
M1S0 [M�] 0.70 1.11 1.46 1.73 1.92 2.06 2.16 2.23 2.28 2.31 2.34 2.34

In Figure 4 we show the cooling diagrams, luminosity vs age, for several sets (sx, sy) of interest,
containing also the currently known data points with large (estimated) error bars, see Reference [12].
(We do not yet utilize the very recent update of these data [13] in this work.) Theoretical results
employing a Fe atmosphere (solid curves) and those with a light-elements atmosphere (dashed curves)
are compared. Starting with the absence of superfluidity (a), sx = sy = 0, that is, DU cooling active for
all NSs with M > 1.01 M�, one obtains clearly unrealistic results so that this scenario can be excluded.
Employing the original BCS values (b), sx = sy = 1, yields instead very reasonable results. In this case
only high-mass stars, M > 1.92 M�, cool very rapidly, whereas the cooling curves for lower masses
are smoothly distributed in the plot, and not in apparent disaccordance with the data points. Note that
in this case all known cooling objects can be explained, by assuming either a Fe or a light-elements
atmosphere in specific cases, even the very hot XMMU J1731-347, (log10 t ≈ 4.4, log10 L∞

γ ≈ 34.2),
which is indeed supposed to have a carbon atmosphere, as discussed in References [9,12,71,72].
The third set (c), sx = 0.8, sy = 0.6, is an optimal choice according to the mass-distribution analysis
presented in the following. The difference to the BCS case is not very significant and again all data can
be covered.
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Figure 4. Cooling diagrams for p1S0 gap scaling factors (sx, sy) = (0, 0); (1, 1); (0.8, 0.6) with
(lower row) and without (upper row) n3P2 pairing, for different NS masses M/M� = 1.0, 1.1, . . . , 2.3
(decreasing curves). The solid curves are obtained with a Fe atmosphere and the dashed curves cover
the same results obtained with a light-elements (η = 10−7) atmosphere. The data points are from
Reference [12]. See text for more details.
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While the Figure 4a–c employ only the p1S0 gap, the Figure 4d–f includes also the n3P2 BCS gap.
In this case, however, cooling is too fast due to the very efficient PBF process of this channel, see a
detailed discussion in Reference [11], and the luminosity of old (≈ 106yr) NSs cannot be reproduced.
This problem also persists when allowing sy < 1 scale factors for this channel [8,9]. The same
conclusions were drawn by References [12,13,71,73] and other authors.

We remark that the approach presented here is able to describe perfectly with the same
microphysics input not only the cooling of isolated NSs discussed here, but also the cooling of reheated
accreting NSs in X-ray transients in quiescence (XRTQ) [2,12,71], as shown in Reference [9]. We also
remind the possible strong constraints on NS cooling imposed by the speculated very rapid cooling
of the supernova remnant Cas A [74–77], which we have studied in detail in Reference [8]. As the
observational claims remain highly debated [78,79], we do not consider this scenario in this work.

The use of the V18 EOS together with the p1S0 BCS gap and no n3P2 pairing appears thus to be
consistent with the current set of cooling data. However, without information on the actual masses of
the various data points, it is currently impossible to perform a rigid check of the model by comparing
the theoretically predicted masses with the actual masses of the data points in the cooling diagram.
In the absence of this possibility we dedicate this work to another consistency check, namely the
theoretical derivation of the NS mass distribution of the currently available data points from their
position among the theoretical cooling curves for different masses. This mass distribution can then be
compared to mass distributions of NSs obtained in different, independent theoretical ways [80–85].

Of course the validity of this analysis rests on two essential assumptions:

(a) there is no bias on the masses (and thus luminosities) in the current data set of isolated NSs, that is,
bright and dim objects are supposed to be present with equal probability, thus the detection of
these sources is independent of their brightness;

(b) the mass distribution of isolated NSs in the cooling diagram is not different from the mass
distributions of NSs in binary systems [82–86] or all NSs in the Universe, which were addressed
in the other theoretical studies.

Both of these assumptions are highly unlikely to be fulfilled, but are currently impossible to
further scrutinize quantitatively. We therefore proceed with our derivation of the mass distribution of
the current data as outlined above. The masses of the 19 cooling data points are assumed to be those
predicted theoretically by their position in the cooling diagrams among the theoretical curves, see,
for example, Figure 4 (neglecting any error bars at this stage of investigation), and Figure 5 shows the
resulting mass histograms for different choices of the parameters sx, sy, and assuming either a common
Fe or a light-elements atmosphere for all data points. This is clearly unrealistic, and in fact in the first
case only 15 and in the second case only 11 [apart from 10 for (0.6,0.2) and 12 for (1.4,0.8) and (1.4,1.0)]
sources can be fitted, see Figure 4, while a fit of all data would require a suitable choice of atmosphere
for each object. One observes that increasing sx or to a lesser degree sy shifts the centroid of the derived
mass distribution to higher values, since the cooling curves like in Figure 4 shift upwards due to the
increased suppression of the DU process.

The different results in Figure 5 can now be compared with other theoretical studies of the NS
mass distribution. There is a long-lasting discussion whether this distribution is unimodal or bimodal
due to different classes of NS evolution histories [80–85], and in Figure 6 we show a compilation of
some recent theoretical studies for the NS mass distribution. We provide a binning consistent with
Figure 5 in order to compare directly with our results. For a quantitative comparison we simply
compute the rms deviations between the histograms in Figure 6 and those in Figure 5. The results are
given in Table 2 for the various combinations, where we also indicate the optimal values sx, sy for each
theoretical mass distribution and the two atmosphere models separately. Of course the use of a unique
atmosphere model for the whole data set is unrealistic, but currently impossible to overcome without
further constraints on the data.
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Figure 5. Deduced NS mass distributions for scaling factors (sx = 0.6, . . . , 1.4)⊗ (sy = 0.2, . . . , 1.0) and
with Fe (solid lines) or light-elements (shaded bars) atmosphere. N is the number of data points lying
in a given mass interval ∆M = 0.1 M� in the proper (sx, sy) cooling diagram. Several panels show
the best-fit theoretical results [82–85] of Figure 6 superimposed, using solid (dotted) lines for the Fe
(light-elements) results.

Nevertheless some qualitative conclusions can be drawn. Whereas for a Fe atmosphere a good
agreement with some unimodal distributions seems to require fairly large (and unphysical) values of
sx & 1 in order to shift the median to sufficiently large mass M̄ ≈ 1.5 M�, most other cases indicate
clearly preferred values of sx ≈ 0.8 and sy ≈ 0.6 . . . 0.8, which would also be more consistent with
microscopic investigations of the 1S0 pairing gap, as discussed before. The quality of agreement is
only slightly better for unimodal distributions, but for too large sx. For a light-elements atmosphere,
all theoretical models single out sx = 0.8 as preferred value, while sy is not well determined.
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The (sx, sy) configurations which fit best a given theoretical model, have that theoretical curve
superimposed in Figure 5, and four of the models (two unimodal, two bimodal) single out (0.8,0.6) as
‘best’ parameter set. Those values (0.8,0.6) were also used for some cooling diagrams shown in Figure 4.
We conclude that in nearly all cases the comparison between cooling diagrams and population models
indicates a reduction of the pairing range to sx ≈ 0.8 and also a reduction of the magnitude sy ≈ 0.6,
which is however less well determined and more model dependent. Both features are also supported
by theoretical predictions for the 1S0 gap. The current limitations of theoretical method and available
data do not allow to single out a preferred theoretical population model, though.

Table 2. Root-mean-square variances between deduced NS mass distributions with different p1S0 gap
scale factors sx, sy for Fe or light-elements atmospheres, shown in Figure 5, and different theoretical
models [82–85], shown in Figure 6. Preferred values are indicated in boldface.

Atmosphere Fe Light Elements

sy\sx 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4

Unimodal Antoniadis [83]

1.0 2.46 2.28 2.22 1.96 2.61 2.09 1.39 1.54 1.60 1.36
0.8 2.69 1.77 1.56 2.07 2.20 1.95 1.23 1.33 1.79 1.53
0.6 2.69 1.78 1.28 1.42 2.33 1.95 1.07 1.17 1.76 1.87
0.4 3.29 1.83 1.31 1.28 1.78 1.78 1.55 1.48 1.43 1.90
0.2 3.72 2.45 1.55 1.37 1.00 2.03 1.59 1.34 1.22 1.57

Unimodal Rocha [85]

1.0 1.92 1.99 1.94 1.57 2.03 1.64 1.23 1.26 1.17 1.38
0.8 2.12 1.54 1.43 1.69 1.68 1.50 1.08 1.10 1.36 1.23
0.6 2.11 1.49 1.22 1.65 1.85 1.48 0.86 1.43 1.35 1.42
0.4 2.63 1.45 1.22 1.14 1.41 1.54 1.29 1.27 1.06 1.41
0.2 3.00 1.90 1.20 1.20 0.90 1.18 1.34 1.13 0.95 1.19

Unimodal Zhang [82]

1.0 2.37 2.48 2.48 2.61 2.80 1.97 1.48 2.12 2.17 2.28
0.8 2.68 1.61 1.95 2.71 1.95 1.86 1.29 1.92 2.34 2.08
0.6 2.74 1.76 1.10 2.54 2.42 1.86 1.33 1.77 2.29 2.28
0.4 3.38 1.45 1.14 1.90 2.15 1.77 1.38 1.65 2.06 2.33
0.2 3.81 2.47 1.29 1.22 1.40 2.15 1.51 1.47 1.78 2.09

Bimodal Antoniadis [83]

1.0 3.22 1.92 3.15 2.56 3.00 3.32 2.55 2.68 2.52 2.15
0.8 3.43 1.09 2.54 2.72 2.62 3.18 2.23 2.49 2.75 2.36
0.6 3.40 1.30 2.24 2.19 2.83 3.18 1.87 2.39 2.61 2.69
0.4 3.95 1.99 1.72 2.29 2.43 3.00 1.84 2.70 2.49 2.83
0.2 4.37 3.17 1.76 1.90 1.58 3.24 2.05 2.55 2.37 2.45

Bimodal Rocha [85]

1.0 2.11 1.80 2.46 2.19 2.51 1.67 1.40 1.82 1.70 1.77
0.8 2.40 1.14 1.88 2.31 2.21 1.57 1.22 1.64 1.90 1.69
0.6 2.45 1.09 1.53 2.23 2.39 1.57 1.25 1.51 1.85 1.88
0.4 3.03 1.20 1.19 1.73 2.01 1.50 1.21 1.54 1.67 1.85
0.2 3.42 2.20 1.09 1.17 1.28 1.86 1.21 1.36 1.50 1.68

Bimodal Alsing [84]

1.0 3.49 2.66 3.91 3.11 3.47 2.76 2.64 2.84 2.52 2.21
0.8 3.89 1.53 3.21 3.32 3.07 2.66 2.37 2.61 2.76 2.41
0.6 3.94 1.20 2.81 2.74 3.34 2.66 2.08 2.50 2.62 2.64
0.4 4.62 1.69 2.29 2.87 2.89 2.66 2.14 2.80 2.56 2.72
0.2 5.12 3.58 1.86 2.13 2.19 3.16 1.68 2.58 2.46 2.46
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Figure 6. Theoretical NS mass distributions by several authors [82–85] (red curves) binned and
normalized in the same way as Figure 5 (black histograms).

4. Conclusions

In this model study we have investigated the important effect of neutron and proton pairing
gaps on NS cooling, which suppress the dominant DU process and open the competing PBF cooling
reactions. For the betastable matter and resulting NS structure we used a fixed microscopically-derived
BHF EOS that fulfils all current phenomenological constraints. This EOS features DU cooling for
practically all NSs, which has to be (partially) quenched by superfluidity.

However, neutron 3P2 pairing leads to too rapid cooling of old NSs by the PBF process in contrast
to several known objects and has to be excluded within this model, while proton 1S0 pairing together
with an adjustment of the NS atmosphere is able to provide a satisfactory description of all current
data. We then computed the derived NS mass distribution of the present set of data points from the
cooling diagrams as a functional of the proton 1S0 gap, by scaling both the magnitude and the density
domain of the BCS gap. In this way optimal scale factors (pointing to a reduction of both magnitude
and density domain) and a optimal gap function could be obtained by reproducing a given theoretical
mass distribution. The analysis yields a reasonable agreement with current theoretical bimodal mass
distributions, due to the fact that the dominant peak is located at lower mass than in the unimodal
distributions. However, unique atmosphere models for all sources had to be assumed in this setup.

Thus, at the current status of observational data from isolated NSs (few data points with large
errors, not providing essential information on the NS masses and atmospheres), as well as an equally
uncertain theoretical mass distribution of isolated NSs, this work can only be a ‘proof of concept’
study within our approach (following the works of [12,71,72]) that demonstrates the potential that
high-quality data would have to constrain the combination of nuclear bulk EOS and superfluid gaps
in the future. This would complement the constraints obtained from other sources (on masses, radii,
deformability, glitches, etc.) and ultimately allow the identification of the ‘unique’ NS EOS and
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superfluid properties of nuclear matter. With always more precise satellite observations, this goal
might be achievable in the future.
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