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Abstract: We overview the fundamental roles of the de Sitter vacuum in cosmology where it is
responsible for powering the early inflationary stage(s) and the present accelerated expansion,
in black hole physics where it provides the existence of a wide class of regular black holes and
self-gravitating solitons replacing naked singularities, and in particle physics where it ensures the
intrinsic relation of the Higgs mechanism with gravity and spacetime symmetry breaking.
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1. Introduction

Which arrow does fly forever?
An arrow which hits the goal.

Vladimir Nabokov

Einstein introduced a cosmological term λgik into his equations describing Gravity as a Geometry
represented by the geometric tensor Gik and generated by the distribution of energy-matter represented
by its stress-energy tensor Tik

Gik + λgik = −8πGTik (1)

to achieve the concordance with the Mach principle, which was one of his primary motivations [1,2].
Mach’s principle stated that some matter has the property of inertia due to the presence of some other
matter in the universe [3]. It is expected that the field equations (1) would have reasonable solutions
only in the presence of a matter. However, Einstein found the regular solution to the equations
Gik = 0, the Minkowski geometry, which perfectly describes inertial motion in the absence of matter.
The primary task of λ was thus to eliminate reasonable solutions in the case when Tik = 0, λ 6= 0,
following the logic dictated by Mach’s principle [4].

Soon after, de Sitter found a reasonable solution with λgik and without Tik [5]. In the same year,
1917, Einstein used the basic property of λ as the universal repulsion to construct the static universe
model with a uniformly distributed matter and non-zero λ [6]. However, when in 1929 Hubble
finally confirmed the linear relations discovered by him between redshifts and distances for galaxies,
which testified that the universe is undoubtedly expanding [7], Einstein decided to exclude λ from his
equations as “the biggest fault” in his career [8].

Many years later, Λ was rehabilitated and invoked to provide the reason for the initial universe
expansion and powering it due to generic repulsive character of the de Sitter geometry independent
on a particular model underlying the de Sitter vacuum [9,10] (for a review [11]). The Einstein
cosmological term Λgik is associated with the maximally symmetric de Sitter vacuum, Tik = ρvacδik,
(ρvac = (8πG)−1Λ) with ρvac = const by virtue of the contracted Bianchi identities resulting in
Tk

i;k = 0. It is specified by the equation of state p = −ρ which implies generically negative pressure.
In accordance with the standard definition of a pressure as related to a force preventing contraction,
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the negative pressure acts in the opposite direction and may lead to an unlimited contraction. In the
de Sitter geometry, the intrinsic contraction of the negative pressure is transformed into the intrinsic
gravitational repulsion, ä = −(4πG/3)a(3p + ρ) = +(8πG/3)aρ. This is what provides a mechanism
able (i) to drive accelerated expansion in the universe and (ii) to avoid singularities replacing them
with the de Sitter vacuum.

De Sitter vacuum is identified as the best candidate for a dark energy (DE), which fills our
universe in about 75% of its density (for a review [12,13]). Sometimes one can read in the literature
that the nature of a dark energy is unknown. This is rather not true. The truth is that the de Sitter
vacuum as a highly symmetric continuous medium dominates in our universe as its basic ingredient,
which powers its accelerated expansion. There exist infinitely many distributions of matter that behave
like a cosmological term in the Einstein equations, Tµν = (8πG)−1λgµν; λ = 8πGρvac = const ([14]
and references therein), but ultimately it is the repulsive gravity of the de Sitter vacuum that explains
the results of astronomical observations. The numerous examples are presented by various DE
models, which involve λ or mimic its behavior ([15–17] and references therein). The intensively
explored problem is what kind of a particular matter associated with the de Sitter vacuum fits
better in the physical context of our universe state and evolution in confrontation with observations
(for a review [18,19]).

The requirement λ = const excludes a self-consistent description of its whole evolution from the
large initial value to the small today value by the Einstein cosmological term Ti

k = λδi
k. The possibility

to describe evolution between an initial and final de Sitter vacua in the frame of one theoretical scheme
is provided by the algebraic classification of stress-energy tensors, which includes stress-energy
tensors with the algebraic structure such that Tt

t = Tα
α [20,21] and the vacuum equation of state

holds only in one or two space dimensions (pα = −ρ). They correspond to a variable cosmological
term [21] and describe essentially anisotropic vacuum dark fluid [22], which can be evolving and
clustering dependently on the choice of a coordinate mapping. It can be identified as an anisotropic
kind of quintessence, which was originally introduced in general treatment by the equation of state
p = wρ with −1 < w < 0 [23] (for a recent review [24]). In the anisotropic case, its definition
extends to pα = wαρ, wα = −1 and pβ = wβρ, β 6= α, where wβ ≥ −1 and, in the general case,
is coordinate-dependent. It represents a time-evolving and spatially inhomogeneous dark energy
which can evolve between initial, final and intermediate (if necessary) de Sitter vacua ([25] and
references therein). By the Einstein equations, they generate spacetimes whose the basic features are
determined by geometry independently on underlying particular models for Tk

i (for a review [26]).
The Einstein equations admit the class of regular solutions with the source terms specified by

Tt
t = Tr

r [20] and satisfying the Weak Energy Condition (WEC), which implies the non-negative energy
density as measured by any local observer on a time-like curve. In cosmology they describe relaxing
cosmological constant ([27] and references therein). Its evolution between different values is provided
by the intrinsic anisotropy of Ti

k, therefore it cannot be described by the isotropic FLRW cosmological
models and requires applying the cosmological models of the Lemaître class for anisotropic and
inhomogeneous perfect fluid (for a review [28]). Solutions of this class also represent compact objects
with the de Sitter vacuum interiors: regular black holes and self-gravitating solitons replacing naked
singularities: G-lumps, described by the Einstein equations [29,30], and electromagnetic solitons,
described by the nonlinear electrodynamics minimally coupled to gravity [31]. Their masses are
generically related to the interior de Sitter vacuum and spacetime symmetry breaking from the de
Sitter group [30].

The majority of regular black holes presented in the literature belongs to this class. Information
on their interiors can be in principle extracted from observations of black holes shadows ([32] and
references therein). Gravitational solitons G-lumps replacing naked singularities are defined in
the spirit of the Coleman lumps as non-singular, non-dissipative, self-gravitating, compact objects
related by their own self-interaction [33]. Regular primordial black holes with the de Sitter interiors,
their remnants and gravitational solitons G-lumps can be considered as dark matter (DM) candidates
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with the DE interiors. The de Sitter vacuum interiors determine their observational signatures and
provide their observational identification (for a review [34]).

The story of the abandonment of λ by Einstein and its spectacular revitalization in cosmology,
overshadowed his primary idea to introduce λ as a quantity significantly related to inertia.
The question of how to connect them goes back to another of Einstein’s profound proposals to
describe an elementary particle by a regular solution of nonlinear field equations as a “bunched field”
located in the confined region with the maximal field tension and energy [35].

In the contemporary view, massive particles acquire masses by the Higgs mechanism involving
the de Sitter vacuum as its fundamental ingredient (a false vacuum). Incorporating the de Sitter
vacuum, the Higgs mechanism implicitly incorporates the intrinsic relation between mass, gravity and
spacetime symmetry breaking revealed in the frame of General Relativity for all objects with the de
Sitter vacuum interiors [36]. In all cases when a particle acquires its mass by the Higgs mechanism,
its mass is generically related to gravity and spacetime symmetry, since the de Sitter vacuum generates
the de Sitter geometry in the region of its involvement and leads to dynamical participation of gravity
in the region of interaction. For example, despite that gravity is frequently assumed to be too weak
to be essential on the electroweak scale, gravity of the intrinsically involved de Sitter vacuum leads
to the bi-maximal neutrino mixing in the interaction vertex, which allows to explain the observed
mass square differences for neutrino and to evaluate the gravito-electroweak scale in accordance with
the existing theories of the gravito-electroweak unification ([37–39] and references therein). Another
example concerns the appearance of the minimal length scale in the annihilation reaction e+e− →
γγ(γ) [40,41]. Experimental data reveal with a 5σ significance the existence of a characteristic minimal
length le = 1.57× 10−17 cm at the scale E = 1.253 TeV. The calculations of the differential cross-section
QED-α3 including radiative effects up to α3 predict an increase in the total cross-section. Contrary
to these predictions, the χ2 fit displays the minimum with the negative fit parameter. This result
can be understood by applying an extended electron model suggested by nonlinear electrodynamics
coupled to gravity (NED-GR) and satisfying WEC, which predicts, for an arbitrary gauge invariant
Lagrangian, the existence of a spinning electrically charged electromagnetic soliton, asymptotically
Kerr–Newman for a distant observer with the gyromagnetic ratio g = 2, the same as for the Dirac
electron [31]. Generic features of the electromagnetic soliton allow to interpret the minimal length
in the annihilation reaction e+e− → γγ(γ) as the distance of the closest approach of the annihilating
particles at which their electromagnetic attraction is balanced by the gravitational repulsion of the de
Sitter vacuum.

In Section 2, we present the basic features of regular spacetimes in which the central de Sitter
vacuum Λδk

i evolves to the de Sitter vacuum λδk
i with λ < Λ. Section 3 outlines the Lemaître

cosmological models with special attention to the model singled out by the Holographic Principle.
In Section 4, we present the dynamical features and observational signatures of regular black holes
and solitons with the de Sitter vacuum interiors. In Section 5, we overview the role of the de Sitter
vacuum as providing the intrinsic relation of mass generation by the Higgs mechanism with gravity
and spacetime symmetry breaking. Section 6 contains conclusions.

2. Spacetimes with Two de Sitter Vacua

In this section we overview the general basic features of spherically symmetric spacetimes with
two de Sitter vacua, in the center and at infinity, including the course of quantum evaporation of the
horizons towards the stable final products with the de Sitter vacuum.

The Einstein equations contain the class of regular spherical solutions with the de Sitter center
generated by source terms Ti

k able to relate the central de Sitter vacuum with other de Sitter vacua if
needed and specified by [20,21]

Tt
t = Tr

r (pr = −ρ). (2)
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A medium specified by Tt
t = Tr

r satisfies the r−dependent equation of state [20]

pr = −ρ; p⊥ = −ρ− rρ′/2 (3)

and can be identified as an anisotropic quintessence defined by two EOS parameters, wr and w⊥
related to principal pressures pr = wrρ, wr = −1; p⊥ = w⊥ρ, w⊥ = −1− (r/2)d(ln ρ)/dr [25] due to
the symmetry of stress-energy tensors Tt

t = Tr
r ; Tθ

θ = Tφ
φ .

If Tk
i satisfies WEC, it requires p⊥ + ρ ≥ 0 which leads to ρ′ ≤ 0, the density monotonically

increases towards the center where the stress-energy tensor takes the de Sitter value Tk
i = ρΛδk

i ,
ρΛ = (8πG)−1Λ and the spacetime symmetry restores to the de Sitter group [30,42] (see also [26] and
references therein).

A central singularity at r = 0 appears in the Schwarzschild solution to the Einstein equations
obtained for the empty space, Ti

k = 0 (no matter). In a singularity, all curvature invariants diverge
to infinity and all geodesics terminate. Luckily, it is confined by the event horizon, which allows
for application of the Schwarzschild solution in astrophysics as describing external fields of massive
spherical objects including black holes.

The early proposals on replacing a Schwarzschild singularity with the de Sitter vacuum were
based on hypotheses of self-regulation of geometry by vacuum polarization effects [43], of the existence
of the limiting curvature of the Planck scale, ρPl = 5.157 × 1093 g cm−3 [44], and of symmetry
restoration to the de Sitter group at the GUT scale [20,45]. The key point is that in the course of
a gravitational collapse, all fields evidently contribute to vacuum polarization, and hence the resulting
vacuum expectation value of the stress-energy tensor transforms in gravity via the Einstein equation
resulting in a vacuum polarization by the gravitational field [20,30]. In the case of the symmetry
restoration to the de Sitter group at the GUT scale, the de Sitter vacuum appears with the density
ρGUT ' 5× 1077 g cm−3 � ρPl , and the problem can be treated semi-classically. The above hypotheses
on the de Sitter vacuum instead of a singularity were confirmed in the frame of the quadratic
gravity [46], “renormalization group improving” [47], non-commutative geometry approach [48],
and an ultraviolet quantum gravity [49,50].

In the case of two vacuum scales, at the origin and at infinity, a stress-energy tensor evolves
between two de Sitter vacua, and spacetime has not more than three horizons [25,51].

In the Schwarzschild coordinates, the metrics are described by [52]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2GM(r)

r
− λ

3
r2; M(r) = 4π

∫ r

0
ρ(x)x2dx. (4)

The stress-energy tensors responsible for these metrics evolve between the de Sitter vacuum with
(Λ + λ) as r → 0 and the de Sitter vacuum with λ as r → ∞. The metrics (4) tend for r → 0 to the de
Sitter metric with g(r) = 1− r2(Λ + λ)/3 and for r → ∞ to the Schwarzschild–de Sitter metric with
g(r)Schw−deS = 1− 2GM/r− λr2/3 where M = 4π

∫ ∞
0 ρ(r)r2dr is the total mass, and ultimately tend

to the de Sitter metric with g(r) = 1− λr2/3.
Geometry is characterized by three basic length scales rg, rΛ, rλ and by the parameter q relating

de Sitter vacuum scales

rg = 2GM; rΛ =
√

3/Λ; rλ =
√

3/λ; q = rλ/rΛ =
√

Λ/λ =
√

ρΛ/ρλ; ρΛ(λ) = (8πG)−1Λ(λ). (5)

Spacetime with two vacuum scales represents the following possible configurations: a regular
cosmological black hole with the mass constrained within Mcr1 < M < Mcr2, confined by the event
horizon rb and the internal horizon ra in the universe with the cosmological horizon rc (Figure 1 Left);
two double-horizon states, ra = rb (M = Mcr1) and rb = rc (M = Mcr2), two one-horizon states
(Figure 1 Right), two one-horizon states with the inflection point instead of the minimum (Figure 2 Left,
curves M < Mcr and M > Mcr), and the triple horizon state (the curve M = Mcr in Figure 2 Left)
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in which g = g′ = g′′ = 0. The critical masses Mcr1, Mcr2 converge at a certain value q = qcr to Mcr

(Figure 2 Right) [53].

Figure 1. Typical behavior of the metric function g(r) for the case of two vacuum scales.

Figure 2. Left: The metric function g(r) with the triple horizon (M = Mcr). Right: Dependence of the
critical masses on the parameter q.

In spacetimes with the de Sitter interior there exists an additional characteristic length scale
r∗ = (r2

Λrg)1/3. In thermodynamics of the horizons it appears as the scaling scale in the constraint on
the form of a density profile by the course of evolution of the total mass M dictated by the horizons
evaporation [54].

The quantum temperature and the entropy of a horizon [55], and its specific heat [54] are given by:

kTh =
h̄c
4π
|g′(rh)|; Sh = 4πr2

h; Ch = dEh/dTh =
2πrh

g′(rh) + g′′(rh)rh
(6)

and directly relate the character and stability of a product of evaporation to the extrema of its metric
function g(r). During quantum evaporation, the internal horizon (which is the cosmological horizon
for the region 0 ≤ r < ra) and the cosmological horizon rc move outwards by virtue of the second law
of thermodynamics. Behavior of g′ on each of the horizons determines behavior of the mass M and
leads to its decreasing in the course of evaporation. As a result, the black hole horizon moves inwards.
This imposes the constraint on the r-dependence of the density profile which should involve the scaling
r/r∗ [54] (for more details [53]; for a review [56,57]). The process of the black hole evaporation is
directed towards the double-horizon state, ra ⇀↽ rb (the curve M = Mcr1 in Figure 1 Right), where the
temperature vanishes and specific heat is positive by virtue of (6), hence the end-product of evaporation
is the thermodynamically stable remnant generically related to vacuum dark energy via its interior de
Sitter vacuum. Its mass is determined as Mremn = Mcr1 = βMPl

√
ρPl/ρΛ [29,54] where the coefficient

β ≤ 1 depends on the form of the density profile.
The case of M < Mcr1 (Figure 1 Right) presents gravitational solitons G-lumps replacing naked

singularities and defined in the spirit of the Coleman lumps as non-singular non-dissipative compact
objects related by their own self-interaction [33]. Basic properties of regular black holes, their remnants
and G-lumps are overviewed in Section 4.
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The spacetime with M > Mcr2 evolves towards the double horizon state rb = rc with zero
temperature and negative specific heat by virtue of (6), which represents the thermodynamically
unstable regularized version of the Nariai spacetime [53].

The configuration with M > Mcr evolves towards the triple-horizon spacetime with M = Mcr

(shown in Figure 2 Left), which is absolutely thermodynamically stable due to its infinite positive
specific heat according to (6). Equations g = g′ = g′′ = 0 determine uniquely Mcr, rh, qcr and hence
ρλ for a given value of ρΛ [54]. This case is outlined in the next section.

Spacetime has two characteristic surfaces, the zero gravity surface r = rc at which the strong
energy condition, ρ + ∑ pk ≥ 0 is violated and the gravitational acceleration changes its sign replacing
the gravitational attraction by the gravitational repulsion, and the zero curvature surface r = rs at
which the scalar curvature R changes the sign [29,53]. Since both of them are ultimately defined through
the density and its derivative, ρ + ∑ pj = 2p⊥ = −2ρ − rρ′ and R = 8πGTi

i = 8πG(ρ − ∑ pk) =

8πG(4ρ + rρ′), their explicit definitions involve scaling r/r∗.
The characteristic scale r∗ appears explicitly in the simple semiclassical model of the vacuum

polarization in the spherical gravitational field [20]

ρ(r) = ρΛe−r3/r3
∗ ; M(r) = M(1− e−r3/r3

∗) (7)

based on the hypothesis of symmetry restoration in the course of a gravitational collapse since
all fields evidently contribute to vacuum polarization, and hence to a stress-energy tensor and to
gravity [20,29,30]. This density profile has been applied for producing the pictures illustrating the
generic dynamical behavior. In this geometry, the scale r∗ directly defines the zero gravity surface by
rc = (2/3)1/3r∗ and the zero curvature surface by rs = (4/3)1/3r∗ [20,29].

In the regular spherically symmetric spacetime with the de Sitter center at the background de
Sitter vacuum Ti

k = ρλδi
k quantum evaporation of the horizons results in two stable end-products:

regular double-horizon black hole remnant with the interior de Sitter vacuum and absolutely stable
triple-horizon spacetime with ρλ determined by dynamics of the horizon evaporation.

3. Cosmologies with the Relaxing Cosmological Constant

In this section, we overview the basic properties of the Lemaître cosmological models that describe
evolution between an initial and final de Sitter vacuum, and distinguish the special class of models
singled our by the Holographic Principle, in which quantum evaporation of the cosmological horizon
determines the density of the final de Sitter vacuum.

The Lemaître class cosmological models with the different principal pressures describe in general
a spatially inhomogeneous and anisotropic universe and contain the FRLW isotropic and homogeneous
models as the particular cases with the equal principal pressures.

The spherically symmetric Lemaître cosmological models are described by the line element

ds2 = dτ2 − e2ν(R,τ)dR2 − r2(R, τ)dΩ2. (8)

Cosmological coordinates R, τ are the Lagrange (comoving) coordinates. The Einstein equations in the
comoving reference frame have the form [58]

8πGpr =
1
r2

(
e−2νr′2 − 2rr̈− ṙ2 − 1

)
, (9)

8πGp⊥ =
e−2ν

r
(r′′ − r′ν′)− ṙν̇

r
− ν̈− ν̇2 − r̈

r
, (10)

8πGρ = − e−2ν

r2

(
2rr′′ + r′2 − 2rr′ν′

)
+

1
r2

(
2rṙν̇ + ṙ2 + 1

)
, (11)
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8πGTr
t =

2e−2ν

r
(
ṙ′ − r′ν̇

)
= 0. (12)

Equation (12) yields [58]

e2ν =
r′2

1 + f (R)
(13)

where f (R) is an integration function. Putting (13) into (9) gives the equation of motion

ṙ2 + 2rr̈ + 8πGprr2 = f (R). (14)

For the vacuum dark energy with pr = −(ρ + ρλ) (Tt
t = Tr

r ), the first integration in (14) gives

ṙ2 =
2GM(r)

r
+

λ

3
r2 + f (R) +

F(R)
r

. (15)

For regular cosmological models ρ(r) → ρΛ < ∞ as r → 0 and M(r) → 0 as r3. An arbitrary
integration function F(R) should be put zero. The second integration in (14) yields

τ − τ0(R) =
∫ dr√

2GM(r)/r + λr2/3 + f (R)
. (16)

The third arbitrary integration function τ0(R) is called the bang-time function [59].
The transformation of the Schwarzschild coordinates to the cosmological coordinates (R, τ),

where the Lemaître coordinate R is introduced as the congruence parameter of the family of the radial
geodesics and τ is the proper time along a geodesic, is given by [51]

∂t
∂τ

=
E(R)
g(r)

;
∂r
∂R

=
√

E2(R)− g(r);
∂r
∂τ

= ± ∂r
∂R

;
∂t
∂R

= ±E2(R)− g(r)
E(R)g(r)

(17)

where E(R) is the integral of motion along a geodesic. The metric takes the form [25,51]

ds2 = dτ2 − [E2(R)− g(r(R, τ))]

E2(R)
dR2 − r2(R, τ)dΩ2 (18)

which shows that behavior of the Lemaître cosmological models is conditioned by the behavior of
the metric function g(r) in (4). Comparing the metric (18) with the metric (8) taking into account (13),
we find f (R) = E2(R)− 1 and E2(R)− g(r) = [ṙ(R, τ)]2 = [r′(R, τ)]2 [51].

For expanding models, in accordance with (17), ṙ = +r′, and r is a function of (R + τ), so we can
choose τ0(R) = −R [51]. For r → 0, the equation (16) reduces to

τ + R =
∫ dr√

(Λ + λ)r2/3 + f (R)
. (19)

For the choice f (R) = 0 preferred by the observational data for our Universe (Ω = 1), we have E2 = 1,
and evolution starts from the time-like regular surface r(R, τ) = 0

r = r(Λ+λ)e
(τ+R)/r(Λ+λ) ; e2ν = r2/r2

(Λ+λ) (20)

and the metric (8) takes the FLRW form with the de Sitter scale factor

ds2 = dτ2 − r2
(Λ+λ)e

2τ/r(Λ+λ)

(
du2 + u2dΩ2

)
, (21)

where r(Λ+λ) =
√

3/(Λ + λ) and u = eR/r(Λ+λ) .
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For the open models ( f (R) > 0, Ω < 1) the evolution starts from the surface r(R, τ) = 0 with
the de Sitter initial state r(R, τ) = r(Λ+λ) sinh ((τ + R)/r(Λ+λ)). For the closed models ( f (R) < 0,
Ω > 1), the evolution starts from the time-like surface r = ri defined by E2(R)− g(rin(R, τ)) = 0 and
presented by the de Sitter initial state r(R, τ) = r(Λ+λ) cosh ((τ + R)/r(Λ+λ)).

For all Lemaître class models the non-singular non-simultaneous de Sitter bang is followed by
the anisotropic stage with the expansion in the transversal direction, ∂τr > 0, and shrinking in the
radial direction, ∂R|gRR| < 0 until dg(r)/dr < 0. At this stage of highly anisotropic behavior Λ-decay
supports a subsequent energy transfer to radiation typical for inflationary scenarios with reheating
after inflation [27,51,60,61] (for a review on Λ decay [28,62]).

In the limit r → ∞, the metric (8) reduces to the de Sitter form. For Ω = 1 it reads

ds2 = dτ2 − r2
λe2τ/rλ

(
du2 + u2dΩ2

)
. (22)

For the density profile (7) this occurs around 3× 109 years when λ starts to dominate according to the
observational data [27].

Global structure of spacetime is presented by the Penrose–Carter conformal diagrams,
which represent the maximal analytic extension for solutions of Equation (4). Diagrams are plotted
in coordinates related to radial photons, which follow the null geodesics ṙ = ±E, the light cones are
oriented under the angle π/4. The R and T regions are defined by the sign of the gradient r(R, τ),
sign(gikr,ir,k) = ±1, the sign “+” for the T regions (one-way traffic regions, light cones directed
inwards for T− regions and outwards for T+ regions), and the sign “−” forR regions (static, two-way
traffic regions, each light cone directed both inwards and outwards). The sign here depends on the sign
of the metric function g(r), since gikr,ir,k = (ṙ)2 + (r′)2g(r(R, τ))/E2(R). The global structure of the
one-horizon spacetime is the same as the global structure for the de Sitter spacetime (Figure 3 right).
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Figure 3. One-horizon spacetimes with vacuum dark energy.

Lemaître observers have to their disposal the whole manifold from the initial de Sitter bang
surface to infinity.

The global structure of the double-horizon spacetimes (curves M = Mcr1 and M = Mcr2 in
Figure 1 Right) and possibilities for Lemaître observers are shown in Figure 4 where the internal
horizons are denoted as r−, the black hole horizons as r+ and the cosmological horizons as r++. KS
observers shown in Figure 3 Left and in Figure 4, populate T regions of the spacetime manifold,
described by the regular cosmological models of the Kantowski–Sachs type ds2 = |g(t)|−1dt2 −
|g(t)|dr2 − t2dΩ2. These are homogeneous anisotropic T-models in which evolution starts with a null
bang from the Killing horizon (rh in Figure 3, r− and r++ in Figure 4), and pre-bang information from
their past beyond the horizons is available for KS observers [51,63].
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Figure 4. Left: Fragment of the global structure for M = Mcr1, the double horizon r− = r+. Right:
Fragment of the global structure for M = Mcr2, the double-horizon r+ = r++.

For spacetime with M = Mcr1 the global structure contains the infinite sequence, extended in the
time direction, of two subsequentR regions separated by the double horizons r− = r+, and T regions
between the horizons r++ and infinities.

The global structure for the case M = Mcr2 contains the infinite sequence, extended in the
spacelike direction, ofR regions beyond the horizons r−, and two subsequent T regions, between the
horizons r− and the double horizons r+ = r++, and between r+ = r++ and infinity.

As well as in one-horizon cases, cosmological evolution starts with the nonsingular
non-simultaneous de Sitter bang from the time-like surface r(R, τ) = 0 for f (R) ≥ 0 (Ω ≤ 1),
and from the time-like surface where E2(R)− g(r(R, τ)) = 0 for f (R) < 1 (Ω > 1).

In both cases Lemaître observers have at their disposal the whole manifold from the past infinity
of the region T− to the future infinity in the region T+. In the case shown in Figure 4 Left, they can
start from r = ∞ in the T− region, pass two R regions, arrive at the surface r = 0, then pass two R
regions and arrive at r = ∞ in the region T+. In the case in Figure 4 Right, they can start from r = ∞ in
the region T2 −, pass through the T1 − region, arrive at r = 0 in the R region, then pass through the
T1 + region, and arrive at r = ∞ in the region T2 +.

The Lemaître observers have essentially more possibilities in the spacetimes with three horizons,
which are presented in the next section as causally related to regular black holes [52,60,64].

The triple-horizon spacetime (the curve M = Mcr in Figure 2 Left) represents the most promising
class of cosmological models. According to (6), it has the finite entropy, zero temperature and infinite
positive specific heat, which makes it absolutely thermodynamically stable [27,65].

The triple-horizon spacetime is singled out by the Holographic Principle formulated as the
requirement that the number of quantum degrees of freedom contained in a certain spatial volume
is bounded from above by the surface area of this region [66], and leading to the conjecture that
a physical system can be entirely specified by the data stored on its boundary [67]. Evaporation to
the triple-horizon state is guided by the quantum dynamics of the horizon evaporation, and the
basic parameters characterizing the final state are completely determined by the data stored at its
boundary (the triple horizon), defined by three algebraic equations: g(rt) = 0; g′(rt) = 0; g′′(rt) = 0
which determine uniquely the horizon radius rt, the mass Mcr and the parameter qcr =

√
ρΛ/ρλ

which allows to determine ρλ by choosing the density profile and the vacuum scale for ρΛ. For the
ρΛ scale MGUT ∼ 1015 − 1016 GeV, and the density profile (7) we find the value of ρλ within the
range 1.7× 10−30 g cm−3 − 1.7× 10−26 g cm−3, which contains the observational value ρλ (obs) =

6.45× 10−30 g cm−3 [68]. Moreover, these data are stored at the triple-horizon boundary of the universe
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actually forever due to its infinite scrambling time [65], defined for a quantum system as the time
needed to thermalize information [69]. A universal bound on a scrambling time t∗ is estimated as [70]

t∗ ≥ A h̄ S1/2 T−1 (23)

where A is a certain constant. Quantum evaporation towards the triple-horizon state M = Mcr stops
at T = Th = 0, so that the triple-horizon boundary has the infinite scrambling time and reliably stores
the value of the density ρλ for the final de Sitter vacuum [27,65].

The Lemaître class cosmological models with dark energy specified by Tt
t = Tr

r describe the
cosmological evolution between the initial and final de Sitter vacuum. The initial de Sitter vacuum
powers the first inflation and supports the subsequent energy transfer to radiation in agreement with
the standard inflationary scenarios. For the special class of the Lemaître cosmological models, the
density of the final de Sitter vacuum is determined by the quantum evaporation of the cosmological
horizon. For the particular model with the initial de Sitter vacuum of the GUT scale due to symmetry
restoration by the gravitational vacuum polarization, the final de Sitter vacuum state is achieved
around 3× 109 years when ρλ starts to dominate according to observations, and its value appears in
agreement with the observational data.

4. Regular Black Holes and Gravitational Solitons G-Lumps with the de Sitter Vacuum Interiors

In this section we overview the basic generic properties and observational signatures of spherically
and axially symmetric compact objects with the de Sitter interiors: regular black holes and gravitational
solitons G-lumps, which are non-singular non-dissipative self-gravitating particle-like structures
without horizons replacing naked singularities.

The global structure of spacetime with three horizons, which represent the maximal analytic
extension for solutions of Equation (4) with the metric function g(r) shown in Figure 1 Left, is presented
by the Penrose–Carter conformal diagram displayed in Figure 5.
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Figure 5. Fragment of the global structure of regular spacetime with 3 horizons.
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Global structure contains an infinite sequence of the regular black and white holes, BH andWH,
the regular asymptotically de Sitter regions RC at r → 0 and CC2 at r → ∞, the parallel (causally
disconnected) universes U1, U2, and the horizons r−, r+, r++. The surfaces J − and J + are the null
surfaces (ds2 = 0) ([51] and references therein). The sequence of these structures is extended in both
time (upwards in the diagram) and space directions. Any observer on a time-like curve (including
Lemaître observers of the previous section) can start in some universes U and travel towards the future
regions of the manifold presented by this Penrose–Carter diagram ([34] and references therein).

Existence of the de Sitter vacuum in the interior regions of regular black holes provides an
opportunity of appearance of baby universes inside a black hole. The question of arising a new
universe inside a black hole was considered in 1989 in [71] on the basis of the hypothesis on the
existence of the limiting curvature at the Planck scale with adopting the equation of state for the de
Sitter vacuum, p = −ρ. Analysis of a smooth de Sitter–Schwarzschild transition with arising of a
closed world in the future of the original universe has been presented in [44].

The model for arising a baby universe inside a black hole was proposed in 1990 starting from
a little false vacuum bubble in the Minkowski space evolving, via quantum tunneling, into the larger
bubble with formation of a black hole and further classical evolution of the vacuum bubble to a new
universe beyond the black hole horizon [72].

The question of a quantum birth of new universes inside a regular black hole with the de Sitter
interior due to quantum instabilities of the de Sitter vacuum has been considered in [60] for the closed,
open and flat universes. The case of arising of a closed universe is shown in Figure 6 Left [60], and for
open universes in Figure 6 Right [60,73]. The picture in Figure 6 Left is plotted for the asymptotically
flat spacetime (λ = 0), but the situation with arising closed baby universes is similar for the spacetime
with two vacuum scales and three horizons shown in Figure 5.
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Figure 6. Left: Quantum birth of a closed universe inside a ΛBH [60]. Right: Penrose–Carter
diagram [73] for the case of quantum birth of an open or flat universe.

In Figure 6 Right, the region ECB corresponds to the regionRC1 in Figure 5 and the region BFD
corresponds to a part of the region RC2. The events E and E′ in Figure 6 Right are creations of the
causally disconnected universes. The curved lines are the world lines of co-moving observers. At the
spacelike surface AB, the phase transition occurs from the inflationary to the radiation dominated
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stage [73]. Multiple births of universes from the initial de Sitter vacuum have been noted still in 1975
in [9]. In the spacetime with the global structure Figure 5, the birth of open and flat baby universes can
occur in any of an infinite numbers of theRC regions inside a black hole, and looks like what is shown
in Figure 6 Right. In [64] we presented a review of the literature on baby universes, and estimations of
the probability of baby universes arising in the future of a regular black hole with the de Sitter vacuum
interior in some of itsRC regions.

Information about the interior de Sitter vacuum in a regular black hole can be extracted from the
rotating black hole shadows due to the asymmetry of a shadow dependent on the black hole angular
momentum. The shadow of a black hole presents its direct image over an image of a bright distance
source of radiation. The shadow is formed by the photon gravitational capture cross-section confined
by the innermost unstable photon orbits ([74,75] and references therein). Current observational
possibilities are provided by the Event Horizon Telescope Collaboration [76] verified by the first
observation of the black hole shadow in M 87 [77].

Regular rotating black holes with the de Sitter vacuum interiors are described by the de
Sitter–Kerr geometries [78] with the metrics of the Kerr–Schild class [79] obtained from the spherical
metrics (4) by the general Gürses-Gürsey formalism [80], which includes the Newman–Janis complex
translation [81] typically applied for construction of particular solutions. In the Boyer–Lindquist
coordinates, the Gürses-Gürsey metric reads (in the units c = G = 1) [80]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (24)

where a is the angular momentum, the Lorentz signature is [- + + +], Σ = r2 + a2 cos2 θ, ∆ =

r2 + a2 − 2 f (r), and f (r) = rM(r). The surfaces of constant r are the oblate confocal ellipsoids
r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0, which degenerate, for r = 0, to the equatorial disk

x2 + y2 ≤ a2, z = 0, (25)

bounded by the ring x2 + y2 = a2, z = 0 [74]. The disk (25) is filled with the rotating de Sitter vacuum,
which is the basic generic feature of all regular rotating objects specified by (2) and described by the
metrics (24) (for a review [82]).

The shape of the shadow of a regular rotating black hole depends on the interior density:
the gravitational capture cross section is less than that for the Kerr black hole, and the difference
depends essentially on the form of the density profile [32]. Comparison of a regular black hole shadow
with the observed shadow and with the shadow of the Kerr black hole of the same mass can provide
information about the interior content of a regular black hole (for a detailed analysis and a review [32]).

The comparative analysis for two particular regular black holes, with the density profile (7) and
with the phenomenologically regularized Newtonian profile [83] reveals also the essential dependence
of their shadows on the pace of density decreasing [32].

The regularized Newtonian profile is given by [83]

ρ̃ =
B2

(r2 + r2
v)

2 ; rv =
π2B2

M
;→ B2 = ρ̃Λr4

v; rv =

(
4r2

Λrg

3π

)1/3

=

(
4xg

3π

)1/3
rΛ, (26)

where ρ̃Λ is the density of the de Sitter vacuum on the disk r = 0 and xg = rg/rΛ.
The cutoff length scale rv in Equation (26) is proportional to the de Sitter radius rΛ. The parameter

B is directly related to Λ: B2/r4
v = ρ̃Λ, where ρ̃Λ = (8πG)−1Λ is the density at r → 0, which represents

the energy density of self-interaction [78,83], in accordance with the Zel’dovich idea [84] to associate
the cosmological constant with self-interaction energy.

In Figure 7 [32] we show the comparison of the regular black shadow with that for the Kerr black
hole for both density profiles (7) and (26).
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Figure 7. Comparison of shadows for the case of the density profile (7) (Left) and for the case of the
density profile (26) (Right) for a = 0.7. An observer angular coordinate θi = π/2.

For a black hole with slowly decreasing density (26), the difference of its shadow from the Kerr
shadow is much more substantial than for a quickly decreasing density (7), which testifies for the
essential dependence of shadows on the pace of the density decreasing [32].

As follows from detailed numerical analysis, differences related to spin parameter a are less
essential than those related to the pace of the density decreasing, as we can see in Figure 8 [32].

Figure 8. Comparison of shadows for the case of the density profile (7) (Left) and for the density profile
(26) (Right) for a = 0.3. An observer angular coordinate θi = π/2.

Restoring the density profile of a black hole from its observed shadow can give information about
the character of its interior.

Another way to reveal an interior de Sitter vacuum is provided by specific observational signatures
of regular black hole (RBH) remnants and gravitational solitons G-lumps in their contribution to heavy
dark matter candidates [22,85,86] (for a review [34]).

The general criteria for RBHs stability to external perturbations (valid for a wide class of the
density profiles) have been presented for regular black holes in [87] and for G-lumps in [22].
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The question of primordial black holes and their remnants as heavy DM candidates has been
discussed in the literature for more than thirty five years [88–90]. In the case of regular compact objects
this list should be completed by G-lumps replacing naked singularities.

Regular primordial black holes and G-lumps with the de Sitter vacuum interiors are formed at
the early inflationary stage(s) by the quantum collapse of density fluctuations related to primordial
inhomogeneities [91]. Their observational signatures as heavy DM candidates can therefore serve as
the signatures for inhomogeneity of the early universe [86]. Primordial RBH remnants and G-lumps
can form graviatoms-gravitationally bound (αG = GMm/h̄c) quantum systems, by capturing available
charged particles ([34,91] and references therein).

Observational signatures of RBH remnants, G-lumps and graviatoms provide information about
the scale of the interior de Sitter vacuum. Regular objects with the GUT scale interiors [20,45],
where baryon and lepton numbers are not conserved, may induce a proton decay in the matter
of an underground detector. The rough estimate of the cross-section by the geometrical size of a
nucleon would lead to one event per 107 years in one ton of a detector matter. In the 1 km3 detector,
like IceCUBE, there could be expected up to 300 events per year [86], which can be an observational
signature in heavy DM searches in the IceCUBE experiment [86].

An additional observational signature for graviatoms is provided by their electromagnetic
radiation with the characteristic frequency essentially depending on the scale of the interior de
Sitter vacuum. Most promising is the oscillatory radiation [91]. For the density profile (7) the
energy h̄ω = 0.678 h̄c/rΛ = 0.678× 1011GeV(EΛ/EGUT)

2 appears within the range of observational
possibilities (for cosmic photons up to 1011.5 GeV [92]).

Global structure of spacetime of a regular black hole contains an infinite sequence of universes,
white and black holes and the interior regions of the de Sitter vacuum which provide a possibility for
the birth of baby universes in the future of black holes. A regular rotating black hole can be identified
by comparison of its shadow with the observed black hole shadow, which yields information about its
interior content and allows one to decide whether it contains a singularity or the de Sitter vacuum.
Interior de Sitter vacuum of RBH remnants and G-lumps can be identified by their observational
signatures as heavy DM candidates.

5. De Sitter Vacuum in Particle Physics

In this section, we overview the intrinsic relation of the Higgs mechanism with gravity and
spacetime symmetry ensured by the de Sitter vacuum incorporated in the Higgs mechanism as its
basic ingredient (a false vacuum with p = −ρ).

In the Higgs mechanism, particles acquire masses via spontaneous symmetry breaking of scalar
field(s) from a symmetric false vacuum state (p = −ρ) [93–95]. The de Sitter vacuum involved in
this process generates in the region of interaction the de Sitter geometry, so that gravity and hence
spacetime are undoubtedly intrinsically involved in the mass generation (for a recent review including
the existing in the literature proposals concerning the relation of mass with gravity and with spacetime
symmetry [36]).

A particle equipped with mass propagates further in an observer space with the Minkowski
geometry, hence also breaking of spacetime symmetry from the de Sitter group to the Poincaré group
is intrinsically incorporated in the mass generation by the Higgs mechanism [36].

Below we outline the observational case that displays and verifies this fact. It is referred to
as “the negative mass square problem” for neutrino. The value given by the Particle Data Group
in 1994 [96] m2

ν = −54± 30 eV2/c4 was later confirmed by observations at the level around m2
νe

=

−22± 4.8 eV2/c4 [97] (for a review [36]).
In particle physics theory there is no exact gauge symmetry to protect the lepton number, so it is

expected to be violated and neutrinos to acquire masses, eventually due to mixing the non-degenerate
mass eigenstates at the gravito-electroweak scale ∼ 103 GeV [98,99].
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The de Sitter symmetry group induced by the Higgs mechanism in the gravito-electroweak vertex
requires the description of a particle state in the vertex by the eigenstates of the Casimir invariant
|I′1, I′2〉 of the Casimir operator I1, I2 in the de Sitter spacetime. To study the behavior of mass in
transition from the de Sitter group in the interaction vertex to the Poincaré group in the observer
region, we concentrate on the behavior of I1, which is defined as [100]

I1 = −ΠµΠµ − 1
2r2

Λ
Jµν Jµν; Πµ =

(
1 +

r2 − c2t2

4r2
Λ

)
Pµ +

1
2r2

Λ
xν Jµν (27)

where Jij = −Jji = εijk Jk and Ji0 = −J0i = −Ki; i, j, k take the values 1, 2, 3. In the interaction region
r2 − c2t2 � r2

Λ ([37], justification below), and the operator I1 is approximated by

I1 ≈ PµPµ − 1
r2

Λ

(
J2 −K2

)
. (28)

The generators of rotations J and generators of the Lorentz boosts K are given by [101]

JR = h̄
σ

2
, KR = −ih̄

σ

2
; JL = h̄

σ

2
, KL = +ih̄

σ

2
(29)

for the right-handed and left-handed fields, respectively; σ denotes the Pauli matrices.
This gives for the Casimir operator I1 and its eigenvalues I′1 [38]

I1 ≈ PµPµ − h̄2

2r2
Λ

σ2; I′1 = µ2c2 ± h̄2

2r2
Λ

. (30)

The additional term ±h̄2/2r2
Λ related to the eigenvalues of the product of the Pauli matrices σ (which

is the unit matrix) appears due to the change in the spacetime symmetry.
The state |I′1〉 appears as a linear superposition of two different mass eigenstates

m2
1 = µ2 +

h̄2

2c2r2
Λ

, m2
2 = µ2 − h̄2

2c2r2
Λ

(31)

with equal weights. The de Sitter symmetry in the gravito-electroweak vertex produces an exact
bi-maximal mixing for neutrinos. For h̄2/(2r2

Λ) > µ2c2, m2
2 becomes negative, which testifies that

arising of “negative mass square” follows directly from the essential involvement of the de Sitter
vacuum in the gravito-electroweak vertex [37,38].

The de Sitter radius rΛ is related to the density of the de Sitter vacuum ρΛ as r2
Λ = 3c2/(8πGρΛ),

and the mass-squared difference is given by [38]

∆m2 =
h̄2

c2r2
Λ

=
8π

3
ρΛ

ρPl
M2

Pl . (32)

Relating ρΛ to the gravito-electroweak scale Muni f , we get the relation between the mass square
difference and the unification scale [37]

∆m2 =
8π

3

(Muni f

MPl

)4

M2
Pl → Muni f =

[
3

8π

(
∆m2

M2
Pl

)]1/4

MPl . (33)
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This allows to read off the gravito-electroweak scale from the known observational data on mass square
differences for the atmospheric and solar neutrino obtained in the two-flavor mixing approximation
∆m2

atm = 2.5× 10−3eV2/c4; ∆m2
sol = 6.9× 10−5eV2/c4 [99], which gives ([37] and references therein)

Muni f (atm) ' 14.5 TeV; Muni f (sol) ' 5.9 TeV. (34)

The mass square differences for neutrinos provided by the de Sitter mixing, Equation (31), give for these
observational data the value for Muni f at the same scale as predicted by theories of gravito-electroweak
unification ([36] and references therein).

Our aim in [37,38] was to find the reason for the appearance of the negative mass squares
for neutrino and then to apply the results for evaluation of the gravito-electroweak scale from the
observational data. The reason was found without any assumptions or approximations as provided by
the intrinsic involvement of the de Sitter symmetry in the interaction vertex.

The evaluation of the gravito-electroweak scale was given with the approximation Equation (28).
Now let us estimate the accuracy of this approximation. The de Sitter spacetime is characterized
by the constant non-zero curvature, while the Minkowski geometry is the case of zero curvature,
which corresponds to rΛ → ∞. The transition from the de Sitter symmetry in the interaction vertex to
the Minkowski symmetry in the observer region in general occurs continuously. The characteristic
length scale for the de Sitter geometry is rΛ related to the de Sitter vacuum density as r2

Λ =

3c2/(8πGρΛ). The density ρΛ is related to the gravito-electroweak unification scale as ρΛ =

(Muni f /MPl)
4ρPl , where the scale Muni f is directly related to the observational data by Equation (33).

The data on the atmospheric and solar neutrino give the scales (34) for Muni f which ultimately give
rΛ(atm) ' 3.9× 10−4 cm, and rΛ(sol) ' 2.4× 10−3 cm. For neutrino with the mass < m >νe= 0.39 eV,
its Compton wavelength is λc = h̄/mc ' 5.1× 10−5 cm. The relation λc/rΛ estimates the accuracy
of approximation (r2 − c2t2 � r2

Λ) in Equation (28) as ' 1.3× 10−1 for Muni f obtained with the
data on the atmospheric neutrino, and ' 2.1× 10−2 for Muni f obtained with the data on the solar
neutrino. With this accuracy, the scales (34) appear in agreement with the scales predicted by theories
of gravito-electroweak unification.

Another observational case directly related to participation of the de Sitter vacuum in mass
generation, is the appearance of a minimal length scale le = 1.57 ×10−17 cm in the annihilation reaction
e+e− → γγ(γ) at the energy E = 1.253 TeV with the 5σ significance [41]. Experiments have been
carried out from 1989 to 2003 with the data from VENUS, TOPAZ, ALEPH, DELPHI, L3 and OPAL at
the center-of-mass energies from

√
s = 55 GeV to 207 GeV. Working out the data in the QED-α3 with

a scattering center as a point and the radiative corrections up to O(α3) predicted an increase in the
total cross-section, but the χ2 fit, shown in Figure 9, displayed the minimum with the negative fit
parameter P = (1/Λ4)best ' −1.1× 10−10GeV−4, where Λ here is the QED cutoff parameter ([41] and
references therein).

Contradiction of the results of experiments with the QED predictions displays a non-point-like
behavior of particles and suggests an extended particle approach in a situation when its characteristic
size exceeds the test distances. In the case of the electron, both its classical radius re = e2/(mec2) =

2.8 × 10−13 cm and the Compton size λe = h̄/(mec) = 3.9 × 10−11 cm are much larger than the
characteristic length le.
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Figure 9. A minimum in the χ2 fit with P = 1/Λ4.

In the models of the extended electron, constructed for more than a hundred years since its
discovery by Sir Joseph John Thomson in 1897, just these two sizes have been typically imposed.
The early models concentrated on the problem of preventing an electron from flying apart by the
Coulomb repulsion, which resulted in understanding the necessity to introduce cohesive forces of
non-electromagnetic origin (the Poincaré stress) [102] (for a review [41]).

In the Einstein–Maxwell equations with the linear electrodynamics, electrically charged
spinning objects are described by the Kerr–Newman solution presented in 1965 and
corresponding to M(r) = m− e2/2r in (24), with the associated electromagnetic potential Ai =

−(er/Σ)[1; 0, 0,−a sin2 θ] [103]. As was discovered by Carter in 1968 [104], the angular momentum
J = ma, and an asymptotic magnetic momentum µ = ea yield the same gyromagnetic ratio g = 2 as
predicted by the Dirac equation for a spinning particle, however the Kerr–Newman solution cannot
describe an electron due to the global causality violation involving the region of a distant observer in
the relevant case of the absence of the event horizon [104].

Since then, construction of the extended electron models was carried out by matching the
Kerr–Newman metric outside with some model of an interior source inside. Contemporary
comprehensive models comprise a lepton Bag model in which the external Kerr–Newman solution
is matched to the free of gravity (flat) superconducting interior by the domain wall boundary
interpolating between them ([105,106] and references therein), and the models focused on the
significant role of the electron spin [107,108] (for a recent review [36]).

The annihilation reaction e+e− → γγ(γ) is the purely electromagnetic reaction, proceeding with
the exchange of a virtual electron in the t and u channels and forbidden s channel. It can be, in principle,
approached by applying as a model an electromagnetic spinning soliton related by electromagnetic and
gravitational interactions and described by nonlinear electrodynamics coupled to gravity (NED-GR).
The more that introducing nonlinear electrodynamics by Born and Infeld was originally motivated
by the aim to describe the electron and electromagnetic field in the frame of one physical entity
(electromagnetic field) and to avoid divergences of physical quantities [109]. This was performed by
imposing an upper cutoff on the electric field related to the electron radius, nevertheless the geometry
remained singular [109].

In NED-GR, this aim can be achieved in full and in a self-consistent way. The regular objects are
described by source-free dynamical equations for electromagnetic fields, while the gravitational field
is determined from the Einstein equations with stress-energy tensors for their own electromagnetic
fields, which belong to the class Tt

t = Tr
r .

Their inherent part is the interior de Sitter vacuum, able to prevent a formation of singularities
(and thus to avoid divergences) by its intrinsic negative pressure [31]. The de Sitter vacuum fills an
equatorial disk (25) [31,110] (for a review [82,111]). The metric (24) on the disk is intrinsically flat
but the density achieves the maximum presented by the de Sitter vacuum, so that gravity is not only
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essential but its intensity is maximal [31]. For r → ∞ the metric (24) approaches the Kerr–Newman
asymptotic form with the gyromagnetic relation g = 2 appropriate for a spinning particle.

The interior equatorial disk (25) of the de Sitter vacuum has properties of a perfect conductor
and ideal diamagnetic [31] and is confined by the superconducting ring current, which serves as a
non-dissipative source of the electromagnetic fields of an NED-GR spinning object responsible for
its unlimited life time [112], and as the source of its intrinsic magnetic momentum [113]. For the
electron modeled by the electromagnetic soliton its known magnetic momentum gives the value of its
superconducting ring current jφ = 79.277A [113].

Masses of NED-GR objects are generically related to the interior de Sitter vacuum, and breaking
of spacetime symmetry from the de Sitter group in the origin to the Poincaré group at infinity in the
asymptotically flat spacetime (24) (for more information a review [26]).

Basic model-independent features of an electromagnetic soliton visualizing the electron as an
extended particle, can shed some light on the physical mechanism responsible for a minimal length
scale in the annihilation reaction e+e− → γγ(γ) [41]. A characteristic de Sitter cutoff rds on
electromagnetic self-energy can be roughly estimated by e2/r4

ds ' 8πGρΛ = 3/r2
Λ [83]. Adopting

for the interior de Sitter vacuum the electroweak scale EEW = 246 GeV related to the electron mass,
we obtain the de Sitter radius rΛ = 1.374 cm. It gives for the characteristic length scale at which
electromagnetic attraction is balanced by de Sitter gravitational repulsion, rds ' 1.05× 10−17 cm,
close enough to the minimal length scale le.

More detailed analysis [41] gives additional information about the origin of the minimal length
scale le. At a certain stage of the annihilation process, the interaction region is obviously neutral and
spinless, and can be modeled by a spherical lump with the de Sitter vacuum interior, asymptotically
Schwarzschild as r → ∞. For all such structures there exists the characteristic zero gravity surface
rc ∼ (r2

Λrg)1/3, at which the strong energy condition (ρ + ∑ pk ≥ 0) is violated and beyond which
the gravitational acceleration becomes repulsive [21,29]. For a lump with the energy E = 1.253 TeV,
the radius of zero gravity surface is rc = 0.86× 10−16 cm, and the scale le = 1.57× 10−17 cm appears
inside a region of the repulsive gravity. The minimal length le can be interpreted as a distance of the
closest approach of annihilating particles at which the effect of gravitational repulsion of the interior
de Sitter vacuum becomes crucial.

This observational case promotes the extended massive particle approach, essential at the
distances smaller then a particle size, while for the distances substantially exceeding its size,
the point-like idealization evidently works.

The de Sitter vacuum is incorporated in the Higgs mechanism as its false vacuum state,
which leads to incorporation of gravity and breaking of spacetime symmetry in mass generation.
Applying the Casimir operators in the de Sitter space for description of particle states in the
interaction vertex allows to explain the negative mass square problem for neutrino and to evaluate
the gravito-electroweak scale from the atmospheric and solar neutrino data in agreement with the
predictions of gravito-electroweak theories. The NED-GR equations predict, for an arbitrary gauge
invariant lagrangian without additional requirements except WEC, the existence of electrically charged
spinning solitons, with the gyromagnetic ratio g = 2 for a distant observer. Their inherent part is the
interior de Sitter vacuum, which allows to explain the appearance of the minimal length scale in the
annihilation reaction e+e− → γγ(γ).

6. Conclusions

Repulsive gravity of the de Sitter vacuum Tk
i = ρvacδk

i (p = −ρvac) provides the reason for the
universe expansion, powers the first inflationary stage and supports the present accelerated expansion
of our universe due to the basic properties of the de Sitter geometry independent on the choice of
an underlying particular model for p = −ρvac. The de Sitter vacuum keeps the position of the best
candidate for a dark energy since 1995, the various models of a dark energy specified by p = wρ

with w < −1/3, give in confrontation with observations of the value w = −1. The contribution
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of the de Sitter vacuum to the universe density approaches 75%, which allows to consider it as its
basic ingredient.

The Einstein equations admit the class of spherically symmetric and axially symmetric regular
solutions with the source terms specified by Tt

t = Tr
r (pr = −ρ) which describe, dependently on the

choice of a coordinate mapping, cosmological evolution between an initial and final de Sitter vacua and
regular compact objects with the de Sitter vacuum interiors: the regular black holes and gravitational
solitons G-lumps replacing naked singularities.

Cosmological evolution between two de Sitter vacua, initial and present, is described in the frame
of one theoretical scheme by the Lemaître class regular cosmological models. For the special class
of the Lemaître models, absolutely thermodynamically stable and distinguished by the Holographic
Principle, spacetime symmetry provides a mechanism for relaxing a cosmological constant to a tightly
fixed non-zero value for the density of the final de Sitter vacuum.

The observational signatures of regular black holes (presented by shadows of rotating black holes),
as well as of their remnants and G-lumps as heavy dark matter coordinates, can in principle give
information about the scale of their interior de Sitter vacuum.

For all these objects mass is generically related to the interior de Sitter vacuum and breaking of
spacetime symmetry from the de Sitter group in the origin.

De Sitter vacuum as the basic ingredient of the Higgs mechanism (the false vacuum with p = −ρ),
provides the intrinsic relation of the mass generation with gravity and spacetime symmetry breaking.
It generates the de Sitter geometry in the region of its involvement and leads to dynamical participation
of gravity in the region of interaction. Gravity of the de Sitter vacuum leads to the bi-maximal neutrino
mixing in the interaction vertex, which explains the data on the mass square differences for neutrino
and allows to evaluate from these data the gravito-electroweak scale in agreement with the theories of
the gravito-electroweak unification.

Nonlinear electrodynamics coupled to gravity stress-energy tensors of electromagnetic fields have
the algebraic structure such that Tt

t = Tr
r . As a result, all regular electrically charged spinning objects

with positive density have an interior de Sitter vacuum and mass related to gravity and spacetime
symmetry breaking. This is displayed in the appearance of the minimal length scale in the annihilation
reaction e+e− → γγ(γ). The QED predictions with the radiative corrections up to O(α3) contradict
the results of experiments, which suggest an extended particle approach in a situation when its
characteristic size exceeds the test distances. Application of the electromagnetic spinning solitons
allows to interpret the minimal length as the distance of the closest approach of annihilating particles
at which their electromagnetic attraction is effectively balanced by the gravitational repulsion of their
interior de Sitter vacuum.
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