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Abstract: The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion
collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial
conditions, and for gluons with boundary conditions at the singularity. On a similarly short time
scale of t ≤ 1 fm/c, the stopping of baryons is accounted for through a QCD-inspired approach based
on the parton distribution functions of valence quarks, and gluons. Charged-hadron production is
considered phenomenologically using a linear relativistic diffusion model with two fragmentation
sources, and a central gluonic source that rises with ln3(sNN). The limiting-fragmentation conjecture
that agrees with data at energies reached at the Relativistic Heavy-Ion Collider (RHIC) is found
to be consistent with Large Hadron Collider (LHC) data for Pb-Pb at

√
sNN = 2.76 and 5.02 TeV.

Quarkonia are used as hard probes for the properties of the quark-gluon plasma (QGP) through
a comparison of theoretical predictions with recent CMS, ALICE and LHCb data for Pb-Pb and
p-Pb collisions.

Keywords: relativistic heavy-ion collisions; initial fast thermalization; stopping; particle production;
quarkonia suppression

1. Introduction

This article covers aspects of relativistic heavy-ion collisions in the energy regions reached at
the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Starting with
the thermalization of partons in the initial stages, stopping of the incoming baryons is discussed,
followed by charged-hadon production and the modification of quarkonia in the hot quark-gluon
plasma (QGP), with an emphasis on bottomonia that provide clear signals of QGP formation.
The overall approach is phenomenological and in close comparison with data. In some cases such
as stopping and quarkonia, nonequilibrium-statistical considerations are merged with quantum
chromodynamics (QCD)-based arguments. The work contains both new developments and re-views
of our previously published work in a new context.

The fast local thermalization of partons in the initial stages of relativistic heavy-ion collisions is
a sufficient condition to apply hydrodynamic descriptions [1] of the subsequent collective expansion
and cooling of the hot fireball that is created in the collision. Typical local equilibration times for
gluons are about 0.1 fm/c [2], with initial central temperatures of the order of 500–600 MeV reached in
a Pb-Pb collision at

√
sNN = 5.02 TeV at the Large Hadron Collider (LHC) [3]. Thermalization times

for quarks are typically by an order of magnitude larger [4] due to the smaller color factor and the
different statistical properties (Pauli’s principle). Whereas the thermal Bose–Einstein/Fermi–Dirac
distributions and also the initial distribution for quarks are known, plausible assumptions are being
made for the primordial gluon distribution before the onset of the collision.

Studies such as Reference [5] have found that local thermalization may not be a necessary
condition for the applicability of hydrodynamics to relativistic heavy-ion collisions. This would
imply that hydrodynamics could be a valid approach away from local equilibrium [6]—but still,
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it remains important to investigate how and on which timescale local thermalization is achieved.
Obviously, an investigation of the local thermalization of quarks and gluons makes sense only in
a weakly coupled description based on an effective kinetic theory that relies on the Boltzmann equation.
It is recognized that a strongly coupled paradigm built on the anti-de Sitter-conformal field theory
(AdS/CFT) correspondence [7] discovered in the investigation of D-branes in string theory [8] may
be relevant at RHIC and LHC energy scales such that partons would not be the relevant degrees of
freedom any more. In this work, however, I rather assume quarks and gluons to be well-defined and
long-lived excitations in QCD at temperatures close to the critical value.

What is not known precisely is the development with time towards local equilibrium. An easy
way to approximate the time evolution is given by the linear relaxation-time approximation (RTA),
which provides a simple analytic solution of the problem by enforcing a linear transition from the
initial to the local equilibrium state, but does not properly account for the known nonlinearity
of the system. A more ambitious approach for bosons is to numerically solve gluon transport
equations that include the effect of Bose statistics, as has been done in Reference [9] and subsequent
works. Initially, only elastic scattering was considered with the possibility of gluon condensate
formation due to particle-number conservation in over-populated systems, but it was recognized that
inelastic, number-changing radiative processes cannot be neglected [10], and hinder the formation of
a Bose condensate.

Whereas also other numerical calculations relying on a quantum Boltzmann collision term
to account for the initial local equilibration are available such as Reference [11], it is of interest to
have an exactly solvable analytic model to better understand the physics of the fast equilibration.
A corresponding nonlinear boson diffusion equation (NBDE) has been presented in Reference [4] and
solved for a simplified case that did, however, not yet consider the singularity at the chemical potential
µ < 0. The nonlinear partial differential equation preserves the essential features of Bose–Einstein
statistics that are contained in the collision term. In particular, the thermal equilibrium distribution
emerges as a stationary solution and hence, the equation appears suitable to model the thermalization
of gluons in relativistic collisions. It is used in this work to generate new exact solutions for the
time-dependent gluon equilibration problem that include boundary conditions at the singularity.
Regarding fermionic thermalization, the corresponding nonlinear fermion diffusion equation is easier
to solve [4,12] because no singularity appears, and the analytic solutions will be reviewed.

On an equally short time scale as the local equilibration, the incoming baryons with energies
available at RHIC or LHC are stopped: The system is slowing down, essentially through collisions of the
incoming valence quarks with soft gluons in the respective other nucleus. Various models to account
for this process and its energy dependence have been developed, in particular in References [13,14] and
related works, which are relying on the appropriate parton distribution functions (PDFs) and hence,
on QCD, yielding good agreement with the available net-proton (proton minus antiproton) stopping
data. Different from the nonequilibrium-statistical approach to initial thermalization, such models do
not consider a time dependence. However, by using the rapidity distribution calculated from the PDFs
and the initial valence-quark distribution, one can, in addition, account for the time development from
the initial to the final distribution with an appropriate fluctuation–dissipation relation.

The relevant bulk properties of relativistic heavy-ion collisions mostly arise from charged-hadron
production. In many of the available macroscopic and microscopic models, hadronization occurs from
the fireball at the phase boundary between the QGP and the hadronic phase. However, it has been
proposed [15,16] that the production of charged hadrons from the fragmentation sources at larger
rapidity values is also relevant in the overall distributions and should be treated separately from the
fireball source. At midrapidity, these contributions are relatively small, but become relevant more
forward or backward. Corresponding new results of the phenomenological three-source relativistic
diffusion model (RDM) are compared with recent LHC pseudorapidity data on charged-hadron
production in 5.02 TeV Pb-Pb, which are also shown to be consistent with the limiting-fragmentation
hypothesis that had been found to agree with the hadron production data at RHIC energies [17–19].
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Regarding more direct evidence for transient QGP formation in relativistic heavy-ion collisions,
jets may provide the most direct manifestation for quarks and gluons in the system. In particular,
the suppression of away-side jets in the hot QGP had already been predicted by Bjorken [20],
and confirmed experimentally by the STAR collaboration [21]. Meanwhile, jet suppression at LHC
energies has been investigated in detail (e.g., Reference [22]), and it has been shown how strong
final-state interactions cause high-pT jets to lose energy to the plasma.

In this work, however, I consider quarkonia as another indicator for the properties of the
quark-gluon plasma such as its initial central temperature Ti. Quarkonia are bound states of heavy
quark-antiquark pairs that can be formed in initial hard partonic collisions. In the original prediction
for a suppression of the J/ψ yields in the presence of a QGP, only the medium-effect on the real part of
the quark-antiquark potential was considered [23]. It has later been realized that due to the presence of
the hot medium, the potential has an imaginary part [24]. Optical potentials had also been used in the
theory of nuclear reactions to account for channels that are not treated explicitly. In case of quarkonia,
the imaginary part causes their dissociation, in addition to melting of the quarkonia states because the
real potential is screened. It is possible to treat quarkonia dissociation by thermal gluons separately
from the imaginary part [25].

In case of charmonium at LHC energies, statistical recombination of charm and anticharm quarks
turns out to be important, but it is not possible to separate the process from the dissociation in the QGP.
One may therefore concentrate on the heavier bottomonium system, where recombination is much less
pronounced. Through detailed investigations of the transverse-momentum- and centrality-dependent
suppression of the spin-triplet Υ(1S, 2S) states in Pb-Pb collisions at LHC energies and comparisons
with CMS data, we can deduce QGP properties such as the initial central temperature Ti and study its
dependence on the center-of-mass energy.

In asymmetric collisions such as p-Pb, the situation is quite different from symmetric systems,
because most of the system remains cold due to the much smaller overlap. Cold nuclear matter
(CNM) effects therefore provide a certain understanding of the measured quarkonia modifications,
but a complete agreement with the available data remains impossible—unless one also considers the
hot QGP zone that is still produced, even though it is initially considerably less extended as compared
to symmetric systems. Indeed the bottomonia dissociation in the hot QGP provides a clue for the
interpretation of the data in asymmetric collisions as well.

The paper follows the above-mentioned series of topics: In Section 2, the nonlinear diffusion
equation for gluons and quarks is solved explicitly to account for the fast local thermalization at the
beginning of relativistic heavy-ion collisions. Stopping is considered in Section 3, hadron production
and limiting fragmentation in Section 4, bottomonia modification in the medium in Section 5.
The conclusions are drawn in Section 6.

2. Fast Thermalization of Gluons and Quarks—An Analytic Nonlinear Model

For a given initial nonequilibrium gluon distribution at t = 0, solutions of the nonlinear boson
diffusion equation describe the time-dependent equilibration towards the thermal distribution with
the local temperature T. In Reference [4] such solutions were calculated with the free Green’s
function. Whereas this accounts for local thermalization in the ultraviolet (UV) with the corresponding
equilibration time τeq, in the infrared (IR) the populations decrease due to diffusion into the
negative-energy region. To avoid such an unphysical behaviour, one has to consider the boundary
condition at the singularity |p| = p = ε = µ with the chemical potential µ < 0, and the corresponding
bounded Green’s function in the solution of the NBDE. With this Green’s function, gluon populations
indeed attain the Bose–Einstein limit also in the infrared for nonequilibrium initial conditions that
include the singularity.

The nonlinear model and the solution of the combined initial- and boundary-value problem are
first briefly reviewed. Subsequently, the thermalization problem is solved for a schematic initial gluon
distribution that characterizes the relativistic collision at t = 0. Adding the boundary condition at
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the singularity, n(ε = µ < 0, t)→ ∞, the time-dependent partition function that includes initial and
boundary conditions is obtained using analytic expressions for both, the bound Green’s function,
and the function that contains an integral over the initial conditions. The resulting occupation-number
distribution function n(ε, t) is calculated, and it is shown to approach the equilibrium distribution
both in the UV and in the IR.

Before we proceed to the nonlinear model, it is useful to consider a linear time-dependent
transition from the initial distribution

ni(ε) = θ(1− ε/Qs) θ(ε) (1)

to the thermal distribution
neq(ε) =

1
e(ε−µ)/T − 1

(2)

with the chemical potential µ < 0 in a finite boson system in the relaxation-time approximation (RTA),
∂ nrel/∂t = (neq − nrel)/τeq, with solution

nrel(ε, t) = ni(ε) e−t/τeq + neq(ε)(1− e−t/τeq) . (3)

Time-dependent RTA results for gluons are shown in Figure 1 for t = 0.02, 0.08, 0.15, 0.3,
and 0.6 fm/c. The thermal distribution with initial central temperature T = 513 MeV as inferred in
Reference [3] for central Pb-Pb collisions at

√
sNN = 5.02 TeV is approached linearly, the discontinuities

at ε = Qs persist.
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Figure 1. Local thermalization of gluons in the linear relaxation-time approximation (RTA) for µ < 0.
Starting from schematic initial conditions Equation (13) in the cold system at t = 0 (box distribution
with cut at ε = Qs = 1 GeV), a Bose–Einstein equilibrium distribution with temperature T ' 513 MeV
(solid curve) is approached. Time-dependent single-particle occupation-number distribution functions
are shown at t = 0.02, 0.08, 0.15, 0.3, and 0.6 fm/c (decreasing dash lenghts). The lower dotted curve is
Boltzmann’s distribution.

For a more realistic account of thermalization, one needs to consider the inherent nonlinearity of
the system. I had derived a nonlinear partial differential equation for the single-particle occupation
probability distributions n ≡ nth(ε, t) from the bosonic/fermionic Boltzmann collision term in
Reference [4]. The transport coefficients in this nonlinear boson diffusion equation (NBDE) depend on
energy, time, and the second moment of the interaction. They incorporate the complicated many-body
physics. The drift term v(ε, t) is responsible for dissipative effects, the diffusion term D(ε, t) for
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diffusion of particles in the energy space. For the simplified case of energy-independent transport
coefficients, the nonlinear diffusion equation for the occupation-number distribution n±(ε, t) becomes

∂n±

∂t
= −v

∂

∂ε

[
n (1± n)

]
+ D

∂2n
∂ε2 , (4)

where the + sign represents bosons, and the − sign fermions. A stationary solution is given by the
thermal distribution Equation (2) for bosons and, correspondingly, the Fermi–Dirac distribution for
fermions (quarks). In spite of its simple structure, the nonlinear diffusion equation with constant
transport coefficients preserves the essential features of Bose–Einstein/Fermi–Dirac statistics which
are contained in the quantum Boltzmann equation.

The transport equation can be solved exactly for a given initial condition n±i (ε) using the nonlinear
transformation outlined in Reference [4]. For gluons, the nonlinear boson diffusion equation (NBDE) is
more difficult to solve analytically due to the singularity at the chemical potential ε = µ < 0, and the
need to consider the boundary conditions at the singularity. For fermions, there is no corresponding
singularity, such that the exact solution of the nonlinear problem can be obtained with the free Green’s
function as performed in References [4,12]. For gluons, the bounded solution n+(ε, t) [26] is briefly
reviewed. It can be written as

n+(ε, t) = −D
v

∂

∂ε
lnZ+(ε, t)− 1

2
= −D

v
1
Z+

∂Z+

∂ε
− 1

2
(5)

with the time-dependent partition function Z+(ε, t) ≡ Z(ε, t) obeying a linear diffusion equation

∂

∂t
Z(ε, t) = D

∂2

∂ε2Z(ε, t) . (6)

In the absence of boundary conditions, the free partition function becomes

Zfree(ε, t) = a(t)
∫ +∞

−∞
Gfree(ε, x, t) F(x)dx . (7)

The energy-independent prefactor a(t) in the partition function drops out when taking the
logarithmic derivative in the calculation of the occupation-number distribution. The function F(x)
with the integral over the initial conditions covers the full energy region −∞ < x < ∞. Due to the
occurence of the singularity, however, one eventually will have to consider boundary conditions
at ε = µ < 0.

For a solution without boundary conditions as in Reference [4], Green’s function Gfree(ε, x, t) of
Equation (6) is a single Gaussian

Gfree(ε, x, t) = exp
(
− (ε− x)2

4Dt

)
, (8)

but it becomes more involved once boundary conditions are considered. The function F(x) depends
on the initial occupation-number distribution ni according to

F(x) = exp
[
− 1

2D

(
vx + 2v

∫ x

0
ni(y)dy

)]
. (9)

As discussed in Reference [27], the definite integral can be replaced w.l.o.g. by the indefinite
integral Ai(x) over the initial distribution with ∂x Ai(x) = ni(y), resulting in

F(x) = exp
[
− 1

2D
(
vx + 2vAi(x)

)]
. (10)
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For any given initial distribution ni, one can now compute the partition function and the overall
solution for the occupation-number distribution function Equation (5) analytically. The solution
technique has been developed in References [27,28] for the case of a cold bosonic atom gas that
undergoes evaporative cooling. Here, and in Reference [26] for different initial conditions, the approach
is carried over to equilibrating gluons at relativistic energies. To solve the problem exactly, the chemical
potential is treated as a fixed parameter. With limε↓µ n(ε, t) = ∞ ∀ t, one obtains Z(µ, t) = 0, and the
energy range is restricted to ε ≥ µ. This requires a new Green’s function that equals zero at ε = µ ∀ t.
It can be written as

G(ε, x, t) = Gfree(ε− µ, x, t)− Gfree(ε− µ,−x, t) , (11)

and the partition function with this boundary condition becomes

Z(ε, t) =
∫ ∞

0
G(ε, x, t) F(x + µ)dx . (12)

The function F remains unaltered with respect to Equation (10), except for a shift of its argument
by the chemical potential. With a given initial nonequilibrium distribution ni, the NBDE can now be
solved including boundary conditions at the singularity. The solution is given by Equation (5).

2.1. Thermalization of Gluons

For massless gluons at the onset of a relativistic hadronic collision, an initial-momentum
distribution ni(|p|) ≡ ni(p) = ni (ε) has been proposed by Mueller [29] based on Reference [30].
It accounts, in particular, for the situation at the start of a relativistic heavy-ion collision [9]. It amounts
to assuming that all gluons up to a limiting momentum Qs are freed on a short time scale τ0 ∼ Q−1

s ,
whereas all gluons beyond Qs are not freed. Thus the initial gluon-mode occupation in a volume V is
taken to be a constant up to Qs, as in Equation (1) that was already used before in the relaxation-time
approximation. Typical gluon saturation momenta for a longitudinal momentum fraction carried
by the gluon x ' 0.01 turn out to be of the order Qs ' 1 GeV [13], which is chosen for the present
model investigation.

Results for the gluon thermalization from ni(ε) to neq(ε) according to Equation (4) have been
calculated in Reference [4] for the free case, without considering boundary conditions at the singularity.
As a consequence, diffusion into the negative-energy region occured, depleting the occupation in the
infrared such that the asymptotic distribution differed from Bose–Einstein.

As a remedy, one has to extend the energy scale in Equation (1) to µ ≤ ε < ∞, and include the
boundary conditions at the singularity ε = µ < 0. This will cause the time-dependent solutions of the
NBDE to properly approach the thermal Bose–Einstein distribution over the full energy scale as t→ ∞.
The initial condition is thus modified to include a δ-function singularity at ε = µ < 0 according to

ni(ε) = θ(1− ε/Qs) θ(ε− µ) + δ(ε− µ) . (13)

The δ-function singularity in the initial conditions of the NBDE has an analogous role as the
singularity that can be added to the Boltzmann equation in order to act as a seed condensate [31]
since the time evolution of the solutions without singularity does not lead to condensate formation.
In Reference [26], another choice of the initial conditions had been explored, with a thermal distribution
in the negative-energy region that also has a singularity at ε = µ. Although the results differ in detail,
the overall representation of thermalization is similar to the present results.

The time-dependent partition function with the above initial condition can now be calculated
using the bound Green’s function Equation (11), and the function F(x) from Equation (10). The latter
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contains an indefinite integral over the initial condition Equation (13) that can be carried out to obtain
(with x → x + µ in the argument of F(x) as required by the boundary conditions)

F(x) = exp

[
−v(x + µ)

2D

]
× exp[−(v/D) θ(x)((µ−Qs)θ(µ−Qs) + (Qs − x− µ) θ(x + µ−Qs) + x + 1)] . (14)

The function F(x) is plotted in Figure 2. Due to the singularity in its argument, F(x) has
a discontinuity at x = 0. It is continuous, but not differentiable at x = Qs − µ. Both properties
are essential to account for the equilibration near the singularity, and in the UV region. The Green’s
function of Equation (11) that includes the IR boundary condition can explicitly be written as

G(ε, x, t) = exp

[
−(ε− µ− x)2

4Dt

]
− exp

[
−(ε− µ + x)2

4Dt

]
. (15)

With F(x) and G(ε, x, t), the partition function Z(ε, t) of Equation (12) and its derivative ∂Z/∂ε

can now be calculated, as well as the occupation-number distribution n(ε, t) from Equation (5). The full
calculation may in principle be carried out analytically. In the case of initial conditions that are
appropriate for evaporative cooling of atomic Bose gases at very low energy, we have performed such
an exact calculation including the boundary conditions at the singularity in Reference [27]. Here I
compute the partition function and its derivative using the NIntegrate and Derivative routines
of Mathematica.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

50

100

150

200

250

x (GeV)

F
(x
)

Figure 2. The function F(x) of Equation (10) (solid curve) with x → x + µ as required by the boundary
conditions, and a singularity at the origin. F(x) contains the integral over an initial nonequilibrium
gluon distribution ni(x) according to Equation (14). The parameters are given in the text.

2.2. Discussion of the Solutions for Gluons

The bosonic equilibration time τeq is taken as τeq = 4D/(9v2) ' 0.1 fm/c. This expression
has been determined in Reference [4] for a θ-function initial distribution in the UV. The approach to
equilibrium provided by the solutions of the NBDE for the gluon distribution functions is shown
in Figure 3 at t = 6× 10−5, 6× 10−4, 6× 10−3, 4× 10−2, 0.12, and 0.36 fm/c, with decreasing dash
lenghts. The steep cutoff in the UV at ε = Qs is smeared out at short times—this was the case already
in the free solution without boundary conditions [4]. The diffusion coefficient is D = 1.17 GeV2c/fm,
the drift coefficient v = −2.28 GeVc/fm. Correspondingly, the equilibrium temperature in this model
calculation is T = −D/v ' 513 MeV = 0.513 GeV, as expected for the initial central temperature
in a Pb-Pb collision at the LHC energy of

√
sNN = 5 TeV [3]. Solutions for related, but different
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initial conditions (a thermal distribution in the energy region µ ≤ ε ≤ 0) have been discussed in
Reference [26].

The assumption of a constant negative chemical potential µ < 0 used in this work is, of course,
an idealization that facilitates analytical solutions of the nonlinear problem. Here, the value of µ is
calculated from particle-number conservation

Ni = Nf =
∫ ∞

0
neq(ε) g(ε) dε, (16)

with the density of states g(ε). For constant density of states and the above parameter values
(T = 513 MeV), the result is µ = −0.08 GeV. For the more realistic density of states g(ε) ∝ ε2

that is valid for a zero-mass relativistic system of gluons, the particle number is then also
approximately conserved.
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Figure 3. Local thermalization of gluons as represented by time-dependent solutions of the nonlinear
boson diffusion equation (NBDE) for µ < 0. Starting from schematic initial conditions Equation (13) in
the cold system at t = 0 (box distribution with cut at ε = Qs = 1 GeV), a Bose–Einstein equilibrium
distribution with temperature T = 513 MeV (lower solid curve) is approached. Time-dependent
single-particle occupation-number distribution functions are shown at t = 6× 10−4, 6× 10−3, 0.04,
0.12, and 0.36 fm/c (decreasing dash lenghts). The lower dotted curve is Boltzmann’s distribution.

In general, particle-number conservation is strictly fulfilled for example, for atomic Bose gases
at much lower energy, but not for gluons in high-energy collisions. Driven by particle-number
conservation, cold bosonic atoms can move into the condensed phase, thus diminishing the number
of particles in the thermal cloud. The chemical potential in the equilibrium solution of the NBDE
then becomes time dependent, as has been discussed in Reference [27], albeit without a full quantum
treatment of the condensed phase. It would become zero only in the limit of an inifinite number of
particles in the condensed phase. Instead, it approaches a small but finite negative value for a finite
number of particles.

In case of relativistic heavy-ion collisions, however, gluons can be created and destroyed. It is
therefore unlikely that a condensed phase is actually formed, as had been proposed in model
investigations where only soft elastic, number-conserving gluon collisions were considered [9].
Gluon condensate formation in relativistic collisions is essentially prevented by number-changing
inelastic processes that correspond to splitting and merging of gluons, although a transient condensate
formation is still being debated [10].

Hence, since inelastic collisions cannot be neglected, the gluon equilibrium distribution is expected
to have a nearly vanishing, but still slightly negative, chemical potential which should be approached
by the time-dependent solutions of the NBDE. It would therefore be of interest to repeat the present
calculation for a time-dependent chemical potential, with µ(t) → 0 for t → ∞, as was done in
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Reference [27] for the case of cold atoms. This requires, however, numerical work that goes substantially
beyond the present analytic approach.

2.3. Discussion of the Solutions for Quarks

The local thermalization of valence quarks towards the Fermi–Dirac equilibrium distribution is
easier to calculate in the nonlinear model because no singularity occurs for fermions. Hence, the free
solutions can be used as was already discussed in Reference [4] and in more detail in Reference [12].
Hadron production in the early thermalization phase was implicitly considered, because the
negative-energy region corresponds to particle-antiparticle production. A typical result for the
fermionic time-dependent occupation-number distribution as function of the transverse energy taken
from Reference [32] is shown in Figure 4. Local thermalization for quarks occurs more slowly as for
gluons due to Pauli’s principle, and also because of the larger color factor for gluons.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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n
-
(
ε
T
,
t
)

Figure 4. Occupation-number distribution n−(ε T, t) of a relativistic fermion system (valence quarks)
as function of the transverse energy ε T including antiparticle production (ε T < 0). It is evaluated
analytically from Equation (4) at different times for the initial distribution n−i (ε T) = θ (1− ε T/µ).
The parameters are µ = 1 GeV, T = −D/v = 500 MeV, τ−eq = 4D/v2 = 0.9 fm/c. The distribution
n−(ε T, t) is displayed at t = 0.003, 0.015, 0.06, 0.15, and 0.6 fm/c (ordered by decreasing dash length
towards the solid equilibrium distribution). The upper dot-dashed curve is Boltzmann’s distribution.
The negative-energy region corresponds to antiparticle production. From Reference [32].

The bounded solutions of the NBDE and the corresponding nonlinear fermion diffusion equation
are, in particular, tailored to local thermalization processes that occur in relativistic heavy-ion collisions
at energies reached at RHIC and LHC. In the present example, they are applied to the local equilibration
of quarks and gluons in central Pb-Pb collisions at a center-of-mass energy of 5 TeV per nucleon pair,
leading to rapid thermalization with a local temperature of T ' 500 MeV. Since the thermalization
occurs very fast—before anisotropic expansion fully sets in, the analytic solution of the problem in
1 + 1 dimensions appears permissible. The hot system will subsequently expand anisotropically and
cool rapidly, as is often modeled successfully by relativistic hydrodynamics [1], until hadronization is
reached at T ' 160 MeV. Further refinements of the thermalization model such as time-dependent
transport coefficients are conceivable, but are unlikely to allow for analytic solutions. A microscopic
calculation of the transport coefficients with an investigation of their dependencies on energy and time
would be very valuable. Extensions of the NBDE itself to higher dimensions in order to account for
possible anisotropies should also be investigated.

3. Stopping: Net-Proton Distributions

The incoming baryons with energies available at SPS, RHIC or LHC are being stopped on
an equally short time scale as the local equilibration occurs: In the course of the collision shown
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schematically in Figure 5, the system is being slowed down, essentially through collisions of the
incoming valence quarks with soft gluons in the respective other nucleus. Various models to account
for this process and its energy dependence have been developed, in particular in References [13,14] and
related works which are relying on the appropriate parton distribution functions (PDFs). They yield
agreement with the available net-proton (proton minus antiproton) stopping data. Different from
the nonequilibrium-statistical approach to initial thermalization, such models do not consider a time
dependence. However, by using the rapidity distribution calculated from the PDFs, and the initial
valence-quark distribution, one can, in addition, account for the time development from the initial to
the final distribution with an appropriate fluctuation–dissipation relation.

Figure 5. Schematic representation of the three-source model for relativistic heavy-ion collisions at
RHIC and LHC energies in the center-of-mass system: Following the collision and slowing down
(stopping) of the two Lorentz-contracted slabs (blue), the fireball region (center, yellow) expands
anisotropically in longitudinal and transverse direction. At midrapidity, it represents the main
source of particle production. The two fragmentation sources (red) contribute to particle production,
albeit mostly in the forward and backward rapidity regions. In stopping, these are the only sources.
From Reference [33].

The fragmentation peaks in stopping occur mainly due to the interaction of valence quarks with
soft gluons in the respective other nucleus. For net protons (protons minus antiprotons), their positions
in rapidity space y = 0.5 ln[(E|| + p||)/(E|| − p||)] with mp = mp can be obtained from Reference [13],
and references therein, as

dNp−p̄

dy
=

C
(2π)2

∫ d2 pT

p2
T

x1qv(x1, pT) fg(x2, pT) . (17)

This expression accounts for the peak in the forward region, and there is a corresponding one
with y → −y for the backward peak. The longitudinal momentum fraction of the valence quark
v that experiences stopping is x1 = pT/

√
s exp(y), the one for the soft gluon g in the target is

x2 = pT/
√

s exp(−y). The distribution function of the valence quarks is qv(x1, pT), the one of the
gluons is fg(x2, pT). The latter represents the Fourier transform of the forward dipole scattering
amplitude N(x2, rT) for a quark dipole of transverse size rT [14]. To account for the correct
normalization in net-proton or net-baryon distributions, the normalization constant C is adjusted such
that the integral of Equation (17) agrees with the total number of participant protons or baryons.

Fragmentation peaks are then found to occur at y = ±ypeak in rapidity space. At sufficiently high
energy–in particular, at LHC energies–these positions become sensitive to the gluon saturation scale

Q2
s = A1/3Q2

0x−λ . (18)
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Here, A is the mass number, Q0 the momentum scale, x < 1 the momentum fraction carried by
the gluon, and λ the saturation-scale exponent.

Rapidity distributions dNp−p̄/dy at SPS and RHIC energies had been calculated within our
QCD-inspired model of Reference [13] for several values of the gluon saturation scale and found
to agree with net-proton data from SPS and RHIC. We are presently incorporating these results
into a time-dependent nonequilibrium-statistical relativistic theory [34]. A typical outcome of our
approach for central Pb-Pb at SPS energies of

√
sNN = 17.3 GeV is shown in Figure 6 where it is

compared with NA49 data [35] in rapidity space. The initial distributions are shown as red curves,
with the initial broadening due to the Fermi motion. The final distribution agrees with the one
from our QCD-inspired model [13] with a saturation-scale exponent λ = 0.2 and Q2

0 = 0.09 GeV2,
translating into a gluon saturation momentum of Qs ' 0.55 GeV/c at x = 10−4. At the interaction
time t = τint, the time-dependent distribution agrees with the data. The six intermediate solid curves
at t/τint = 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 show the time dependence in our nonequilibrium-statistical
relativistic theory [34].
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Figure 6. Rapidity distributions of net protons in central Pb-Pb collisions at SPS energies of
√

sNN

= 17.3 GeV compared with NA49 data [35]. Red curves are the initial distributions broadened by the
Fermi momentum, the final distribution is from our QCD-inspired model [13] with the saturation-scale
exponent λ = 0.2 and Q2

0 = 0.09 GeV2 (see text). It agrees with the data, and corresponds
to the distribution at the interaction time t = τint in a time-dependent formulation. The six
intermediate solid curves at t/τint = 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 account for the time dependence in
a nonequilibrium-statistical relativistic theory. From Hoelck and Wolschin [34].

A larger gluon saturation momentum Qs was found to produce more stopping, as does a larger
mass number A [13]. In the context of an investigation of particle production, the agreement between
the calculated stopping distributions and the data will be taken as evidence for the importance of
fragmentation contributions also in charged-hadron production.

In Reference [36], Mehtar-Tani and I found that the fragmentation peak positions in stopping
depend in a large c.m. energy range 6.3 GeV ≤ √sNN ≤ 200 GeV linearly on the beam rapidity ybeam
and the saturation-scale exponent λ according to

ypeak =
1

1 + λ
(ybeam − ln A1/6) + const . (19)

At the current LHC energy of 5.02 TeV Pb-Pb corresponding to
ybeam = ± ln(

√
sNN/mp) = ±8.586 and with a gluon saturation-scale exponent λ ∼ 0.2

one therefore expects ypeak ' ±6. Due to the lack of a suitable forward spectrometer at LHC,
the rapidity region of the peaks will thus not be accessible for identified protons in the coming years at
LHC energies. Nevertheless, the partonic processes that mediate stopping also contribute to hadron
production at LHC energies and hence, one expects fragmentation events in particle production.
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Experience with stopping versus hadron production at SPS and RHIC energies [15,16] has shown
that the fragmentation peaks in particle production occur consistently at somewhat smaller absolute
rapidities than the ones in stopping.

In net-baryon (proton) distributions charged baryons produced from the gluonic source cancel
out because particles and antiparticles are generated in equal amounts. In charged-hadron production,
however, this is not the case. Instead, three sources contribute provided the energy is sufficiently
high,

√
sNN > 20 GeV. It was found in Reference [16] that the dependence of their particle content

on c.m. energy differs: The fragmentation sources contain Nqg
ch ∝ ln(sNN/s0) charged hadrons,

whereas the midrapidity-centered source that arises essentially from the interaction of low-x gluons
contains Ngg

ch ∝ ln3(sNN/s0) charged hadrons. Due to the strong ∝ ln3 dependence, it becomes more
important than the fragmentation sources at LHC energies [37].

With the three sources, the total rapidity distribution for produced charged hadrons becomes

dNtot
ch (y, t = τint)

dy
= Nqg,1

ch R1(y, τint) + Ngq,2
ch R2(y, τint) + Ngg

ch Rgg(y, τint) . (20)

The fragmentation distributions R1,2(y, t) and gluonic distributions Rgg(y, t) can be calculated
in a time-dependent phenomenological model such as the relativistic diffusion model [15], or in
microscopic theories. The strong interaction ceases to act at the interaction time (≡freezeout-time)
t = τint and theoretical distributions may be compared to data in a χ2-optimization.

A transparent phenomenological model to calculate and predict the distribution functions of
produced particles is the relativistic diffusion model [15,38]. In the RDM, the initial distribution
functions are evolved up to τint/τy with the rapidity relaxation time τy using the analytical moments
equations. The mean values 〈y1,2〉 of the fragmentation distributions that are related to τint/τy can
be determined from the data. The details of the model calculations are given in the corresponding
References [15,16,37].

4. Charged-Hadron Production

4.1. Transverse-Momentum Distributions

As discussed frequently in experimental papers [39] and also in Reference [16],
the transverse-momentum distributions of produced charged hadrons in relativistic heavy-ion
collisions show an exponential behaviour in the thermal regime as accounted for by the
Maxwell–Jüttner distribution [40] (c ≡ 1)

f (pT) =
1

4πm2TK2(m/T)
exp

[
−γ(pT)m

T

]
(21)

with the modified Bessel function of the second kind K2(m/T), the Lorentz-factor

γ(pT) =
√

1 + (pT/m)2, (22)

freeze-out temperature T and hadron mass m. Beyond pT ' 4 GeV/c, however, a transition to
a power-law (straight lines in a log-log plot) occurs. It is attributed mostly to the recombination
of soft partons, and fragmentation of hard partons. In addition to detailed theoretical approaches,
this transition can be modelled phenomenologically using distribution functions of the QCD-inspired
form (see references in Wilk and Wong [41]) used by Hagedorn [42] for high-energy pp and
pp collisions

E
d3σ

dp3 = C (1 + pT/p0)
−n, (23)
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with a normalization constant C and parameters p0, n. This expression describes the transition from
exponential for pT → 0 as in the Jüttner distribution Equation (21) (with p0 = nT and pT → mT),
to power-law behaviour (∝ (pT/p0)

−n for pT → ∞) .
Using Equation (23), Figure 7 shows pT-distributions of produced charged hadrons at four

centralities in 5.02 TeV Pb-Pb compared with ALICE data [43] (peripheral spectra are scaled for better
visibility; statistical and systematic error bars are smaller than the symbol size). The data are well
represented through many orders of magnitude with a power index n = 8.2 and p0 = 3 GeV/c
(Figure 7), but at high pT deviations occur which are attributed to hard processes that require a pQCD
treatment. This corresponds to the occurence of a minimum in the nuclear modification factor for
produced charged hadrons as function of pT found already at

√
sNN = 2.76 TeV [44], and confirmed at

5.02 TeV [43].
The value of the power index n that is necessary to reproduce the experimental pT-distributions

in relativistic heavy-ion collisions has not yet been derived successfully from theory. From the
present analysis it is therefore neither obvious which fraction of low-pT particles could be due to
nonequilibrium processes that differ from thermal emission out of a single expanding fireball, nor can
one distinguish particles emitted from the fireball and those arising from the fragmentation sources
at low pT. The analysis of transverse momentum distributions in terms of Equation (23) is currently
only suitable to distinguish high-pT hard events from the bulk of (thermal and nonequilibrium)
charged-hadron emission.
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100

1x104

Import

Figure 7. Transverse momentum distributions of produced charged hadrons in
√

sNN = 5.02 TeV Pb-Pb
collisions calculated from Hagedorn’s formula (see text) compared with ALICE data [43] for 0–5%,
20–30% (×10−3), 50–60% (×10−6) and 70–80% (×10−8) centralities (top to bottom). The dot-dashed
curve has power index n = 6.2, the dashed curve n = 10.2, solid curves are for n = 8.2. Error bars are
smaller than the symbol size.

4.2. Pseudorapidity Distributions

The distinction of particles emitted from the fireball and those from the fragmentation sources
is more transparent in rapidity or pseudorapidity distributions of produced charged hadrons.
The existence of the fragmentation sources is evident from the measurements of stopping in heavy-ion
collisions as discussed in Section 3. Pseudorapidity distributions dNch/dη with η = − ln [tan(θ/2)]
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depend only on the scattering angle θ. Particle identification is not needed here and hence, they are
much easier to obtain at large η-values (small scattering angles) compared to rapidity distributions.

The pseudorapidity distributions dNch/dη for produced charged hadrons in relativistic heavy-ion
collisions emerge from a superposition of the fragmentation sources and a midrapidity source.
According to the discussion in Reference [37] and at the end of Section 3, the particle content of
the low-x gluon source rises rapidly according to Ngg ∝ ln3(sNN/s0). To convert rapidity distributions
dNch/dy to pseudorapidity distributions dNch/dη, the corresponding Jacobian is required

dN
dη

=
dN
dy

dy
dη

= J(η, m/pT)
dN
dy

, (24)

J(η, m/pT) = cosh(η)·[1 + (m/pT)
2 + sinh2(η)]−1/2 . (25)

The hadron mass is m and the transverse momentum pT. Since the transformation depends on the
squared ratio (m/pT)

2 of mass and transverse momentum of the produced particles, its effect increases
with the mass of the particles and is most pronounced at small transverse momenta. In Reference [45],
we have determined the Jacobian J0 at η = y = 0 in central 2.76 TeV Pb-Pb collisions for identified
π−, K−, and antiprotons from the experimental values dN

dη |exp and dN
dy |exp as J0 = 0.856. We can solve

Equation (25) for pT ≡ 〈peff
T 〉 to obtain

〈peff
T 〉 =

〈m〉 J0√
1− J2

0

. (26)

The mean mass 〈m〉 can be calculated from the abundancies of pions, kaons, and antiprotons.
Using J0, the Jacobian can be written independently from the values of 〈m〉 and 〈peff

T 〉 as

J
(
η, J0

)
=

cosh(η)√
1 + 1−J2

0
J2
0

+ sinh2(η)

. (27)

The result for central 2.76 TeV Pb-Pb collisions was found in Reference [45] to be J(η) =

cosh(η)[1.365 + sinh2(η)]−1/2. The Jacobian affects the pseudorapidity distributions mostly near
midrapidity, where it generates a dip as is obvious from Figure 8: A prediction in the RDM with linear
drift from Reference [16] is compared with ALICE data for central Pb-Pb at 5.02 TeV [46] (dashed
upper curve), and a χ2-optimization within the five parameter RDM is carried out, upper solid curve.
It differs only slightly from the prediction.

The nonequilibrium evolution of all three partial distribution functions Rk(y, t) (k = 1, 2, gg)
towards the thermodynamic equilibrium (Maxwell–Jüttner) distribution for t→ ∞

E
d3N
dp3

∣∣∣∣
eq

∝ E exp (−E/T) = mT cosh
(
y
)

exp
(
−mT cosh(y)/T

)
(28)

is accounted for in the Relativistic Diffusion Model [15,16,38,47] through solutions of the
Fokker-Planck equation

∂

∂t
Rk(y, t) = − ∂

∂y
[

Jk(y, t)Rk(y, t)
]
+

∂2

∂y2

[
Dk(y, t)Rk(y, t)

]
. (29)

The drift functions Jk(y, t) and diffusion functions Dk(y, t) depend on rapidity and time.
However, if the diffusion coefficients are taken as constants Dk, and the drift functions assumed
to be linearly dependent on the rapidity variable y, the FPE acquires the Ornstein-Uhlenbeck form [48]
which can be solved analytically in rapidity space [38]. In this case it is easy to show that for t→ ∞
all three subdistributions approach a single Gaussian in y space which is centered at midrapidity
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y = 0 for symmetric systems, or at the appropriate equilibrium value y = yeq for asymmetric
systems [15,16,37]. For stopping, only the two fragmentation distributions contribute, approaching the
thermal equilibrium distribution for t→ ∞, as discussed in the previous section. If the system reaches
a stationary distribution that differs from the thermal one as discussed in Section 3 for the case of
stopping calculated in a QCD-based model, the underlying fluctuation-dissipation relation becomes
more complicated [34].

To derive the above FPE (29) in the context of relativistic heavy-ion collisions, one can make use
of a theory for a special class of non-markovian processes in spacetime discussed in References [49,50],
which are equivalent to relativistic Markov processes in phase space (RMPP). These processes give
rise to a generalised FPE which is suitable for describing relativistic diffusive particle dynamics.
Our Equation (29) is conceptually a special case of such a RMPP formalism for charged-hadron
production in rapidity space. An application of RMPP to baryon stopping will be shown in
Reference [34].

The t → ∞ limit of the FPE solution for constant diffusion and linear drift is found to deviate
slightly from the Maxwell–Jüttner distribution. The discrepancies are small and become visible only for
sufficiently large times. To ensure that the asymptotic solution yields the Maxwell–Jüttner distribution
Equation (28), a RDM with the sinh-drift is required

Jk(y, t) = −Ak sinh(y) , (30)

as was discussed in References [51,52]. The corresponding fluctuation-dissipation relation (FDR) that
connects drift and diffusion becomes [52]

Ak = mTDk/T . (31)

If the asymptotic distribution is not Maxwell–Jüttner, but—as in the case of stopping, where it
may be provided by a QCD-based distribution from a calculation as performed in Reference [13],
a different form of the fluctuation-dissipation relation will result, as will be discussed in Reference [34].

The strength of the drift force in the fragmentation sources k = 1, 2 depends on the distance
in y-space from the beam rapidity, which enters through the initial conditions. With Equation (28),
the rapidity distribution at thermal equilibrium can then be derived [53] as

dNeq

dy
= C

(
m2

TT +
2mTT2

cosh y
+

2T3

cosh2 y

)
exp

(
−mT cosh y

T

)
, (32)

where C is proportional to the overall number of produced charged hadrons Ntot
ch , or–in case of

stopping–to the number of net baryons (protons) in the respective centrality bin. Since the actual
distribution functions remain far from thermal equilibrium, the total particle number is evaluated
based on the nonequilibrium solutions of the FPE, which are adjusted to the data in χ2-optimizations.

In particular, one can determine the drift amplitudes Ak from the position of the fragmentation
peaks as inferred from the data, and then calculate theoretical diffusion coefficients as Dk = AkT/mT.
Since the fireball and both fragmentation sources also expand collectively, the actual distribution
functions will, however, be broader than what is obtained from Equation (31). To account for this
broadening through collective expansion, we use diffusion coefficients (or widths of the partial
distributions) that are adapted to the data in both stopping and particle production. From the integral
of the overall distribution function the total particle number can be obtained. In case of the FPE with
sinh-drift, the FPE must be solved numerically as described in Reference [52].

In Figure 8, results for central collisions of symmetric systems in the three-source RDM with
linear drift are summarized. The dependence of the pseudorapidity distributions on c.m. energy in
central Au-Au collisions at 19.6 GeV, 130 GeV, and 200 GeV RHIC energies as well as in central Pb-Pb
at 2.76 TeV and 5.02 TeV LHC energies are displayed. In addition to RDM calculations with parameters
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for the lower energies from [15] compared with data from References [18,44,54], a prediction for 5.02
TeV Pb-Pb (dashed upper curve) from Reference [16] is compared with recent ALICE data at 0–5%
centrality [46]. A fit to the data within the five-parameter RDM is also displayed (solid curve).

Only the fragmentation sources contribute at the lowest RHIC energy of 19.6 GeV that is shown
here—which is comparable to the highest SPS energy of 17.3 GeV—(see dot-dashed curves), but at
higher energies the gluonic source rapidly rises and becomes the largest source of particle production
at an energy of ∼2 TeV, which is between energies reached at RHIC and LHC.

I have investigated the dependence of the particle content of the three sources on center-of-mass
energy per particle pair

√
sNN in Reference [37]. The gluonic source is absent for

√
sNN . 20 GeV,

see the 19.6 GeV Au-Au PHOBOS result in Figure 8. At this relatively low energy, charged-hadron
production arises only from the fragmentation sources which overlap in rapidity space and hence,
appear like a single gaussian (“thermal”) source. The total charged-hadron production has been found
experimentally to depend linearly on ln(sNN/s0), see for example central Pb-Pb NA50 data at 8.7 GeV
and 17.3 GeV [55] and low-energy Au-Au PHOBOS results [18].
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Figure 8. The relativistic diffusion model (RDM) pseudorapidity distribution functions for charged
hadrons in central Au-Au (RHIC) and Pb-Pb (LHC) collisions at c.m. energies of 19.6 GeV, 130 GeV,
200 GeV, 2.76 TeV, and 5.02 TeV shown here are optimized in χ2-fits with respect to the PHOBOS [18,54]
(bottom) and ALICE [46,56] (top) data, with parameters from References [15,16]. The upper dashed
distribution function at 5.02 TeV is a prediction from Reference [16] within the relativistic diffusion
model. The 5.02 TeV midrapidity data point is from Reference [57], the 5.02 TeV data from
Reference [46]. The 19.6 GeV distribution has only two sources (dot-dashed), the other ones have three.

In my RDM-analysis with three sources published in Reference [37], it has turned out that the
dependence of the fragmentation sources Nqg

ch ∝ ln(sNN/s0) indeed continues at higher energies,
see Figure 9. In addition to what was shown in Figure 4 of Reference [37] with an extrapolation to
5.02 TeV, now my results based on an analysis of new ALICE 5.02 TeV data [57] are included in this
figure. The gluonic source is confirmed to have a strong energy dependence Ngg

ch ∝ ln3(sNN/s0).
As discussed in Reference [37], the rise of the cross section in the central distribution is driven
by the growth of the gluon density at small x and theoretical arguments [58] suggest a ln2s
asymptotic behaviour that satisfies the Froissart bound [59]. Because the beam rapidity is ∝ ln(sNN),
the integrated yield from the gluonic source then becomes proportional to ln3s, in agreement with the
phenomenological analysis, and the new 5.02 TeV data. It was mentioned in Reference [37] that there
exist also further experimental confirmations of this result at RHIC energies based on STAR data for
dijet production, see [60] and references therein.
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The 5.02 TeV Pb-Pb data confirm that the sum of produced charged hadrons integrated over η

is close to a power law Ntot
ch ∝ (sNN/s0)

0.23 with s0 = 1 TeV2 as shown in Figure 9 for central Au-Au
and Pb-Pb collisions, upper line. At RHIC energies Busza noticed that the integrated charged-particle
multiplicities scale as ln2(sNN/s0) [61], but the energy dependence up to the maximum LHC energy of
5.02 TeV has turned to be even stronger due to the high gluon density. In Reference [37] it was shown
that the midrapidity yields for central Au-Au and Pb-Pb collisions are

dNtot
ch

dη

∣∣∣∣∣
η'0

= 1.15 · 103(sNN/s0)
0.165 (33)

with s0 = 1 TeV2 (dotted line, with data points from Phobos [54] and ALICE [57,62]).
More detailed aspects of the interplay between fragmentation sources and gluonic source appear

when investigating the centrality dependence of charged-hadron pseudorapidity distributions, as has
been done in References [63,64] for the asymmetric systems 200 GeV d-Au and 5.02 TeV p-Pb, and in
References [15,45] for 2.76 TeV Pb-Pb.
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Figure 9. The total charged-hadron production in central Au-Au and Pb-Pb collision in the energy
region 19.6 GeV to 5.02 TeV is following a power law (solid upper line), whereas the particle content
in the fragmentation sources is Nqg ∝ ln (sNN/s0), dash-dotted curve. The particle content in the
mid-rapidity source obeys Ngg ∝ ln3 (sNN/s0), dashed curve. The energy dependence of the measured
mid-rapidity yields is shown as a dotted line, with PHOBOS data [54] at RHIC energies, and ALICE
data [57,62] at 2.76 and 5.02 TeV. The vertical line indicates 5.02 TeV.

4.3. Limiting Fragmentation at RHIC and LHC Energies

Using the RDM with both, linear and sinh-drift, we have investigated whether the limiting
fragmentation conjecture is fulfilled at energies reached at RHIC and LHC [33]. The significance
of the fragmentation region in relativistic heavy-ion collisions had been realized when data
on Au-Au collisions in the energy range

√
sNN = 19.6 GeV to 200 GeV became available at

RHIC [17–19]. The pseudorapidity distributions of produced charged particles for a given centrality
bin scale with energy according to the limiting fragmentation (LF), or extended longitudinal scaling,
hypothesis: Over a large range of pseudorapidities η ′ = η − ybeam in the fragmentation region
with the beam rapidity ybeam, the charged-particle pseudorapidity distribution is found to be
energy independent.

The phenomenon was first shown to be present in pp data, in a range from 53 up to
900 GeV [65], following a prediction for hadron-hadron and electron-proton collisions in Reference [66].
With increasing collision energy the fragmentation region grows in pseudorapidity space. It can cover
more than half of the pseudorapidity range over which particle production occurs. Especially in
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relativistic heavy-ion collisions, the approach to a universal limiting curve is a remarkable feature of
the particle production process.

As discussed in Reference [33] and references cited therein, it is an interesting question whether
limiting fragmentation will persist at the much higher incident energies that are available at the LHC,
namely,

√
sNN = 2.76 and 5.02 TeV in Pb-Pb collisions. At these energies, experimental results in the

fragmentation region are not available due to the lack of a dedicated forward spectrometer. If one
wants to account for the collision dynamics more completely, however, this region is most interesting.
We have therefore investigated in Reference [33] to what extent limiting fragmentation can be expected
to occur in heavy-ion collisions at LHC energies. The result from that investigation is summarized in
Figure 10: Limiting-fragmentation scaling can be expected to hold at both, RHIC and LHC energies.
This conclusion agrees with microscopic numerical models such as AMPT [67], but it disagrees with
expectations from simple parametrizations of the rapidity distributions such as the difference of two
Gaussians. It also disagrees with predictions from the thermal model, which does not explicitly treat
the fragmentation sources but refers only to particles produced from the hot fireball. In contrast, in our
approach the fragmentation sources play an essential role. Only future upgrades of the detectors would
make it possible to actually test the limiting-fragmentation conjecture experimentally at LHC energies.
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Figure 10. Comparison of the three-source RDM-distributions with linear and sinh-drift,
PHOBOS data [54], and ALICE data [46,56] with emphasis on limiting fragmentation. From bottom
to top: central Au-Au at

√
sNN =19.6, 62.4, 130 and 200 GeV (RHIC), Pb-Pb at

√
sNN = 2.76 and

5.02 TeV. The difference between the model with sinh-drift (solid curves) and the one with linear drift
(dot-dashed and dashed curves) is small, but visible in the fragmentation region. The zoom into this
region shows that the RDM with sinh-drift is consistent with limiting fragmentation at Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. From Kellers and Wolschin [33],
where details and parameters are given.

5. Quarkonia and the QGP

Among the hard probes in relativistic heavy-ion collisions, the modification of quarkonia yields
in the presence of the quark-gluon plasma has an outstanding role. Charmonia (J/ψ) suppression due
to the screening of the real part of the Cornell-type quark-antiquark potential in the hot medium had
initially been suggested by Matsui and Satz in 1986 as a QGP signature [23]. It was realized later that
the potential in the medium is an optical one, with the imaginary part [24] causing dissociation of the
quarkonia states in the hot medium and thus, quarkonia suppression when compared to the production
rates from pp collisions at the same center-of-mass energy scaled with the number of binary collisions.
In addition to the associated collisional damping widths of the quarkonia states, thermal gluons can
dissociate these states, and the gluon-induced dissociation widths [25] can be treated separately from



Universe 2020, 6, 61 19 of 30

the damping [68]. An important role is played by the reduction of feed-down in the heavy-ion case
as compared to pp, because feed-down from the higher to the lower states is hindered if the higher
states are screened away, or depopulated. If the medium contains a large number of heavy quarks
as is the case for charm quarks in Pb-Pb collisions at LHC energies, statistical recombination cannot
be neglected at sufficiently low transverse momentum, and there is an interplay of dissociation and
recombination. There is meanwhile a large number of publications and reviews about charmonia
physics in relativistic heavy-ion collisions available [39].

Bottom quarks are about three times heavier than charm quarks, have a correspondingly
smaller production cross section, and hence, are less abundant even at LHC energies.
Statistical recombination is therefore less important, and expansions in terms of (1/m) are more
precise. Consequently, bottomonia provide a cleaner probe of the QGP properties such as the initial
central temperature, and have been investigated in detail both theoretically and experimentally.
The bottom quarks are produced on a very short time scale of 0.02 fm/c in the initial stages of the
collision, before the QGP of light quarks and gluons is actually being produced. The formation time of
bottomonia states is larger, in the range τF ' 0.3− 0.6 fm/c. It is less precisely known, may differ for
the individual states such as Υ(1S, 2S, 3S) and χb(1P, 2P, 3P), and could depend on the temperature of
the emerging QGP, which would further enlarge it [69]. Since the spin-triplet Υ(1S) state is particularly
stable with a binding energy of'1.1 GeV, it has a sizeable probability to survive as a color-neutral state
in the colored hot quark-gluon medium of light quarks and gluons that is created in a central Pb-Pb
collision at LHC energies, even at initial medium temperatures of the order of 400 MeV or above.

There exists a considerable literature on the dissociation of quarkonia, in particular of the
Υ meson [70–72], in the hot quark-gluon medium; see Reference [73] and references therein for a
review. In minimum-bias Pb-Pb-collisions at LHC energies of

√
sNN = 5.02 TeV in the midrapidity

range, the strongly bound Υ(1S)-state is found to be suppressed down to about 38 % as compared to
the expectation from scaled pp collisions at the same energy. The Υ(1P) state has a smaller binding
energy and is even more suppressed, down to 12 % [74].

Various theoretical approaches such as References [75–78], and their recent updates to higher
energy, are available that allow for an interpretation of the data. In the next section, results of our
model are reported that aims to account for the previous Pb-Pb results at 2.76 TeV and to predict
results for the higher energy of 5.02 TeV, which are then compared to the data that have meanwhile
become available.

5.1. Υ(1S, 2S) Suppression in Pb-Pb at LHC Energies

In References [3,68,79] we have devised a model that accounts for the screening of the real part of
the potential, the gluon-induced dissociation of the various bottomonium states in the hot medium
(gluodissociation), and the damping of the quark-antiquark binding due to the presence of the medium
which generates an imaginary part of the temperature-dependent potential. Screening is less important
for the strongly bound Υ(1S) ground state, but it is relevant for the bb̄ excited states, and also for all cc̄
bound states.

Due to screening and depopulation of the excited states in the hot medium, the subsequent
feed-down cascade towards the Υ(1S) ground state differs considerably from what is known based on
pp collisions. The LHCb collaboration has measured a feed-down fraction of Υ(1S) originating from
χb(1P) decays in pp collisions at

√
s = 7 TeV of 20.7% [80], and the total feed-down from excited states

to the ground state is estimated to be around 40% [81] at LHC energies. If feed-down was completely
absent because of screening and depopulation of excited states in the hot medium, a modification
factor RAA(Υ(1S)) ' 0.6 would thus result, whereas the measured modification factor of the Υ(1S)
state in minimum-bias Pb-Pb collisions at 2.76 TeV is RAA(Υ(1S)) = 0.453 ± 0.014 (stat) ± 0.046
(syst) [82], and at 5.02 TeV RAA(Υ(1S)) = 0.378± 0.013 (stat)± 0.035 (syst) [74]. Hence, there clearly
exist in-medium suppression mechanisms for the strongly bound Υ(1S) state which we aim to account
for in detail, together with the suppression of the excited states, and the reduced feed-down.
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In our model calculation [3], we thus determine the respective contributions from in-medium
suppression, and from reduced feed-down for the Υ(1S) ground state, and the Υ(2S) first excited
state in Pb-Pb collisions at both LHC energies, 2.76 TeV and 5.02 TeV. The pT-dependence and the
role of the relativistic Doppler effect on the measured transverse-momentum spectra are considered.
For the Υ(2S) state, the QGP effects are expected to be much more important than reduced feed-down.
We compare in Reference [3] with centrality-dependent CMS data [70,82] for the Υ(1S) and Υ(2S)
states in 2.76 TeV Pb-Pb collisions, and predict the pT- and centrality-dependent suppression at the
higher LHC energy of

√
sNN = 5.02 TeV. The predictions at 5.02 TeV are compared with recent CMS

data in Figure 11 for the transverse-momentum dependence, Figure 12 for the centrality dependence of
Υ(1S), and Figure 13 for the centrality dependence of Υ(2S).
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Figure 11. Transverse-momentum dependence of the suppression factor RAA(Υ(1S)) for the spin-triplet
ground state in minimum-bias Pb-Pb collisions at

√
sNN = 5.02 TeV. The (upper) dashed curve

shows the suppression in the hot medium, the (lower) solid curve the suppression including reduced
feed-down, which is important for the ground state, but not for excited states. The theoretical prediction
is from Reference [3], data are from CMS [74].
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Figure 12. Centrality-dependent suppression factor RAA(Υ(1S)) in Pb-Pb collisions at
√

sNN = 5.02 TeV (solid line, from Reference [3]) together with data from CMS (dots, |y| < 2.4,
Reference [74]), as function of the number of participants Npart (averaged over centrality bins).
The suppression in the QGP-phase is the dashed curve, the solid curve includes reduced feed-down.
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Figure 13. Suppression factor for the first excited spin-triplet state RAA(Υ(2S)) in Pb-Pb collisions at
√

sNN = 5.02 TeV (solid line) together with data from CMS. The suppression factor RAA(Υ(2S)) in
the QGP -phase (dashed) accounts for most of the calculated total suppression (solid) for the Υ(2S).
Theoretical predictions are from Hoelck, Nendzig, Wolschin [3], CMS data are from Reference [74].

For symmetric systems such as Au-Au at RHIC or Pb-Pb at LHC, we do not include an explicit
treatment of CNM effects such as shadowing in the present study. These are, however, important in
asymmetric collisions such as p-Pb where most of the system remains cold during the interaction time,
and we have considered them in our corresponding calculations [83]. Statistical recombination of the
heavy quarks following bottomonia dissociation is disregarded: Although this is certainly a relevant
process in the J/ψ case, the cross section for Υ production is significantly smaller.

The anisotropic expansion of the hot fireball is accounted for using hydrodynamics for a perfect
fluid that includes transverse expansion. Such a simplified nonviscous treatment [3,68] of the bulk
evolution appears to be tolerable because conclusions on the relative importance of the in-medium
suppression versus reduced feed-down are not expected to depend much on the details of the
background model. When calculating the in-medium dissociation, we consider the relativistic Doppler
effect that arises due to the relative velocity of the bottomonia with respect to the expanding medium.
It leads to more suppression at high pT, and to an overall rather flat dependence of RAA on pT.

Our predictions for the pT-dependent Υ-suppression in 5.02 TeV Pb-Pb collisions are shown
together with recent CMS data [74] in Figure 11; see the caption for details. The in-medium modification
factor (dashed) first rises at small transverse momentum, because escape from the hot zone becomes
more likely with increasing pT, but then falls off when the increase in effective temperature becomes
more pronounced. For the Υ(1S) state, a substantial fraction of the suppression, in particular at low
pT, is due to reduced feed-down, solid curve. The corresponding centrality-dependent suppression
(integrated over pT) is shown in Figure 12 to be in agreement with the data [74] for the Υ(1S) state.
Related ALICE data at more forward rapidities 2.5 < y < 4 are roughly consistent within the error
bars [84]. The suppression of the Υ(2S) state in Figure 13 is mostly in-medium, with only a small
contribution due to reduced feed-down. The prediction shows less suppression than the data in
peripheral collisions. We have shown in Reference [85] that the extra suppression of the loosely bound
Υ(2S) state is most likely not due to the strong electromagnetic fields in more peripheral collisions.
Hence, the origin of this effect is presently unknown.

It is of considerable interest to determine if the bottomonia distributions in more peripheral
collisions become anisotropic, as has been found for produced particles in general. The quadrupole
part of the momentum anisotropy is due to the almond-shaped spatial anisotropy of the overlap region,
which translates to momentum space. It is more pronounced for lighter mesons such as pions, and can
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be quantified by the ellipticity v2 of the momentum distribution in a Fourier decomposition of the
experimentally determined, event-averaged particle distribution [1]

d〈N〉
dφ

=
〈N〉
2π

(
1 + 2

∞

∑
n=1
〈vn〉 cos[n(φ− 〈ψn〉)]

)
, (34)

with the azimuthal angle φ, the mean flow angle 〈ψn〉, and 〈N〉 the mean number of particles
of interest per event (charged hadrons or identified particles of a specific species). The flow
planes are, however, not experimentally known, and hence, the anisotropic flow coefficients are
obtained using azimuthal angular correlations between the observed particles. The experimentally
reported anisotropic flow coefficients from two-particle correlations can then be obtained as the
root-mean-square values, vn{2} ≡ vn ≡

√
〈v2

n〉, and the flow coefficients are being measured not in
individual events, but in centrality classes.

Whereas for charged hadrons the flow coefficients have been measured very precisely [1] with
v2-values up to 20–30% for pions, kaons, and antiprotons and maxima near pT ' 3 GeV/c, this is
more difficult for quarkonia due to the much smaller production rates. For the charmonium ground
state, the ellipticity coefficient at forward rapidity (2.5 < y < 4) in the centrality class 5–60% is v2 '
3–8%, depending on pT [86], implying that J/ψ shows elliptic flow, albeit on a smaller scale due to the
larger mass.

It may, therefore, appear possible that even bottomonium exhibits flow, following the mass
ordering of lighter particles resulting from a collective expansion of the medium [87]. Indeed, the large
statistical error bars on the presently available bottomonium data for v2 [86] do not yet exclude such
a possibility, although it is quite doubtful whether this meson–which is about three times heavier than
charmonium—flows with the expanding hot medium. Instead, the Υ(1S) is expected to essentially
maintain its trajectory in the hot QGP, unless it is dissociated. Still, its momentum distribution in
more peripheral collisions may exhibit a finite v2 due to the anisotropic escape from the fireball,
because the path length from Υ formation to escape in the transverse plane depends on the azimuthal
angle. This mechanism had already been suggested for J/ψ by Wang and Yuan at SPS and RHIC
energies [88], and has been used in Reference [89] for the bottomonium states in non-central 2.76 TeV
Pb-Pb. There, the maximum of v2(Υ(1S)) including feed-down contributions is found to be below
1% in the 40–50% centrality class. We have performed a corresponding calculation within our model
in the 5–60% centrality class and compare the pT dependence with the available ALICE data [86] ,
see Figure 14. The anisotropy is very small, compatible with zero. For more definite conclusions,
one has to wait for a reduction of the experimental uncertainties in run 3.

Figure 14. The ellipticity v2(pT) of the Υ(1S) momentum distribution in 5–60% Pb-Pb collisions
at
√

sNN = 5.02 TeV as calculated from anisotropic escape is consistent with zero, green symbols.
(From Fritsch, BSc thesis HD 2020, unpublished. Reproduced with permission.) The data (red) are from
ALICE [86].
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5.2. Υ(1S, 2S) Modification in p-Pb at
√

sNN = 8.16 TeV

Regarding bottomonia in asymmetric collisions, p-Pb at
√

sNN = 8.16 TeV has been investigated
experimentally by the LHCb [90] and ALICE [43] collaborations, and cold nuclear matter predictions
had been published by a group of theorists [91]. Clearly, CNM effects are much more relevant than
in symmetric systems, because the bulk of the hadronic matter remains cold during the interaction,
see Figure 15. The most relevant CNM effect is the modification of the parton distribution functions
in the nuclear medium, which have been studied by many authors. A typical result for the PDF
modifications with shadowing at small values of Bjorken-x, and antishadowing at intermediate
x-values as obtained with EPPS16 [92] is shown in Figure 16. Shadowing causes a reduction of the
Υ(nS) yields in p-Pb as compared to scaled pp, whereas antishadowing results in an enhancement.
Shadowing is somewhat more pronounced if one, in addition, considers coherent energy-loss
mechanisms in the cold medium. Still, these are not sufficient to interpret the available data in
terms of CNM effects, as becomes obvious from direct comparisons, in particular, for the Υ(2S) state.

Figure 15. Overlap (red) of the thickness functions in the transverse plane for lead (green) and proton
(blue). (From Dinh, MSc thesis HD 2019, unpublished. Reproduced with permission.)
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Figure 16. Modification of the nuclear PDFs EPPS16 [92] for gluons, up- and down-quarks as function
of the momentum fraction x at 10−6 < x ≤ 1: Shadowing at x ≤ 0.02, antishadowing at 0.02 < x < 0.3.
(From Dinh, MSc thesis HD 2019, unpublished. Reproduced with permission.)

There is, however, a spatially small hot zone (fireball) with an initial central temperature that
is comparable to the one in a symmetric system (Figure 17), and during its expansion and cooling,
it contributes to bottomonia dissociation in regions where the temperature remains above the critical
value. We have investigated the respective cold-matter and hot-medium effects on Υ-dissociation in
8.16 TeV p-Pb collisions in Reference [83]. Representative results from this work are shown in Figure 18
for the transverse-momentum dependence, and Figure 19 for the rapidity dependence. The plots show
CNM (blue, upper bands) and CNM plus QGP (red, lower bands) effects on the Υ(1S) and Υ(2S)
yields in 8.16 TeV p-Pb collisions at the LHC. The transverse-momentum dependence in the backward
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direction (top) shows enhancement due to antishadowing when only the CNM effects are considered,
whereas the data for Υ(1S) are clearly suppressed at pT < 10 GeV/c and for Υ(2S) at all measured pT

values. This discrepancy is cured through the consideration of the momentum-dependent dissociation
in the QGP, as shown in our cold-matter plus hot-medium calculation (red).
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Figure 17. Initial temperature profiles of the hot QGP generated in p-Pb collisions at
√

sNN = 8.16 TeV
as functions of the transverse coordinates (x1, x2) at two centralities: Central collisions with Ncoll ' 15.6,
left, and minimum-bias collisions with Ncoll ' 7, right. From Reference [83].
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Figure 18. Calculated transverse-momentum-dependent nuclear modification factors Rp-Pb for the
Υ(1S, 2S) spin-triplet ground and first excited state in p-Pb collisions at

√
sNN = 8.16 TeV with LHCb

data [90] in the backward (Pb-going, left) and forward (p-going, right) region, for minimum-bias
centrality. Results for CNM effects that include shadowing, energy loss, and reduced feed-down
(dashed curves, blue) are shown together with calculations that incorporate also QGP effects
(solid curves, red). The error bands result from the uncertainties of the parton distribution functions
that enter the model. Calculations from Reference [83].
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Figure 19. Calculated rapidity-dependent nuclear modification factors Rp-Pb for the Υ(1S) (top) and
Υ(2S) state (bottom) in p-Pb collisions at

√
sNN = 8.16 TeV with preliminary ALICE data [93] (triangles)

and LHCb data [90] (circles). Results for CNM effects that include shadowing, energy loss, and reduced
feed-down (dashed curves, blue) are shown together with calculations that incorporate also QGP effects
(solid curves, red). The error bands result from the uncertainties of the parton distribution functions
that enter the calculations. From Dinh, Hoelck, Wolschin [83].

The forward/backward asymmetric shape of the nuclear modification factors as functions of
rapidity (Figure 19) arises from the different cold-matter effects in the forward and backward regions
(in particular, shadowing/antishadowing of the parton distribution functions, but also energy loss
in the relatively cold medium). The additional suppression due to the dissociation in the hot fireball
is again shown in the lower (red) curves, which are in better agreement with the data for the Υ(1S)
ground state not only in the backward, but also in the forward direction. The substantial role of
the hot-medium effects is even more pronounced for the Υ(2S) first excited state, where the CNM
calculation shows enhancement in the backward region, whereas the full calculation with in-medium
dissociation displays a suppression down to about 70%–in agreement with the LHCb data [90] and the
ALICE data point [94].

There have been attempts to explain the discrepancy between CNM calculations and data for the
Υ(nS) suppression in p-Pb in terms of interactions with comoving hadrons, in particular, pions [95].
We have not included this process in our calculations–initially on the grounds that interactions of
the bottomonia states with comovers were found to be unimportant at LHC energies in the work
of Ko et al. [96] about Υ absorption in hadronic matter. Probably one eventually has to consider
both, comover interactions plus suppression in the hot QGP zone in order to fully understand the Υ
modification data in asymmetric systems.

6. Conclusions

This article presents aspects of relativistic heavy-ion collisions with an emphasis on energies
reached at the Relativistic Heavy Ion Collider RHIC and the Large Hadron Collider LHC. It does not
attempt to be a review of the field, which is available in recent textbooks and in the proceedings of
Quark Matter conferences such as Reference [39]. Instead, a specific phenomenological viewpoint with
experimental data as a guiding principle is taken, but also QCD-based and nonequilibrium-statistical
arguments are considered. The rapid local equilibration of gluons and quarks in the initial stages of
a relativistic heavy-ion collision is being modeled through exact analytical solutions of a nonlinear
diffusion equation. On a similar time scale, stopping is accounted for in a QCD-inspired model, which is
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also implemented in a nonequilibrium-statistical approach to compute the time evolution from the
initial to the measured distribution functions of net protons. The production of charged mesons such
as pions, kaons, and antiprotons is discussed in a phenomenological three-source relativistic diffusion
model that emphasises the importance of the fragmentation distributions in addition to the usual
fireball source. These are also shown to be essential in the phenomenon of limiting fragmentation,
which had been confirmed experimentally at RHIC energies, and turns out to be consistent with the
present LHC energies. The investigation of the dissociation of quarkonia in the QGP provides insights
into the QGP properties, including an indirect measurement of its initial central temperature before
the anisotropic expansion sets in. In asymmetric systems such as p-Pb at the current maximum LHC
energy, the interplay of cold-matter and hot-medium effects has been studied, achieving a detailed
understanding of the available data from the Large Hadron Collider. The more precise measurements
from the forthcoming run 3 at the LHC are expected to provide deeper insights.
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