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Abstract: Relativistic tidal equations are formulated with respect to the rest frame of a central
gravitational source and their solutions are studied. The existence of certain relativistic critical tidal
currents are thereby elucidated. Specifically, observers that are spatially at rest in the exterior Kerr
spacetime are considered in detail; in effect, these fiducial observers define the rest frame of the Kerr
source. The general tidal equations for the free motion of test particles are worked out with respect to
the Kerr background. The analytic solutions of these equations are investigated and the existence of a
tidal acceleration mechanism is emphasized.
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1. Introduction

In general relativity (GR), a physically reasonable and geometrically natural method to interpret
the local motion of test particles relative to an observer in a gravitational field involves the introduction
of a Fermi normal coordinate system along the world line of the reference observer. Imagine a
congruence of timelike geodesics. The geodesics are neighboring, but their rates of separation may
not be negligibly small compared to the speed of light c. We establish a Fermi coordinate system,
Xµ̂ = (T, X, Y, Z), along the path of a reference geodesic in the congruence and consider the free motion
of neighboring particles relative to the fiducial observer that follows the reference geodesic and occupies
the spatial origin of the Fermi coordinate system. Limiting our attention to the two-dimensional (T, Z)
plane, the equation of relative motion takes the form [1]

d2Z
dT2 + k(T)(1− 2 Ż2) Z + O(Z2) = 0 , (1)

where the fiducial observer is fixed at Z = 0, Ż := dZ/dT and k(T) = RTZTZ is the Gaussian
curvature of the (T, Z) plane. Here, we use units such that c = G = 1, unless specified otherwise;
moreover, hatted indices refer to the Fermi coordinate system. The timelike nature of geodesic motion
requires that

1− Ż2 + k(T) Z2 + O(Z3) > 0 ; (2)

in particular, at the position of the fiducial observer (Z = 0), we must have |Ż| ≤ 1. Neglecting
higher-order terms, Equations (1) and (2) are invariant under Z 7→ −Z. When the speed of
separation of neighboring geodesics is negligible, we can ignore the velocity term in Equation (1)
and recover the Jacobi equation in the Fermi frame. On the other hand, neglecting O(Z2) terms,
the generalized Jacobi Equation (1) has exact solutions describing uniform motion in the Fermi system
with Ż = ±1/

√
2, namely,

Z±(T) = Z0 ±
1√
2
(T − T0) , (3)
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where Z0 and T0 are constants. That is, regardless of the magnitude of k(T), there is a critical tidal
current with speed Vcrt = c/

√
2 ≈ 0.71 c such that the corresponding relative motion in the Fermi

system is approximately uniform. In GR, a tidal current is relative motion induced by spacetime
curvature. The peculiar feature of solution (3) of Equation (1) is that these critical tidal currents are
independent of the spacetime curvature k(T). This particular relativistic feature of tides in general
relativity is the focus of the present paper.

If the speed of relative motion is below the critical speed, then the nature of relative motion
in Equation (1) is similar to the familiar Jacobi equation. However, for relativistic motion above the
critical speed, there is deceleration for k(T) < 0 toward the critical speed and acceleration for k(T) > 0.
Various aspects of this circumstance and its implications for astrophysical jets have been explored
in previous work [1–15]. For recent work on general relativistic tidal effects in other contexts, see,
for example, Refs. [16–22] and the references cited therein.

The purpose of the present paper is to illustrate further the nature of critical tidal currents
in general relativity. In contrast to previous work regarding certain tidal acceleration phenomena
involving energetic particles in astrophysics [1,5], we assume in this paper that the reference observer is
spatially static, so that the observer remains at rest in the background gravitational field. Such observers
in effect define the rest frame of the background gravitational source. Indeed, we extend here more
recent work regarding jets along the axis of a Kerr field [23]. In the cases considered in the present
paper, nongravitational forces are needed to keep the observer fixed in space; therefore, the reference
observer is generally accelerated. We further assume that the spatially static observer carries an
orthonormal tetrad frame that is Fermi-Walker transported along its world line. Using these locally
nonrotating basis vectors, we establish a Fermi coordinate system as described in detail in Appendix A.
To study the motion of free test particles relative to the fiducial observer, we express the timelike
geodesic equation in these Fermi coordinates. In this way, we can describe in an invariant way the local
motion of test particles relative to the rest frame of the gravitational source. The resulting generalized
Jacobi equation and the timelike condition are given by Equations (A14) and (A15) of Appendix A,
respectively. In this case, critical tidal currents are described in Section 2. The analytic solutions of
the tidal equations are explored in the exterior Kerr and Schwarzschild spacetimes in Sections 3 and 4
respectively. Section 5 contains a discussion of our results. Detailed calculations are relegated to
Appendices B and C.

2. Critical Tidal Currents

The tidal equations given in Appendix A are rather complicated. To illustrate a significant feature
of these equations involving critical tidal currents, let us imagine a Fermi system of coordinates
Xµ̂ = (T, X, Y, Z) and a circumstance where motion purely along a certain Fermi coordinate direction
becomes possible and the corresponding component of acceleration vanishes. Let us call this direction
again Z and note that Equations (A14) and (A15) reduce in this case to Equations (1) and (2),
respectively, where curvature k is now constant because the fiducial observer is at rest in space and
the gravitational field is assumed to be stationary as in the Kerr spacetime (see Appendices B and C).
Ignoring higher-order terms for the moment, we can write the autonomous tidal equation as

Ż
dŻ
dZ

+ k (1− 2 Ż2) Z = 0 , (4)

which can be simply integrated. The result is

Ż2 =
1
2
−
(

1
2
− Ż2

int

)
e2 k Z2

(5)

with the initial conditions that at T = 0, Z = 0 and Ż = Żint. Integrating Equation (5), we find
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∫ Z

0

[
1 +

(
2 Ż2

int − 1
)

e2 k ζ2
]−1/2

dζ = ±Vcrt T , (6)

where only positive square roots are taken into account throughout. Here, as before,
Vcrt = c/

√
2 ≈ 0.71 c is the critical speed of tidal currents; that is, for Ż2

int = V2
crt = 1/2, Equation (6)

implies Z = ±Vcrt T. Clearly, this uniform motion is rather approximate; in fact, higher-order
tidal terms introduce significant modifications near the boundary of the Fermi coordinate patch.
Furthermore, the Fermi coordinate speed must satisfy the timelike condition, namely, 1− Ż2 + k Z2 > 0
in accordance with Equation (2). For insight regarding tidal motions away from critical currents,
it proves useful to write Equation (5) as

Ż2 +

(
1
2
− Ż2

int

)
e2 k Z2

=
1
2

(7)

and interpret this relation as an effective energy equation for a classical particle with total energy
V2

crt = 1/2 and symmetric effective potential energy Veff, where

Veff = (V2
crt − Ż2

int) e2 k Z2
. (8)

The effective kinetic energy is always positive; therefore, tidal motion is confined to the region
where 1 ≥ 2Veff. Moreover, turning points occur where 1 = 2Veff. For k > 0, the absolute magnitude
of the effective potential diverges for Z → ±∞. If Ż2

int < V2
crt, the effective potential is then positive

and the resulting motion is periodic and confined within a finite spatial region with 0 < Ż2 ≤ Ż2
int;

moreover, the requirement of timelike motion, namely, 1− Ż2 + k Z2 > 0 is satisfied. However, for
V2

crt < Ż2
int < 1, the effective potential is negative and the motion accelerates until the timelike motion

asymptotically approaches a null ray, in which case 1− Ż2 + k Z2 = 0. This speed of light singularity
occurs at Z = ZN, where

1 + 2 k Z2
N =

(
2 Ż2

int − 1
)

e2 k Z2
N . (9)

The unique solution of this equation can be expressed by means of the Lambert W function.
This function in the real domain has two branches W0(x) and W−1(x). The principal branch, W0,
is such that W0(x) ≥ −1, while W−1(x) ≤ −1. We find

1 + 2 k Z2
N = −W−1(γ) , γ :=

1
e

(
1− 2 Ż2

int

)
, −1

e
< γ < 0 . (10)

In connection with tidal acceleration to the speed of light, we note that as the motion approaches
the boundary of the Fermi coordinate patch, the higher-order terms that we have thus far neglected
come into play and moderate the approach to the speed of light. This issue has been discussed in detail
in Refs. [7,11]. The mitigation of the speed of light singularity has been explicitly demonstrated using
exact Fermi coordinates in special cases; however, only approximate analytic treatments are possible in
the Schwarzschild and Kerr spacetimes [11,15].

Let us next assume that k < 0. In this case, the effective potential (8) exponentially goes to zero
as Z → ±∞. For Ż2

int < V2
crt, the motion accelerates toward Ż2 = V2

crt; similarly, for Ż2
int > V2

crt,
the motion decelerates toward Ż2 = V2

crt. This means that for k < 0, the critical solutions of the tidal
equation, Z = ±Vcrt T, are attractors. That is, tidal motions with speeds above or below the critical
speed eventually tend to approach the critical speed. Further discussion of this circumstance can be
found in Ref. [1].

We now turn to a detailed discussion of the analytic solutions of Equations (A14) and (A15) in the
Kerr and Schwarzschild spacetimes. Greek indices run from 0 to 3, while Latin indices run from 1 to 3.
The signature of the spacetime metric is +2.
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3. Exterior Kerr Spacetime: Observer at Rest on the Axis of Rotation

We are interested in the family of test observers that are spatially at rest on the axis of rotational
symmetry of the exterior Kerr spacetime. The Kerr metric is given in Boyer-Lindquist coordinates
(t, r, θ, φ) by [24]

−ds2 = −
(

1− 2 M r
Σ

)
dt2 − 4

M a r
Σ

sin2 θ dt dφ +
Σ
∆

dr2 + Σ dθ2

+

(
r2 + a2 +

2 M a2 r
Σ

sin2 θ

)
sin2 θ dφ2 . (11)

Here, M and a are the mass and specific angular momentum of the Kerr source, respectively.
Moreover, Σ = r2 + a2 cos2 θ and ∆ = r2− 2Mr + a2. The spacetime is asymptotically flat and reference
observers at rest in space exist from the asymptotic region all the way down to the exterior of the
stationary limit surface (Σ = 2 M r).

A fiducial observer that is at rest on the axis of symmetry carries a nonrotating orthonormal tetrad
frame λµ

α̂ such that

λ0̂ =

(
r2 + a2

∆

)1/2

∂t , λ1̂ =

(
∆

r2 + a2

)1/2
∂r (12)

and (λ2̂, λ3̂) are unit vectors in the plane orthogonal to the rotation axis. The rotational symmetry
of the Kerr field about its axis leads to enormous simplification of the general analysis presented in
Appendices B and C. Specifically, we have λµ

0̂ = ūµ = dx̄µ/dτ, which is the 4-velocity of the fiducial
observer and τ is its proper time. Moreover, the observer’s acceleration Dλµ

0̂/dτ = Aµ = Aî λµ
î is

given by

(A1̂, A2̂, A3̂) = (A, 0, 0) , A =
M(r2 − a2)

(r2 + a2)3/2 (r2 − 2Mr + a2)1/2 . (13)

We establish a Fermi normal coordinate system along the world line of the fiducial observer
(see Appendix A). The Fermi coordinates Xµ̂ = (T, X, Y, Z) in this case are such that X denotes
the radial coordinate along the Kerr symmetry axis, while (Y, Z) are the two orthogonal transverse
coordinates. In the tidal Equation (A14), the relevant acceleration parameters are then given by
Equation (13), while the gravitoelectric and the gravitomagnetic curvature components are given by
E = diag(−2E, E, E) andH = diag(−2H, H, H), where

E := E(θ = 0) =
Mr(r2 − 3a2)

(r2 + a2)3 , H := H(θ = 0) = −Ma(3r2 − a2)

(r2 + a2)3 ; (14)

see Appendix C.
After these preliminary considerations, we now turn to the tidal equations of motion (A14) to

linear order in (X, Y, Z), namely,

d2X
dT2 + (A− 2E X) (1− 2Ẋ2) + A2 X (1 + 2Ẋ2)

− 2
3 E [X(Ẏ2 + Ż2) + 2 Ẋ(YẎ + ZŻ)] + 2 H(1− Ẋ2)(Y Ż− Z Ẏ) = 0 ,

(15)

d2Y
dT2 + E Y (1− 2Ẏ2)− 2 [A− (A2 + 7

3 E) X] Ẋ Ẏ− 2
3 E [Y(Ẋ2 − 2 Ż2) + 5 Z Ẏ Ż]

+ 2 H [2 X Ż + Z Ẋ− Ẋ Ẏ(Y Ż− Z Ẏ)] = 0 ,
(16)

d2Z
dT2 + E Z (1− 2Ż2)− 2 [A− (A2 + 7

3 E) X] Ẋ Ż− 2
3 E [Z(Ẋ2 − 2 Ẏ2) + 5 Y Ẏ Ż]

− 2 H [2 X Ẏ + Y Ẋ + Ẋ Ż(Y Ż− Z Ẏ)] = 0 .
(17)
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To these equations we must add the condition that the tidal motion is timelike, namely,

(1 + A X)2 − (Ẋ2 + Ẏ2 + Ż2)− E (2 X2 −Y2 − Z2)

+ 1
3 E [2 (Y Ż− Z Ẏ)2 − (X Ż− Z Ẋ)2 − (X Ẏ−Y Ẋ)2] + 4 HX (Y Ż− Z Ẏ) > 0 .

(18)

The azimuthal symmetry of Kerr geometry is reflected in these approximate equations. That is,
keeping (X, Ẋ) unchanged at a given time T, one can show that the (Y, Z) system of equations is
invariant under a rotation by a constant angle about the axis of symmetry. Moreover, inspection of
the (Y, Z) system reveals that Y(T) = 0 and Z(T) = 0 are not separately possible solutions so long
as H 6= 0. We note from Equation (14) that H = 0 if either a = 0, so that the source is spherically
symmetric and described by the Schwarzschild spacetime, or r = a/

√
3. In the latter case, the observer

must be fixed on the rotation axis at r = a/
√

3, which is possible in the exterior Kerr spacetime
if 2 a >

√
3 M.

3.1. Motion Along the Rotation Axis of Kerr Spacetime

If Y(T) = Z(T) = 0, then our system reduces to

d2X
dT2 + (A− 2E X) (1− 2Ẋ2) + A2 X (1 + 2Ẋ2) = 0 (19)

and
(1 + A X)2 − Ẋ2 − 2 E X2 > 0 , (20)

which describe tidal motion along the Kerr rotation axis. In the absence of acceleration (A = 0),
Equation (19) reduces to Equation (1) for the case of constant k = −2 E < 0, where the critical currents
turn out to be attractors as discussed in Section 2. However, the presence of acceleration drastically
changes the dynamical behavior of the system. To see how this comes about in some detail, let us
define the Fermi velocity of a free test particle V,

V :=
dX
dT

= Ẋ (21)

and write Equation (19) in the form

dV2

dX
+ 4 [(2 E + A2) X− A]V2 + 2 [A− (2 E− A2) X] = 0 . (22)

It is evident that our (X, V) system has a rest point given by (Xrp, 0), where

Xrp =
A

2 E− A2 . (23)

As expected, for A = 0 we recover (X, V) = (0, 0), which is the rest point associated
with Equation (4).

It is straightforward to integrate Equation (22) by means of an integrating factor I ,

I(X) = exp [2 (2 E + A2) X2 − 4 A X] ,
dI
dX

= 4 [(2 E + A2) X− A] I . (24)

With the initial condition that at T = 0 a free test particle at X = 0 has Fermi coordinate velocity
V = V0, |V0| < 1, Equation (22) can be integrated once and we find the “energy” equation

I(X)V2 +Weff(X) = V2
0 , (25)

whereWeff(X) is the effective potential energy in this case given by
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Weff(X) = 2
∫ X

0
[A− (2 E− A2) ξ] I(ξ) dξ . (26)

The path of the free particle X(T) can be simply obtained from integrating Equation (25). To clarify
the nature of this motion, we note that I(X) > 0; hence, Equation (25) implies that the motion is
confined to the region

Weff(X) ≤ V2
0 . (27)

It follows from the definition of the effective potential (26) that this function vanishes at X = 0
and has an extremum at X = Xrp. To go further, we need to specify the physical parameters of the
configuration under discussion here.

3.2. r� M and r � a

In most astrophysical situations of interest, we deal with motions of energetic particles relative
to an environment that constitutes the rest frame of the gravitational source. Employing standard
techniques, motions are usually observable that take place at a distance r from the source such that
r � M and r � a. We therefore focus our attention on such situations and note that

A ≈ M
r2

(
1 +

M
r
− 3

a2

r2 + · · ·
)

, E ≈ M
r3

(
1− 6

a2

r2 + · · ·
)

, (28)

where we have neglected higher-order terms in the small quantities M/r and a2/r2. Similarly,
we can write

Xrp ≈
r
2

(
1 +

3
2

M
r
+ 3

a2

r2 + · · ·
)

. (29)

It follows from these results and inspection of the expression for the effective potential energy
function Weff(X) that we have a simple potential barrier here that starts from zero at X = 0 and
reaches its maximum value of ν2

crt at Xrp, where νcrt > 0 and

ν2
crt :=Weff(Xrp) = 2

∫ Xrp

0
[A− (2 E− A2) ξ] I(ξ) dξ . (30)

The energy Equation (25) implies that at the rest point (X, V) = (Xrp, 0), V2
0 = ν2

crt.
Introducing ξ = (r/2)µ in the integrand of Equation (30) and using only the dominant terms in

A and E, we find

ν2
crt ≈

M
r

∫ 1

0
(1− µ) e

M
r (µ2−2 µ) dµ . (31)

Therefore, to lowest order in the small quantities, we have

ν2
crt ≈

M
2 r

. (32)

With these results for the effective potential, we now return to the analysis of the energy
Equation (25).

3.3. Tidal Acceleration

Imagine a free test particle at the position of the fiducial observer (X = 0) with initial velocity
V0, 1 > V0 > 0, such that V2

0 < ν2
crt; that is, in Equation (25), V2

0 is less than the maximum
height of the potential barrier. In this case, the particle reaches a certain maximum distance Xmax,
0 < Xmax < Xrp, along the radial direction, has a turning point at V2

0 = Weff(Xmax) and falls back
toward the gravitational source. On the other hand, for V2

0 > ν2
crt, the particle tidally accelerates toward

the speed of light. Of course, near the boundary of the Fermi coordinate patch, higher-order tidal terms
intervene and mitigate the speed of light singularity, which would occur when V2 = (1+ AX)2− 2E X2
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in accordance with Equation (20). Nevertheless, considerable tidal acceleration is expected to take
place in practice. The implications of this result for the tidal acceleration of astrophysical jets have
been extensively studied in Ref. [23], where various possibilities have been thoroughly investigated.
Indeed, Equations (19) and (20) are invariant under the transformation (X, A, E) 7→ (−X,−A, E)
in conformity with the double jet structure of astrophysical outflows. The present mechanism for
the tidal acceleration of outflows is independent of the presence or absence of an event horizon.
As emphasized in Ref. [23], the comparison of these theoretical results with observational data must
include electromagnetic forces as well [25].

It is instructive to restate our main physical results here in Newtonian terms. The reference
observer is fixed on the rotation axis at the Boyer-Lindquist radial coordinate r sufficiently far from the
Kerr source such that r � M and r � a. The Newtonian escape velocity at the position of reference
observer is

Vesc :=
(

2 G M
r

)1/2
. (33)

It follows from Equation (32) that νcrt is approximately equal to one-half of the Newtonian escape
velocity; that is,

νcrt ≈
1
2

Vesc . (34)

Thus if a free test particle is launched outward from the position of the reference observer with
a velocity less than about one-half of the Newtonian escape velocity, then the test particle cannot
escape the gravitational field of the Kerr source; in fact, as expected, it reaches a maximum height and
then falls back toward the source. However, if the initial velocity is more than about one-half of the
Newtonian escape velocity, then the particle tidally accelerates away from the Kerr source.

Let us briefly digress here and mention that for purely radial motion in the exterior Schwarzschild
spacetime, the escape velocity for a free test particle starting at Schwarzschild radial coordinate r is
indeed given by Equation (33), where the escape speed of the particle is measured by the fiducial
observer that is fixed at r. On the other hand, our treatment in this section employs the invariantly
defined quasi-inertial Fermi normal coordinate system.

We have thus far considered motion along the axis of symmetry of a Kerr source. For a = 0,
the Kerr metric reduces to the spherically symmetric Schwarzschild metric, in which case our
treatment applies to motion along any radial direction. The corresponding expressions for A and E
simplify for a = 0 in Equations (13) and (14), respectively, but our main results remain unchanged.
Indeed, sufficiently far from any astronomical source, we expect that its gravitational field is dominated
by its mass M and the accelerated outflow can occur above the threshold (34) along any radial direction
away from mass M.

In our discussion of the solutions of the tidal equations, azimuthal symmetry of the exterior
Kerr spacetime has made it possible to do analytic work along the axis of rotational symmetry.
This treatment can be extended to any radial direction in the exterior Schwarzschild spacetime due
to its spherical symmetry. This symmetry, furthermore, makes it possible to go beyond the radial
direction X in the next section and consider the solutions of the tidal equations in the (X, Y) plane
with no loss in generality.

4. Exterior Schwarzschild Spacetime

In this section, we assume a = 0, so that the reference observer is at rest in the spherically
symmetric exterior of Schwarzschild spacetime. Following the discussion of the previous section, we can
now set Z(T) = 0 and consider motion in the (X, Y) plane. The equations of motion then reduce to

d2X
dT2 + (A− 2E X) (1− 2Ẋ2) + A2 X (1 + 2Ẋ2)

− 2
3 E Ẏ (X Ẏ + 2 Y Ẋ) = 0 (35)
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and

d2Y
dT2 + E Y (1− 2

3 Ẋ2 − 2 Ẏ2)

− 2 [A− (A2 + 7
3 E) X] Ẋ Ẏ = 0 , (36)

while the timelike condition reduces to

(1 + A X)2 − (Ẋ2 + Ẏ2)− E (2 X2 −Y2)

− 1
3 E (X Ẏ−Y Ẋ)2 > 0 . (37)

Inspection of Equations (35) and (36) reveals that an analytic solution of this system is possible
and is given by a rest point (X, Ẋ) = (XS, 0) along the radial direction and a critical current along the
transverse direction. That is,

XS =
3 A

7 E− 3A2 = 3
[r3(r− 2M)]1/2

7 r− 17 M
r 6= 17M/7 (38)

for r 6= 13M/5 and
Y = Y0 ±Vcrt (T − T0) , (39)

where Y0 and T0 are constants. For r � M, we have

XS =
3
7

r
(

1 +
10
7

M
r
+ · · ·

)
, (40)

and the timelike condition (37) is satisfied in this case. This exact solution of the (X, Y) system means
that the Fermi coordinate along the radial direction X remains constant while a critical tidal current Y
flows in the transverse direction.

It has not been possible to find other exact solutions of the (X, Y) system. To proceed further,
we perturb the (X, Y) system to linear order about the exact solution given in Equations (38) and (39)
and then solve the resulting linear perturbation equations via expansions in power series. Let us define
a new temporal variable η,

η := Y0 ±Vcrt (T − T0) (41)

and substitute
X(η) = XS + ε P(η) , Y(η) = η + ε Q(η) , (42)

in Equations (35) and (36). Here ε , 0 < ε� 1 is a constant perturbation parameter. To first order in ε,
we find

d2P
dη2 −

4
3 Eη

dP
dη
− 2 A

XS
P− 4

3 EXS
dQ
dη

= 0 , (43)

d2Q
dη2 − 4Eη

dQ
dη

+ 4A2XS
dP
dη

= 0 . (44)

Substituting Equation (43) and its derivative in Equation (44), we find the third-order
homogeneous ordinary differential equation

d3P
dη3 − w1η

d2P
dη2 + (w2 η2 − w3)

dP
dη

+ w4 η P = 0 , (45)

where w1, w2, w3 and w4 are constant coefficients that are given by

w1 =
16
3

E , w2 =
16
3

E2 , w3 = 2 E
[

3r− 7M
r− 2M

− 24
M2

(7r− 17M)2

]
(46)
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and

w4 =
8
3

E2
(

7r− 17M
r− 2M

)
, E =

M
r3 . (47)

The solutions of Equation (45) form a linear manifold. Indeed, the general solution of this
homogeneous linear differential equation can be expressed as a linear sum with constant coefficients
of three independent solutions [26]. To find explicit solutions of Equation (45), we resort to infinite
series in powers of η. As in the method of Frobenius, we assume

P(η) = ηρ (a0 + a1 η + a2 η2 + a3 η3 + · · · ) , (48)

where an, n = 0, 1, 2, · · · , are constants and a0 6= 0 by definition. Substitution of this series in
Equation (45) results in an infinite series in increasing powers of η starting with ηρ−3. As in the
standard procedure, we recover the relations

ρ (ρ− 1) (ρ− 2) a0 = 0 , (49)

ρ (ρ2 − 1) a1 = 0 , (50)

ρ (ρ + 1) (ρ + 2) a2 = ρ [(ρ− 1)w1 + w3] a0 , (51)

(ρ + 1) (ρ + 2) (ρ + 3) a3 = (ρ + 1) (ρ w1 + w3) a1 (52)

and the recurrence relation

(n + ρ + 2) (n + ρ + 3) (n + ρ + 4) an+4 =

(n + ρ + 2) [(n + ρ + 1)w1 + w3] an+2 − [(n + ρ)w2 + w4] an (53)

for n = 0, 1, 2, · · · .
It follows from Equation (49) that ρ = 0, 1 or 2, since a0 6= 0. In each case, we can find power

series solutions for P(η) that can be expressed as superpositions of solutions S0, S1 and S2 defined by

S0(η) := 1− w4

4!
η4 − (3 w1 + w3)w4

6!
η6 + · · · , (54)

S1(η) := η +
1
3!

w3 η3 +
1
5!

w5 η5 + · · · (55)

and
1
2
S2(η) :=

1
2!

η2 +
1
4!

(w1 + w3) η4 +
1
6!

w6 η6 + · · · , (56)

where w5 and w6 are constants defined by

w5 := 2 w1 w3 − 2 w2 + w2
3 − 2 w4 (57)

and
w6 := (3 w1 + w3)(w1 + w3)− 3(2 w2 + w4) . (58)

For ρ = 0, it turns out that P(η) can be written as a linear superposition of the three independent
solutions S0, S1 and S2 with constant coefficients a0, a1 and a2, respectively. On the other hand,
for ρ = 1, P(η) is a linear superposition of S1 and S2 with constant coefficients a0 and a1, respectively,
while for ρ = 2, P(η) is simply proportional to S2 with proportionality constant equal to a0. Given a
solution P(η) of Equation (45), we can use Equation (43) to find a corresponding solution for Q(η).
To illustrate the general case, we assume

P(η) = a0 S0(η) + a1 S1(η) + a2 S2(η) , (59)
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corresponding to ρ = 0. From Equation (43), we can work out the infinite series solution corresponding
to Q(η), namely,

Q(η) = Q0 +
a0

q1

( w4

8 E

) (
η +

2
3

E η3 + · · ·
)

− a1

q1

(
1
2!

q2 η2 +
1
4!

q4 η4 + · · ·
)
− a2

q1

(
η +

1
3!

q3 η3 + · · ·
)

, (60)

where Q0 is an integration constant and

q1 = −2 E
[r3(r− 2M)]1/2

7 r− 17 M
, q2 =

1
2

w3 − E
(

3r− 7M
r− 2M

)
= −24 E

M2

(7r− 17M)2 , (61)

q3 = w1 + w3 −
2
3

E
(

11r− 25M
r− 2M

)
, q4 =

1
2

w5 −
1
3

w3 E
(

13r− 29M
r− 2M

)
. (62)

Using expressions (59) and (60) for P(η) and Q(η), respectively, in Equation (42), we have in the
neighborhood of the critical solution an approximate power series solution of the tidal equations in the
(X, Y) plane that depends on four independent parameters, namely, ε a0, ε a1, ε a2 and ε Q0. We note
that a general solution in terms of the temporal parameter η is expected to depend on four independent
parameters corresponding to the initial position and velocity in the (X, Y) plane. The issue of the
convergence of such power series solutions as well as their physical interpretations requires further
investigation that is beyond the scope of this work.

5. Discussion

In GR, the generalized Jacobi equation is the exact analogue of the Lorentz force law of
electrodynamics. Just as the electric and magnetic fields can be measured via the motion of charged
particles using the Lorentz force law, the components of the Riemann curvature tensor can be measured,
in principle, using the generalized Jacobi equation [20]. This equation contains a critical speed
Vcrt = c/

√
2 ≈ 0.71 c and the associated critical currents that are explored in the present paper.

In particular, we have studied the generalized Jacobi equation for the motion of free test particles
with respect to the rest frame of a central Kerr source. Among other things, we have elucidated a
general relativistic tidal acceleration mechanism that is relevant for the theory of astrophysical jets [23].
Moreover, the approach adopted in this work can be employed to determine the gravitational influence
of the quiescent massive black hole at the Galactic Center on the dynamics of the energetic particles
involved in the production of giant bipolar radio bubbles near the Galactic Center [27].

Funding: This research received no external funding.

Acknowledgments: I wish to thank C. Chicone and D. Bini for their past collaborations on the subject of the
present paper.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Jacobi-Type Equation in Fermi Coordinates

The purpose of this appendix is to consider a gravitational field and the associated curved
spacetime manifold within the GR framework. An arbitrary test accelerated observer in this spacetime
carries along its path a nonrotating orthonormal tetrad frame. We establish a Fermi normal coordinate
system along the world line of this reference observer and investigate the motion of free test particles
in the Fermi system. We derive and study the resulting Jacobi-type equation.

Appendix A.1. Fermi Coordinates

We imagine an accelerated test observer with proper time τ following a timelike path x̄µ(τ) in
spacetime. The reference observer carries an orthonormal Fermi-Walker transported tetrad frame
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λµ
α̂(τ) along its world line. Here, λµ

0̂(τ) = dx̄µ(τ)/dτ = ūµ(τ) is the unit 4-velocity vector of
the observer, Dūµ(τ)/dτ = Aµ is its acceleration and λµ

î(τ), i = 1, 2, 3, constitute the local spatial
frame of the observer. At any given event τ along this path, we consider all spacelike geodesics that
originate from this event and are orthogonal to the observer’s world line. These form a local spacelike
hypersurface. Let xµ be an event on this hypersurface such that there is a unique spacelike geodesic of
proper length σ that connects xµ to the observer’s world line at x̄µ(τ). If ξµ(τ) is the unit spacelike
vector tangent to this geodesic at event τ along the world line, then ξµ(τ) ūµ(τ) = 0. We assign Fermi
normal coordinates Xµ̂ = (T, X î) to event xµ, where

X0̂ = T := τ , X î := σ ξµ(τ) λµ
î(τ) . (A1)

The fiducial observer has X î = 0 and is thus permanently fixed at the spatial origin of the Fermi
coordinate system. Let us note that for i = 1, 2, 3, ξµ(τ) λµ

î(τ) constitute the direction cosines at proper
time τ; therefore, Fermi coordinates are the natural extension of the inertial Cartesian coordinates
to the curved spacetime of GR [28]. Fermi coordinates are admissible in a finite cylindrical domain
about the world line of the fiducial observer with |X| � L(T), where L(T) is a certain infimum of the
observer’s acceleration length and the radius of curvature of spacetime. The spacetime metric in Fermi
coordinates is given by −ds2 = gµ̂ν̂ dXµ̂ dXν̂, where [29]

g0̂0̂ = −1− 2Aî X î − (Aî A ĵ + R0̂î0̂ ĵ) X î X ĵ + O(|X|3) , (A2)

g0̂î = −
2
3

R0̂ ĵîk̂ X ĵ Xk̂ + O(|X|3) , (A3)

gî ĵ = δî ĵ −
1
3

Rîk̂ ĵl̂ Xk̂ X l̂ + O(|X|3) . (A4)

Here, we have defined
Aî(T) := Aµ λµ

î (A5)

and
Rα̂β̂γ̂δ̂(T) := Rµνρσ λµ

α̂ λν
β̂ λρ

γ̂ λσ
δ̂ (A6)

to be the components of the acceleration and the Riemann curvature tensor as measured by the
reference observer, respectively.

The Christoffel symbols in Fermi coordinates can be computed from the metric; indeed,
the nonzero components to linear order in |X| can be obtained from [29]

Γ0̂
0̂0̂ =

dAî
d T

X î , Γ0̂
0̂î = Aî + (R0̂î0̂ ĵ − Aî A ĵ) X ĵ , (A7)

Γ0̂
î ĵ =

2
3

R0̂(î ĵ)k̂ Xk̂ , Γî
0̂0̂ = Aî + (R0̂î0̂ ĵ + Aî A ĵ) X ĵ , (A8)

Γî
0̂ ĵ = −R0̂k̂î ĵ Xk̂ , Γî

ĵk̂ = −
2
3

Rî( ĵk̂)l̂ X l̂ . (A9)

Appendix A.2. Jacobi-Type Equation

The geodesic equation of motion in Fermi coordinates takes the form

dUµ̂

ds
+ Γµ̂

α̂β̂
Uα̂ U β̂ = 0 , (A10)
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where the 4-velocity of the free test particle in the Fermi system can be written as

Uµ̂ =
dXµ̂

ds
= Γ(1, V) , V =

dX
dT

(A11)

and the Lorentz factor Γ = dT/ds can be determined via Uµ̂ Uµ̂ = −1. We find

1
Γ2 = −g0̂0̂ − 2 g0̂î V î − gî ĵ V î V ĵ > 0 . (A12)

Here, the Fermi velocity V is a coordinate velocity; however, at the location of the reference observer
X = 0, we must have |V| < 1.

It is now straightforward to derive the reduced geodesic equation [1]

d2X î

dT2 +
(

Γî
α̂β̂
− Γ0̂

α̂β̂
V î
) dXα̂

dT
dX β̂

dT
= 0 , (A13)

or, more explicitly,

d2X î

dT2 + Aî + (R0̂î0̂l̂ + Aî Al̂)X l̂ −
dAl̂
dT

X l̂V î

− 2 R0̂l̂ î ĵV
ĵX l̂ − 2 [A ĵ + (R0̂ ĵ0̂l̂ − A ĵ Al̂) X l̂ ]V îV ĵ

− 2
3

(
Rî ĵk̂l̂ + R0̂ ĵk̂l̂V

î
)

X l̂V ĵV k̂ + O(|X|2) = 0 . (A14)

The Lorentz Γ factor now takes the form

1
Γ2 = (1 + Aî X î)2 − δî ĵ V î V ĵ + R0̂î0̂ ĵ X î X ĵ (A15)

+
4
3

R0̂ ĵîk̂V îX ĵ Xk̂ +
1
3

Rîk̂ ĵl̂ V î V ĵ Xk̂ X l̂ + O(|X|3) > 0 .

It is clear from this treatment that simple generalizations are possible; for instance, we can consider
accelerated motion of test particles in the Fermi coordinate system as well.

Appendix B. Observers at Rest in Exterior Kerr Spacetime

We are interested in the family of test observers that are spatially at rest in the exterior Kerr
spacetime. In our considerations, these fiducial observers represent the rest frame of the Kerr source,
which is specified by a mass M that rotates uniformly with angular momentum J. In Boyer-Lindquist
coordinates (t, r, θ, φ), the Kerr metric can be expressed as [24]

−ds2 = gαβ dxαdxβ

= −dt2 +
Σ
∆

dr2 + Σ dθ2 + (r2 + a2) sin2 θ dφ2 (A16)

+
2Mr

Σ
(dt− a sin2 θ dφ)2 ,

where a = J/(Mc) is the specific angular momentum parameter and

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 . (A17)

We emphasize that the tidal currents under scrutiny in this work are independent of the existence
of an event horizon. For a ≤ M, for instance, the source is a Kerr black hole, but this circumstance has
no essential impact on the existence of the critical tidal currents in this case.
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Let ūµ = dx̄µ/dτ be the unit timelike 4-velocity vector of a member of the family of observers at
rest, where τ is the proper time along the world line. We therefore have

ū =

(
Σ

Σ− 2 M r

)1/2
∂t , τ =

(
Σ− 2 M r

Σ

)1/2
t , (A18)

where we have assumed that τ = 0 at t = 0. Only positive square roots are considered throughout.
The reference observers exist outside the stationary limit surface of Kerr spacetime given by Σ− 2 M r = 0.
Next, we need to set up a nonrotating tetrad frame λµ

α̂(τ) along the world line of our reference observer
such that λµ

0̂(τ) = ūµ(τ). We do this in several steps. First, we set up an orthonormal tetrad frame
eµ

α̂ at each event in the exterior Kerr spaetime such that

e0̂ =
1√−gtt

∂t , e1̂ =
1
√

grr
∂r , e2̂ =

1
√

gθθ
∂θ , e3̂ =

1(
gφφ −

g2
tφ

gtt

)1/2

(
−

gtφ

gtt
∂t + ∂φ

)
, (A19)

where the tetrad axes are primarily along the Boyer-Lindquist coordinate directions. From

−
gtφ

gtt
= −2

Mar
Σ− 2Mr

sin2 θ ,

(
gφφ −

g2
tφ

gtt

)1/2

=

(
Σ∆

Σ− 2Mr

)1/2
sin θ ,

√
−g = Σ sin θ , (A20)

we find
e0̂ =

(
Σ

Σ−2 M r

)1/2
∂t , e1̂ =

(
∆
Σ

)1/2
∂r , e2̂ =

(
1
Σ

)1/2
∂θ ,

e3̂ = −2 M a r sin θ

[∆ Σ (Σ−2 M r)]1/2 ∂t +
(

Σ−2 M r
∆ Σ

)1/2 1
sin θ ∂φ .

(A21)

This tetrad frame can be adapted with e0̂ = ū to the reference observers that form a congruence of
accelerated, nonexpanding and locally rotating world lines. The lack of expansion of the congruence
is due to the alignment of its 4-velocity vector field with the timelike Killing direction of the exterior
Kerr spacetime.

The 4-acceleration of the fiducial observers is given by

Aµ =
Deµ

0̂
dτ

= Γµ
αβ eα

0̂ eβ
0̂ , (A22)

where Γµ
αβ are the Kerr connection coefficients. Thus,

A =
M
√

∆(r2 − a2 cos2 θ)

Σ3/2(∆− a2 sin2 θ)
e1̂ −

2Mra2 sin θ cos θ

Σ3/2(∆− a2 sin2 θ)
e2̂ , (A23)

where ∆− a2 sin2 θ = Σ− 2 M r. This acceleration counters the attraction of gravity; that is, it is due to
forces that are not gravitational in origin and are necessary to keep the reference observer from falling
into the source. To set up a nonrotating spatial frame along the world line of each fiducial observer,
let Σµ be a vector that is Fermi-Walker transported along eµ

0̂; then,

dΣµ

dτ
+ Γµ

αβ eα
0̂ Σβ = (A · Σ) eµ

0̂ − (e0̂ · Σ)Aµ . (A24)

We need a vector that is orthogonal to the world line, namely, e0̂ · Σ = 0; furthermore, such a
vector can be expressed in terms of the natural spatial frame eµ

â. That is, Σµ = sâ eµ
â, which means via

Equation (A24) that in the exterior Kerr spacetime

ds1̂

dτ
=

M a (r2 − a2 cos2 θ) sin θ

Σ3/2 (Σ− 2 M r)
s3̂ , (A25)



Universe 2020, 6, 104 14 of 18

ds2̂

dτ
= − 2 M a r

√
∆ cos θ

Σ3/2 (Σ− 2 M r)
s3̂ , (A26)

ds3̂

dτ
=

M a
Σ3/2 (Σ− 2 M r)

[−(r2 − a2 cos2 θ) sin θ s1̂ + 2 r
√

∆ cos θ s2̂] . (A27)

These equations can be written in the form

dsî

dτ
= εî ĵk̂ Ω ĵ sk̂ , (A28)

where
Ωµ = Ωâ eµ

â = β(cos α eµ
1̂ + sin α eµ

2̂) (A29)

is the proper precession vector. Here, the angle α and the proper precession frequency β > 0 are
defined by

sin α =
(r2 − a2 cos2 θ) sin θ

D , cos α =
2 r
√

∆ cos θ

D (A30)

and
β =

Ma
Σ3/2 (Σ− 2 M r)

D , (A31)

where
D =

[
4 r2∆ cos2 θ + (r2 − a2 cos2 θ)2 sin2 θ

]1/2
. (A32)

It is interesting to note that α has the same range as the polar angle θ, so that α : 0 → π when
θ : 0→ π.

Let us briefly digress here and use the results given above to correct a few typographical
errors that occur in Ref. [23]: In Equation (5) of [23], the temporal component of e3̂ must be
multiplied by a, the specific angular momentum of the Kerr source; moreover, in the denominators of
Equations (10)–(12) of [23], (Σ− 2 M r) must be replaced by (Σ− 2 M r)1/2.

To construct a locally nonrotating spatial frame λµ
â along eµ

0̂, we can choose λµ
1̂ to be the unit

vector along Ωµ; then, λµ
2̂ and λµ

3̂ are unit vectors in the plane orthogonal to λµ
1̂ and precess with

frequency β about λµ
1̂. Thus the second step involves the introduction of the orthonormal spatial

frame Eµ
â,

E1̂ = cos α e1̂ + sin α e2̂ ,

E2̂ = − sin α e1̂ + cos α e2̂ , (A33)

E3̂ = e3̂ .

Then in the final step the Fermi-Walker transported triad λµ
â is obtained from Eµ

â by a simple
rotation about Eµ

1̂ with an angle of βτ,

λ1̂ = E1̂ ,

λ2̂ = cos(βτ) E2̂ + sin(βτ) E3̂ , (A34)

λ3̂ = − sin(βτ) E2̂ + cos(βτ) E3̂ .

Let us combine these rotation matrices in a new matrix S defined by λµ
î = Si

j eµ
ĵ, where

S =

 cos α sin α 0
− sin α cos ψ cos α cos ψ sin ψ

sin α sin ψ − cos α sin ψ cos ψ

 . (A35)
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Here, ψ = β τ. Moreover, the transpose of the rotation matrix S is given by ST = S−1,

ST =

 cos α − sin α cos ψ sin α sin ψ

sin α cos α cos ψ − cos α sin ψ

0 sin ψ cos ψ

 , (A36)

so that eµ
î = (ST)i

j λµ
ĵ. It is now possible to express the nongravitational acceleration of the fiducial

observer in terms of the Fermi-Walker transported tetrad frame, namely,

A =
2Mr(r2 − a2 cos2 θ) cos θ

Σ3/2 D
λ1̂ +

M
√

Σ ∆ sin θ

(Σ− 2Mr)D (− cos ψ λ2̂ + sin ψ λ3̂) . (A37)

This completes the construction of the adapted nonrotating tetrad frame λµ
α̂ along the world line

of an arbitrary observer that is spatially at rest in the exterior Kerr spacetime; here, λµ
0̂ = eµ

0̂ = ūµ.
To establish a Fermi normal coordinate system along the world line of such a reference observer,

it remains to calculate the spacetime curvature components given by Equation (A6).

Appendix C. Measured Components of Curvature

In general, one can take into account the symmetries of the Riemann tensor and express
Equation (A6) in the standard manner as a 6 × 6 matrix (RAB), where A and B are indices that
belong to the set {01, 02, 03, 23, 31, 12}. The general form of this matrix is[

E H
HT S

]
, (A38)

where E and S are symmetric 3× 3 matrices and H is traceless. Here, the measured gravitoelectric
components of the Riemann curvature tensor are represented by the relativistic tidal matrix E .
Similarly,H and S represent its gravitomagnetic and spatial components, respectively. In the vacuum
region exterior to material sources and free of nongravitational fields, the spacetime is Ricci flat as a
consequence of Einstein’s gravitational field equations and Equation (A38) becomes[

E H
H −E

]
, (A39)

where E andH are symmetric and traceless. That is, the Riemann curvature tensor degenerates in the
Ricci flat case into the Weyl conformal curvature tensor whose gravitoelectric and gravitomagnetic
components are then

Eâb̂ = Cαβγδ λα
0̂ λβ

â λγ
0̂ λδ

b̂ , Hâb̂ = C∗αβγδ λα
0̂ λβ

â λγ
0̂ λδ

b̂ , (A40)

where C∗αβγδ is the unique dual of the Weyl tensor given by

C∗αβγδ =
1
2

ηµν
αβ Cµνγδ , (A41)

since the right and left duals of the Weyl tensor coincide. Here, ηµνρσ is the Levi-Civita tensor and in
our convention, η0̂1̂2̂3̂ = 1, while η0̂âb̂ĉ = εâb̂ĉ. Let us note that

Hâb̂ =
1
2

ηµν
αβ Cµνγδ λα

0̂ λβ
b̂ λγ

0̂ λδ
â =

1
2

ηµν
0̂b̂ Cµν0̂â =

1
2

C0̂âĉd̂ εĉd̂
b̂ . (A42)

We now turn to the explicit computation of curvature components as measured by observers at
rest in the exterior Kerr spacetime.
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Curvature of Kerr Spacetime as Measured by Observers at Rest

Projected onto the canonical Petrov tetrad of the Kerr field [30], the Weyl tensor takes the form

E0 = E

 −2 0 0
0 1 0
0 0 1

 , H0 = H

 −2 0 0
0 1 0
0 0 1

 , (A43)

where,

E+ iH =
M

(r + i a cos θ)3 , (A44)

so that

E =
Mr(r2 − 3a2 cos2 θ)

Σ3 , H = −Ma(3r2 − a2 cos2 θ) cos θ

Σ3 . (A45)

The evident “parallelism” between the gravitoelectric and gravitomagnetic components of
curvature in Equation (A43) has to do with the degenerate nature of the Kerr field; in fact, it is
of type D in the Petrov classification. We are interested in the curvature of Kerr spacetime as measured
by the family of observers at rest. Projected onto the natural frame eµ

α̂ with axes that are primarily
along the Boyer-Lindquist coordinate directions, we find (E ′,H′). Specifically, the nonvanishing
components of the tidal matrix can be obtained from [18]

E ′ 1̂1̂ = −2E ∆+ 1
2 a2 sin2 θ

∆−a2 sin2 θ
,

E ′ 1̂2̂ = −3 a sin θ H ∆1/2

∆−a2 sin2 θ
,

E ′ 2̂2̂ = E ∆+2 a2 sin2 θ
∆−a2 sin2 θ

,
E ′ 3̂3̂ = E .

(A46)

Furthermore, the nonzero elements of the gravitomagnetic part of the Weyl curvature can be
obtained from [18]

H′ 1̂1̂ = −2H ∆+ 1
2 a2 sin2 θ

∆−a2 sin2 θ
,

H′ 1̂2̂ = 3 a sin θ E ∆1/2

∆−a2 sin2 θ
,

H′ 2̂2̂ = H ∆+2 a2 sin2 θ
∆−a2 sin2 θ

,
H′ 3̂3̂ = H .

(A47)

We are actually interested in the measured components of curvature along the Fermi-Walker
transported tetrad frame λµ

α̂. In this case, the measured components of the curvature tensor are
given by Equation (A39), where (E ,H) are related to (E ′,H′) via a rotation S given by Equation (A35).
Under such a rotation, it is straightforward to show that the gravitoelectric part (i.e., the relativistic tidal
matrix) and the gravitomagnetic part of the Weyl tensor undergo a similarity transformation, namely,

E = S E ′ S−1 , H = SH′ S−1 . (A48)

To express the measured curvature components explicitly, it proves convenient to define P and Q
such that

P :=
1
2
(E ′ 1̂1̂ − E

′
2̂2̂) cos 2α + E ′ 1̂2̂ sin 2α , Q := −1

2
(E ′ 1̂1̂ − E

′
2̂2̂) sin 2α + E ′ 1̂2̂ cos 2α . (A49)

Then, with ψ = β τ, we have

E1̂1̂ = −1
2
E ′ 3̂3̂ + P , E1̂2̂ = Q cos ψ , E1̂3̂ = −Q sin ψ , (A50)



Universe 2020, 6, 104 17 of 18

E2̂2̂ = −
(

1
2
E ′ 3̂3̂ + P

)
cos2 ψ + E ′ 3̂3̂ sin2 ψ , E2̂3̂ =

(
3
2
E ′ 3̂3̂ + P

)
sin ψ cos ψ (A51)

and
E2̂1̂ = E1̂2̂ , E3̂1̂ = E1̂3̂ , E3̂2̂ = E2̂3̂ , E3̂3̂ = −E1̂1̂ − E2̂2̂ , (A52)

since this matrix is symmetric and traceless; moreover, we have exactly the same type of expressions
forH. From (E ,H), we find Rα̂β̂γ̂δ̂(T) employed in the Fermi normal coordinate system.

References

1. Chicone, C.; Mashhoon, B. The generalized Jacobi equation. Class. Quantum Gravity 2002, 19, 4231–4248.
[CrossRef]

2. Chicone, C.; Mashhoon, B.; Punsly, B. Dynamics of relativistic flows. Int. J. Mod. Phys. D 2004, 13, 945–959.
[CrossRef]

3. Chicone, C.; Mashhoon, B. Significance of c/sqrt(2) in relativistic physics. Class. Quantum Gravity 2004,
21, L139. [CrossRef]

4. Chicone, C.; Mashhoon, B. Tidal dynamics of relativistic flows near black holes. Ann. Phys. (Berlin) 2005, 14,
290–308. [CrossRef]

5. Chicone, C.; Mashhoon, B. Tidal acceleration of ultrarelativistic particles. Astron. Astrophys. 2005, 437,
L39–L42. [CrossRef]

6. Chicone, C.; Mashhoon, B. Ultrarelativistic motion: Inertial and tidal effects in Fermi coordinates.
Class. Quantum Gravity 2005, 22, 195–205. [CrossRef]

7. Chicone, C.; Mashhoon, B. A gravitational mechanism for the acceleration of ultrarelativistic particles.
Ann. Phys. (Berlin) 2005, 14, 751–763. [CrossRef]

8. Chicone, C.; Mashhoon, B.; Punsly, B. Relativistic motion of spinning particles in a gravitational field.
Phys. Lett. A 2005, 343, 1–7. [CrossRef]

9. Mashhoon, B. Beyond gravitoelectromagnetism: Critical speed in gravitational motion. Int. J. Mod. Phys. D
2005, 14, 2025–2037. [CrossRef]

10. Kojima, Y.; Takami, K. Tidal effects on magnetic gyration of a charged particle in Fermi coordinates.
Class. Quantum Gravity 2006, 23, 609–616. [CrossRef]

11. Chicone, C.; Mashhoon, B. Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetimes.
Phys. Rev. D 2006, 74, 064019. [CrossRef]

12. Chicone, C.; Mashhoon, B. Tidal dynamics in Kerr spacetime. Class. Quantum Gravity 2006, 23, 4021–4033.
[CrossRef]

13. Mullari, T.; Tammelo, R. On the relativistic tidal effects in the second approximation. Class. Quantum Gravity
2006, 23, 4047–4067. [CrossRef]

14. Perlick, V. On the generalized Jacobi equation. Gen. Relativ. Gravit. 2008, 40, 1029–1045. [CrossRef]
15. Bini, D.; Geralico, A.; Jantzen, R.T. Fermi coordinates in Schwarzschild spacetime: closed form expressions.

Gen. Relativ. Gravit. 2011, 43, 1837–1853. [CrossRef]
16. Bini, D.; Geralico, A. Observer-dependent tidal indicators in the Kerr spacetime. Class. Quantum Gravity

2012, 29, 055005. [CrossRef]
17. Iorio, L. Orbital motions as gradiometers for post-Newtonian tidal effects. Front. Astron. Space Sci. 2014, 1, 3.

[CrossRef]
18. Bini, D.; Mashhoon, B. Relativistic gravity gradiometry. Phys. Rev. D 2016, 94, 124009. [CrossRef]
19. Puetzfeld, D.; Obukhov, Y.N. Deviation equation in Riemann-Cartan spacetime. Phys. Rev. D 2018, 97,

104069. [CrossRef]
20. Mashhoon, B. General relativistic gravity gradiometry. Fundam. Theor. Phys. 2019, 196, 143–157.
21. Junior, H.C.D.L.; Crispino, L.C.B.; Higuchi, A. On-axis tidal forces in Kerr spacetime. Eur. Phys. J. Plus 2020,

135, 334. [CrossRef]
22. Junior, H.C.D.L.; Crispino, L.C.B. Tidal forces in the charged Hayward black hole spacetime. Int. J. Mod.

Phys. D 2020, in press.
23. Bini, D.; Chicone, C.; Mashhoon, B. Relativistic tidal acceleration of astrophysical jets. Phys. Rev. D 2017, 95,

104029. [CrossRef]

http://dx.doi.org/10.1088/0264-9381/19/16/301
http://dx.doi.org/10.1142/S0218271804004992
http://dx.doi.org/10.1088/0264-9381/21/24/L01
http://dx.doi.org/10.1002/andp.200410126
http://dx.doi.org/10.1051/0004-6361:200500137
http://dx.doi.org/10.1088/0264-9381/22/1/013
http://dx.doi.org/10.1002/andp.200510164
http://dx.doi.org/10.1016/j.physleta.2005.05.072
http://dx.doi.org/10.1142/S0218271805008121
http://dx.doi.org/10.1088/0264-9381/23/3/004
http://dx.doi.org/10.1103/PhysRevD.74.064019
http://dx.doi.org/10.1088/0264-9381/23/12/002
http://dx.doi.org/10.1088/0264-9381/23/12/004
http://dx.doi.org/10.1007/s10714-007-0589-x
http://dx.doi.org/10.1007/s10714-011-1163-0
http://dx.doi.org/10.1088/0264-9381/29/5/055005
http://dx.doi.org/10.3389/fspas.2014.00003
http://dx.doi.org/10.1103/PhysRevD.94.124009
http://dx.doi.org/10.1103/PhysRevD.97.104069
http://dx.doi.org/10.1140/epjp/s13360-020-00342-7
http://dx.doi.org/10.1103/PhysRevD.95.104029


Universe 2020, 6, 104 18 of 18

24. Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon: Oxford, UK, 1983.
25. Punsly, B. Black Hole Gravitohydromagnetics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008.
26. Chicone, C. Ordinary Differential Equations with Applications, 2nd ed.; Springer: New York, NY, USA, 2006.
27. Heywood, I.; Camilo, F.; Cotton, W.D.; Yusef-Zadeh, F.; Abbott, T.D.; Adam, R.M.; Aldera, M.A.;

Bauermeister, E.F.; Booth, R.S.; Botha, A.G.; et al. Inflation of 430-parsec bipolar radio bubbles in the
Galactic Centre by an energetic event. Nature 2019, 573, 235–237. [CrossRef] [PubMed]

28. Synge, J.L. Relativity: The General Theory; North-Holland: Amsterdam, The Netherlands, 1971.
29. Mashhoon, B. Tidal radiation. Astrophys. J. 1977, 216, 591–609. [CrossRef]
30. Carter, B. Black Holes; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41586-019-1532-5
http://www.ncbi.nlm.nih.gov/pubmed/31511683
http://dx.doi.org/10.1086/155500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Critical Tidal Currents
	Exterior Kerr Spacetime: Observer at Rest on the Axis of Rotation
	Motion Along the Rotation Axis of Kerr Spacetime
	r M and r a
	Tidal Acceleration

	Exterior Schwarzschild Spacetime
	Discussion
	Jacobi-Type Equation in Fermi Coordinates
	Fermi Coordinates
	Jacobi-Type Equation

	Observers at Rest in Exterior Kerr Spacetime
	Measured Components of Curvature
	References

