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Abstract: In the 2-spinor formalism, the gravity can be dealt with curvature spinors with four spinor
indices. Here we show a new effective method to express the components of curvature spinors in the
rank-2 4 X 4 tensor representation for the gravity in a locally inertial frame. In the process we have
developed a few manipulating techniques, through which the roles of each component of Riemann
curvature tensor are revealed. We define a new algebra ‘sedon’, the structure of which is almost the
same as sedenion except for the basis multiplication rule. Finally we also show that curvature spinors
can be represented in the sedon form and observe the chiral structure in curvature spinors. A few
applications of the sedon representation, which includes the quaternion form of differential Binanchi
identity and hand-in-hand couplings of curvature spinors, are also presented.
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1. Introduction

In the 2-spinor formalism [1-3] all tensors with spacetime indices can be transformed into spinors
with twice the number of spinor indices, i.e., a rank-2 tensor is changed into a spinor with four spinor
indices. In addition, if the tensor is antisymmetric and real, it can be represented by a sum of two
spinors with two spinor indices, and they are complex conjugate of each other, which indicates that a
rank-2 antisymmetric tensor is equivalent to a spinor with two spinor indices. The Riemann curvature
tensor is a rank-4 real tensor which describes gravitational fields and it has two antisymmetric
characters. This means that the gravity can be described by two spinors with four spinor indices.
Those two spinors are called curvature spinors: One of them is Ricci spinor and the other is Weyl
conformal spinor [1,3-5].

At any points on a pseudo-Riemannian manifold, we can find a locally flat coordinate [6], whose
metric is Minkowski. While the metric is locally Minkowski, the second derivative of the metric
is not necessarily zero and the Riemann curvature tensor as well as curvature spinors do not have
to be zero. Here we can obtain the explicit representations of curvature spinors, the components
of which can be easily identified by using new techniques, i.e., manipulating spinor indices and
rotating sigma basis in locally flat coordinates [7]. Then all the components of curvature spinors are
represented with simple combinations of Riemann curvature tensors. Here the representations are not
described by the four-dimensional basis but by the three-dimensional basis @ three-dimensional basis,
and thus it suggests a different interpretation of time. The process has been applied on both Ricci
spinor and Weyl spinor, which are curvature spinors, and each spinor is described as the sum of two
newly defined parts; one of which is a real part and the other is a pure imaginary part. The obtained
representation can be used not only in a special flat coordinate but also for vielbein indices or in any
other normal coordinates, like Riemann normal coordinate and Fermi coordinate [8-16]. By comparing
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the final forms of Ricci spinor with the spinor form of Einstein equation, we figure out the roles of each
component of Riemann curvature tensor, whose components serve as momentum, energy or stress
of gravitational fields. Furthermore, we show that the components of Weyl conformal spinor can be
represented as a simple combination of Wely tensors in flat coordinate.

There are already quite a few papers that show the relation between gravitational fields and
Cayley—Dickson algebras including sedenion; however, all papers are restricted to a weak gravitational
field in a flat frame [17-22]. Here we express the basis of sedenion as a set of direct products of a
quaternion basis, through which we can define a new algebra ‘sedon’, whose structure is similar to
sedenion except for the basis multiplication rule. We show that the curvature spinors for general
gravitational fields in locally flat coordinates can be regarded as a sedon. The spinors are described
on the direct procduct of totally seperated left-handed basis and right-handed quaternion basis. From
this, we can get a view of the gravitational effects as the combination of right-handed and left-handed
rotational effects. We also introduce a few applications of the sedon form with multiplication techniques.
One of the application is the quaternion form of differential Bianchi identity and, in the process, we
introduce a new index notation with the spatially opposite-handed quantities.

2. Tensor Representation of a Field with Two Spinor Indices

In this section we introduce the basics about the 2-spinor formalism, which have been already
explained in detail in our earlier paper [7]. We use the front part of Latin small letters a, b, ..., h and
Greek letters 1, v, p... as four dimensional space-time indices, which can be 0, 1,2 or 3. The later part of
Latin small letters i, j, ..., which can be 1,2 or 3, are used as three dimensional indices.

Any tensor T, with spacetime indices 4, b, c, .., can be inverted into a spinor with spinor indices
A,A',B,B, .. like Ty o/pp . by multiplying Infeld-van der Waerden symbols g ,

Taagp . = To.San'8pp ~ - 1)

: : : a:. 1 —a a : : 0 1 2 ;3).40
In Minkowski spacetime, g AA 1S ﬁa AA where ¢ Aq are four-sigma matrices (¢°,0%,0%,0°);0

2 3

is 2 x 2 identity matrix and ¢!, 02,0 are Pauli matrices. Equation (1) can be written conventionally as

Taasp. = Top.. )

Any arbitrary anti-symmetric tensor F,, = F4 4/pp can be expressed as the sum of two symmetric
spinors as

FAA/BB’ = GDABSA/B’ +£AB¢A/B’/ (3)

/ . . . . .
where @45 = %F ABC! € and Yap = %FCC g are symmetric spinors (unprimed and primed spinor
. . . Int .
indices can be switched back and forth each other), and €48, 48 e 45, ¢ g are the e-spinors whose
components are £'2 = g5 = +1,62! = ey = —1[1]; kA = e4Bkp, kg = kAeap. If Fy is real, then

Yap = @ap (Where ¢ is the complex conjugate of ¢) and
Fpy = Faugp = QPABEA'B + EABP AR - 4)

We have shown the components of ¢ 45 and ¢ 45 explicitly in flat spacetime in [7]. The sign
conventions for the Minkowski metric is g, = diag(1, -1, -1, —1).
For any real anti-symmetric tensor Fy4 4/gp/, we can write as

1 1 _ CIC
FAA’BB/ = EFHVU‘ZA,O%B/ = EFVVU’IIZA,UV EC'B'ECB/ (5)
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0, —ol, —0?,—c3), then

where 7" = (¢
]. A/ 1 AIB/
q)AB = EFAA’B = EFAA’BB/S
1 . _yCC A'B' 1 _v A'C
= ZFHVU‘}“A/UV £C/pECBE = ZF}W O'ZA,O'V £CB, (6)

_ 1 1
(PA/B/ = EFAAI/QB/ - EFAA/BB/EAB

1

! !
= ZFW‘_THC CUEB,SA/C/EACSAB = —Fu e g1 otC BUgB, , (7)

4
where we used the relation gBB}’ = %O’EB, = \/EU ecgrécg- This can be established when the
space-time metric is locally flat [1,23]. If we apply the relations to the general coordinates with relevant

v C'C

modifications, the results for arbitrary coordinates can be obtained.

Since
o9 —gO¢l 92 93 o —l g2 53
o GUAC cle? —clet —clo? —colo? I A o (®)
AA! 200 —g20l —g202 —g?03 a2 ird =Y —ig! ’
e —g3gl —o30? —303 AC o —ic? ol —oY AC
@ 4P = ePBgap becomes
D 1 1r GV A'D
Pa =1 W‘TAA'
T
0 _FlO —on —F30 (TO —(71 —(Tz —(73
1 ||Fp O Fi»  Fi3 ol -0 —ig®  io?
4 on —F12 0 P23 0'2 1(73 —O'0 —iO’l
F30 —F13 —F23 0 0“3 —iO’Z i0’1 —(TO AD
1 P T
_ i : 1 k\ D
= E(Fio(?' — Elé’ kFijU )A ’ (9)

where i ,j , k are the three-dimensional vector indices which have the value 1, 2 or 3, and e’ PRE equéi,éé
for the Levi-Civita symbol €;. Einstein summation convention is used for three-dimensional vector
indices i, j and k. Similar to Equations (8) and (9),

e ¢t V0?2 0P o ot o? a3
GHCByy —cle? —cle! —glo? —0olo I A T v (10)
BB 0209 —g?20l —g202 —g253 —02  jrd -V —igl !
—30Y —g3¢l —32 —o33 C/B, —0® —ig? qgl - C/B,
20 = DN g = —Fyy 0Bty = L (Foot 4 Lic Fioh) (11)
P = Pap =~ gt BB = 5 \tio > wtiv ) B
If we denote matrix representation of € 45 by ¢, then
ote = (0% ct, 02, 03) (ic? (73,1'(70,(71), (12)
eot =¢(00, 0,02, 0%) = (za o2,io®, —at). (13)

Let us define s and ¥ as

s =i0°, s =-—0°, s =i0, s =0, (14)
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=0 . 2 =1 3 =2 __ - 0 =3 1 (15)

where 3 is complex conjugate of s#. Then

ote = (s%,s!,5%,5%), (16)
eot = (s0, —s1, 82, —s%) = (0, -5, 2, —33), (17)
and
_ D _lpifl' ijF..k 1
PAB = Q4 €DB = 2( s — SieFis ), (18)
/ / 1 IR T
Pap = GDDB/‘C'D’A’ = —SA/D/(PDB/ = E(Fiosl + Elel]kFi]‘Sk), (19)

where s' have unprimed indices st = siq B and 5’ have primed indices 5= §i4, B

3. Einstein Field Equations and Curvature Spinors

In this section we introduce the basics about general relativity in the 2-spinor formalism, and flat
coordinates on the pseudo-Riemannian manifold. For a (torsion-free) Riemann curvature tensor

Rl'yor = 9I"yg = 9Ty + T, T =T, TV, (20)
where I uv is a Chistoffel symbol
P 1 PA

Iy = 53 (aygv)\ + al/g;i?L - a)\gpn/)‘ (21)

Here R0 has follwing properties [6]
R;u/pa = *Rvypa ’ (22)
R;wp(r = _Ryvap ’ (23)
Ryvpa = Rpa;n/ . (24)

In short, we can denote as

Ruvoo = R((uv) oo @)

where parentheses () and square brackets [ ] indicates symmetrization and anti-symmetrization of the
indices [6]. The Riemann curvature tensor has two kinds of Bianchi identities

Ry[vpa] =0, (26)
VirRuwpr =0, (27)

where V) A" = 9, Al + T, AV
From the antisymmetric properties of Riemann curvature tensor, it can be decomposed into sum
of curvature spinors, X spcp and ® 4pc/pr, as

X' 1, x
Raped = iRAX/B cdéarp + ERXA’ B’ cd€AB

= P pcrprearpecp + Papcpeapecpr + Xapcp€arp€cpr + Xarpcrpr€apecp,  (28)
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where
! ! !
XaBcD = RAX/BX CY’DY ’ Dapcp = RAX/BX YC/YD/' (29)
The totally symmetric part of X 4pcp

Yascp = XaBep) = X(4BcD) (30)

is called gravitational spinor or Weyl conformal spinor, and ® 4pc/pr is referred as Ricci spinor [1,4,5].
It is well known that

Qpupp = Pop = Ppy = Py, D" =0, 31)
and Einstein tensor is
Gap = Rap — %Rgab = —Agap — 2Py, (32)
where A = X, BAB , which is equal to R/4 [1]. Therefore, the Einstein field equation
Gap +Agap = 8tGTyy, (33)

where A is a cosmology constant, can be written in the form
1
D, = 4G(— Ty + ZT;,’gab), A = —2nGT] + A. (34)
Since any symmetric tensor U, can be expressed as

Uy = Upage = SaBaB + €ABEAB'T, (35)

where T = %TCC and S gparp is traceless and symmetric [1], the traceless part of the energy-momentum
(symmetric) tensor T, can be written by S, = T, — %TCC Zap- Therefore, the spinor form of Einstein
Equations (34) becomes

(I)ABA’B’ = —47TGSABA/B/, XABAB = —81GT + A. (36)

Weyl tensor prg which is another measure of the curvature of spacetime, like Riemann curvature
tensor, is defined as [6,24]

1 1
Cyvpa = R],u/pa + E(R;ufgvp - Rypgva + Rvpgya - Rvagya) + 6R<gypgav - gytfgvp)- (37)

It has the same propterties as Equations (22), (23) and (26). It is known [1] that Weyl tensor has
the following relationship with Weyl conformal spinor ¥ opcp:

Caped = Yapcpearpecp +Yarpcpeasecp- (38)

At any point P on the pseudo-Riemannian manifold, we can find a flat coordinate system,
such that,

d
g;u/(P) = Nuv, ag’;/ =0, (39)
X" p
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where g, (P) is the metric at the point P and 7, is the Minkowski metric. In this coordinate system,
while the Christoffel symbol is zero, the Riemann curvature tensor is [25,26]

1
Ryvpo = E(avapgw — 390 &up + 04908up — 010p&vr)- (40)

For future use we introduce Fermi coordinate, which is one of the locally flat coordinate whose
time axis is a tangent of a geodesic. The coordinate follows the Fermi conditions

Swlc = v, er|G =0, (41)
along the geodesic G.

4. The Tensor Representation of Curvature Spinors

In this section we show the process of representing curvature spinors in 4 x 4 matrices or 3 x 3
matrices. We discuss physical implications of those representations. From now on, we will always use
locally flat coordinate for all spacetime indices.

From Equations (4) and (28), we can lead to

Raped = P aB,cd€ AR T EABPAB cd

= @ apcpeapecp + Papcpeasecp + Xapcpeapecp + Xapcp€apecp,  (42)

where
1 o1
PaBed = 5 (Rigcas’ — Hi€ipR;; ), (43)
- 1 o1, -
Parpred = 5(Rioca¥ + 5i€ikR;j ), (44)

from Equations (18) and (19). We write here the form of eijk as €;jx for convenience; it is not so difficult
to recover the upper- and lower-indices. By decomposing ¢ 4p .4 one more times, we get

1 o1, o1, 41 _
qDABC/D’ = 1(Rio joslsj + ElepquiO pqSlSr - Eleiijij loSkSl + ZLGi]'kaqui]' pqSkSr>,
1 1, 1, 1 -
= E(Rko 10+ 5€pqiR0 pg = Si€ijkRij10 + 7 €ijk€pqiRij pq)s*s, (45)
1 o1 ; 1. 1
Xapcp = 7 (Roiojs's) — SiepgrRoi pgs's” — SieijRyj as’s' — CikeparRij pgss”)
1 1. 1. 1
= Z(ROk o = 5i€pqiRok pg = Si€ijkRijor = FE€ijkepqiRij pg)sks!. (46)

We note that ® and X are expressed with two three-dimensional basis like the form in 3 x 3 basis.
Even though there is no 0-th base, which may be related to the curvature of time, ® and X can fully
describe the spacetime structure. If ® and X are represented in Fermi coordinate, the disappearance of
0-th compomonents of the s’ basis may come from the fact that time follows proper time. However,
since here Equations (45) and (46) are expressed not only in Fermi coordinate but also in general
locally flat coordinates, whose 0-th coordinate may not be time direction, the representations like
Equations (45) and (46) may demand a new interpretation of the curvature of time, which is not just as
a component of fourth (or 0-th) axis in 4-dimensional space-time. Technically the interpretation of the
space-time structure, which was considered to be a bundle of four directions, might be reconsidered.
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We can divide Equation (45) into two terms by defining

1 1
Pij = 5€pgjRio pg = 5€pqiRjo pos (47)
1
Sij = Roioj + Zepqierszpq rss (48)
_ 1. 1. 1 .

©ij = Rio jo + 5 1€pgjRio pg — 51€pqiRpg jo + g€pgi€rsiRpgrs = Sij +1 Py, (49)

where P;; is anti-symmetric and S;; is symmetric for 7, j. Then Equation (45) is represented as

Lo i o
CDABC’D’ = Z®ijSABSC/D/' (50)
The components of P;j and S;; can be simply expressed as
1 1

—5€iPij = =5 (€ijk€pgiRio pg — €ijkepgiRjo pg) = Roiki, (51)
Sll = R0101+81H81§R@§, (52)
S;i :R0101+|51@‘Rﬂﬂ/ (53)

where the underlined symbols in subscripts are the value-fixed indices which does not sum up for
dummy indices; one of example is S11 = Ro1 01 + Ro3 23-
We can express ® 4pcp as a tensor by multiplying gVAC/, which is

AB' _ JACB'D/ Lo a_ 2 3ap _ 1 ot AB' _ 1 o AP
= = —I\0",07,—0",0 ’ (54)
8 u 8 }Wg CcD’ \/E ( ) \/* ;t \/» u
where sigma matrices with superscript ¢! and * mean the transpose and the complex conjugate of 0.
To calculate QDABC/D/gyAC gVBD/ (1/4 @,‘jSlAB§]C/D/ )gyAclngD,, let us define
kol B _ 1ok AC' x BD/
fl, Dy = ‘TAB‘TCfogy g, =5 5(0apoop)oy, o (55)

Values of f(k, 1),y are shown in Table 1.

Table 1. The lists of f(k, 1),y = aﬁBUE,D,gVAC/gVBD

0100 01 0 0 0 0 i 0
100 0 10 0 0 0001
f(oll);w— 0o 0 0 il” f(l’O)FW_ 00 0 —1 1’ f(3/1)]41/— i 00 0]
00 i 0 00 —i 0 0100
0 0 —i 0 0 0 0 1 0 001
0 0 0 1 00 —i 0 00 i 0
fA3w=|_; o o of fO3Iw=|o —; o o fGOw=|g ; ¢ ol
0 1 0 0 1 0 0 0 1000
10 0 0 100 0 1.0 00
01 0 0 010 0 0 -1.00
f(0,0) = 00 -1 ol” fU D = 001 01" fG3)w = 0O 0 1 0
00 0 1 000 -1 0 0 01

Using this table, we get 4 x 4 representation of ® 4/ as

AC' _BD'
D,y = CDABC’D’gy 8v
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(@1251§2 + @21525_1)
_ 1 +(®2352§3 + @32535_2> AC' _BD'
4 +(®31535_1 + @13515_3) gy v

L +(®1151§1 + @ps?8% + @3353§3) ABC'D!
(i®12(3,0) —i©®21f(0,3))

_ 1 +(i®23f(0,1) 1@32f (1,0) )
4 +(=031f(1,3) — O13£(3,1))
i +(O1f(3,3) +02f(0,0) +©33f(1,1)) ],
$(S11+52+S33) —Py3 —Py —Pyp
1 —Py3 $(—=S11+52+S33) —S12 —S3 (56)
2 —Py —S1 2(511—S2+533) —S32 ’
—Ppp —S31 —S32 $(S11+52—S33)

which is a real tensor and ®,,,7*" = 0, as expected.

From Equations (32), (33) and (56), we can find that P;; and S;; are also non-diagonal components
of Gyy and Tyy. By comparing Equation (34) with Equation (56), we can interpret P;;/(87G) as a
momentum and S;;/(871G) as a stress of a spacetime fluctuation. We can also observe from Equations
(47) and (48) that the component of the Riemann curvature tensor of the form Rjg ,, is linked to a
momentum, and the form Rjg jo, Rpg rs linked to a stress-energy.

Now we investigate Xspcp and ¥ o4pcp more in detail. Before representing X and ¥ in matrix
form, we can check Equation (46) to find out whether A = X , BAB = R/4 or not. From the properties
of Riemann curvature tensor, Ricci scalar is

R =Ry = 2Ry " + Ry ¥ = 2Roipog™ 8" + Rijprgs"- (57)

For Minckowski metric ¢, = 17y, R becomes

R = —2Rjpi0 + Rijij. (58)
Because
s& gskeCAePE = UkAPEPBUICQEQDECAsDB _ (ECA‘TkAD)(UICQSQD)
~Tr(st!) = (‘02 E’,ﬁ;ﬁ;) , 9)
we can finally see that
X, — XapepeCAePP
= }L(*ZROI o + %eijlepquij pg) = i( 2Ro o1 + Rijij) = i (60)
from Equation (46). We have used €, Ro; ,; = 0 by Bianchi identity.
To represent the spinors X and ¥ in simple matrix forms, we first define
1 1
Qij = 5€pqjRio pg + 5€pqiRjo pgs (61)
Eij = Rojoj — iepqierszW rss (62)

- 1 1. 1, .
8ij = Rio jo = 7€pqi€rsiRpq rs = 51€pqjRio pg = 5i€pgiRpq jo = Eij — 1 Qyj, (63)
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where Q;; and E;; both are symmetric for i,j. Then, we have

1. .
XaBcD = ZﬂijSQBS]CD, (64)

from Equation (46). This can be expressed in a 4 x 4 matrix form by multiplying the factors in a

similar way to the Equation (56), but here it is useful to multiply by (o), AC(ge), BD = s‘yACs‘VBD for

simplicity, instead of UFACUVBD , where the components of S"FAC is equal to 5* defined in Equation (15):
X —AC—BD_(}TH i )—AC—BD
ABCDS;;, Sy = 41—41]SABSCD Sy Sy
—E11 — Epp —EHzz  —iBp3 +iE3) iHq3 — iH31 —iZqp + 18y
1 —1Hp3 + &3 E11 — Hp — E33 E12 + 81 E13 + E31
= o o o - - - - - - . (65)
2 iH13 — il E12 + Eo —E11 + o — E33 o3 + E3p
—iB1 + 18y 13 + E31 o3 + E32 —E11 — Ep2 + E33

Since Ei]- is symmetric for i, j, it becomes

_ 0 E11 — Epp — 833 2y 253 (66)
0 28y —&11 + &2 — E33 2Hp3
0 283 28y —&11 — Ex» + 833
. _ 1
For Wely conformal spinor ¥ sgcp = 5(Xascp + Xacps + Xapsc),
¥ _Ac_BD_lg,,(i I s sl i sl )5ACs BD
ABCDSy Sy~ = 75=ij\SapScp + SAcSpp T SADSBC )i Sy
0 —18y3 + 1B iHq3 — 831 —i8qy + 18y
_ 10 2E; —Exn—Es 2817 + Eg1 2513 + B3 67)
310 H1p + 28 —&q1 + 28 — Esj 2853 + Eap
0 H1z + 2831 Hpz + 2H3p —Eq1 — o + 2E33
Considering the symmetricity of &, it becomes
0 0 0 0
_ 1| 0 2855 —Ey — a3 3E12 3&13 (68)
310 3&1 —E11 + 25y — E33 3Ep3
0 3513 3&H3 —Eq1 — B + 2E33

The components of Xapcp, Y apcp are expressed as symmetric tensors. As we can see on
Equation (67) and Matrix (68), E;; includes all information of ¥ spcp. Because of Wely tensor
Caved = Yapepearpecp + Y arpcpeapecp, we may conclude that all informations of Weyl tensor
are comprehended in &;;.

The form of Matrix (68) is similar to the tidal tensor T;; with a potential U = —U/r =

—Up/ /x> +y? + 2%

Uy 2x2 —y? — 22 3xy 3xz
T = = 3xy —x? 4 2y% — 22 , 3]/;;: NE (69)
3xz 3yz —x° =y +2z

where Tj; = J;; — J76;; and J;j = 62U/ 6x15x) [27,28]. The similarity may come from the link between
tidal forces and Weyl tensor. The tidal force in general relativity is described by the Riemann curvature
tensor. The Riemman curvature tensor R,j.; can be decomposed to R,y = Saped + Caped, Where Cppeg
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is a traceless part which is a Weyl tensor and S,,; is a remaining part which consists of Ricci tensor
Ry = R, and R = R} [6]. In the Schwartzchild metric, since R = Ry, = Sgpeq = 0 but Cppeq # 0,
the tidal forces are described by Weyl tensor. This shows that Cypcq, ¥ apcp and & are all related to
the tidal effects.

The components of ¥ and Z can be represented with Weyl tensors. In a flat coordinate, by using

Ryp = R;wpagva = RyOpO - Ryipi (70)

and Equation (58), the components of Weyl tensor referred to as Equation (37) can be expressed as

1 1
Copog = Cjpjg = 5Ropog + 5Rpjgj  (forp #q), (71)
B 1 1 1 1
Copop = —Cijij = 5Ropop — 5Rokok + 5 Rpiepk — 5 Riawr » (72)
1
Cpopg = Rpopg = 5 Roigi » (73)
Ciopg = Riopg - (74)

Comparing Equations (71)—(74) with Equations (61) and (62), we find that

Copog = Cjpjg = %Eg (for p # q), (75)
Copop = —Cijij = %(315@ —Eyp — Ex» — E33), (76)
Cpopg = €ipq éE ’ (77)
Ciopg = eigg% (fori #pandi#q) . (78)

Therefore, Matrix (68) can be rewritten to

- AC< BD [
\Fij = TABCDSZ‘ Sj = ZCOin — lelqujOpq =+ gG pqclopq . (79)

Since e!P1 Ciopg = Q11 + Q22 + Q33 is zero by Bianchi identity, it becomes
\Ijl‘j = ‘YABCl)giAcngD = ZCOin — iGIPququ . (80)

Equation (63) can be reformulated to

- R i
Eij = 2Coioj — ¢ 0ij — 1€ Cjopg , (81)

where R = —2E;; = —28;; = —2(Eq1 + Ep + E33). Therefore, we can finally find the relation

R

[1]

ij dij. (82)

Here we can see the equivalence and the direct correspondences among ¥ 4pcp, i and Weyl tensor.

5. Definition of Sedon and Relations among Spinors, Sedenion and Sedon

In this section, we investigate the basis of sedenion and we define a new algebra which is a similar
structure to sedenion. Sedenion is 16 dimensional noncommutative and nonassociative algebra, which
can be obtained from Cayley-Dickson construction [29,30]. The multiplication table of sedenion basis
is shown in Table 2. The elements of sedenion basis can be represented in the forme; = g ® ¢’ W= qW‘/
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with i = u + 4v, where g = (1,1,j,k), q’l‘, = (1,i,j’,k’). The multiplication rule can be written by
ejxej = qW' * qVV’ = Suuvv! q%‘ﬂ’q‘”’/, where s, is +1 or —1, which is determined by y, ¢/, v,v' [7].

Table 2. The multiplication table of sedenion. For convenience, ‘ey’s are represented as ‘eN” ; e.g., e3 — €3.

el el e2 e3 ed e5 e6 e7 e8 e9 el0 ell el2 el3 el4 el5
e0 e0 el e2 e3 ed e5 eb e7 e8 e9 el0 ell el2 el3 eld el5
el el —e0 e3 —e2 e5 —ed —e7 e6 e9 —e8  —ell el0 —el3 el2 el5 —el4
e2 e2 —e3 —e0 el eb e7 —e4 —e5  ell ell —e8 —e9 —eld —el5 el2 el3
e3 e3 e2 —el —e0 e7 —eb e5 —e4 ell —el0 e9 —e8 —el5 eld —el3 el2
ed e4 —eb —eb —e7 —e0 el e2 e3 el2 el3 el4 el5 —e8 —e9 —el0 —ell
e5 e5 ed —e7 eb —el —e0 —e3 e2 el3 —el2 el5 —el4 e9 —e8 ell —el0
e6 e6 e7 e4 —eb —e2 e3 —e0 —el eld —el5 —el2 el3 el0 —ell —e8 e9
e7 e7 —eb e5 ed —e3 —e2 el —e0 el5 eld —el3  —el2  ell el0 —e9 —e8
e8 e8 —e9 —el0 —ell —el2 —el3 —eld —el5 —e0 el e2 e3 ed e5 e6 e7
e9 e9 e8 —ell el0 —el3 el2 el5 —el4 —el —e0 —e3 e2 —eb e4 e7 —eb
eld | el0 ell e8 —e9 —eld —el5 el2 el3 —e2 e3 —e0 —el —eb —e7 ed e5
ell | ell —el0 e9 e8 —el5 el4 —el3 el2 —e3 —e2 el —e0 —e7 e6 —eb e4
el2 | el2 el3 eld el5 e8 —e9 —el0 —ell —e4 e5 e6 e7 —e0 —el —e2 —e3
el3 | el3 —el2 el5 —el4 e9 e8 ell —el0 —eb —e4 e7 —eb el —e0 e3 —e2
eld | el4d —el5 —el2 el3 el0 —ell e8 e9 —e6 —e7 —ed e5 e2 —e3 —e0 el
el5 | el5 el4 —el3 —el2  ell el0 —e9 e8 —e7 eb —eb —e4 e3 e2 —el —e0

Table 3 shows the multiplication table of an algebra which is similar to sedenion. It consists of
16 bases ¢; = g ® ¢'*' with i = y + 4v and the multiplication rule ¢; ej=(g"® 7Y * (g2 q") =
(g"q" © g'"' g'""). The table is almost the same as the multiplication table of sedenion basis, but just
differs in signs. The signs of red colored elements in Table 3 differ from Table 2. We will call this
algebra as ‘sedon’.

Sedon can be written in the form

L L — ) . y
S=A0+|B}+{C|+{D}:A0+Biq%+ciqlL+Dijul], (83)

where g = 1®4¢', ¢} =g ®1,u = ¢ @4/, |B} = Bigk, {C| = Ciq}, and {ﬁ} = Djju’l. We can
name |B} as ‘right svector’, {C| as ‘left svector’, and {%)} as ‘stensor’. The coefficient of sedon can be
represented as in Table 4. For example, D3 is a coefficient of i ® k term.

Now we will see the relation between Ricci spinors and the sedon. Since

4 . , .
oy Cecp = S4B EA/C/(TCB/ = —54p, (84)
therefore
: : sl 1Al _;
oy B = —sl B, oG =eC N (85)

Equation (50) can be reformulated as
) 'c! 1 A 1 ; ip!
@, = "0 pope = Z®ijsp CshapSope’ = _Z®if‘TZA N (86)

Since g' = (i,j, k) is isomorphic to —ic’ = (—cli, —0?i, —¢>i), we can set ' = —ic’. Equation (86)
can be written as

or _Llg i QP
CDA D = ZG)iquA q D' (87)
which can be regarded as a sedon. In a similar way, X 4pcp can be written as
1_
XL P = 12K 74 q'cP. (88)
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From Equation (87), a Ricci spinor can be interpreted as a combination of a right-handed and a
left-handed rotational operations, since the basis has the form ‘left-handed quaternion ® right- handed
quaternion’. Following the rotational interpretation of Cayley—Dickson algebra [7], it can be interpreted
as the twofold rotation ® twofold rotation.

For two quaternions A = Aiqi = mi+ amj+ask and B = quf = bii + byj + b3k, which
can be represented in the 2 x 2 matrix representation with spinor indices (4;4'-” and B]-q] CD),
the multiplication of them can be written as

AB = A’ Bigly = —ABoc +eijABig'cE. (89)
We can use this to express multiplications of spinors. One of the example is
/ / i iC’ /
q)ABCD’CDB EDF/ — QijquBq] o QrsquEqs DF/
o ,
= (—91j91s5AE + epquepjeqsquAE)q] o
= 0Bk 0470 — mnobimbin 4°F04"

—€pqupiOg1 44505 + EmnoepguOpmOyn 4°457° G, (90)

where 0;; = %®ij- The result is also a sedon form. Above example shows not only multiplications of

) ABC,D, but also the general multiplication of stensor. Here is an another example: An antisymmetric
differential operator V|,V can be divided into two parts

Ay = ZV[ﬂVb] = eop0ap +€a0arp, 91)

! . .
where (45 = %AAA,BA and O yp = %AAAf‘ p- As we can see in Equations (9) and (11), each term can
be considered as a quaternion.

1 oap 1, 1
04" = 80 00" = 2 (ibro + 3¢ i) 41 (92)
ey 1. 1, 1 i Al

Then, 0,5 B C%/ can be considered as a multiplication of a quaternion and a sedon.

Bg CD' — b, gk Bg.. i C D
O47@p" =0k g4 04’5 9 g
— c, 0 pCiP
= —0p Opj0a T ek 004 T 1
, o1 D’
= —ZAPOHP] (SACq] £ EerspArsglg]’ (SACq] E
, cjp 1 c jD’
+iekphioliy 04 0+ 5 €1qkB1g€riptij .7 (94)
where by = iAyg + 2€;ikAii. €15kA1€kip0i7 In the last term can be changed as Agp0,: — ApgB,i = 20,6,
k k0 T 2€ijkBij- ClgkBlqCkipYij g qr~qj pa~qj qar=qj
The result in Equation (94) is in a sedon form. Using those expressions, we can represent the quantities
with spinor indices as sedon forms whose elements are components of tensors.
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Table 3. The multiplication table of sedon.

el el e2 e3 ed e5 e6 e7 e8 e9 el0 ell el2 el3 eld el5
el el el e2 e3 e4 e5 e6 e7 e8 e9 el0 ell el2 el3 el4 el5
el el —e0 e3 —e2 e5 —ed e7 —eb e9 —e8 ell —el0 el3 —el2 el5 —el4
e2 e2 —e3 —e0 el e6 —e7 —ed e5 el —ell —e8 e9 el4 —el5 —el2 el3
e3 e3 e2 —el —e0 e7 e6 —eb —ed ell el0 —e9 —e8 el5 eld —el3  —el2
ed e4 e5 eb e7 —e0 —el —e2 —e3 el2 el3 el4 el5 —e8 —e9 —el0 —ell
e5 eb —ed e7 —eb —el el —e3 e2 el3 —el2 el5 —el4d —e9 e8 —ell el0
e6 e6 —e7 —ed e5 —e2 e3 el —el eld —el5 —el2 el3 —el0 ell e8 —e9
e7 e7 e6 —eb —ed —e3 —e2 el el el5 el4 —el3 —el2 —ell —el0 e9 e8
e8 e8 e9 el0 ell —el2 —el3 —el4d —el5 —e0 —el —e2 —e3 e4 e5 e6 e7
e9 e9 —e8 ell —el0 —el3 el2 —el5 el4 —el el —e3 e2 e5 —ed e7 —eb
eld | el0 —ell —e8 e9 —el4 el5 el2 —el3 —e2 e3 el —el e6 —e7 —ed e5
ell | ell el0 —e9 —e8 —el5 —el4 el3 el2 —e3 —e2 el el e7 e6 —eb —ed
el2 | el2 el3 el4 el5 e8 e9 el0 ell —e4 —eb —eb —e7 —e0 —el —e2 —e3
el3 | el3 —el2 el5 —el4 e9 —e8 ell —el0 —eb e4 —e7 e6 —el el —e3 e2
eld | el4d —el5 —el2 el3 el0 —ell —e8 e9 —eb e7 e4 —eb —e2 e3 el —el
el5 | el5 el4 —el3 —el2 ell el0 —e9 —e8 —e7 —eb e5 e4 —e3 —e2 el el

Table 4. The representation of coefficients of sedon.

~®1 ~®i ~® ~Qk
1 ® ~ AO Bl Bl B1
i®~ (@] Dy D1 D3
j®~ G Dy Dy D3
k® ~ Cs D31 D3 D33

6. A Few Examples of Curvature Spinors in a Locally Flat Coordinate

6.1. Weyl Conformal Spinor for the Schwarzschild Metric: An Example of Section IV

It is known that the Schwarzschild metric can be represented in Fermi normal coordinate [31].
In Schwarzschild coordinate x* = (T,R,©, D), the metric is displayed in the form

ds? = gpdy" dy” = — fdT? + f1dR? + R2d@? + R%sin’@ d®?, (95)
where f =1 —2GM/R. The basis of a constructed Fermi coordinate x* = (t,x,y,z) is
e =9/0dt|g =T 9/0T + R /3R,
e =0/dx|g=f'R'9/dT + fT' 9/0R,
e =09/dy|c =1/R9/00,
e3 =0/9z|g = 1/R sin® 9/9®, (96)

where the primes indicate derivatives with respect to proper time ¢. The non-zero components of the
Riemann curvature tensor Ry, in Schwarzschild coordinate are

ISTGL
Rz
Ry
Raorry
Rorzrorsy

R1/3/1/3/

2GM/R?,

= —(fGM/R)sin’®,
=GM/(fR),

= —fGM/R,
—2GMRsin’@,
(GM/Rf)sin’®.

97)

Then the Riemman curvature tenor Ry,¢ in the Fermi coordinate is

Rip10
Ra020

= 2GM/R3,
= R3p30 = ~GM/R?,
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Ri212 = Ry313 = GM/R?,
Ryys = —2GM/R3. (98)

From Equations (47), (48), (61) and (62), we can observe that P;; = S;; = Q;; = 0, but Eyy =
4GM/R3 and Eyy = Ez3 = —2GM/R3. Classically, the tidal acceleration of black hole along the radial
line is —2GM /135X, and the acceleration perpendicular to the radial line is GM /36X, where 6X is the
separation distance of two test particles. In this example, the link between E;; and tidal accelerations
has been shown.

6.2. The Spinor Form of the Einstein—-Maxwell Equation: An Example of Section V

Einstein-Maxwell Equations, which is Einstein Equations in presence of electromagnetic fields, is
known [32] as

1 1
Ry — ngR = 8nG(FuoF) — gWZLFPUFW)' (99)

where FoF] — gVV%FWFP‘T is the electromagnetic stress-energy tensor. The spinor form of the
Einstein-Maxwell equation [1] is

CDABA’B’ :SﬂGq)ABq_)A/B/, (].OO)

where @ 4B, ¢ 4/p are decomposed spinors of electromagnetic tensor Fy,, as following Equations (18)
and (19). This can be deformed to

B4, =8nGe L ply. (101)

From Equation (86),

1 '
_ZG)HO'A BU'IAB/
— 87TG[7(Fk0 — Elel]kFij)‘Tl;x ] x [E(FIO + zzequpq)Ul AB/]
1 1 /
= 27G|(FioFio + <€ " FiFpg) + E(Fkoe ' Fpg — Fioe™ Fij)]o%y B4, . (102)

Comparing the first line with the third line in Equation (102), we get
1 .
S = —8nG(FygFyo + 1e”ke F;iFyq), (103)
Py = —4nG(Fe"Fpg — Foe’ kFl-]-), (104)
and, from Equation (104) we get

e"™ip, = —16mGEF"™ . (105)

For F*¥ such that
Ef 0 —-Bs B

E, B; 0 -B |’
Es -B, B O

F (106)
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we have FoF" = (E x B)" and (FoFy + %ei]ke FijFpg) = ExE; + BiB;. From Equations (51) and
(104) we get
1 ; .
—Eemklpk, = Ry;™ =8nG(E x B)F. (107)
This is a momentum of electromagnetic tensor and it shows that P;j/(87G) is related to
momentum. From Equations (49) and (103),

1
Su = Roioj + gepgiersiRpqrs = 87 G(—ExE; — BxBy), (108)
S, =8nG(|E*+|B?). (109)

Those are the shear stress and the energy of electromagnetic field. It shows that S;;/(87G) is
related to stress-energy.

6.3. The Quaternion form of Differential Bianchi Identity: Another Example of Section V

The spinor form of Bianchi identity referred to as Equation (27) is known [1] as
Vi Xascp = Vi Pepap,s (110)
which can be deformed to
VHAX EP =P e D 111)
In flat coordinate, VA4 equals to

! ! I ! I ~ Al
A'A uAA uA'A fA"A
d =g ay— (% 8,4*— 8,;

— 1%
V2 V2
1 I A% l
= —_ghAAY — HAAa’, 112
where fi is tilde-spacetime indices which is defined as Of = (0°i0!,i0?i03), Op =

Oop, —i 01, —i0,,—i03) for any OF = (0° 0,02, 03), o[ = (0p,01,05,03) [7]; g+ is gt =
y ! q g

oPA'A — (0%,i0!,ig?,ic®) which is isomorphic to (1, —i, — a,l = 0 = (g, —id1, —idy, —id3),

and a; = (9o, 101,102, 193). We used the property A, B = A;,Bf‘ [7)] 94’4 can be expanded to
A = 9psN A 4 9l g A (113)
and, considering matrix representation, 944" can be represented as
9AA! — 99544 3, qlz AN _ 5 AN | 9, g An (114)

where the bar index A¥ means the opposite-handed quantity of A¥, which is Al = AL A2 = _A2 A3 =
A3 ; when k = 2, k index change sings of A*. It has following properties,

AFBy = A¥B,  AFBy = A'By, ey ATB = —e50r ATB',  £pgr = —pgr- (115)
Then Equation (111) can be written as

(6053/’4 + allch B’A) EquzAquCD (8053A allzqk BA/) @rsquDquE (116)
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. = nl 75 / . .
since ¢°,F = D¢ 41¢° . Using Equation (89),

—. iB'B /= sB'B /= B'B
doZirq’ + 0B 6” 7 + Spkiakdirqp

= 900rs° BB+ 8}0,40% + £,450,0,50" PP, 117)

which can be rearranged as
Ne(Err — )88 + (90 (Esr — Ops) + e (Eir +Oy)]g° BB = 0. (118)
This is the quaternion form of Bianchi identities. Using ®;; = ©j; and denoting E;; as &,

Equation (118) can be written as
iV (E—0),—ic- (E—0),+0- (VXE+Vx0),=0, (119)
where ¢ are Pauli matrices.

6.4. Spatial-Handedness of Graviton and Spin of Matters in Gravitational Phenomena
Considering g%, 8,

kA _EACiO.kC D

9 B= epp = —i(01, —02, Ua)AB, (120)

which can be understood as a spatially left-handed quaternion basis qlE A, interchanging of up-down
positions for spinor indices of quaternion basis indicates the interchanging of spatial-handedness of
spatial index. As examples, Equations (87) and (88) can also be written as

Ac _ 1o ia jC
1 .
A C - _ kA jC
X8 D= 50 q 37 D - (122)

In modified gravity or quantum gravity [33,34], the action could include higher order terms like
R%, R,pR™, R peaR%d. Therefore, we can also include terms like X2, &2, ®X®... into the action of
gravity. In such a case, following the representation like Equations (87) and (88) to couple those spinors
together, the changes of spartial-handedness could occur, which means that spartial-right-handed
particles couple to the spartial-left-handed and vice versa. For an example,

1. i Dy, 1. = 7
X2 =X2Px4% = (Z‘—‘ij q4%q ¢ )(Z'—'qukABqlCD) (123)

= B8 (124)

This can affect the drawing of Feynman diagrams of graviton. When matters couple with spinors,
it can be thought that spins of matter fields contribute to make a gravitational effects on matter, since
q' ,Byp? gives the spin of .

7. Conclusions

We established a new method to express curvature spinors, which allows us to grasp components
of the spinors easily in a locally inertial frame. During such a process, we technically utilized modified
sigma matrices as a basis, which are sigma matrices multiplied by ¢, and calculated the product of sigma
matrices with mixed spinor indices. Using those modified sigma matrices as a basis can be regarded as
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the rotation of the basis of four sigma matrices ((TO, ol o?, 0“3) to (so, st s2,s3 ) defined in Equation (14),
similar to a rotation of quaternion basis as shown in our previous work [7]. By comparing the Ricci
spinor with the spinor form of Einstein equation, we could appreciate the roles of each component of the
Riemann curvature tensor. The newly defined (3,3) tensors related to curvature tensors were introduced,
and furthermore, from the representation of Weyl conformal spinor, we find that the components
of Weyl tensor can be replaced by complex quantities &;;, which are defined in Equation (63). We
represented the elements of sedenion basis as the direct product of elements of the quaternion bases
themselves. Then we defined a new algebra ‘sedon’, which has the same basis representation except
for a slightly modified multiplication rule from the multiplication rule of sedenion. The relations
between sedon and the curvature spinors are derived for a general gravitational field, not just for
a weak gravitational field. We calculated multiplications of spinors with a quaternion form, and
observed that the results of the multiplications are also represented in a sedon form. The relations
among quaternion, sedon and curvature spinors may imply that gravity could be the consequence of
combination of right-handed and left-handed abstract rotational operations.

A few applications of the sedon representations were also introduced. One of the applications
represented the Bianchi identity in the quaternion form, which might give the fluidic interpretation
of the identity. We also suggested further possible application in modified gravity and quantum
gravity. This may suggest that the spin-handedness, spatial-handedness, and spins of matter field
would affect gravitational phenomena. The handedness structure of gravitational force has not yet
been considered seriously. The sedon representation can be primarily a tool in which the handedness
in gravity could be considered in detail. Finally we note that the research of this paper can be extended
to general coordinates by considering vielbein formalism [35] and/or by establishing a connection to
either self-dual or anti-self-dual variables [36,37].
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