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Abstract: We perform a full analytical and numerical treatment, to the first post-Newtonian (1pN)
order, of the general relativistic long-term spin precession of an orbiting gyroscope due to the mass
quadrupole moment J2 of its primary without any restriction on either the gyro’s orbital configuration
and the orientation in space of the symmetry axis k̂ of the central body. We apply our results to the
past spaceborne Gravity Probe B (GP-B) mission by finding a secular rate of its spin’s declination
δ which may be as large as .30–40 milliarcseconds per year

(
mas yr−1), depending on the initial

orbital phase f0. Both our analytical calculation and our simultaneous integration of the equations for
the parallel transport of the spin 4-vector S and of the geodesic equations of motion of the gyroscope
confirm such a finding. For GP-B, the reported mean error in measuring the spin’s declination
rate amounts to σGP−B

δ̇
= 18.3 mas yr−1. We also calculate the general analytical expressions of the

gravitomagnetic spin precession induced by the primary’s angular momentum J. In view of their
generality, our results can be extended also to other astronomical and astrophysical scenarios of
interest like, e.g., stars orbiting galactic supermassive black holes, exoplanets close to their parent
stars, tight binaries hosting compact stellar corpses.

Keywords: general relativity and gravitation; experimental studies of gravity; experimental tests of
gravitational theories; satellite orbits; harmonics of the gravity potential field

1. Introduction

To the first post-Newtonian (1pN) level of order O
(
c−2), where c is the speed of light in vacuum,

the geodesic motion of a test particle through the deformed spacetime outside an axially symmetric
oblate body of mass M, equatorial radius R and dimensionless mass quadrupole moment J2 is
characterized by certain secular orbital precessions [1–4]. They have recently gained attention, being
possibly detectable in some proposed space-based experiments like, e.g., HERO [5].

Here, we will look at the long-term 1pN rate of change, proportional to J2 c−2, of the spin S of
a pointlike gyroscope freely moving with velocity v around an oblate primary. The analogous 1pN
gyro’s precessional effects due to only the mass monopole (the mass M) and the spin dipole (the proper
angular momentum J) moments of the central body acting as source of the gravitational field are the
time-honored de Sitter-Fokker (or geodetic) [6,7] and Pugh-Schiff [8,9] precessions, respectively. They
were recently measured by the spaceborne mission Gravity Probe B (GP-B) in the field of Earth to
'0.3% and '19%, respectively, [10,11], despite a higher accuracy had been originally expected [12,13].
GP-B’s data were used also to put constraints on some modified models of gravity; see, e.g., [14]. We
will not restrict ourselves to any particular orbital configuration of the moving gyroscope, and the
symmetry axis of the oblate primary will retain an arbitrary orientation in space. We will calculate
the sought effect both numerically and analytically by finding, among other things, that it depends
on the initial position of the gyro along its orbit. In the case of GP-B, it turns out that the rate of
change of the spin’s declination (DEC) δ, averaged over an orbital revolution, may be as large as
'30–40 milliarcseconds per year

(
mas yr−1). Thus, it may be potentially measurable in a future data

reanalysis since the reported average experimental accuracy in measuring the temporal evolution
of δ is [10,11] σGP−B

δ̇
= 18.3 mas yr−1. For previous analytical calculations, relying upon various

simplifying assumptions concerning the gyro’s orbit and different computational approaches, see
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Adler & Silbergleit [15], Barker & O’Connell [16], Breakwell [17], O’Connell [18]. Even putting aside
the issue of the particular orbital configurations adopted, they are, at least, incomplete since they
neglect an important feature in the averaging procedure yielding to the dependence on the gyro’s
initial conditions which, instead, we will take into account. Our simultaneous numerical integrations
of the equations of motion of the gyro and of its spin will display it, by supporting our analytical
findings. Moreover, it seems that the aforementioned works return incorrect results even for the part
which is independent of the initial conditions, being also in mutual disagreement. In the following,
we will not deal too much with the spin’s right ascension (RA) α since it turns out that, for GP-B,
its total rate of change of the order of O

(
J2 c−2) is negligible.

For the sake of completeness, we will analytically derive also the generalization of the Pugh-Schiff
gravitomagnetic spin precession valid for an arbitrary orientation of the primary’s angular momentum
J and for a generic orbital configuration of the gyroscope.

The generality of our approach allows our results to be extended also to other astronomical and
astrophysical scenarios of interest like, e.g., other planets of our solar system, exoplanets, binaries with
compact stellar corpses, supermassive black holes orbited by planets and stars. To this aim, it may
be interesting to recall that Haas & Ross [19] investigated the possibility of using spacecraft-based
missions to measure the angular momenta of Jupiter an the Sun by means of the gravitomagnetic
Pugh-Schiff spin precession.

The outline of the paper is as follows. In Section 2, we numerically calculate the total spin
precession of the order of O

(
J2 c−2) by simultaneously integrating the equations for the parallel

transport of the gyro’s spin 4-vector and the geodesic equations of motion of the gyroscope. The spin
and orbital configurations of GP-B are used. Section 3 is devoted to the analytical calculation. It, first,
includes the direct effects (Section 3.1), which are the de Sitter precession for an arbitrary orbital
configuration (Section 3.1.1), and the component of the spin rate of change of the order of O

(
J2 c−2)

arising from using a fixed Keplerian ellipse for the orbital average (Section 3.1.2). Then, in Section 3.2,
we calculate the indirect, or mixed, components of the sought precession. They are those arising
from averaging the instantaneous 1pN de Sitter-like spin rate over the orbital period of a J2-driven
precessing ellipse (Section 3.2.1), and those coming from the inclusion of the instantaneous orbital
shifts caused by J2 in the averaging procedure (Section 3.2.2). The total analytical spin precession of
the order of O

(
J2 c−2) is discussed in Section 3.3, where the GP-B case is illustrated and compared

with the numerical results of Section 2. The general expression of the gravitomagnetic spin precession
is analytically calculated in Section 4. Section 5 summarizes our finding and offers our conclusions.

2. Numerical Simulations: Simultaneously Integrating the Equations for the Motion of the
Gyroscope and of Its Spin

The equations for the parallel transport of the spin 4-vector S of a pointlike gyroscope freely
moving in the deformed spacetime of a central body are [20–23]

dSν

dτ
= −Γν

λβ Sλ dxβ

dτ
, ν = 0, 1, 2, 3, (1)

where τ is the gyro’s proper time,

Γν
λβ =

1
2

gνγ

(
∂gγλ

∂xβ
+

∂gγβ

∂xλ
−

∂gλβ

∂xγ

)
, ν, λ, β = 0, 1, 2, 3 (2)

are the spacetime’s Christoffel symbols, gγλ, gγλ, γ, λ = 0, 1, 2, 3 are the components of the spacetime
metric tensor and of its inverse, respectively, and dxβ/dτ, β = 0, 1, 2, 3 are the components of the
gyro’s 4-velocity u. The space-like components of S are the components of the gyro’s spin vector S,
i.e., S i = Si, i = 1, 2, 3. The time-like component S0 of S is determined by the constraint 1

gρσ Sρ dxσ

dτ
= 0. (3)

1 It is so because, in the gyro’s rest frame, S is space-like, while u is time-like; thus, they are orthogonal.
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The geodesic equations of motion of the pointlike gyroscope are

d2xν

dτ2 = −Γν
λβ

dxλ

dτ

dxβ

dτ
, ν = 0, 1, 2, 3. (4)

In standard pN isotropic coordinates, the components of the metric tensor of the spacetime of an
isolated body are [3,24]

g00 = 1 +
2 U
c2 +

2 U2

c4 +O
(

c−6
)

, (5)

g0i = O
(

c−3
)

, i = 1, 2, 3, (6)

gij = −δij

(
1− 2 U

c2

)
+O

(
c−4
)

, i, j = 1, 2, 3, (7)

where

δij =

{
1 for i = j
0 for i 6= j, i, j = 1, 2, 3 (8)

is the Kronecker delta. In the following, we will use cartesian coordinates, so that x1 = x, x2 = y, x3 =
z, S1 = Sx, S2 = Sy, S3 = Sz. In Equations (5)–(7), the potential U (r) of the oblate mass is

U = −µ

r

[
1− J2

(
R
r

)2
P2 (ξ)

]
. (9)

In Equation (9), µ
.
= GM is the gravitational parameter of the central body, G is the Newtonian constant

of gravitation,

P2 (ξ) =
3 ξ2 − 1

2
(10)

is the Legendre polynomial of degree 2, while

ξ
.
= k̂ · r̂ (11)

is the cosine of the angle between the body’s symmetry axis k̂ and the unit position vector r̂. In the
case of a diagonal metric, as for Equations (5)–(7), Equation (3) yields

S0 = − 1
c g00

(
Sx g11

dx
dτ

+ Sy g22
dy
dτ

+ Sz g33
dz
dτ

)
. (12)

We set up a numerical code to simultaneously integrate both Equation (1) and Equation (4) for an
arbitrary orientation of k̂ in space and unrestricted orbital configurations for the moving gyroscope.
The space-like components of S are parameterized in terms of two spherical angles α, δ as

Sx = cos δ cos α, (13)

Sy = cos δ sin α, (14)

Sz = sin δ, (15)

which, in the case of Earth and an equatorial coordinate system, are the spin’s right ascension and
declination, respectively. As initial conditions for both the gyroscope orbit and its spin, we adopt those
of GP-B [25], summarized in Table 1. As far as the initial value of S0 is concerned, it can be retrieved
from the condition of Equation (3). The initial values of the space-like components of the 4-velocity u
can be obtained from
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ui =
dt
dτ

vi, i = 1, 2, 3, (16)

where vi, i = 1, 2, 3 are the components of the velocity v (see Equation (46)), and

dt
dτ

= c

√
1

gρσ
dxρ

dt
dxσ

dt

. (17)

Table 1. Initial conditions common to all the numerical integrations. They were retrieved
from Kahn [25] for GP-B. The true anomaly at epoch f0 is changed from one run to another.

Orbital and Spin Parameter Symbol Value Unit

Semimajor axis a 7027.4 km
Eccentricity e 0.0014 -
Inclination I 90.007 deg

Longitude of the ascending node Ω 163.26 deg
Argument of perigee ω 71.3 deg

True anomaly at epoch f0 variable deg
DEC of the spin axis δ 0 deg
RA of the spin axis α Ω + 180◦ deg

We, first, test our routine by successfully reproducing the de Sitter precession, shown in Figure 1.

Figure 1. Numerically produced 1pN de Sitter time series δ (τ), in mas, of the declination δ of the
spin axis of a gyroscope orbiting the Earth along a Keplerian ellipse for some different initial
values of the true anomaly f0. Each of the times series was obtained by simultaneously integrating
Equations (1) and (4) with J2 = 0 in Equations (5)–(9), and calculating arcsin Sz (τ) for the resulting
solution Sz (τ) of each run. It turned out that essentially the same outcome can also be obtained
by replacing Equation (4) with the 3-dimensional Newtonian acceleration AN = −

(
µ/r2) r̂ for

the gyroscope. The initial conditions adopted, common to all of the integrations, were those of
GP-B [25], summarized in Table 1. All the shifts are independent of f0, and their slopes amount just to
δ̇dS = −6603.8 mas yr−1, as expected.
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The time series in it were obtained by switching off J2 in both Equations (1) and (4).
They correspond to the orbital average over a Keplerian ellipse2 of the 1pN components of the
right-hand-sides of Equation (1) for i = 1, 2, 3 and J2 = 0. As expected, all the signatures in Figure 1
are independent of f0.

Figure 2 displays the “direct” part of the spin precession of the order of O
(

J2 c−2) obtained by
restoring J2 in Equation (1), but not in Equation (4), and subtracting from the resulting signatures the
purely de Sitter ones.

Figure 2. Numerically produced direct 1pN J2-induced yearly shifts ∆δ (τ), in mas, of the declination
δ of the spin axis of a gyroscope orbiting the Earth along a fictitious Keplerian ellipse for some different
initial values of the true anomaly f0. Each of the times series ∆δ (τ) was obtained by simultaneously
integrating Equation (1) with J2 6= 0 and Equation (4) with J2 = 0, and subtracting from each of
them the corresponding time series obtained by integrating both Equation (1) and Equation (4) with
J2 = 0 (the de Sitter trends). Then, arcsin Sz (τ) was calculated for each of the resulting solutions
Sz (τ). The initial conditions adopted, common to all of the runs, were those of GP-B [25], summarized
in Table 1. All the shifts are independent of f0, and agree with the result calculated analytically in
Section 3.1.2. The slope amounts to ∆δ̇ = 5.8 mas yr−1.

It essentially corresponds to the orbital average of the 1pN components of the right-hand-sides of
Equation (1) for i = 1, 2, 3 and J2 6= 0 over an actually non-existent Keplerian ellipse3. Clearly, it is an
unphysical situation which is just an intermediate check of our analytical calculation, to be displayed
in Section 3.1.2, and of the results existing in the literature. Its slope amounts to 5.8 mas yr−1, and is
independent of f0. As we will see in Section 3.1.2, our analytical outcome for the direct precession of the
order of O

(
J2 c−2) agrees with Figure 2 to within ' 0.6 mas yr−1. Instead, the part of Equation (53) of

Barker & O’Connell [16] containing J2 allows to obtain ∆δ̇ = 4.1 mas yr−1, while the J2-dependent part
of 〈ΩG〉 in ([15], p. 153) corresponds to ∆δ̇ = 6.6 mas yr−1. As it will be demonstrated in Section 3.1.2,
both of them disagree with our analytical calculation.

The total spin precessions of the order of O
(

J2 c−2), obtained by simultaneously integrating both
Equation (1) and Equation (4) with J2 6= 0 for different values of f0 and subtracting the purely de Sitter
trends from the resulting signatures, are displayed in Figure 3.

2 In fact, even switching off J2 in Equation (4) does not correspond to a purely Keplerian path but to a (slowly) precessing
ellipse affected, to the 1pN level, by a perigee precession analogous to the Einstein precession of the perihelion of Mercury.
However, its impact on the spin precession is negligible, being of the order of O

(
c−4).

3 If J2 6= 0, the actual trajectory is a (slowly) precessing ellipse [26]. See also Footnote 2.
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Figure 3. Numerically produced full 1pN J2-induced yearly shifts ∆δ (τ) of the declination δ of the
spin axis of a gyroscope orbiting the oblate Earth along a realistic precessing Keplerian ellipse for
different values of the true anomaly f0. Each of the time series ∆δ (τ) was obtained by simultaneously
integrating Equation (1) and Equation (4), both with J2 6= 0 in Equations (5)–(9) and subtracting the
corresponding de Sitter trends from each of them, and calculating arcsin Sz (τ) for the resulting solution
Sz (τ) of each run. The initial conditions adopted, common to all of the integrations, were those of
GP-B [25], summarized in Table 1. All the numerically integrated shifts agree with those calculated
analytically in Section 3.3 to within .5–8 mas yr−1. Such a discrepancy is not statistically significative
since it is smaller than σGP−B

δ̇
= 18.3 mas yr−1 [10,11].

They can be thought as the sum of the direct precession of Figure 2 and of the “indirect”,
or ”mixed”, ones arising from the fact that, in this case, the trajectory of the gyroscope is, more
realistically, a (slowly) precessing ellipse mainly driven by4 J2. It can be thought as if, in addition to
the Keplerian average of the J2-dependent parts of the space-like components of Equation (1), the de
Sitter-like 1pN components of the right-hand-sides of Equation (1) for i = 1, 2, 3 and J2 = 0 were
averaged over one orbital revolution by taking now into account also the J2-induced instantaneous
changes of the osculating Keplerian orbital elements parameterizing the varying ellipse, and the fact
that the orbital period is the time interval between two successive passages at a changing perigee.
The same, in principle, would hold also for the 1pN orbital changes which, however, would affect
the spin precession to the 1/c4 level. Effects of the order of O

(
J2
2 c−2) would arise by repeating the

same average for the 1pN components of the right-hand-sides of Equation (1) for i = 1, 2, 3 and J2 6= 0.
Our numerical integration accounts simultaneously for all such negligible effects of higher order as
well. A striking feature of Figure 3 is that the indirect effects induce a neat dependence on f0 which can
yield spin precessions as large as '30–40 mas yr−1. It is a quite important finding since the reported
mean error in measuring the spin’s declination precession of GP-B is σGP−B

δ̇
= 18.3 mas yr−1 [10,11],

and it may prompt some reanalysis of the mission data. Such a dependence on f0 induced by the
mixed effects is captured and reproduced by our analytical calculation of the overall precession in

4 See Footnote 2.



Universe 2020, 6, 85 7 of 23

Sections 3.1.2–3.2.2 to within .5–8 mas yr−1; cfr. with Figure 4 in Section 3.3. Instead, it is missing
in the literature. Indeed, if, on the one hand, Adler & Silbergleit [15] seemingly dealt only with the
direct J2-induced precession, on the other hand, Barker & O’Connell [16] were aware of such an issue,
but they somehow treated it only partly since their Equation (52) does not contain any dependence on
the initial orbital phase. Should it ever be related to the aforementioned issue of the orbital period in a
precessing orbit, it is in disagreement with our analytical results for it, as we will show in Section 3.2.1.

In all the previous integrations, the Earth’s spin axis was kept fixed and aligned with the reference
z axis. In principle, one should, at least, account also for precession and nutation displacing it over
the years. In a further series of runs over 1 yr, we modeled them as per Montenbruck & Gill [27] by
accounting, among other things, for the largest nutation harmonic term due to the motion of the lunar
node. The resulting pictures did not display any noticeable change with respect to the previous ones.
Thus, we conclude that the slow change of the orientation of the Earth’s spin axis does not produce
detectable 1pN J2-driven effects during the time span considered.

3. Analytical Calculation

By expanding
dS i

dτ
= −Γi

αβ Sα dxβ

dτ
, i = 1, 2, 3, (18)

calculated with Equation (9) in Equations (5)–(7), to the order ofO
(
c−2), one obtains the instantaneous

rates of change of the gyro’s spin components as

dSx

dt
=
(
TdS

xx + TJ2
xx

)
Sx +

(
TdS

xy + TJ2
xy

)
Sy +

(
TdS

xz + TJ2
xz

)
Sz, (19)

dSy

dt
=
(
TdS

yx + TJ2
yx

)
Sx +

(
TdS

yy + TJ2
yy

)
Sy +

(
TdS

yz + TJ2
yz

)
Sz, (20)

dSz

dt
=
(
TdS

zx + TJ2
zx

)
Sx +

(
TdS

zy + TJ2
zy

)
Sy +

(
TdS

zz + TJ2
zz

)
Sz, (21)

where the coefficients of the matrices TdS, TJ2 are, in general, time-dependent. They are

TdS
xx =

µ

c2 r3

(
vy y + vz z

)
, (22)

TdS
xy =

µ

c2 r3

(
−2 vy x + vx y

)
, (23)

TdS
xz =

µ

c2 r3 (−2 vz x + vx z) , (24)

TdS
yx =

µ

c2 r3

(
vy x− 2 vx y

)
, (25)

TdS
yy =

µ

c2 r3 (vx x + vz z) , (26)

TdS
yz =

µ

c2 r3

(
−2 vz y + vy z

)
, (27)

TdS
zx =

µ

c2 r3 (vz x− 2 vx z) , (28)
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TdS
zy =

µ

c2 r3

(
vz y− 2 vy z

)
, (29)

TdS
zz =

µ

c2 r3

(
vx x + vy y

)
, (30)

and

TJ2
xx =

3 µ J2 R2

2 c2 r7

[
3 vz

(
x2 + y2

)
z− 2 vz z3 + vy y

(
x2 + y2 − 4 z2

)]
, (31)

TJ2
xy = −3 µ J2 R2

2 c2 r7

(
2 vy x− vx y

) (
x2 + y2 − 4 z2

)
, (32)

TJ2
xz =

3 µ J2 R2

2 c2 r7

[
3 vx

(
x2 + y2

)
z− 2 vx z3 − 2 vz x

(
x2 + y2 − 4 z2

)]
, (33)

TJ2
yx =

3 µ J2 R2

2 c2 r7

(
vy x− 2 vx y

) (
x2 + y2 − 4 z2

)
, (34)

TJ2
yy =

3 µ J2 R2

2 c2 r7

[
3 vz

(
x2 + y2

)
z− 2 vz z3 + vx x

(
x2 + y2 − 4 z2

)]
, (35)

TJ2
yz =

3 µ J2 R2

2 c2 r7

[
3 vy

(
x2 + y2

)
z− 2 vy z3 − 2 vz y

(
x2 + y2 − 4 z2

)]
, (36)

TJ2
zx =

3 µ J2 R2

2 c2 r7

[
−6 vx

(
x2 + y2

)
z + 4 vx z3 + vz x

(
x2 + y2 − 4 z2

)]
, (37)

TJ2
zy =

3 µ J2 R2

2 c2 r7

[
−6 vy

(
x2 + y2

)
z + 4 vy z3 + vz y

(
x2 + y2 − 4 z2

)]
, (38)

TJ2
zz =

3 µ J2 R2

2 c2 r7

(
vx x + vy y

) (
x2 + y2 − 4 z2

)
. (39)

As far as the rates of change of the spin’s spherical angles α, δ are concerned, from Equations (13)–(15)
one gets

dδ

dt
=

1
cos δ

dSz

dt
, (40)

(
dα

dt

)2
=

1
cos2 δ

[(
dSx

dt

)2
+

(
dSy

dt

)2

− tan2 δ

(
dSz

dt

)2
]

. (41)

Since we are interested in the long-term rate of change of S, we must properly average the
right-hand-sides of Equations (19)–(21) over one orbital period Pb. It requires care, especially for the
effects of the order of O

(
J2 c−2). Indeed, the actual orbital path of the gyroscope around its distorted

primary is a generally slowly precessing ellipse [26], not a fixed Keplerian one as it would be if it were5

J2 = 0. This implies that, during an orbital revolution, all the Keplerian orbital elements characterizing

5 See Footnote 2.



Universe 2020, 6, 85 9 of 23

the shape, the size and the orientation of the ellipse undergo instantaneous variations due to J2 which
should be taken into account in the averaging procedure since they give rise to effects which are just of
the order of6 O

(
J2 c2). Moreover, the fact that the line of the apsides, from which the time-dependent

true anomaly7 f is reckoned, does vary during the orbital motion because of J2 has to be taken into
account as well, yielding further contributions of the order of O

(
J2 c2). Such “indirect”, or ”mixed”,

features are to be added to the direct ones arising from a straightforward average of Equations (31)–(39)
over an unperturbed Keplerian ellipse assumed as reference trajectory.

From a computational point of view, we can split the calculation of the averaged 1pN gyro’s spin
precession in two parts.

3.1. The Direct Effects

The first one deals with what one may define as the “direct” effects, denoted in the following
with the superscript “dir′′, arising from averaging Equations (22)–(39), evaluated onto an unchanging8

Keplerian ellipse. The latter is characterized by [1]

p = a
(

1− e2
)

, (42)

r =
p

1 + e cos f
, (43)

dt
d f

=
r2
√

µ p
, (44)

r = r
(
P̂ cos f + Q̂ sin f

)
, (45)

v =

√
µ

p
[
−P̂ sin f + Q̂ (cos f + e)

]
. (46)

In Equations (45) and (46), it is

P̂ = l̂ cos ω + m̂ sin ω, (47)

Q̂ = −l̂ sin ω + m̂ cos ω, (48)

with

l̂ = {cos Ω, sin Ω, 0} , (49)

m̂ = {− cos I sin Ω, cos I cos Ω, sin I} . (50)

In Equations (42)–(50), p, a , e , I , Ω , ω are the semilatus rectum, the semimajor axis, the eccentricity,
the inclination, the longitude of the ascending node, and the argument of pericentre, respectively, of the
Keplerian ellipse. The size and the shape of the latter are fixed by a and e, respectively. The inclination
and the position of the orbital plane with respect to the reference {x, y} plane are determined by I and
Ω, respectively; the line of the nodes is the intersection of the orbital plane with the reference {x, y}
plane. The orientation of the ellipse within the orbital plane itself is characterized by ω. The unit vector

6 In principle, also the spin components entering linearly the right-hand-sides of Equations (19)–(21) do vary instantaneously.
Nonetheless, since their changes are of the order of O

(
c−2) due to the de Sitter precession, they can be neglected in the

average since they would affect the spin rates to the order of O
(
c−4).

7 The true anomaly yields the instantaneous position of the test particle along its orbit.
8 It is considered, in the first instance, as fixed over a timescale comparable with the orbital period.
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l̂ is directed along the line of the nodes toward the ascending node, while m̂ lies in the orbital plane
perpendicularly to l̂. The unit vector P̂ is directed along the line of the apsides toward the pericentre
in the orbital plane where Q̂ stays transversely to P̂ itself. Finally, we mention also the unit vector

ĥ = {sin I sin Ω, − sin I cos Ω, cos I} , (51)

directed along the orbital angular momentum perpendicularly to the orbital plane9.
The resulting direct effects consist of the usual de Sitter precession, and of one part of the 1pN

spin’s rate of change due to J2. In Sections 3.1.1 and 3.1.2, we will display the explicit expressions
of the averaged matrix elements of Equations (22)–(39). For the sake of simplicity, we will omit the
brackets 〈. . .〉 denoting the average over one orbital period throughout the paper.

3.1.1. The de Sitter Precession

Let us introduce the following dimensional amplitude having the dimension of reciprocal time

AdS
.
=

3
4

nb

(
Rs

a

)
1

(1− e2)
, (52)

whereRs
.
= 2 µ/c2 is the primary’s Schwarzschild radius. The analytical expressions of the average of

Equations (22)–(30) yield the geodetic precession for an arbitrary orbital configuration of the moving
gyroscope. We have

TdS
xx = 0, (53)

TdS
xy = −AdS cos I, (54)

TdS
xz = −AdS sin I cos Ω, (55)

TdS
yx = AdS cos I, (56)

TdS
yy = 0, (57)

TdS
yz = −AdS sin I sin Ω, (58)

TdS
zx = AdS sin I cos Ω, (59)

TdS
zy = AdS sin I sin Ω, (60)

TdS
zz = 0. (61)

From Equations (40) and (41) and Equations (53)–(61), it is possible to obtain

dδ

dt
= AdS sin I cos (α−Ω) , (62)

9 It turns out that l̂, m̂, ĥ are a right-handed triad of unit vectors.
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(
dα

dt

)2
= A2

dS (cos I + sin I tan δ sin (α−Ω))2 . (63)

Figure 1 agrees with Equation (62) calculated for GP-B. Equations (53)–(61) show that the 1pN spin
rate due to the mass monopole of the primary can be written as

dŜ
dt

= ΩdS × Ŝ, (64)

with
ΩdS

.
= AdS ĥ. (65)

The vectorial expression of Equation (64) agrees with, e.g., (10.146a) of Poisson & Will [24] in the limit
e→ 0.

3.1.2. The J2 c−2 Spin Rate of Change: Direct Part

Let us introduce the following dimensional amplitude having the dimension of reciprocal time:

AJ2
.
=

nb
2

(
Rs

a

) (
R
a

)2 J2

(1− e2)
3 =

2
3

(
R
a

)2 J2

(1− e2)
2 AdS. (66)

In the following, we will display the averaged expressions of Equations (31)–(39). For the sake of
simplicity, we will limit here to the case in which the reference z axis is aligned with the unit vector k̂
of the body’s symmetry axis. We have

TJ2 dir
xx = − 15

512
AJ2

{
−e2 [(5 + 20 cos 2I + 7 cos 4I) cos 2Ω+

+4 (5 + 7 cos 2I) sin2 I
]

sin 2ω− 4
[
e2 (3 cos I + 5 cos 3I) cos 2ω+

+4
(

2 + 3 e2
)

cos I sin2 I
]

sin 2Ω
}

, (67)

TJ2 dir
xy = − 3

512
AJ2

{
4 (3 cos I + 5 cos 3I)

(
12 + 18 e2 + 5 e2 cos 2ω cos 2Ω

)
+

+80 cos I
[
9 e2 cos 2ω +

(
2 + 3 e2

)
cos 2Ω

]
sin2 I−

−5 e2 (5 + 20 cos 2I + 7 cos 4I) sin 2ω sin 2Ω
}

, (68)

TJ2 dir
xz = − 15

256
AJ2

{
4
[
6 + 9 e2 + cos 2I

(
10 + 15 e2 − 4 e2 cos 2ω

)]
cos Ω sin I+

+e2 (22 sin 2I − 7 sin 4I) sin 2ω sin Ω
}

, (69)

TJ2 dir
yx = − 3

512
AJ2

{
20 cos 3I

(
−12− 18 e2 + 5 e2 cos 2ω cos 2Ω

)
+

+4 cos I
[
15 e2 cos 2ω (−6 + 6 cos 2I + cos 2Ω) +
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+2
(

2 + 3 e2
) (
−9 + 10 cos 2Ω sin2 I

)]
−

−5 e2 (5 + 20 cos 2I + 7 cos 4I) sin 2ω sin 2Ω
}

, (70)

TJ2 dir
yy = − 15

512
AJ2

{
e2 [(5 + 20 cos 2I + 7 cos 4I) cos 2Ω−

−4 (5 + 7 cos 2I) sin2 I
]

sin 2ω + 4
[
e2 (3 cos I + 5 cos 3I) cos 2ω+

+4
(

2 + 3 e2
)

cos I sin2 I
]

sin 2Ω
}

, (71)

TJ2 dir
yz = − 15

256
AJ2

[
e2 cos Ω (−22 sin 2I + 7 sin 4I) sin 2ω+

+8 e2 cos 2ω (sin I − sin 3I) sin Ω + 2
(

2 + 3 e2
)
(sin I + 5 sin 3I) sin Ω

]
, (72)

TJ2 dir
zx = − 3

256
AJ2

[
−20 e2 cos 2ω cos Ω (sin I − 7 sin 3I)−

−14
(

2 + 3 e2
)

cos Ω (sin I + 5 sin 3I)− 5 e2 (26 sin 2I + 7 sin 4I) sin 2ω sin Ω
]

, (73)

TJ2 dir
zy = − 3

256
AJ2

[
5 e2 cos Ω (26 sin 2I + 7 sin 4I) sin 2ω−

−20 e2 cos 2ω (sin I − 7 sin 3I) sin Ω− 14
(

2 + 3 e2
)
(sin I + 5 sin 3I) sin Ω

]
, (74)

TJ2 dir
zz = −15

64
AJ2 e2 (5 + 7 cos 2I) sin2 I sin 2ω. (75)

It can be noted that Equations (67)–(75) are independent of f0, in agreement with Figure 2. In the
case of GP-B, Equations (73)–(75) and Equation (40) yield δ̇ = 5.1 mas yr−1; cfr. with Figure 2. For an
exactly circular (e = 0) and polar (I = 90◦) orbit, by posing

A(0)
J2

.
=

nb
2

(
Rs

a

) (
R
a

)2
J2, (76)

one has, from Equations (73)–(75) and Equation (40),

dδ

dt
= −21

16
A(0)

J2
cos (α−Ω) . (77)

It agrees neither with Equation (53) of Barker & O’Connell [16], which allows to obtain

dδ

dt
= −9

8
A(0)

J2
cos (α−Ω) , (78)



Universe 2020, 6, 85 13 of 23

nor with 〈ΩG〉 of Adler & Silbergleit [15] (pag. 153), from which one gets

dδ

dt
= −27

16
A(0)

J2
cos (α−Ω) . (79)

3.2. The Indirect Effects

This part treats what one may call the “indirect”, or “mixed”, effects arising from the precession
of the orbit of the gyro caused by the oblateness of the primary. When applied to Equations (22)–(30),
they give rise to further components of the gyro’s spin rate of change of the order of J2 c−2 which are
to be added to the direct ones of Section 3.1.2 in order to have the total expression of the 1pN spin rate
due to J2. In turn, the calculation of the mixed effects can be split into two parts.

The first one, tagged in the following with the superscript “mix I”, consists of averaging
Equations (22)–(30), to be evaluated onto the unperturbed Keplerian ellipse, by means of [1,24]

d̃t
d f

=
r4

e
√

µ3 p

[
− cos f Ar +

(
1 +

r
p

)
sin f At

]
. (80)

It accounts for the instantaneous change of the line of the apsides; indeed, the orbital period Pb is
just the time required by the test particle to return at the (moving) pericentre position along its path.
In Equation (80),

Ar = A · r̂, (81)

At = A ·
(

ĥ × r̂
)

(82)

are the radial and transverse components, respectively, of the perturbing acceleration A inducing the
slow variation of the otherwise fixed Keplerian ellipse. In the present case, it is

AJ2 =
3 µ J2 R2

2 r4

{[
5
(

k̂ · r̂
)2
− 1
]

r̂− 2
(

k̂ · r̂
)

k̂
}

. (83)

The second part, labeled in the following with the superscript “mix II′′, takes into account the
J2-driven instantaneous changes experienced by the osculating Keplerian elements during an orbital
revolution. The mean variation of any of the spin components’ rates dSi/dt, i = 1, 2, 3 over an orbital
period occurring due to the aforementioned shifts can be worked out as

∆Ṡi =
nb
2π

5

∑
j=1

∫ f0+2π

f0

{
∂
(
dSi/dt

)
∂φj

}
K

∆φj ( f0, f )
dt
d f

d f , i = 1, 2, 3 (84)

where f0 is the true anomaly at a referenced epoch t0, and φ1
.
= a, φ2

.
= e, φ3

.
= I, φ4

.
= Ω, φ5

.
= ω.

The instantaneous shifts of the Keplerian orbital elements

∆φj ( f0, f ) =
∫ f

f0

{
dφj

d f ′

}
K

d f
′
, j = 1, . . . 5, (85)

are to be calculated in the usual perturbative way by integrating the right-hand-sides of the
corresponding Gauss equations (e.g., [24,28,29]) from f0 to a generic f . In the present case,
the shifts of Equation (85) are due to the acceleration of Equation (83). The curly brackets {. . .}K
in Equations (84)–(85) denote that their content has to be evaluated onto the unperturbed Keplerian
ellipse. In particular, dSi/dt, i = 1, 2, 3 are to be calculated by evaluating Equations (22)–(30) onto the
Keplerian ellipse, while Equation (44) has to be used for the (Keplerian) expression of dt/d f entering
Equation (84).
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3.2.1. The Impact of the Motion of the Line of the Apsides on the Orbital Period: The I-Type
Indirect Effects

Here, we display the analytical expressions of the average of Equations (22)–(30) performed by
means of Equation (80). To avoid extremely cumbersome formulas, we show only those valid in an
equatorial coordinate system. They turn out to be

TJ2 mix I
xx =

3
1024

AJ2

(
4 e2 sin4 I sin 4ω + 2 cos 2Ω

{[
12
(

7 + 2 e2
)

cos 2I+

+
(

11 + 6 e2
)
(3 + cos 4I)

]
sin 2ω + e2 (3 + cos 2I) sin2 I sin 4ω

}
+

+4
(

8 + 3 e2
)
(5 cos I + 3 cos 3I) cos 2ω sin 2Ω+

+8 sin2 I
{[

9− 6 e2 +
(

11 + 6 e2
)

cos 2I
]

sin 2ω+

+ cos I
(

20 + 7 e2 + e2 cos 4ω
)

sin 2Ω
})

, (86)

TJ2 mix I
xy = − 3

512
AJ2

(
12 cos 3I

[
18 + cos 2ω

(
1− 2 e2 + 4 cos 2Ω

)]
+

+4 cos I
{

90 + 36 e2 + cos 2ω
[
−3 + 6 e2 +

(
20 + 3 e2 + 9 e2 cos 2I

)
cos 2Ω

]
+

+
[
−54 e2 +

(
20 + 7 e2 + e2 cos 4ω

)
cos 2Ω

]
sin2 I

}
−

−
{[

12
(

7 + 2 e2
)

cos 2I +
(

11 + 6 e2
)
(3 + cos 4I)

]
sin 2ω+

+e2 (3 + cos 2I) sin2 I sin 4ω
}

sin 2Ω
)

, (87)

TJ2 mix I
xz = − 3

256
AJ2

(
cos Ω sin I

{
92 + 25 e2 +

(
4 + 30 e2

)
cos 2 ω+

+ cos 2I
[
196 + 47 e2 − 6

(
−10 + e2

)
cos 2ω

]
+ 2 e2 cos 4ω sin2 I

}
−

−
{

2
[
5 +

(
11 + 6 e2

)
cos 2I

]
sin 2I sin 2ω + 2 e2 cos I sin3 I sin 4ω

}
sin Ω

)
, (88)

TJ2 mix I
yx = − 3

512
AJ2 (48 cos 3I cos 2ω cos 2Ω+

+4 cos I
{
−36

(
4 + e2

)
+
[
54
(

4 + e2
)
+
(

20 + 7 e2 + e2 cos 4ω
)

cos 2Ω
]

sin2 I+

+ cos 2ω
[(

20 + 3 e2 + 9 e2 cos 2I
)

cos 2Ω + 12
(

1− 2 e2
)

sin2 I
]}
−
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−
{[

12
(

7 + 2 e2
)

cos 2I +
(

11 + 6 e2
)
(3 + cos 4I)

]
sin 2ω+

+e2 (3 + cos 2I) sin2 I sin 4ω
}

sin 2Ω
)

, (89)

TJ2 mix I
yy = − 3

512
AJ2

(
−2 e2 sin4 I sin 4ω + cos 2Ω

{[
12
(

7 + 2 e2
)

cos 2I+

+
(

11 + 6 e2
)
(3 + cos 4I)

]
sin 2ω + e2 (3 + cos 2I) sin2 I sin 4ω

}
+

+2
(

8 + 3 e2
)
(5 cos I + 3 cos 3I) cos 2ω sin 2Ω + 4 sin2 I

{
−
[
9− 6 e2+

+
(

11 + 6 e2
)

cos 2I
]

sin 2ω + cos I
(

20 + 7 e2 + e2 cos 4ω
)

sin 2Ω
})

, (90)

TJ2 mix I
yz = − 3

256
AJ2

(
2 cos Ω

{[
5 +

(
11 + 6 e2

)
cos 2I

]
sin 2I sin 2ω+

+e2 cos I sin3 I sin 4ω
}
+ sin I

{
92 + 25 e2 +

(
4 + 30 e2

)
cos 2ω+

+ cos 2I
[
196 + 47 e2 − 6

(
−10 + e2

)
cos 2ω

]
+ 2 e2 cos 4ω sin2 I

}
sin Ω

)
, (91)

TJ2 mix I
zx = − 3

256
AJ2

(
cos Ω sin I

{
−52− 11 e2 + 2

(
14− 9 e2

)
cos 2 ω+

+ cos 2I
[
−236− 61 e2 + 6

(
6 + 7 e2

)
cos 2ω

]
+ 2 e2 cos 4ω sin2 I

}
−

−
{

2
[
5 +

(
11 + 6 e2

)
cos 2I

]
sin 2I sin 2ω + 2 e2 cos I sin3 I sin 4ω

}
sin Ω

)
, (92)

TJ2 mix I
zy = − 3

256
AJ2 sin I

(
2 cos I cos Ω

{
2
[
5 +

(
11 + 6 e2

)
cos 2I

]
sin 2ω+

+e2 sin2 I sin 4ω
}
+
{
−52− 11 e2 + 2

(
14− 9 e2

)
cos 2ω+

+ cos 2I
[
−236− 61 e2 + 6

(
6 + 7 e2

)
cos 2ω

]
+ 2 e2 cos 4ω sin2 I

}
sin Ω

)
, (93)

TJ2 mix I
zz = − 3

128
AJ2 sin2 I

{
2
[
1 + 6 e2 +

(
11 + 6 e2

)
cos 2I

]
sin 2ω + e2 sin2 I sin 4ω

}
. (94)

It can be noted that Equations (86)–(94) are independent of f0. For an exactly circular and polar orbit,
Equations (92)–(94) and Equation (40) yield

dδ

dt
=

3
32
A(0)

J2
[(−23 + cos 2ω) cos (α−Ω) + 5 sin 2ω tan δ] . (95)
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While, seemingly, Adler & Silbergleit [15] did not deal with the issue of the indirect effects at all, Barker
& O’Connell [16] did partly so. Their Equation (52) allows to infer

dδ

dt
=

3
8
A(0)

J2
cos (α−Ω) , (96)

which disagrees with Equation (95). However, since it is unclear how Barker & O’Connell [16] actually
calculated their indirect precession, it is uncertain that Equation (96) can meaningfully be compared
with Equation (95).

3.2.2. The Impact of the Instantaneous Shifts of the Orbital Elements during an Orbital Revolution:
The II-Type Indirect Effects

Here, we display the analytical expressions of the average of Equations (22)–(30) calculated
according to Equations (84)–(85). Because of their exceptional cumbersomeness, we can only show
their limit for e→ 0 in an equatorial coordinate system.

One has

TJ2 mix II
xx =

A(0)
J2

512

{
−48 cos2 I cos 2Ω sin I − 3 [(15 + 44 cos 2I + 5 cos 4I) cos 2Ω+

+4 (7 + 5 cos 2I) sin2 I
]

sin 2ω + 12 [(7 + 20 cos 2I + 5 cos 4I) cos 2Ω+

+4 (3 + 5 cos 2I) sin2 I
]

sin 2 ( f0 + ω) +

+8 cos I [3 sin 2 (I −Ω) + (−23 + 26 cos 2I−

−9 cos 2 (I −ω)− 6 cos 2ω + 24 cos 2 ( f0 − I + ω)− 9 cos 2 (I + ω) +

+24 cos 2 ( f0 + I + ω)) sin 2Ω]} , (97)

TJ2 mix II
xy =

A(0)
J2

512
[4 (3 cos 3I (−7 + 6 cos 2ω) cos 2Ω + cos I {6 cos (2I − 2Ω) +

+ [5 (5 + 6 cos 2ω)− 2 cos 2I (5 + 48 cos 2 ( f0 + ω))] cos 2Ω−

−36
[
3 + (3 cos 2ω + 8 cos 2 ( f0 + ω)) sin2 I

]}
− 72 cos 2 ( f0 + ω) sin I sin 2I−

−81 csc I sin 4I)− 3
[
16 cos2 I sin I + (15 + 44 cos 2I + 5 cos 4I) sin 2ω−

−4 (7 + 20 cos 2I + 5 cos 4I) sin 2 ( f0 + ω)] sin 2Ω] , (98)

TJ2 mix II
xz =

A(0)
J2

256
{2 [−116− 376 cos 2I + 45 cos 2 (I −ω)− 42 cos 2ω− 120 cos 2 ( f0 + ω) +

+60 cos 2 ( f0 − I + ω) + 45 cos 2 (I + ω) + 60 cos 2 ( f0 + I + ω)] cos Ω sin I+

+12 cos (I −Ω) sin 2I − 3 [5 sin 4I sin 2ω + 6 sin 2I (16 π + sin 2ω) +
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+8 cos I sin2 I (1 + 20 sin I sin 2 ( f0 + ω))
]

sin Ω
}

, (99)

TJ2 mix II
yx =

A(0)
J2

512
[4 (3 cos 3I (−7 + 6 cos 2ω) cos 2Ω + cos I {108 + 6 cos (2I − 2Ω) +

+ [5 (5 + 6 cos 2ω)− 2 cos 2I (5 + 48 cos 2 ( f0 + ω))] cos 2Ω+

+36 (3 cos 2ω + 8 cos 2 ( f0 + ω)) sin2 I
}
+

+72 cos 2 ( f0 + ω) sin I sin 2I + 81 csc I sin 4I)−

−3
[
16 cos2 I sin I + (15 + 44 cos 2I + 5 cos 4I) sin 2ω−

−4 (7 + 20 cos 2I + 5 cos 4I) sin 2 ( f0 + ω)] sin 2Ω] , (100)

TJ2 mix II
yy =

A(0)
J2

512
csc I

(
−3

2

[
8 (7 + 5 cos 2I) sin3 I + cos 2Ω (14 sin I − 39 sin 3I−

−5 sin 5I)] sin 2ω + 6
{

8 (3 + 5 cos 2I) sin3 I + cos 2Ω [6 sin I−

−5 (3 sin 3I + sin 5I)]} sin 2 ( f0 + ω) + 2 [2 (23 + 6 cos 2ω) sin 2I+

+ (−23 + 18 cos 2ω− 48 cos 2 ( f0 + ω)) sin 4I] sin 2Ω) , (101)

TJ2 mix II
yz =

A(0)
J2

128
(3 sin 2I {cos Ω [48 π + 2 sin I + (3 + 5 cos 2I) sin 2ω+

+40 sin2 I sin 2 ( f0 + ω)
]
− 2 sin (I −Ω)

}
+

+ (−116− 376 cos 2I + 45 cos 2 (I −ω)−

−42 cos 2ω− 120 cos 2 ( f0 + ω) + 60 cos 2 ( f0 − I + ω) + 45 cos 2 (I + ω) +

+60 cos 2 ( f0 + I + ω)) sin I sin Ω) , (102)

TJ2 mix II
zx =

A(0)
J2

128
([100 + 272 cos 2I − 9 cos 2 (I −ω) + 66 cos 2ω + 24 cos 2 ( f0 + ω)−

−156 cos 2 ( f0 − I + ω)− 9 cos 2 (I + ω)− 156 cos 2 ( f0 + I + ω)] cos Ω sin I+

+3 sin 2I {2 cos (I −Ω) + [48 π − 2 sin I − (3 + 5 cos 2I) sin 2ω+
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+4 (7 + 5 cos 2I) sin 2 ( f0 + ω)] sin Ω}) , (103)

TJ2 mix II
zy = −

A(0)
J2

128
{3 cos Ω [13 cos 3I sin I sin 2ω + sin 4I (−9 sin 2ω + 10 sin 2 ( f0 + ω)) +

+ sin 2I (48 π − 2 sin I + 7 cos ω sin ω + 28 sin 2 ( f0 + ω))] + 6 sin 2I sin (I −Ω) +

+ [−100− 272 cos 2I + 9 cos 2 (I −ω)− 66 cos 2ω− 24 cos 2 ( f0 + ω) +

+156 cos 2 ( f0 − I + ω) + 9 cos 2 (I + ω) + 156 cos 2 ( f0 + I + ω)] sin I sin Ω} , (104)

TJ2 mix II
zz = −

3A(0)
J2

64
sin2 I {4 (3 + 5 cos 2I) cos 2ω sin 2 f0+

+ [1− 5 cos 2I + 4 cos 2 f0 (3 + 5 cos 2I)] sin 2ω} . (105)

The dependence of Equations (97)–(105) on f0 is apparent.

3.3. The Total (Direct + Mixed) Spin Precessions of the Order of O
(

J2 c−2)
The results of Sections 3.1.2–3.2.2 allow to obtain the total 1pN spin precession due to the

oblateness of the primary. It is not possible to display them here in full due to their cumbersomeness.
As an example, for an exactly circular and polar orbit, we have

dδ

dt
=
A(0)

J2

16
[(−77 + 12 cos 2ω + 42 cos 2 ( f0 + ω)) cos (α−Ω) +

+3 (sin 2ω + 2 sin 2 ( f0 + ω)) tan δ] , (106)

(
dα

dt

)2
=

(
A(0)

J2

)2

4096
sec2 δ (16 [(−67 + 6 cos 2ω + 30 cos 2 ( f0 + ω)) sin δ+

+3 cos δ cos (α−Ω) (sin 2ω + 2 sin 2 ( f0 + ω))]2 sin2 Ω+

+ {4 cos Ω [(67− 6 cos 2ω− 30 cos 2 ( f0 + ω)) sin δ−

−3 cos α cos δ cos Ω (sin 2ω + 2 sin 2 ( f0 + ω))]−

−6 cos δ sin α (sin 2ω + 2 sin 2 ( f0 + ω)) sin 2Ω}2−

−16 sin2 δ [(−77 + 12 cos 2ω + 42 cos 2 ( f0 + ω)) cos (α−Ω) +

+3 (sin 2ω + 2 sin 2 ( f0 + ω)) tan δ]2
)

. (107)
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If δ = 0◦, α = Ω + 180◦, as for GP-B, Equations (106) and (107) reduce to.

dδ

dt
= −
A(0)

J2

16
[−77 + 12 cos 2ω + 42 cos 2 ( f0 + ω)] , (108)

(
dα

dt

)2
=

9
256

(
A(0)

J2

)2
(sin 2ω + 2 sin 2 ( f0 + ω))2 . (109)

From Equations (108) and (109) it can be noted that, since the pericentre of a polar orbit, in general,
does undergo a secular precession due to J2 [26], the shift of the spin’s right ascension is, actually,
a harmonic signal with half the period10 Pω of the pericentre, while the spin’s declination experiences
a genuine secular trend superimposed to a harmonic pattern with Pω/2.

In the case of GP-B, we plot its spin’s declination precession as a function of f0 in Figure 4.

Figure 4. Total (direct + indirect) analytically computed 1pN J2-induced rate of change δ̇ (yellow
curve, in mas yr−1) of the declination δ of the spin axis of a gyroscope orbiting the oblate Earth as a
function of the initial value f0 of the true anomaly of the gyro’s orbit. We adopted the GP-B’s orbital
and spin configuration [25] summarized in Table 1, so that, essentially, the plot of Equation (108) is
shown. The shaded area, in light blue, is delimited by the GP-B’s experimental mean uncertainty
σGP−B

δ̇
= 18.3 mas yr−1 [10,11] in measuring the long-term rates of change of δ. Cfr. with Figure 3.

It can be noted that the predicted rate is larger than σGP−B
δ̇

for 0◦ ≤ f0 . 70◦, 150◦ . f0 .

250◦, 325◦ . f0 ≤ 360◦, with peaks of more than 30 mas yr−1. A comparison with Figure 3 shows
agreement between our analytical and numerical results up to a few mas yr−1.

We do not display the total GP-B’s 1pN right ascension rate due to J2 since it turned out to
be smaller than 2 mas yr−1, while the reported experimental accuracy in measuring α̇ is as large as
σGP−B

α̇ = 7.2 mas yr−1 [10,11].

10 For GP-B, it is Pω = −0.3 yr.
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4. The Gravitomagnetic Spin Precession

The long-term gravitomagnetic spin precession induced by the proper angular momentum J of
the primary can be analytically worked out by including [30,31]

g0i = 2
G εijk J j xk

c3 r3 , i = 1, 2, 3, (110)

where

εijk =

 +1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)
0 if i = j, or j = k, or k = i

(111)

is the 3-dimensional Levi-Civita symbol [32], in the spacetime metric tensor of Equations (5)–(7),
and averaging the resulting J-dependent part of the expansion of Equation (18) to the order of O

(
c−2)

over a Keplerian ellipse. Smaller terms of the order of O
(

J2 J c−2), arising from using a J2-driven
precessing ellipse for the orbital average, will be neglected.

By defining the following dimensional amplitude having the dimension of reciprocal time

Agm
.
=

G J

c2 a3 (1− e2)
3/2 , (112)

one finally has

dSx

dt
= −
Agm

8
[
−
(

Ĵy Sz + 2Sy Ĵz
)
(1 + 3 cos 2I) +

+ 6 Ĵy Sz cos 2Ω sin2 I + 6
(
Sy Ĵy − Sz Ĵz

)
cos Ω sin 2I − 6 Ĵx Sy sin 2I sin Ω−

− 6 Ĵx Sz sin2 I sin 2Ω
]

, (113)

dSy

dt
= −
Agm

8

[(
Ĵx Sz + 2Sx Ĵz

)
(1 + 3 cos 2I) + 6 Ĵx Sz cos 2Ω sin2 I−

− 6 Sx Ĵy cos Ω sin 2I + 6
(
Sx Ĵx − Sz Ĵz

)
sin 2I sin Ω + 6 Ĵy Sz sin2 I sin 2Ω

]
, (114)

dSz

dt
= −
Agm

8
[
− Ĵx Sy + Sx Ĵy +

(
−3 Ĵx Sy + 3Sx Ĵy

)
cos 2I−

− 6
(

Ĵx Sy + Sx Ĵy
)

cos 2Ω sin2 I + 6 Ĵz sin 2I
(
Sx cos Ω + Sy sin Ω

)
+

+ 6
(
Sx Ĵx − Sy Ĵy

)
sin2 I sin 2Ω

]
, (115)

where Ĵx, Ĵy, Ĵz are the components of the spin axis Ĵ of the primary. The gravitomagnetic averaged
precessions of Equations (113)–(115) can be cast in the following vectorial form

dS
dt

= Ωgm × S, (116)

with

Ωgm =
Agm

2

{
3
[(

Ĵ · l̂
)

l̂ +
(

Ĵ · m̂
)

m̂
]
− 2 Ĵ

}
. (117)
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It can be noted that Equation (116) agrees with, e.g., Equation (10.146b) of Poisson & Will [24] for
Ĵy = Ĵy = 0, Ĵz = 1 and e→ 0. It is also in agreement with Equation (29) of Barker & O’Connell [16] for
any orientation of Ĵ and e 6= 0.

Let us adopt a coordinate system aligned with the primary’s equatorial plane such that Ĵy = Ĵy =

0, Ĵz = 1. According to Equations (40) and (41) and Equations (113)–(115), the gravitomagnetic spin
precessions of δ, α turn out to be

dδ

dt
= −3

4
Agm sin 2I cos (α−Ω) , (118)

(
dα

dt

)2
=
A2

gm

16

(
1 + 3 cos2 I − 3 sin2 I + 3 sin 2I tan δ sin (α−Ω)

)2
. (119)

5. Summary and Conclusions

The quadrupole mass moment J2 of a body affects, among other things, also the general relativistic
precession of the spin of an orbiting gyroscope. We worked out it, to the 1pN level, both numerically
and analytically by taking into account also the effect that the J2-driven change of the gyro’s orbit has
on the the long-term spin rate itself. Indeed, limiting to averaging out the instantaneous J2-dependent
part of the spin precession onto a Keplerian orbit is not sufficient to correctly reproduce the total spin
rate of change to the order of O

(
J2 c−2). Also the instantaneous Newtonian orbital shifts due to J2

have to be taken into account when the average of the 1pN de Sitter-like instantaneous part of the spin
precession is performed. The latter contribution introduces a dependence of the total averaged spin
rate of the order ofO

(
J2 c−2) on the initial orbital phase f0. Such a feature was confirmed, among other

things, also by the simultaneous numerical integrations of the equations for the parallel transport of
the spin and of the geodesic equations of the gyro’s motion that we performed by varying f0.

We applied our results to the past GP-B mission in the field of Earth by finding a net precession of
the declination of the spin axis which may be as large as '30–40 mas yr−1. Since the reported error in
measuring the GP-B’s declination rate amounts to 18.3 mas yr−1, our result may prompt a reanalysis of
the data in order to see if the effect we predicted could be detected.

For the sake of completeness, we analytically worked out, to the 1pN level, also the general
expression of the gravitomagnetic spin precession induced by the proper angular momentum J of the
central body.

Both our numerical and analytical methods hold for an arbitrary orientation of the body’s
symmetry axis and for a general orbital configuration of the gyro. As such, they can be extended also
to other astronomical and astrophysical scenarios of interest like, e.g., other planets of our solar system,
exoplanets close to their parent stars, stars orbiting galactic supermassive black holes, tight binaries
hosting compact stellar corpses. It is hardly necessary to mention that, years ago, spacecraft-based
missions were proposed to measure the angular momenta of Jupiter and the Sun by means of the
gravitomagnetic Pugh-Schiff spin precessions.
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