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Abstract: The current paper is devoted to investigating wormhole solutions with an exponential
gravity model in the background of f (R) theory. Spherically symmetric static spacetime geometry is
chosen to explore wormhole solutions with anisotropic fluid source. The behavior of the traceless
matter is studied by employing a particular equation of state to describe the important properties
of the shape-function of the wormhole geometry. Furthermore, the energy conditions and stability
analysis are done for two specific shape-functions. It is seen that the energy condition are to be
violated for both of the shape-functions chosen here. It is concluded that our results are stable
and realistic.
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1. Introduction

The discussion on wormhole geometry is a very hot subject among the investigators of the
different modified theories of gravity. The concept of wormhole was first expressed by Flamm [1] in
1916. After 20 years, Einstein and Rosen [2] calculated the wormhole geometry in a specific background.
In fact, it was the second attempt to realize the basic structure of wormholes. Among many efforts,
Morris et al. [3,4] also defined a wormhole geometry in the background of spherically symmetric static
spacetime. The spherically symmetric static line element for a wormhole is given by

ds2 = −e2R f (r)dt2 +

(
r + S f (r)

r

)−1

dr2 + r2dΩ2, (1)

where R f (r) denotes the red-shift function, S f (r) reveals the shape-function, and dΩ2 = dθ2 + sin2θdφ2.
Some important conditions for the existence of viable and traversable wormholes to be satisfied are
the shape-function and red-shift function, which are summarized as follows [3]. The red-shift function
R f (r) must be finite everywhere. R f (r) has no horizon restriction, for the two way journey, i.e
the wormhole should be traversable. The proper radial distance in terms of the shape-function

S f (r), L(r) = ±
∫ r

r0
(1 +

S f (r)
r )−1/2dr, with r > r0, should be finite everywhere in the space. Here,

the expression ± represents the two distinct parts, which are connected through the wormhole
structure. The shape-function S f (r) must satisfy the conditions: (i) (S f (r)− S f (r)

′
r)/S f (r)2 > 0, (ii)

S f (r)(r0) = r0; and (iii) S f (r)
′
(r0) < 1. The last one is known as flaring out condition. These conditions

collectively define the criteria for the existence of a realistic wormhole model.
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In the context of extended or modified theories of gravity, the f (R) theory has been considered a
basic modification of Einstein’s general theory of relativity (GTR). This modified theory of gravity has
attracted many researchers in the field in resent years. The f (R) theory of gravity has been considered
most suitable due to cosmologically important f (R) models. Some viable f (R) gravity models have
been proposed by different authors, which show the unification of early-time inflation and late-time
acceleration of the Universe [5]. The accelerated expansion of the Universe or the cosmic acceleration
can be justified by introducing the term f (R) = 1/R, which is essential at small curvatures [6]. The
dark matter problems can also be addressed by using viable f (R) gravity models [6]. The f (R) theory
is based on a modification of the Einstein field equations that come after replacing the Ricci scalar,
R, with an arbitrary function of the Ricci scalar, i.e., f (R), in the Einstein–Hilbert Lagrangian. The
increased interest in the extended theories of gravity can be depicted from the possibility of explaining
accelerated expansion of the Universe. The main reason of the expansion of the Universe can be
revealed from type Ia supernova [7,8], large scale structure [9], and cosmic microwave background
radiation (CMBR) [10–13].

The study of wormholes in the background of the extended or modified theories of gravity, i.e.,
f (T), Brans–Dicke theory of gravity, Gauss–Bonnet theory of gravity, scalar–tensor theory of gravity,
f (G) theory of gravity, f (R, G) theory of gravity, and f (R, T) theory of gravity is a very hot topic
among researchers. In this context, Zubair et al. [14–16], Jawad et al. [17], Farooq at el. [18,19], and
Sherif et al. [20–22] discussed wormhole solutions in different extended theories of gravity. Kimet
Jusufi and Ali Övgün explored the deflection angle in the framework of a rotating Teo wormhole
spacetime for the first time [23]. They constructed the Teo–Randers optical geometry and applied
the Gauss–Bonnet term to the osculating geometry. Halilsoy et al. constructed thin-shell wormholes
from the regular black holes (or non-black holes for certain range of parameters) discovered by
Hayward [24]. Recently, Mustafa et al. [25] presented wormholes solutions in the f (T, TG) theory
of gravity by adopting non-commutative geometry. Wormhole solutions in the background of f (T)
theory [26] and Rastall theory have also been explored in the literature [27]. In this study, we discuss
the wormhole solutions for an anisotropic source of fluid, in the background of an exponential f (R)
gravity model, which was first obtained by Samanta et al. [28], and was discussed in the context of
inflation and the late-time accelerated expansion of the Universe (given in Section 2). Further, this
study provides the necessary physical properties of shape-function and the energy conditions for
traversable wormhole models.

The rest of this paper is organized as follows. In Section 2, we give some basics of the f (R) theory
of gravity with an exponential model and anisotropic matter distribution. Section 3 is dedicated to
the discussion of some physical properties of wormhole solutions obtained here. In the same section,
we also present our result graphically. In Section 4, the stability of the obtained wormhole solution is
given. In Section 5, the weak energy condition (WEC) and the null energy condition (NEC) for the two
different shape-functions are investigated. A summary of the work done is presented in Section 6.

2. The f (R) Modified Theory of Gravity

The extended Einstein–Hilbert action for f (R) theory of gravity is [29]:

S =
1

2κ

∫
d4x f (R)

√
−g + SM(gµν, ξ), (2)

where f (R) is a function of the Ricci scalar. The expression SM(gµν, ξ) reveals the matter term of the
action. In this paper, we assume κ = 1 for simplicity. By variation of the above action, one can have
the following field equations:

T M
µν = fR(R)Rµν −

1
2

f (R)gµν + (gµν2−∇µ∇ν) fR(R). (3)
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We can calculate the trace of the energy momentum tensor as,

T = fR(R)R+ 32 fR(R)− 2 f (R), (4)

where 2 is the d’Alembert operator,∇ is the covariant derivative operator, and fR(R) is the derivatives
with respect toR. By plugging Equation (4) into Equation (3), the following relation is obtained

T e f f
µν = Rµν −

1
2
Rgµν = Gµν, (5)

where T e f f
µν = T c

µν + T̃ m
µν is effective stress–energy tensor and T̃ m

µν is defined by

T c
µν =

1
fR(R)

(
∇µ∇ν fR(R)−

1
4

gµν(R fR(R) +2 fR(R) + T )
)

, T m
µν = T̃ m

µν fR(R). (6)

The stress–energy tensor of the anisotropic fluid is given by

Tµν = (ρ + Pt)υµυν −Ptgµν + (Pr −Pt)εµεν, (7)

where υµ denotes the 4-velocity vector with

υµ = e−aδ
µ
0 , εµ = e−bδ

µ
1 , υµυµ = −εµεµ = 1.

By using Equations (1) and (7) in Equation (5), the following expressions are perceived for the energy
density, radial, and tangential components of pressure:

S
′
f (r)

r2 =
ρ

fR(R)
+

Υ
fR(R)

, (8)

−
S f (r)

r3 =
Pr

fR(R)
+

1
fR(R)

(
1−

S f (r)
r

)( f
′′
R(R)− f

′
R(R)

(S
′
f (r)r− S f (r))

2r2(1− S f (r)/r)
)

− Υ
fR(R)

, (9)

−
S f (r)

′
r− S f (r)
2r3 =

Pt

fR(R)
+

1
fR(R)

(
1−

S f (r)
r

)
f
′
R(R)

r
− Υ

fR(R)
, (10)

where
Υ = Υ(r) =

1
4
( fR(R)R+2 fR(R) + T), (11)

with curvature scalar

R =
2S
′
f (r)

r2 , (12)

and

2 fR(R) =
(

1−
S f (r)

r

)[
f
′′
R(R)− f

′
R(R)

(S f (r)
′
r− S f (r))

2r2(1− S f (r)/r)
+

2 f
′
R(R)

r

]
. (13)

We investigate wormhole solutions for an exponential f (R) model [28,30], which is represented by

f (R) = R− αγ

(
1− 1

eR/γ

)
, α ∈ (0, ∞), γ = σH2

0 , (14)
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where σ is a dimensionless parameter and H0 is the Hubble parameter, which we take equal to one for
simplicity. For the model given by Equation (14), Cognola et al. [28] showed that the inflation and the
current accelerated expansion of our Universe arise in a unified and natural way. They further showed
that this model passes all the local test and is a viable f (R) gravity model.

By employing Equations (11)–(14) in Equations (8)–(10), we have the following modified
field equations

ρ =
S′f (r)

r2

1− αe
−

2S′f (r)

γr2

 , (15)

Pr =
e
−

2S′f (r)

γr2

γ2r7

(
S f (r)

(
α
(
−16S′f (r)

2 + r2
(

γr2
(

2S(3)
f (r) + γ

)
− 9γrS′′f (r)− 4S′′f (r)

2
)

+ 2rS′f (r)
(

8S′′f (r) + 7γr
))
− γ2r4e

2S′f (r)

γr2

+ αr
(
−2γr4S(3)

f (r) + 4r2S′′f (r)
(

S′′f (r) + 2γr
)

− 2
(

γr2 − 8
)

S′f (r)
2 + rS′f (r)

((
γr2 − 16

)
S′′f (r)− 12γr

)))
, (16)

Pt =
1

2r5

(
r2
(

S f (r)− rS′f (r)
)
+

1
γ

αe
−

2S′f (r)

γr2
(

r
((

γr2 + 8
)

S′f (r)− 4rS′′f (r)
)

− S f (r)
(

r
(

γr− 4S′′f (r)
)
+ 8S′f (r)

)))
. (17)

In the next section, we analyze solutions of these equations.

3. Wormhole Solutions

To find the wormhole solutions in the background of the f (R) gravity with the specific exponential
model given by Equation (14), we examine the energy conditions specially, NEC and WEC. The
violation of NEC is the compulsory and fundamental requirement for the existence of wormhole
solutions in GR, while in the f (R) theory of gravity it is not compulsory [5]. The violation of the
energy condition gives the presence of exotic matter at the location of wormhole throat. Both NEC and
WEC are formalized with the following relation

NEC : ρ ≥ 0 ⇒ ρ + Pr ≥ 0, WEC : ρ ≥ 0 ⇒ ρ + Pt ≥ 0.

The violation of NEC and WEC bounds leads to the violation of the other bounds, i.e., dominant
energy condition (DEC) and strong energy conditions (SEC). Both DEC and SEC are defined as

DEC : ∀i, ρ ≥ 0 ⇒ ρ±Pi ≥ 0, SEC : ∀i, ρ + Pi ≥ 0 ⇒ ρ + ∑Pi ≥ 0.

Traceless Fluid for f (R) = R− αγ
(

1− 1
eR/γ

)
Model

Here, we discuss the traceless fluid [31–42] for the the specific exponential model. The f (R) =
R− αγ

(
1− 1

eR/γ

)
model can be depicted from specific form of the equation of state (EoS) to explore

the wormhole solutions and energy conditions. The traceless part of the stress–energy tensor for the
fluid is defined as:

T = 0, ⇒ ρ−Pr − 2Pt = 0. (18)

The concept of traceless fluid is related with the concept of Casimir effect [43]. The traceless fluid is
used to provide an exotic matter under this current scenario. Using Equations (15)–(17) in Equation (18)
leads to the following nonlinear differential equation,
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e
−

2S′f (r)

γr2

γ2r7

(
2αγr4(r− S f (r))S

(3)
f (r) + αr2S′′f (r)

(
4(S f (r)− r)S′′f (r) + γr(5S f (r)− 4r)

)
+2α

(
8S f (r) + γr3 − 8r

)
× S′f (r)

2 + rS′f (r) (19)−α
(

16S f (r) + γr3 − 16r
)

S′′f (r) + 2γ2r4e
2S′f (r)

γr2 − 2αγr
(

3S f (r) + γr3 − 2r
)) = 0,

Equation (20) is non-linear and we treat it numerically with the following initial conditions
S f (0.01) = 0.001, S′f (0.01) = 0.0002, and S′′f (0.01) = 0.07.

The parameter α is between zero and infinity and we have chosen some particular values within
this range. For the other parameters of the model, we have assigned units of Km, as it is related to
the Hubble parameter and is chosen equal to 1. With the variation of the parameter α, the results
change, as can be seen from the graphs for the different values of this parameter α. For the variation
of the other parameter γ, the results do not change and therefore we have chosen only one value
for it. The first figure provides the shape-function properties, for the wormhole geometry. From
the left panel of Figure 1, it is noticed that the shape-function, i.e., S f (r), is positive with regularly
increasing development, which is a positive sign for the realistic wormhole geometry. From the

right panel of Figure 1, the ratio of the shape-function and the radial coordinate, i.e.,
S f (r)

r → 0
as r → ∞ is not satisfied. It means that the wormhole geometry is not asymptotically flat and
this behavior coincides with the behavior of the already existing wormhole models reported in
the literature (see, for example, [18,20,36]). It is depicted from the left plot of Figure 2 that the
difference of the shape-function with the radial coordinate, i.e., S f (r)− r, provides the locations of
the wormhole throat for the different values of the parameter α, which are approximately observed
at r0 ≡ 0.016, r0 ≡ 0.017, r0 ≡ 0.018, r0 ≡ 0.019, and r0 ≡ 0.020, for α = 0.10 , α = 0.20 , α = 0.30
, α = 0.40, and α = 0.50, respectively. The flaring out condition of the shape-function can be seen
from the right plot of Figure 2, which is satisfied. All the required properties of the shape-function for
wormhole geometry are observed to be satisfied. In the context of energy conditions, it is confirmed in
Figures 3 and 4 that the energy density function ρ is positive for this current study. WEC and NEC,
i.e., ρ + Pt and ρ + Pr, can be seen in Figure 3. The behavior of the energy conditions is also revealed
in Table 1, for the different values of the parameter α. The violation of NEC for the first two values of
parameter α is evidence for the presence of the exotic matter, which may be required for the wormhole
geometry. Our obtained results are similar to those wormhole solutions that are provided in [25–27].
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Figure 1. The behavior of S f (r) and S f (r)
r . Here, α = 0.40 (F), α = 0.50 (F), α = 0.60 (F), α = 0.70

(F), α = 0.80 (F), and γ = 0.10.

0 1 2 3 4 5

-4

-3

-2

-1

0

r

S
f
(r

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

r

Sf
′(r)

Figure 2. The development of S f (r)− r and S
′

f (r). Here, α = 0.40 (F), α = 0.50 (F), α = 0.60 (F),
α = 0.70 (F), α = 0.80 (F), and γ = 0.10.
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Figure 3. The variational behavior of ρ + Pt, and ρ + Pr. Here, α = 0.40 (F), α = 0.50 (F), α = 0.60
(F), α = 0.70 (F), α = 0.80 (F), and γ = 0.10.
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Figure 4. The variational development of ρ and balancing behavior of Faf, and Fhf. Here, α = 0.40
(F), α = 0.50 (F), α = 0.60 (F), α = 0.70 (F), α = 0.80 (F), and γ = 0.10.

Table 1. Summary of the results.

Properties of shape-function for 0 < r ≤ 5
expressions α = 0.40 (F) α = 0.50 (F) α = 0.60 (F) α = 0.70 (F) α = 0.80 (F)

S f (r) S f (r) > 0 S f (r) > 0 S f (r) > 0 S f (r) > 0 S f (r) > 0
S f (r)

r lim
r→5

S f (r)
r = 0.15 lim

r→5

S f (r)
r = 0.19 lim

r→5

S f (r)
r = 0.23 lim

r→5

S f (r)
r = 0.27 lim

r→5

S f (r)
r = 0.31

S f (r) = r0 r0 ≡ 0.016 r0 ≡ 0.017 r0 ≡ 0.018 r0 ≡ 0.019 r0 ≡ 0.020
S
′

f (r) S
′

f (0.016) < 1 S
′

f (0.017) < 1 S
′

f (0.018) < 1 S
′

f (0.019) < 1 S
′

f (0.020) < 1
Energy conditions for 0 < r ≤ 5

ρ + Pt ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0
ρ + Pr ρ + Pr < 0 ρ + Pr < 0 ρ + Pr > 0 ρ + Pr > 0 ρ + Pr > 0

ρ ρ > 0 ρ > 0 ρ > 0 ρ > 0 ρ > 0
Forces, i.e., Faf, and Fhf for 0 < r ≤ 5

Faf&Fhf Balanced Balanced Balanced Balanced Balanced

4. Equilibrium Conditions

Now, we describe the stability of the wormhole solutions calculated here, by considering the
equilibrium equation. In this response, we discuss the following Tolman–Oppenheimer–Volkov
(TOV) equation

dPr

dr
+

Π
′

2
(ρ + Pr) +

2
r
(Pr −Pt) = 0, (20)

where Π(r) = 2R f (r). The TOV equation reveals the equilibrium stage of configuration. The three
terms of the above TOV equation define the three different kinds of forces, namely the gravitational,
hydrostatic, and anisotropic forces, defined by

Fgf = −
Π
′
(ρ + Pr)

2
, Fhf = −

dPr

dr
, Faf = 2

(Pt −Pr)

r
.

Thus, Equation (20) takes the following form

Faf +Fgf +Fhf = 0.

In this study, we assume the shift-function as a constant, i.e., R′f (r) = 0. It leads to Fgf = 0 and, hence,
the TOV equation reduces to the following form

Faf +Fhf = 0.
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From the right plot in Figure 4, it can be perceived that both forces, i.e., Faf, and Fhf, are balanced
by each other. This balancing development of these forces shows that our calculated wormholes are
realistic and stable.

5. WEC and NEC for Two Specific Shape-Functions

Here, we explore the energy conditions, specially WEC and NEC, for the two particular

shape-functions i.e., S f (r) = r0

(
r
r0

)β
, 0 < β < 1 and S f (r) = re1− r

r0 [44,45]. First, we calculate
the field equations for both of these specific shape-functions by plugging them into Equations (15)–(17).

We calculate the field equations for S f (r) = r0

(
r
r0

)β
shape-function as

ρ =

βr0

(
r
r0

)β

1− αe
−

2βr0( r
r0 )

β

γr3


r3 , (21)

Pr =
r0

(
r
r0

)β
e
−

2βr0( r
r0 )

β

γr3

γ2r9

(
α(β− 3)2βrr0

(
4β + 3γr2

)( r
r0

)β

− 4α(β− 3)2β2r2
0

(
r
r0

)2β

+ γr4

α
(

γr2 − 2(β− 4)(β− 3)β
)
− γr2e

2βr0( r
r0 )

β

γr3

), (22)

Pt =

r0

(
r
r0

)β
e
−

2βr0( r
r0 )

β

γr3

−(β− 1)γr3

e
2βr0( r

r0 )
β

γr3 − α

− 4α(β− 3)βr + 4α(β− 3)βr0

(
r
r0

)β


2γr6 . (23)

Now, we calculate the field equations for the shape-function S f (r) = re1− r
r0 . It should be noted that we

use the exponential shape-function here that is dimensionally correct, as it was dimensionally incorrect
in [45]. The field equations are

ρ =

e1− r
r0 (r− r0)

αe
2e

1− r
r0 (r−r0)

γr2r0 − 1


r2r0

, (24)

Pr =
e
− 2e

1− r
r0

γr2 − 3r
r0
+1

γ2r6r4
0

×
(
− 4α

(
r2 − 2r2

0

)2
e

2e
1− r

r0
γrr0

+2
+ γ2r4r4

0

−e
2e

1− r
r0

γr2 + 2r
r0

+ αγr2r0e

2

r2+ e
1− r

r0
γ


rr0

×
(

2r3 + r2r0

(
γr2

0 + 2
)
− 4rr2

0 − 12r3
0

)
− αe

r2+ 2e
1− r

r0
γ

rr0
+1
(

γr2r0

(
3r3 + 2r2r0 − 6rr2

0 − 12r3
0

)
− 4

(
r2 − 2r2

0

)2
))

, (25)

Pt =
γr3r0e1− r

r0 − αe

2e
1− r

r0 (r−r0)
γr2 −2r+r0

r0

(
er/r0

(
r2(γrr0 + 4)− 8r2

0
)
− 4e

(
r2 − 2r2

0
))

2γr4r2
0

. (26)

In the framework of GR, the violation NEC is an important feature of static traversable
wormholes [3], even though for the dynamic, i.e time-dependent wormhole solutions, NEC and WEC
can be violated in certain regions and for some specific intervals of time at the throat of the wormhole.
In extended theories of GR, one may argue that the stress–energy tensor for a wormhole model satisfies
NEC. The violation of NEC is correlated with the presence of an exotic matter. Justifying the existence



Universe 2020, 6, 48 9 of 13

of some exotic matter is a critical issue, which motivates one to investigate NEC for different models.
In the response of energy conditions, it is clear from the results in Figure 5 that the energy density

function ρ is positive for both specific shape-functions, i.e., S f (r) = r0

(
r
r0

)β
and S f (r) = re1− r

r0 . WEC
and NEC, i.e., ρ + Pt and ρ + Pr, development can be seen in Figures 6 and 7. The behavior of the
energy conditions is also revealed in Table 2 for the different values of parameter α. The violation of
NEC for the different values of parameter α is evidence for the presence of exotic matter, which may
be a requirement for a traversable wormhole geometry.
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Figure 5. The variational behavior of ρ. Here, α = 0.10 (F), α = 0.20 (F), α = 0.30 (F), α = 0.40
(F), α = 0.50 (F), β = 0.25, and γ = 0.10.
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Figure 7. The variational behavior of ρ + Pt. Here, α = 0.10 (F), α = 0.20 (F), α = 0.30 (F),
α = 0.40 (F), α = 0.50 (F), β = 0.25, and γ = 0.10.

Table 2. Summary of the results.

Energy conditions for S f (r) = r0

(
r
r0

)β
model with 0 < r ≤ 5 and r0 = 1.1

expressions α = 0.40 (F) α = 0.50 (F) α = 0.60 (F) α = 0.70 (F) α = 0.80 (F)
ρ + Pt ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0 ρ + Pt > 0
ρ + Pr ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0

ρ ρ > 0 ρ > 0 ρ > 0 ρ > 0 ρ > 0

Energy conditions for S f (r)) = re1− r
r0 model with 0 < r ≤ 5 and r0 = 1.1

ρ + Pt ρ + Pt < 0 ρ + Pt < 0 ρ + Pt < 0 ρ + Pt < 0 ρ + Pt < 0
ρ + Pr ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0 ρ + Pr < 0

ρ ρ > 0 ρ > 0 ρ > 0 ρ > 0 ρ > 0

6. Summary

In the present study, we have explored the exponential gravity model for the static spherically
symmetric wormhole solutions in the f (R) theory gravity. In this response, the anisotropic matter has
employed. We have calculated the modified field equations in the reference of exponential gravity
model given by Equation (14), for energy density and pressure sources under anisotropic matter. We
utilize a traceless fluid in the background of particular EoS to calculate the shape-function and its
properties. The important results of the present study are given below.

• In Figure 1, the behavior of the shape-function, i.e., S f (r), is regularly increasing with positive
nature for the five different values of the parameter α.

• The ratio, i.e.,
S f (r)

r , does not go to zero as the radial coordinate becomes larger and larger and
thus the flatness condition is not satisfied here in this model of f (R) gravity and this behavior

of
S f (r)

r is depicted in Figure 1 and Table 1. This behavior of non-flatness is also reported in the
literature for some other models in modified theories of gravity [18,20,36].

• It is evident from the left panel of the Figure 2 that the difference of the shape-function with radial
coordinate, i.e., S f (r)− r, provides the wormholes throat locations for the different values of the
parameter α, which are approximately observed at r0 ≡ 0.016, r0 ≡ 0.017, r0 ≡ 0.018, r0 ≡ 0.019,
and r0 ≡ 0.020, for α = 0.10 , α = 0.20 , α = 0.30 , α = 0.40, and α = 0.50, respectively.

• The flaring out condition, i.e., S
′
f < 1, of the shape-function can be seen in the right plot of

Figure 2, which is satisfied, i.e., S
′
f (0.016) < 1, S

′
f (0.017) < 1, S

′
f (0.018) < 1, S

′
f (0.019) < 1, and

S
′
f (0.020) < 1 for the five different values of the parameter α.
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• In the Figures 5–7, the behavior for the two specific shape-functions given in Section 5 is given.
NEC is violated and the energy density ρ is positive for different values of the parameter α.
This violation of NEC indicates the presence of some exotic matter, which is a requirement for a
traversable wormhole solution.

NEC has been observed to be violated in this current study, which can be seen in Figure 3. All of our
calculated results can be seen from the summery which is presented in Tables 1 and 2. We comment
here that our calculated results for f (R) theory under exponential gravity model with anisotropic
fluid source are in agreement with the already explored results in the modified f (R) theory of gravity
in different scenarios [15–22,25–27].
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