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Abstract: In the 2-spinor formalism, the gravity can be dealt with curvature spinors with four spinor
indices. Here we show a new effective method to express the components of curvature spinors in the
rank-2 4× 4 tensor representation for the gravity in a locally inertial frame. In the process we have
developed a few manipulating techniques, through which the roles of each component of Riemann
curvature tensor are revealed. We define a new algebra ‘sedon’, the structure of which is almost the
same as sedenion except for the basis multiplication rule. Finally we also show that curvature spinors
can be represented in the sedon form and observe the chiral structure in curvature spinors. A few
applications of the sedon representation, which includes the quaternion form of differential Binanchi
identity and hand-in-hand couplings of curvature spinors, are also presented.
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1. Introduction

In the 2-spinor formalism [1–3] all tensors with spacetime indices can be transformed into spinors
with twice the number of spinor indices, i.e., a rank-2 tensor is changed into a spinor with four spinor
indices. In addition, if the tensor is antisymmetric and real, it can be represented by a sum of two
spinors with two spinor indices, and they are complex conjugate of each other, which indicates that a
rank-2 antisymmetric tensor is equivalent to a spinor with two spinor indices. The Riemann curvature
tensor is a rank-4 real tensor which describes gravitational fields and it has two antisymmetric
characters. This means that the gravity can be described by two spinors with four spinor indices.
Those two spinors are called curvature spinors: One of them is Ricci spinor and the other is Weyl
conformal spinor [1,3–5].

At any points on a pseudo-Riemannian manifold, we can find a locally flat coordinate [6], whose
metric is Minkowski. While the metric is locally Minkowski, the second derivative of the metric
is not necessarily zero and the Riemann curvature tensor as well as curvature spinors do not have
to be zero. Here we can obtain the explicit representations of curvature spinors, the components
of which can be easily identified by using new techniques, i.e., manipulating spinor indices and
rotating sigma basis in locally flat coordinates [7]. Then all the components of curvature spinors are
represented with simple combinations of Riemann curvature tensors. Here the representations are not
described by the four-dimensional basis but by the three-dimensional basis ⊗ three-dimensional basis,
and thus it suggests a different interpretation of time. The process has been applied on both Ricci
spinor and Weyl spinor, which are curvature spinors, and each spinor is described as the sum of two
newly defined parts; one of which is a real part and the other is a pure imaginary part. The obtained
representation can be used not only in a special flat coordinate but also for vielbein indices or in any
other normal coordinates, like Riemann normal coordinate and Fermi coordinate [8–16]. By comparing
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the final forms of Ricci spinor with the spinor form of Einstein equation, we figure out the roles of each
component of Riemann curvature tensor, whose components serve as momentum, energy or stress
of gravitational fields. Furthermore, we show that the components of Weyl conformal spinor can be
represented as a simple combination of Wely tensors in flat coordinate.

There are already quite a few papers that show the relation between gravitational fields and
Cayley–Dickson algebras including sedenion; however, all papers are restricted to a weak gravitational
field in a flat frame [17–22]. Here we express the basis of sedenion as a set of direct products of a
quaternion basis, through which we can define a new algebra ‘sedon’, whose structure is similar to
sedenion except for the basis multiplication rule. We show that the curvature spinors for general
gravitational fields in locally flat coordinates can be regarded as a sedon. The spinors are described
on the direct procduct of totally seperated left-handed basis and right-handed quaternion basis. From
this, we can get a view of the gravitational effects as the combination of right-handed and left-handed
rotational effects. We also introduce a few applications of the sedon form with multiplication techniques.
One of the application is the quaternion form of differential Bianchi identity and, in the process, we
introduce a new index notation with the spatially opposite-handed quantities.

2. Tensor Representation of a Field with Two Spinor Indices

In this section we introduce the basics about the 2-spinor formalism, which have been already
explained in detail in our earlier paper [7]. We use the front part of Latin small letters a, b, ..., h and
Greek letters µ, ν, ρ... as four dimensional space-time indices, which can be 0, 1, 2 or 3. The later part of
Latin small letters i, j, ..., which can be 1, 2 or 3, are used as three dimensional indices.

Any tensor Tabc.. with spacetime indices a, b, c, .., can be inverted into a spinor with spinor indices
A, A′, B, B′, .. like TAA′BB′ .. by multiplying Infeld-van der Waerden symbols g a

AA′ ,

TAA′BB′ .. = Tab..g a
AA′g

a
BB′ .. . (1)

In Minkowski spacetime, g a
AA′ is 1√

2
σa

AA′ , where σa
AA′ are four-sigma matrices (σ0, σ1, σ2, σ3); σ0

is 2× 2 identity matrix and σ1, σ2, σ3 are Pauli matrices. Equation (1) can be written conventionally as

TAA′BB′ .. = Tab... (2)

Any arbitrary anti-symmetric tensor Fab = FAA′BB′ can be expressed as the sum of two symmetric
spinors as

FAA′BB′ = ϕABεA′B′ + εABψA′B′ , (3)

where ϕAB = 1
2 F C′

ABC′ and ψA′B′ =
1
2 F C

C A′B′ are symmetric spinors (unprimed and primed spinor
indices can be switched back and forth each other), and εAB, εA′B′ , εAB, εA′B′ are the ε-spinors whose
components are ε12 = ε12 = +1, ε21 = ε21 = −1 [1]; kA = εABkB, kB = kAεAB. If Fab is real, then
ψA′B′ = ϕ̄A′B′ (where ϕ̄ is the complex conjugate of ϕ) and

Fab = FAA′BB′ = ϕABεA′B′ + εAB ϕ̄A′B′ . (4)

We have shown the components of ϕAB and ϕ̄A′B′ explicitly in flat spacetime in [7]. The sign
conventions for the Minkowski metric is gµν = diag(1,−1,−1,−1).

For any real anti-symmetric tensor FAA′BB′ , we can write as

FAA′BB′ =
1
2

Fµνσ
µ
AA′σ

ν
BB′ =

1
2

Fµνσ
µ
AA′ σ̄

ν C′CεC′B′ εCB, (5)
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where σ̄µ = (σ0,−σ1,−σ2,−σ3), then

ϕAB =
1
2

F A′
AA′B =

1
2

FAA′BB′ ε
A′B′

=
1
4

Fµνσ
µ
AA′ σ̄

ν C′CεC′B′ εCBεA′B′ =
1
4

Fµν σ
µ
AA′ σ̄

ν A′CεCB , (6)

ϕ̄A′B′ =
1
2

F A
AA′ B′ =

1
2

FAA′BB′ ε
AB

=
1
4

Fµνσ̄µC′Cσν
BB′ εA′C′ εACεAB =

1
4

Fµν εA′C′ σ̄
µC′Bσν

BB′ , (7)

where we used the relation g ν
BB′ = 1√

2
σ

µ
BB′ =

1√
2

σ̄ν C′CεC′B′ εCB. This can be established when the
space-time metric is locally flat [1,23]. If we apply the relations to the general coordinates with relevant
modifications, the results for arbitrary coordinates can be obtained.

Since

σ
µ
AA′ σ̄

ν A′C =


σ0σ0 −σ0σ1 −σ0σ2 −σ0σ3

σ1σ0 −σ1σ1 −σ1σ2 −σ1σ3

σ2σ0 −σ2σ1 −σ2σ2 −σ2σ3

σ3σ0 −σ3σ1 −σ3σ2 −σ3σ3


A

C

=


σ0 −σ1 −σ2 −σ3

σ1 −σ0 −iσ3 iσ2

σ2 iσ3 −σ0 −iσ1

σ3 −iσ2 iσ1 −σ0


A

C

, (8)

ϕ D
A = εDB ϕAB becomes

ϕ D
A =

1
4

Fµνσ
µ
AA′ σ̄

ν A′D

=
1
4




0 −F10 −F20 −F30

F10 0 F12 F13

F20 −F12 0 F23

F30 −F13 −F23 0




σ0 −σ1 −σ2 −σ3

σ1 −σ0 −iσ3 iσ2

σ2 iσ3 −σ0 −iσ1

σ3 −iσ2 iσ1 −σ0


T 

A
D

=
1
2
(Fi0σi − 1

2
i ε

ij
kFijσ

k) D
A , (9)

where i , j , k are the three-dimensional vector indices which have the value 1, 2 or 3, and ε
ij

k is εpqkδi
pδ

j
q

for the Levi–Civita symbol εijk. Einstein summation convention is used for three-dimensional vector
indices i, j and k. Similar to Equations (8) and (9),

σ̄µC′Bσν
BB′ =


σ0σ0 σ0σ1 σ0σ2 σ0σ3

−σ1σ0 −σ1σ1 −σ1σ2 −σ1σ3

−σ2σ0 −σ2σ1 −σ2σ2 −σ2σ3

−σ3σ0 −σ3σ1 −σ3σ2 −σ3σ3


C′

B′

=


σ0 σ1 σ2 σ3

−σ1 −σ0 −iσ3 iσ2

−σ2 iσ3 −σ0 −iσ1

−σ3 −iσ2 iσ1 −σ0


C′

B′

, (10)

ϕ̄D′
B′ = εD′A′ ϕ̄A′B′ = −

1
4

Fµν σ̄µD′Bσν
BB′ =

1
2
(Fi0σi +

1
2

i ε
ij

kFijσ
k)D′

B′ . (11)

If we denote matrix representation of εAB by ε, then

σµε = (σ0, σ1, σ2, σ3)ε = (iσ2,−σ3, iσ0, σ1), (12)

εσµ = ε(σ0, σ1, σ2, σ3) = (iσ2, σ3, iσ0,−σ1). (13)

Let us define sµ and s̄µ as

s0 = iσ2, s1 = −σ3, s2 = iσ0, s3 = σ1, (14)
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s̄0 = iσ2, s̄1 = −σ3, s̄2 = −iσ0, s̄3 = σ1, (15)

where s̄µ is complex conjugate of sµ. Then

σµε = (s0, s1, s2, s3), (16)

εσµ = (s0,−s1, s2,−s3) = (s̄0,−s̄1,−s̄2,−s̄3), (17)

and

ϕAB = ϕ D
A εDB =

1
2
(Fi0si − 1

2
i ε

ij
kFijsk), (18)

ϕA′B′ = ϕD′
B′ εD′A′ = −εA′D′φ

D′
B′ =

1
2
(Fi0 s̄i +

1
2

i ε
ij

kFij s̄k), (19)

where si have unprimed indices si = si
AB and s̄i have primed indices s̄i = s̄i

A′B′ .

3. Einstein Field Equations and Curvature Spinors

In this section we introduce the basics about general relativity in the 2-spinor formalism, and flat
coordinates on the pseudo-Riemannian manifold. For a (torsion-free) Riemann curvature tensor

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γλ

νσΓµ
λρ − Γλ

νρΓµ
λσ, (20)

where Γρ
µν is a Chistoffel symbol

Γρ
µν =

1
2

gρλ(∂µgνλ + ∂νgµλ − ∂λgµν). (21)

Here Rµνρσ has follwing properties [6]

Rµνρσ = −Rνµρσ , (22)

Rµνρσ = −Rµνσρ , (23)

Rµνρσ = Rρσµν . (24)

In short, we can denote as

Rµνρσ = R([µν][ρσ]), (25)

where parentheses ( ) and square brackets [ ] indicates symmetrization and anti-symmetrization of the
indices [6]. The Riemann curvature tensor has two kinds of Bianchi identities

Rµ[νρσ] = 0, (26)

∇[λRµν]ρσ = 0, (27)

where ∇λ Aµ = ∂λ Aµ + Γµ
νλ Aν.

From the antisymmetric properties of Riemann curvature tensor, it can be decomposed into sum
of curvature spinors, XABCD and ΦABC′D′ , as

Rabcd =
1
2

R X′
AX′B cdεA′B′ +

1
2

R X
XA′ B′ cdεAB

= ΦABC′D′εA′B′εCD + Φ̄A′B′CDεABεC′D′ + XABCDεA′B′εC′D′ + X̄A′B′C′D′εABεCD, (28)
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where

XABCD = R X′ Y′
AX′B CY′D , ΦABC′D′ = R X′ Y

AX′B YC′ D′ . (29)

The totally symmetric part of XABCD

ΨABCD = XA(BCD) = X(ABCD) (30)

is called gravitational spinor or Weyl conformal spinor, and ΦABC′D′ is referred as Ricci spinor [1,4,5].
It is well known that

ΦAA′BB′ = Φab = Φba = Φ̄ab, Φ a
a = 0, (31)

and Einstein tensor is

Gab = Rab −
1
2

Rgab = −Λgab − 2Φab, (32)

where Λ = X AB
AB , which is equal to R/4 [1]. Therefore, the Einstein field equation

Gab + λgab = 8πGTab, (33)

where λ is a cosmology constant, can be written in the form

Φab = 4πG(−Tab +
1
4

Tq
q gab), Λ = −2πGTq

q + λ. (34)

Since any symmetric tensor Uab can be expressed as

Uab = UAA′BB′ = SABA′B′ + εABεA′B′τ, (35)

where τ = 1
4 Tc

c and SABA′B′ is traceless and symmetric [1], the traceless part of the energy-momentum
(symmetric) tensor Tab can be written by Sab = Tab − 1

4 Tc
c gab. Therefore, the spinor form of Einstein

Equations (34) becomes

ΦABA′B′ = −4πGSABA′B′ , X AB
AB = −8πGτ + λ. (36)

Weyl tensor Cµνρσ which is another measure of the curvature of spacetime, like Riemann curvature
tensor, is defined as [6,24]

Cµνρσ = Rµνρσ +
1
2
(Rµσgνρ − Rµρgνσ + Rνρgµσ − Rνσgµσ) +

1
6

R(gµρgσν − gµσgνρ). (37)

It has the same propterties as Equations (22), (23) and (26). It is known [1] that Weyl tensor has
the following relationship with Weyl conformal spinor ΨABCD:

Cabcd = ΨABCDεA′B′ εC′D′ + Ψ̄A′B′C′D′ εABεCD. (38)

At any point P on the pseudo-Riemannian manifold, we can find a flat coordinate system,
such that,

gµν(P) = ηµν,
∂gµν

∂xλ

∣∣∣∣
P
= 0, (39)
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where gµν(P) is the metric at the point P and ηµν is the Minkowski metric. In this coordinate system,
while the Christoffel symbol is zero, the Riemann curvature tensor is [25,26]

Rµνρσ =
1
2
(∂ν∂ρgµσ − ∂ν∂σgµρ + ∂µ∂σgνρ − ∂µ∂ρgνσ). (40)

For future use we introduce Fermi coordinate, which is one of the locally flat coordinate whose
time axis is a tangent of a geodesic. The coordinate follows the Fermi conditions

gµν|G = ηµν, Γρ
µν|G = 0, (41)

along the geodesic G.

4. The Tensor Representation of Curvature Spinors

In this section we show the process of representing curvature spinors in 4 × 4 matrices or 3 × 3
matrices. We discuss physical implications of those representations. From now on, we will always use
locally flat coordinate for all spacetime indices.

From Equations (4) and (28), we can lead to

Rabcd = φAB,cdεA′B′ + εABφ̄A′B′ ,cd

= ΦABC′D′εA′B′εCD + Φ̄A′B′CDεABεC′D′ + XABCDεA′B′εC′D′ + X̄A′B′C′D′εABεCD, (42)

where

φAB,cd =
1
2
(Ri0 cdsi − 1

2
i εijkRij cdsk), (43)

φ̄A′B′ ,cd =
1
2
(Ri0 cd s̄i +

1
2

i εijkRij cd s̄k), (44)

from Equations (18) and (19). We write here the form of ε
ij

k as εijk for convenience; it is not so difficult
to recover the upper- and lower-indices. By decomposing φAB,cd one more times, we get

ΦABC′D′ =
1
4
(Ri0 j0si s̄j +

1
2

iεpqrRi0 pqsi s̄r − 1
2

iεijkRij l0sk s̄l +
1
4

εijkεpqrRij pqsk s̄r),

=
1
4
(Rk0 l0 +

1
2

iεpql Rk0 pq −
1
2

iεijkRij l0 +
1
4

εijkεpql Rij pq)sk s̄l , (45)

XABCD =
1
4
(R0i 0jsisj − 1

2
iεpqrR0i pqsisr − 1

2
iεijkRij 0lsksl − 1

4
εijkεpqrRij pqsksr)

=
1
4
(R0k 0l −

1
2

iεpql R0k pq −
1
2

iεijkRij 0l −
1
4

εijkεpql Rij pq)sksl . (46)

We note that Φ and X are expressed with two three-dimensional basis like the form in 3 × 3 basis.
Even though there is no 0-th base, which may be related to the curvature of time, Φ and X can fully
describe the spacetime structure. If Φ and X are represented in Fermi coordinate, the disappearance of
0-th compomonents of the si basis may come from the fact that time follows proper time. However,
since here Equations (45) and (46) are expressed not only in Fermi coordinate but also in general
locally flat coordinates, whose 0-th coordinate may not be time direction, the representations like
Equations (45) and (46) may demand a new interpretation of the curvature of time, which is not just as
a component of fourth (or 0-th) axis in 4-dimensional space-time. Technically the interpretation of the
space-time structure, which was considered to be a bundle of four directions, might be reconsidered.
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We can divide Equation (45) into two terms by defining

Pij ≡
1
2

εpqjRi0 pq −
1
2

εpqiRj0 pq, (47)

Sij ≡ R0i 0j +
1
4

εpqiεrsjRpq rs, (48)

Θij ≡ Ri0 j0 +
1
2

iεpqjRi0 pq −
1
2

iεpqiRpq j0 +
1
4

εpqiεrsjRpq rs = Sij + i Pij, (49)

where Pij is anti-symmetric and Sij is symmetric for i, j. Then Equation (45) is represented as

ΦABC′D′ =
1
4

Θijsi
AB s̄j

C′D′ . (50)

The components of Pij and Sij can be simply expressed as

−1
2

εijkPij = −1
4
(εijkεpqjRi0 pq − εijkεpqiRj0 pq) = R0i ki , (51)

Si j = R0i 0j + εi pqε j rsRpq rs , (52)

Si i = R0i 0i + |εi pq|Rpq pq , (53)

where the underlined symbols in subscripts are the value-fixed indices which does not sum up for
dummy indices; one of example is S11 = R01 01 + R23 23.

We can express ΦABCD as a tensor by multiplying g AC′
µ , which is

g AB′
µ = εACεB′D′gµνgν

CD′ =
1√
2
(σ0, σ1,−σ2, σ3)AB′ =

1√
2

σt AB′
µ =

1√
2

σ∗ AB′
µ , (54)

where sigma matrices with superscript σt and σ∗ mean the transpose and the complex conjugate of σ.
To calculate ΦABC′D′g AC′

µ g BD′
ν = (1/4 Θijsi

AB s̄j
C′D′)g AC′

µ g BD′
ν , let us define

f (k, l)µν = σk
ABσl

C′D′g
AC′

µ g BD′
ν =

1
2
(σk

ABσl
C′D′)σ

∗ AC′
µ σ∗ BD′

ν . (55)

Values of f (k, l)µν are shown in Table 1.

Table 1. The lists of f (k, l)µν = σk
ABσl

C′D′ g
AC′

µ g BD′
ν .

f (0, 1)µν =


0 1 0 0
1 0 0 0
0 0 0 i
0 0 i 0

 , f (1, 0)µν =


0 1 0 0
1 0 0 0
0 0 0 −i
0 0 −i 0

 , f (3, 1)µν =


0 0 i 0
0 0 0 1
i 0 0 0
0 1 0 0

 ,

f (1, 3)µν =


0 0 −i 0
0 0 0 1
−i 0 0 0
0 1 0 0

 , f (0, 3)µν =


0 0 0 1
0 0 −i 0
0 −i 0 0
1 0 0 0

 , f (3, 0)µν =


0 0 0 1
0 0 i 0
0 i 0 0
1 0 0 0

 ,

f (0, 0)µν =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , f (1, 1)µν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , f (3, 3)µν =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

Using this table, we get 4 × 4 representation of ΦABC′D′ as

Φµν = ΦABC′D′g
AC′

µ g BD′
ν
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=
1
4


(Θ12s1 s̄2 + Θ21s2 s̄1)

+(Θ23s2 s̄3 + Θ32s3 s̄2)

+(Θ31s3 s̄1 + Θ13s1 s̄3)

+(Θ11s1 s̄1 + Θ22s2 s̄2 + Θ33s3 s̄3)


ABC′D′

g AC′
µ g BD′

ν

=
1
4


(iΘ12 f (3, 0)− iΘ21 f (0, 3))
+(iΘ23 f (0, 1)− iΘ32 f (1, 0))

+(−Θ31 f (1, 3)−Θ13 f (3, 1))
+(Θ11 f (3, 3) + Θ22 f (0, 0) + Θ33 f (1, 1))


µν

=
1
2


1
2 (S11+S22+S33) −P23 −P31 −P12

−P23
1
2 (−S11+S22+S33) −S12 −S31

−P31 −S12
1
2 (S11−S22+S33) −S32

−P12 −S31 −S32
1
2 (S11+S22−S33)

 , (56)

which is a real tensor and Φµνηµν = 0, as expected.
From Equations (32), (33) and (56), we can find that Pij and Sij are also non-diagonal components

of Gµν and Tµν. By comparing Equation (34) with Equation (56), we can interpret Pij/(8πG) as a
momentum and Sij/(8πG) as a stress of a spacetime fluctuation. We can also observe from Equations
(47) and (48) that the component of the Riemann curvature tensor of the form Rj0 pq is linked to a
momentum, and the form Ri0 j0, Rpq rs linked to a stress-energy.

Now we investigate XABCD and ΨABCD more in detail. Before representing X and Ψ in matrix
form, we can check Equation (46) to find out whether Λ = X AB

AB = R/4 or not. From the properties
of Riemann curvature tensor, Ricci scalar is

R = R µν
µν = 2R 0i

0i + R ij
ij = 2R0iρσgρ0gσi + Rijρσgρigσj. (57)

For Minckowski metric gµν = ηµν, R becomes

R = −2Ri0i0 + Rijij. (58)

Because

sk
ABsl

CDεCAεDB = σk P
A εPBσl Q

C εQDεCAεDB = (εCAσk D
A )(σl Q

C εQD)

= −Tr(s̄ksl) =

(
−2 (k = l)
0 (k 6= l)

)
, (59)

we can finally see that

X AB
AB = XABCDεCAεDB

=
1
4
(−2R0l 0l +

1
2

εijlεpql Rij pq) =
1
4
(−2R0l 0l + Rij ij) =

R
4

(60)

from Equation (46). We have used εpql R0l pq = 0 by Bianchi identity.
To represent the spinors X and Ψ in simple matrix forms, we first define

Qij ≡
1
2

εpqjRi0 pq +
1
2

εpqiRj0 pq, (61)

Eij ≡ R0i 0j −
1
4

εpqiεrsjRpq rs, (62)

Ξij ≡ Ri0 j0 −
1
4

εpqiεrsjRpq rs −
1
2

iεpqjRi0 pq −
1
2

iεpqiRpq j0 = Eij − i Qij, (63)
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where Qij and Eij both are symmetric for i, j. Then, we have

XABCD =
1
4

Ξijsi
ABsj

CD, (64)

from Equation (46). This can be expressed in a 4× 4 matrix form by multiplying the factors in a
similar way to the Equation (56), but here it is useful to multiply by (σε)∗ AC

µ (σε)∗ BD
ν = s̄ AC

µ s̄ BD
ν for

simplicity, instead of σ AC
µ σ BD

ν , where the components of s̄ AC
µ is equal to s̄µ defined in Equation (15):

XABCD s̄ AC
µ s̄ BD

ν = (
1
4

Ξijsi
ABsj

CD)s̄
AC

µ s̄ BD
ν

=
1
2


−Ξ11 − Ξ22 − Ξ33 −iΞ23 + iΞ32 iΞ13 − iΞ31 −iΞ12 + iΞ21

−iΞ23 + iΞ32 Ξ11 − Ξ22 − Ξ33 Ξ12 + Ξ21 Ξ13 + Ξ31

iΞ13 − iΞ31 Ξ12 + Ξ21 −Ξ11 + Ξ22 − Ξ33 Ξ23 + Ξ32

−iΞ12 + iΞ21 Ξ13 + Ξ31 Ξ23 + Ξ32 −Ξ11 − Ξ22 + Ξ33

 . (65)

Since Ξij is symmetric for i, j, it becomes

=


−Ξ11 − Ξ22 − Ξ33 0 0 0

0 Ξ11 − Ξ22 − Ξ33 2Ξ12 2Ξ13

0 2Ξ12 −Ξ11 + Ξ22 − Ξ33 2Ξ23

0 2Ξ13 2Ξ23 −Ξ11 − Ξ22 + Ξ33

 . (66)

For Wely conformal spinor ΨABCD = 1
3 (XABCD + XACDB + XADBC),

ΨABCD s̄ AC
µ s̄ BD

ν =
1

12
Ξij(si

ABsj
CD + si

ACsj
DB + si

ADsj
BC)s̄

AC
µ s̄ BD

ν

=
1
3


0 −iΞ23 + iΞ32 iΞ13 − iΞ31 −iΞ12 + iΞ21

0 2Ξ11 − Ξ22 − Ξ33 2Ξ12 + Ξ21 2Ξ13 + Ξ31

0 Ξ12 + 2Ξ21 −Ξ11 + 2Ξ22 − Ξ33 2Ξ23 + Ξ32

0 Ξ13 + 2Ξ31 Ξ23 + 2Ξ32 −Ξ11 − Ξ22 + 2Ξ33

 . (67)

Considering the symmetricity of Ξ, it becomes

=
1
3


0 0 0 0
0 2Ξ11 − Ξ22 − Ξ33 3Ξ12 3Ξ13

0 3Ξ12 −Ξ11 + 2Ξ22 − Ξ33 3Ξ23

0 3Ξ13 3Ξ23 −Ξ11 − Ξ22 + 2Ξ33

 . (68)

The components of XABCD, ΨABCD are expressed as symmetric tensors. As we can see on
Equation (67) and Matrix (68), Ξij includes all information of ΨABCD. Because of Wely tensor
Cabcd = ΨABCDεA′B′ εC′D′ + Ψ̄A′B′C′D′ εABεCD, we may conclude that all informations of Weyl tensor
are comprehended in Ξij.

The form of Matrix (68) is similar to the tidal tensor Tij with a potential U = −U0/r =

−U0/
√

x2 + y2 + z2:

Tij =
U0

r5

2x2 − y2 − z2 3xy 3xz
3xy −x2 + 2y2 − z2 3yz
3xz 3yz −x2 − y2 + 2z2

 , (69)

where Tij = Jij − Ja
a δij and Jij = δ2U/δxiδxj [27,28]. The similarity may come from the link between

tidal forces and Weyl tensor. The tidal force in general relativity is described by the Riemann curvature
tensor. The Riemman curvature tensor Rabcd can be decomposed to Rabcd = Sabcd + Cabcd, where Cabcd
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is a traceless part which is a Weyl tensor and Sabcd is a remaining part which consists of Ricci tensor
Rab = Rc

acb and R = R a
a [6]. In the Schwartzchild metric, since R = Rab = Sabcd = 0 but Cabcd 6= 0,

the tidal forces are described by Weyl tensor. This shows that Cabcd, ΨABCD and Ξij are all related to
the tidal effects.

The components of Ψ and Ξ can be represented with Weyl tensors. In a flat coordinate, by using

Rµρ = Rµνρσgνσ = Rµ0ρ0 − Rµiρi (70)

and Equation (58), the components of Weyl tensor referred to as Equation (37) can be expressed as

C0p0q = Cj p j q =
1
2

R0p0q +
1
2

Rpjqj (for p 6= q) , (71)

C0p0p = −Ci j i j =
1
2

R0p0p −
1
2

R0k0k +
1
2

Rpkpk −
1
2

Rklkl , (72)

Cp0pq = Rp0pq −
1
2

R0iqi , (73)

Ci0pq = Ri0pq . (74)

Comparing Equations (71)—(74) with Equations (61) and (62), we find that

C0p0q = Cj p j q =
1
2

Epq (for p 6= q) , (75)

C0p0p = −Ci j i j =
1
6
(3Epp − E11 − E22 − E33) , (76)

Cp0pq = εi p q
Qi p

2
, (77)

Ci0pq = εi p q
Qii

2
(for i 6= p and i 6= q) . (78)

Therefore, Matrix (68) can be rewritten to

Ψij = ΨABCD s̄ AC
i s̄ BD

j = 2C0i0j − iεipqCj0pq +
i
3

εlpqCl0pq . (79)

Since εlpqCl0pq = Q11 + Q22 + Q33 is zero by Bianchi identity, it becomes

Ψij = ΨABCD s̄ AC
i s̄ BD

j = 2C0i0j − iεipqCj0pq . (80)

Equation (63) can be reformulated to

Ξij = 2C0i0j −
R
6

δij − iεipqCj0pq , (81)

where R = −2Eii = −2Ξii = −2(E11 + E22 + E33). Therefore, we can finally find the relation

Ξij = Ψij −
R
6

δij. (82)

Here we can see the equivalence and the direct correspondences among ΨABCD, Ξij and Weyl tensor.

5. Definition of Sedon and Relations among Spinors, Sedenion and Sedon

In this section, we investigate the basis of sedenion and we define a new algebra which is a similar
structure to sedenion. Sedenion is 16 dimensional noncommutative and nonassociative algebra, which
can be obtained from Cayley–Dickson construction [29,30]. The multiplication table of sedenion basis
is shown in Table 2. The elements of sedenion basis can be represented in the form ei = qµ ⊗ q′µ

′
= qµµ′
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with i = µ + 4ν, where qµ = (1, i, j, k), q′µ
′
= (1, i′, j′, k′). The multiplication rule can be written by

ei ∗ ej = qµµ′ ∗ qνν′ = sµµ′νν′ qµµ′qνν′ , where sµµ′νν′ is +1 or −1, which is determined by µ, µ′, ν, ν′ [7].

Table 2. The multiplication table of sedenion. For convenience, ‘eN ’s are represented as ‘eN’ ; e.g., e3 → e3.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0 e15 e14 −e13 −e12 e11 e10 −e9 −e8
e8 e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −e0 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −e0 −e3 e2 −e5 e4 e7 −e6

e10 e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −e0 −e1 −e6 −e7 e4 e5
e11 e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −e0 −e7 e6 −e5 e4
e12 e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −e0 −e1 −e2 −e3
e13 e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −e0 e3 −e2
e14 e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −e0 e1
e15 e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −e0

Table 3 shows the multiplication table of an algebra which is similar to sedenion. It consists of
16 bases ei = qµ ⊗ q′µ

′
with i = µ + 4ν and the multiplication rule ei ∗ ej = (qµ ⊗ q′µ

′
) ∗ (qµ ⊗ q′µ

′
) =

(qµqµ ⊗ q′µ
′
q′µ
′
). The table is almost the same as the multiplication table of sedenion basis, but just

differs in signs. The signs of red colored elements in Table 3 differ from Table 2. We will call this
algebra as ‘sedon’.

Sedon can be written in the form

S = A0 + |~B}+ {~C|+ {
←→
D } = A0 + Biqi

R + Ciqi
L + Dijuij, (83)

where qi
R = 1⊗ qi, qi

L = qi ⊗ 1, uij = qi ⊗ qj, |~B} = Biqi
R, {~C| = Ciqi

L, and {←→D } = Dijuij. We can

name |~B} as ‘right svector’, {~C| as ‘left svector’, and {←→D } as ‘stensor’. The coefficient of sedon can be
represented as in Table 4. For example, D13 is a coefficient of i⊗ k term.

Now we will see the relation between Ricci spinors and the sedon. Since

σi C
A εCB = si

AB, εA′C′σ
C′
B′ = −s̄i

A′B′ , (84)

therefore

σi B
A = −si

ACεCB, σi C′
B′ = εC′A′ s̄i

A′B′ . (85)

Equation (50) can be reformulated as

Φ QP′
A D′ = εP′C′ΦABC′D′ ε

BQ =
1
4

Θijε
P′C′ si

AB s̄j
C′D′ ε

BQ = −1
4

Θijσ
i Q
A σ

j P′

D′ . (86)

Since qi = (i, j, k) is isomorphic to −iσi = (−σ1i,−σ2i,−σ3i), we can set qi = −iσi. Equation (86)
can be written as

Φ QP′
A D′ =

1
4

Θijq
i Q
A qj P′

D′ , (87)

which can be regarded as a sedon. In a similar way, XABCD can be written as

X B D
A C =

1
4

Ξkl qk B
A ql D

C . (88)



Universe 2020, 6, 40 12 of 18

From Equation (87), a Ricci spinor can be interpreted as a combination of a right-handed and a
left-handed rotational operations, since the basis has the form ‘left-handed quaternion ⊗ right- handed
quaternion’. Following the rotational interpretation of Cayley–Dickson algebra [7], it can be interpreted
as the twofold rotation ⊗ twofold rotation.

For two quaternions A. = Aiqi = a1i + a2j + a3k and B. = Bjqj = b1i + b2j + b3k, which

can be represented in the 2 × 2 matrix representation with spinor indices (Aiqi D
C and Bjq

j D
C ),

the multiplication of them can be written as

A. B. = Aiqi D
C Bjq

j E
D = −AiBiδ

E
C + εijk AiBjqk E

C . (89)

We can use this to express multiplications of spinors. One of the example is

Φ BC′
A D′Φ

ED′
B F′ = θijqi B

A qj C′

D′ θrsqr E
B qs D′

F′

= (−θl jθlsδ E
A + εpquθpjθqsqu E

A )qj C′

D′q
s D′

F′

= θlkθlk δ E
A δC′

F′ − εmnvθlmθln qv C′
F′δ

E
A

−εpquθplθql qu E
A δC′

F′ + εmnvεpquθpmθqn qu E
A qv C′

F′ , (90)

where θij =
1
4 Θij. The result is also a sedon form. Above example shows not only multiplications of

Φ BC′
A D′ but also the general multiplication of stensor. Here is an another example: An antisymmetric

differential operator ∇[a∇b] can be divided into two parts

∆ab = 2∇[a∇b] = εA′B′�AB + εAB�A′B′ , (91)

where �AB = 1
2 ∆ A′

AA′B and �A′B′ =
1
2 ∆ A

AA′ B′ . As we can see in Equations (9) and (11), each term can
be considered as a quaternion.

� B
A =

1
4

∆µνσ
µ
AA′ σ̄

ν A′B =
1
2
(i ∆k0 +

1
2

ε
ij

k∆ij) qk B
A (92)

�̄A′
B′ = −

1
4

∆µν σ̄µA′Cσν
CB′ =

1
2
(i ∆k0 −

1
2

ε
ij

k∆ij) qk A′
B′ . (93)

Then, � B
A Φ CD′

B E′ can be considered as a multiplication of a quaternion and a sedon.

� B
A Φ CD′

B E′ = [k qk B
A θijqi C

B qj D′

E′

= −[p θpjδ
C

A qj D′

E′ + εkip[k θijq
p C
A qj P

T

= −i ∆p0θpj δ C
A qj D′

E′ −
1
2

εrsp∆rsθpj δ C
A qj D′

E′

+i εkip∆k0θij qp C
A qj D′

E′ +
1
2

εlqk∆lqεkipθij qp C
A qj D′

E′ , (94)

where [k ≡ i∆k0 +
1
2 εijk∆ij. εlqk∆lqεkipθij in the last term can be changed as ∆qpθqj − ∆pqθqj = 2∆qpθqj.

The result in Equation (94) is in a sedon form. Using those expressions, we can represent the quantities
with spinor indices as sedon forms whose elements are components of tensors.
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Table 3. The multiplication table of sedon.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 −e0 e3 −e2 e5 −e4 e7 −e6 e9 −e8 e11 −e10 e13 −e12 e15 −e14
e2 e2 −e3 −e0 e1 e6 −e7 −e4 e5 e10 −e11 −e8 e9 e14 −e15 −e12 e13
e3 e3 e2 −e1 −e0 e7 e6 −e5 −e4 e11 e10 −e9 −e8 e15 e14 −e13 −e12
e4 e4 e5 e6 e7 −e0 −e1 −e2 −e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11
e5 e5 −e4 e7 −e6 −e1 e0 −e3 e2 e13 −e12 e15 −e14 −e9 e8 −e11 e10
e6 e6 −e7 −e4 e5 −e2 e3 e0 −e1 e14 −e15 −e12 e13 −e10 e11 e8 −e9
e7 e7 e6 −e5 −e4 −e3 −e2 e1 e0 e15 e14 −e13 −e12 −e11 −e10 e9 e8
e8 e8 e9 e10 e11 −e12 −e13 −e14 −e15 −e0 −e1 −e2 −e3 e4 e5 e6 e7
e9 e9 −e8 e11 −e10 −e13 e12 −e15 e14 −e1 e0 −e3 e2 e5 −e4 e7 −e6

e10 e10 −e11 −e8 e9 −e14 e15 e12 −e13 −e2 e3 e0 −e1 e6 −e7 −e4 e5
e11 e11 e10 −e9 −e8 −e15 −e14 e13 e12 −e3 −e2 e1 e0 e7 e6 −e5 −e4
e12 e12 e13 e14 e15 e8 e9 e10 e11 −e4 −e5 −e6 −e7 −e0 −e1 −e2 −e3
e13 e13 −e12 e15 −e14 e9 −e8 e11 −e10 −e5 e4 −e7 e6 −e1 e0 −e3 e2
e14 e14 −e15 −e12 e13 e10 −e11 −e8 e9 −e6 e7 e4 −e5 −e2 e3 e0 −e1
e15 e15 e14 −e13 −e12 e11 e10 −e9 −e8 −e7 −e6 e5 e4 −e3 −e2 e1 e0

Table 4. The representation of coefficients of sedon.

∼ ⊗ 1 ∼ ⊗ i ∼ ⊗ j ∼ ⊗ k
1 ⊗ ∼ A0 B1 B1 B1
i ⊗ ∼ C1 D11 D12 D13
j ⊗ ∼ C2 D21 D22 D23
k ⊗ ∼ C3 D31 D32 D33

6. A Few Examples of Curvature Spinors in a Locally Flat Coordinate

6.1. Weyl Conformal Spinor for the Schwarzschild Metric: An Example of Section IV

It is known that the Schwarzschild metric can be represented in Fermi normal coordinate [31].
In Schwarzschild coordinate xµ′ = (T, R, Θ, Φ), the metric is displayed in the form

ds2 = gµ′ν′dyµ′dyν′ = − f dT2 + f−1dR2 + R2dΘ2 + R2sin2Θ dΦ2 , (95)

where f = 1− 2GM/R. The basis of a constructed Fermi coordinate xµ = (t, x, y, z) is

e0 = ∂/∂t|G = T′ ∂/∂T + R′ ∂/∂R,

e1 = ∂/∂x|G = f−1R′ ∂/∂T + f T′ ∂/∂R,

e2 = ∂/∂y|G = 1/R ∂/∂Θ,

e3 = ∂/∂z|G = 1/R sinΘ ∂/∂Φ, (96)

where the primes indicate derivatives with respect to proper time t. The non-zero components of the
Riemann curvature tensor Rµ′ν′ρ′σ′ in Schwarzschild coordinate are

R1′0′1′0′ = 2GM/R2,

R3′0′3′0′ = −( f GM/R)sin2Θ,

R1′2′1′2′ = GM/( f R),

R2′0′2′0′ = − f GM/R,

R2′3′2′3′ = −2GMRsin2Θ,

R1′3′1′3′ = (GM/R f )sin2Θ. (97)

Then the Riemman curvature tenor Rµνρσ in the Fermi coordinate is

R10 10 = 2GM/R3,

R20 20 = R30 30 = −GM/R3,
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R12 12 = R13 13 = GM/R3,

R23 23 = −2GM/R3. (98)

From Equations (47), (48), (61) and (62), we can observe that Pij = Sij = Qij = 0, but E11 =

4GM/R3 and E22 = E33 = −2GM/R3. Classically, the tidal acceleration of black hole along the radial
line is −2GM/r3δX, and the acceleration perpendicular to the radial line is GM/r3δX, where δX is the
separation distance of two test particles. In this example, the link between Ξij and tidal accelerations
has been shown.

6.2. The Spinor Form of the Einstein–Maxwell Equation: An Example of Section V

Einstein–Maxwell Equations, which is Einstein Equations in presence of electromagnetic fields, is
known [32] as

Rµν −
1
2

gµνR = 8πG(FµσFσ
ν − gµν

1
4

FρσFρσ), (99)

where FµσFσ
ν − gµν

1
4 FρσFρσ is the electromagnetic stress-energy tensor. The spinor form of the

Einstein–Maxwell equation [1] is

ΦABA′B′ = 8πGϕAB ϕ̄A′B′ , (100)

where ϕAB, ϕ̄A′B′ are decomposed spinors of electromagnetic tensor Fµν, as following Equations (18)
and (19). This can be deformed to

Φ BA′
A B′ = 8πGϕ B

A ϕ̄A′
B′ . (101)

From Equation (86),

−1
4

Θklσ
k B
A σl A′

B′

= 8πG[
1
2
(Fk0 −

1
2

i ε
ij

kFij)σ
k B
A ]× [

1
2
(Fl0 +

1
2

i ε
pq

l Fpq)σ
l A′

B′ ]

= 2πG[(Fk0Fl0 +
1
4

ε
ij

kε
pq

l FijFpq) +
i
2
(Fk0ε

pq
l Fpq − Fl0ε

ij
kFij)]σ

k B
A σl A′

B′ . (102)

Comparing the first line with the third line in Equation (102), we get

Skl = −8πG(Fk0Fl0 +
1
4

ε
ij

kε
pq

l FijFpq), (103)

Pkl = −4πG(Fk0ε
pq

l Fpq − Fl0ε
ij

kFij), (104)

and, from Equation (104) we get

εmkl Pkl = −16πGFk0Fmk. (105)

For Fµν such that

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (106)
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we have Fk0Fmk = (~E× ~B)m and (Fk0Fl0 +
1
4 ε

ij
kε

pq
l FijFpq) = EkEl + BkBl . From Equations (51) and

(104) we get

−1
2

εmkl Pkl = R mi
0i = 8πG(~E× ~B)k . (107)

This is a momentum of electromagnetic tensor and it shows that Pij/(8πG) is related to
momentum. From Equations (49) and (103),

Skl = R0i 0j +
1
4

εpqiεrsjRpq rs = 8πG(−EkEl − BkBl), (108)

Sl l = 8πG(|~E|2 + |~B|2). (109)

Those are the shear stress and the energy of electromagnetic field. It shows that Sij/(8πG) is
related to stress-energy.

6.3. The Quaternion form of Differential Bianchi Identity: Another Example of Section V

The spinor form of Bianchi identity referred to as Equation (27) is known [1] as

∇A
B′XABCD = ∇A′

B ΦCDA′B′ , (110)

which can be deformed to

∇B′AX B D
A C = ∇BA′Φ D B′

C A′ . (111)

In flat coordinate, ∇A′A equals to

∂A′A = gµ A′A∂µ =
1√
2

σµA′A∂µ =
1√
2

σµ̃A′A∂µ̃

=
1√
2

q̄µ A′A∂̃µ =
1√
2

qµ A′A∂′µ , (112)

where µ̃ is tilde-spacetime indices which is defined as Oµ̃ = (O0, i O1, i O2, i O3), Oµ̃ =

(O0,−i O1,−i O2,−i O3) for any Oµ = (O0, O1, O2, O3), Oµ = (O0, O1, O2, O3) [7]; q̄µ is q̄µ =

σµ̃A′A = (σ0, iσ1, iσ2, iσ3) which is isomorphic to (1,−i,−j,−k), ∂̃µ = ∂µ̃ = (∂0,−i∂1,−i∂2,−i∂3),
and ∂′µ = (∂0, i∂1, i∂2, i∂3). We used the property AµBµ = Aµ̃Bµ̃ [7]. ∂A′A can be expanded to

∂A′A = ∂0δA′A + ∂′kqk A′A (113)

and, considering matrix representation, ∂AA′ can be represented as

∂AA′ = ∂0δAA′ + ∂′kqk̄ AA′ = ∂0δAA′ + ∂′k̄qk AA′ , (114)

where the bar index Ak̄ means the opposite-handed quantity of Ak, which is A1̄ = A1, A2̄ = −A2, A3̄ =

A3 ; when k = 2, k̄ index change sings of Ak. It has following properties,

Ak̄Bk = AkBk̄, Ak̄Bk̄ = AkBk, εpqr Aq̄Br̄ = −ε p̄qr AqBr, ε p̄q̄r̄ = −εpqr. (115)

Then Equation (111) can be written as

(∂0δB′A + ∂′kqk B′A)Ξirqi B
A qr D

C = (∂0δBA′ + ∂′k̄qk BA′)Θrs̄qr D
C qs B′

A′ , (116)
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since qs̄ B′
A′ = εB′D′ εC′A′qs C′

D′ . Using Equation (89),

∂0Ξirqi B′B + ∂′kΞkrδB′B + εpki∂
′
kΞirqp B′B

= ∂0Θrsqs̄ BB′ + ∂′kΘrkδBB′ + εpks∂′k̄Θrs̄qp B′B , (117)

which can be rearranged as

∂′k(Ξkr −Θrk)δ
B′B + [∂0(Ξsr −Θrs) + εski∂

′
k(Ξir + Θri)]qs B′B = 0 . (118)

This is the quaternion form of Bianchi identities. Using Θij = Θ̄ji and denoting Ξij as Ξj,
Equation (118) can be written as

i∇ · (Ξ− Θ̄)r − i σ · (Ξ− Θ̄)r + σ · (∇× Ξ +∇× Θ̄)r = 0 , (119)

where σ are Pauli matrices.

6.4. Spatial-Handedness of Graviton and Spin of Matters in Gravitational Phenomena

Considering qk B
A ,

qk A
B = −εACiσk D

C εDB = −i(σ1,−σ2, σ3)
A

B, (120)

which can be understood as a spatially left-handed quaternion basis qk̄ A
B, interchanging of up-down

positions for spinor indices of quaternion basis indicates the interchanging of spatial-handedness of
spatial index. As examples, Equations (87) and (88) can also be written as

ΦA C′
B D′ =

1
4

Θī jq
i A

Bqj C′

D′ , (121)

XA C
B D =

1
4

Ξk̄l̄ qk A
Bqj C

D . (122)

In modified gravity or quantum gravity [33,34], the action could include higher order terms like
R2, RabRab, RabcdRabcd. Therefore, we can also include terms like X2, Φ2, ΦXΦ... into the action of
gravity. In such a case, following the representation like Equations (87) and (88) to couple those spinors
together, the changes of spartial-handedness could occur, which means that spartial-right-handed
particles couple to the spartial-left-handed and vice versa. For an example,

X2 = X B D
A C XA C

B D = (
1
4

Ξij qi B
A qj D

C )(
1
4

Ξklqk̄ A
Bql̄ C

D) (123)

= ΞijΞī j̄. (124)

This can affect the drawing of Feynman diagrams of graviton. When matters couple with spinors,
it can be thought that spins of matter fields contribute to make a gravitational effects on matter, since
qi B

A ψA gives the spin of ψA.

7. Conclusions

We established a new method to express curvature spinors, which allows us to grasp components
of the spinors easily in a locally inertial frame. During such a process, we technically utilized modified
sigma matrices as a basis, which are sigma matrices multiplied by ε, and calculated the product of sigma
matrices with mixed spinor indices. Using those modified sigma matrices as a basis can be regarded as
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the rotation of the basis of four sigma matrices (σ0, σ1, σ2, σ3) to (s0, s1, s2, s3) defined in Equation (14),
similar to a rotation of quaternion basis as shown in our previous work [7]. By comparing the Ricci
spinor with the spinor form of Einstein equation, we could appreciate the roles of each component of the
Riemann curvature tensor. The newly defined (3,3) tensors related to curvature tensors were introduced,
and furthermore, from the representation of Weyl conformal spinor, we find that the components
of Weyl tensor can be replaced by complex quantities Ξij, which are defined in Equation (63). We
represented the elements of sedenion basis as the direct product of elements of the quaternion bases
themselves. Then we defined a new algebra ‘sedon’, which has the same basis representation except
for a slightly modified multiplication rule from the multiplication rule of sedenion. The relations
between sedon and the curvature spinors are derived for a general gravitational field, not just for
a weak gravitational field. We calculated multiplications of spinors with a quaternion form, and
observed that the results of the multiplications are also represented in a sedon form. The relations
among quaternion, sedon and curvature spinors may imply that gravity could be the consequence of
combination of right-handed and left-handed abstract rotational operations.

A few applications of the sedon representations were also introduced. One of the applications
represented the Bianchi identity in the quaternion form, which might give the fluidic interpretation
of the identity. We also suggested further possible application in modified gravity and quantum
gravity. This may suggest that the spin-handedness, spatial-handedness, and spins of matter field
would affect gravitational phenomena. The handedness structure of gravitational force has not yet
been considered seriously. The sedon representation can be primarily a tool in which the handedness
in gravity could be considered in detail. Finally we note that the research of this paper can be extended
to general coordinates by considering vielbein formalism [35] and/or by establishing a connection to
either self-dual or anti-self-dual variables [36,37].
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15. Năstase, H. Classical Field Theory; Cambridge University Press: Cambridge, UK, 2019.
16. Ortín, T. Gravity and Strings; Cambridge University Press: Cambridge, UK, 2004.
17. Mironov, V.L.; Mironov, S.V. Sedeonic equations of gravitoelectromagnetism. J. Mod. Phys. 2014, 5, 917.

[CrossRef]
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