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Abstract: We have considered the Iwasawa and Gauss decompositions for the Lie group SL(2,R).
According to these decompositions, the Casimir operators of the group and the Hamiltonians with
position-dependent mass were expressed. Then, the unbound state solutions of the Schrödinger
equations with position-dependent mass were given.
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1. Introduction

Since Lie groups have both group and manifold structures, they are widely used in various
branches of mathematics and physics. In particular, the group theory technique was used to solve
the time independent Schrödinger equation for some potentials [1–8]. In recent years, interest in the
Schrödinger equation with position-dependent mass has gradually increased, and various studies
have been carried out [9–16]. In fact, the concept of position-dependent mass comes from the effective
mass approach of many body problems in condensed matter physics. The equation has a wide
range of applications in the several physical systems such as electronic properties of semiconductors,
quantum dots, metal clusters and so on [17–19]. Moreover, the equation is more complicated than
the equation with constant coefficient. The different methods were used in these studies, such as the
point canonical transformation [15], Nikiforov–Uvarov method [16], Green’s functions [20], super
symmetric approach [21], group theory technique [22,23]. In group theory technique, Hamiltonian
of the physical system is related to the Casimir operator of the group by [C− q] = Q[H − E], where C
is Casimir operator, H is Hamiltonian operator, Q is an arbitrary function and q, E are eigenvalues
of the Casimir and Hamiltonian operators, respectively [24,25]. The various types of Hamiltonians
with position-dependent mass are proposed in [9,13]. In this paper, we shall work with BenDaniel and
Duke form [26] of the Hamiltonian, i.e.,

H = −
1

m(x)
d2

d2x
+

.
m
m2

d
dx

+Vx,
.

m =
dm
dx

, m(x) = m0M(x) , (2m0 = } = 1), (1)

where M(x) and m0 denote position-dependent and constant mass, respectively [27]. Levi-Leblond
showed that the Hamiltonian in the form (1) is invariant under the Galilean transformations [12].

In Reference [22], a generalized procedure has been proposed to obtain exactly solvable
Hamiltonian with position-dependent mass related to the Casimir operator of the Lie group. Here, the
Casimir operator of the group SL(2,R) is associated with the Hamiltonian of the physical system as
[C + j( j + 1)] = Q[H − E], where − j( j + 1) is eigenvalue of the Casimir operator [24,25,28].

Let F be a Lie algebra and Ji a set of its elements (i = 1, . . . , r). If an operator commutes with
all elements of the algebra, i.e., [C , Ji] = 0, then it is called Casimir operator [2]. The problem of
construction of the Casimir operators has been studied by many scientists [2,29–32]. The number of
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independent Casimir operators is equal to the rank of the algebra. The Casimir operator is represented
by the infinitesimal operators of representation of the group. The right regular representation of the
group can be expressed as follows [22]

T(g0( f (g) = (h(gg0)/h(g))1/2 f (gg0), g, g0 ∈ G , h(g) > 0 (2)

The T representation is unitary according to the inner product

( f , f ′) =
∫

f ∗(g) f ′(g)dµ (3)

where dµ = h(g) dg is an invariant measure on group. In the case of h(g) = 1, the T representation
above can be written as follows T̃(g0) f̃ (g) = f̃ (gg0). Obviously, the T̃ representation is equivalent to T
representation. The W transform that provides this equivalence is given by

W : f → f̃ = h1/2 f (4)

Now, we can find the infinitesimal operators of the representation and the Casimir operator.
The infinitesimal operators Jk corresponding to one parameter subgroups ωk of the regular

representation of the group is given by Jk = −i d
dτT(ωk(τ))

∣∣∣
τ=0 , k = 1, 2, 3. In addition, these operators

satisfy commutation relations [22,33]. From these infinitesimal operators the Casimir operator of the
group SL(2,R) is given by C = J2

1 + J2
2 − J2

3.
For convenience in the calculations, it is important to decompose an element of the group according

to its one parameter subgroups. There exist various well-known decompositions for groups like
Cartan, Iwasawa, Gauss and Bruhat and so on [1]. Some different decompositions of the group SL(2,R)
have been studied in reference [34]. The most useful of these decompositions seems to be due to the
factorization of the group elements in the form of g = bad, where each factor is a parameter subgroup
of the group. Let us suppose that only the middle element a depends on position coordinate of
particle [22]. Then, the Casimir operator is restricted to a one dimensional subspace of functions of the
form f (g) = h(g)−1/2t j

rs(g), where h(g) a positive function and the matrix elements t j
rs(g) are solutions

of the eigenvalue equation for the Casimir operator. Thus, the Casimir operator becomes a differential
operator connected with only on the position coordinate. Finally, if h(g) is selected appropriately, the
Hamiltonian operator with position-dependent mass can be found from the [C + j( j + 1)] = Q[H − E].

The Schrödinger equation with position-dependent mass is given by

Hψ(x) =
[
−

1
m(x)

d2

d2x
+

.
m
m2

d
dx

+ V(x)
]
ψ(x) = Eψ(x). (5)

The equation is a second order linear differential equation. In the equation, the H operator is the
total energy of the physical system and is also called the Hamiltonian. The solutions of the equation
are given as bound state (E < 0) and unbound state (E > 0) [35,36]. Additional energy is required to
change from bound state to unbound state. Here we are only interested in the unbound state solutions
of the equation. For example, a bound state solution is given for a physical system expressed by
Hamiltonian with position-dependent mass in reference [37].

In the next section, the information about the group SL(2,R) was given. According to the selected
decompositions of the group, the Hamiltonians with position-dependent mass related to the Casimir
operator and unbound state solutions were given.

2. The Group SL(2,R)

The special linear group SL(2,R) is group of the real 2 × 2 matrices with unit determinant

SL(2, R) =
{
g ∈ GL(n, R) : det(g) = αδ− βγ = 1, α, β,γ, δεR

}
. (6)



Universe 2020, 6, 38 3 of 9

Its Lie algebra consists of traceless real 2 × 2 matrices;

sl(2, R) =
{
g ∈ gl(n, R) : tr(g) = 0

}
. (7)

The one parameter subgroups of the group SL (2, R) are parameterized as follows

ω1 =

{(
e−t/2 0

0 et/2

)
∈ SO(1, 1); t ∈ R

}
,ω2 =

{(
cos(t/2) − sin(t/2)
sin(t/2) cos(t/2)

)
∈ SO(2); t ∈ [0, 2π]

}
, (8)

ω3 =

{(
1 t
0 1

)
∈ E(1); t ∈ R

}
, ω4 =

{(
1 0
t 1

)
∈ E(1); t ∈ R

}
. (9)

Firstly, we are considering the Iwasawa decomposition. For an element g of the group SL(2,R), the
Iwasawa decomposition can be given as follows [22]

g(ϕ, t, u) =
(

cos(ϕ/2) sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2)

)(
e−t/2 0

0 et/2

) (
1 u
0 1

)
(10)

where the ranges of the parameters are 0 ≤ ϕ < 2π, −∞ < t, u < ∞ , t = t(x). According to this
decomposition, the infinitesimal operators can be found as follows

iJ1 = −
1
.
t

∂
∂x

+ u
∂
∂u
−

.
h

2h
.
t

, iJ2 =
u
.
t

∂
∂x
− e−t ∂

∂ϕ
+

(
1− u2 + e−2t

) ∂
∂u

+

.
hu

2h
.
t
, (11)

iJ3 =
u
.
t

∂
∂x
− e−t ∂

∂φ
− (1 + u2

− e−2t)
∂
∂u

+

.
hu

2h
.
t
. (12)

From the above infinitesimal operators, the Casimir operator of the group is found as follows

C = −
1
.
t
2
∂2

∂x2 −
1
.
t
2

 .
h
h
−

..
t
.
t
+

.
t

 ∂∂x
+ 2e−t ∂2

∂ϕ∂u
− e−2t ∂

2

∂u2 +

.
h

2h
.
t
2

 .
h

2h
−

..
h

2
.
h
+

..
t
.
t
−

.
t

. (13)

We can choose the one-dimensional subspace Jnλ as subspace of L2(SL(2, R)) consisting
of functions

f (g) = h−1/2t j
nλ(g) = e−inϕ−iλuψ(x) (14)

where n and λ take values integer. The eigenvalue equation can be given as cf (g)=−j(j+1)f (g). Then
the Casimir operator restricted to subspace Jnλ becomes a differential operator in x alone and is
represented by C|Jnλ

[C + j( j + 1)]
∣∣∣
=nλ

= m
.
t
2

{
−

1
m

d2

dx2 −
1
m

( .
h
h −

..
t.
t
+

.
t
)

d
dx +

.
t
2

m

(
−2nλe−t + λ2e−2t

)
+

.
h

2mh

( .
h

2h −
..
h.
h
+

..
t.
t
−

.
t
)
+

.
t
2

m j( j + 1)
}

. (15)

In order to obtain the Hamiltonian (1) form, the following equation must be provided

−

.
h
h
+

..
t
.
t
−

.
t =

.
m
m

(16)

If this equation is solved, we find h =
.
te−t/m. Hence, we can write the operator [C + j( j + 1)]

∣∣∣
Jnλ

as follows

[C + j( j + 1)]
∣∣∣
=nλ

= mz2
.
z2

{
−

1
m

d2

dx2 +
.

m
m2

d
dx +

.
z2

4mz2

[
4λ2z2

− 8nλz + 4
(
j + 1

2

)2
− 1

]
−

...z
2m

.
z
+ 3

4m

..
z2

.
z2 +

..
m

2m2 −
3
4

.
m2

m3

}
(17)
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where z = e−t. The relations between the n, λ and j parameters and energy eigenvalue can be selected
as follows [38,39]

− 8nλ = a− c1E, 4λ2 = f − h1E, 1− 4( j + 1/2)2 = c0E− h0 (18)

where a, f , c0 , c1, h0 , h1 are six real parameters.The parameters n and λ are irreducible representations
of the SO(2) and E(1) groups. It corresponds to physical rotation and translation.

The parameter j is eigenvalue. At the same time, quantum numbers correspond to the eigenvalues
of the group’s generators. Thus, parameters n and j are quantum numbers.

In this case the operator (17) is as follows

[C + j( j + 1)]
∣∣∣
=nλ

= mz2
.
z2

{
−

1
m

d2

dx2 +
.

m
m2

d
dx −

.
z2

4mz2 R(z)E +
.
z2

4mz2

(
f z2 + az + h0

)
−

...z
2m

.
z
+ 3

4m

..
z2

.
z2 +

..
m

2m2 −
3
4

.
m2

m3

}
(19)

Thus, the Hamiltonian from the equality [C + j( j + 1)] = Q[H − E] is obtained as

H = − 1
m

d2

dx2 +
.

m
m2

d
dx + V(x) = − 1

m
d2

dx2 +
.

m
m2

d
dx +

f z2+az+h0+1
R + z2

R2

[
−

5(c2
1−4h1c0)

4R − h1 +
c1
z

]
+

..
m

4m2 −
7

16

.
m2

m3 (20)

where Q = mz2
.
z2 ,

.
z2R(z)
4mz2 = 1, R(z) = h1z2 + c1z + c0.

The potential term V(x) in the Hamiltonian is the potential type of Natanzon. The
Natanzon potentials are most commonly given as follows (a, f , c0 , c1, h0 , h1) depending on the
six parameters [40].

The unitary irreducible representation matrix elements t j
nλ(g) of the group SL(2,R) is given as

follows [33]

t j
nλ(g) =

2 j+1e−nπi
|λ|− j−1

πΓ(− j + n)
e−inϕ−iλu W−n, j+1/2

(
2|λ|e−t

)
(21)

In this case the unbound state solution from the expressed (14) can be written as

ψ(t) =
2 j+1e−nπi

|λ|− j−1

πΓ(− j + n)
m1/4 et/2 W−n, j+1/2

(
2|λ|e−t

)
(22)

where W−n, j+1/2

(
2|λ|e−t

)
is the Whittaker function.

The reflection and transmission coefficients are important in unbound state solutions. These
coefficients can be found by examining the asymptotic behavior of the wave function of the
physical system.

Potentials known for the specific values of the parameters from the general expression of the
potential can be obtained. For example, we can select the special values of the parameters as c1 = c0 = 0.

Substituting these parameters into the equation in (18) and
.
z2R(z)
4mz2 = 1, we get

z = 2s(x)/
√

h1, s(x) =
∫ √

m(x)dx,−8nλ = a, 4λ2 = f − h1E, 1− 4( j + 1/2)2 = −h0 (23)

Hence, from the potential expression V(x) we obtain Kratzer type potential [41]

V(x) =
j( j + 1)

s(x)2 −
4nλ/

√
h1

s(x)
+

f
h1

+

..
m

4m2 −
7

.
m2

16m3 (24)

The expression of the potential according to the position-dependent mass on the selected can
be rewritten.
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Secondly, we consider the Gauss decomposition [22]. For an element g of the group SL(2,R), the
Gauss decomposition can be given as follows

g(v, t, u) =
(

1 0
v 1

)(
e−t/2 0

0 et/2

) (
1 u
0 1

)
, (25)

where the ranges of the parameters are 0 < t < ∞, −∞ < v, u < ∞. The infinitesimal operators respect
to this parameterization can be found as

iJ1 =
1
.
t

∂
∂x
− u

∂
∂u

+

.
h

2h
.
t
, iJ2 =

2u
.
t

∂
∂x

+ e−t ∂
∂v
− u2 ∂

∂u
+

.
hu

h
.
t

, iJ3 =
∂
∂u

(26)

Then, the Casimir operator of the group is found as

C = −
1
.
t
2
∂2

∂x2 −
1
.
t
2

 .
h
h
−

..
t
.
t
+

.
t

 ∂∂x
− e−t ∂2

∂u∂v
+

.
h

2h
.
t
2

 .
h

2h
−

..
h
.
h
+

..
t
.
t
−

.
t

. (27)

Let Jµλ be a subspace of L2(SL(2, R)) consisting of functions f (g) such that

f (g) = h−1/2t j
µλ
(g) = e−iµν−iλuψ(x) (28)

where µ and λ take values integer. Then the Casimir operator restricted to the subspace Jµλ becomes a
differential operator in x alone

[C + j( j + 1)]
∣∣∣
=µλ

= m
.
t
2

{
−

1
m

d2

dx2 −
1
m

( .
h
h −

..
t.
t
+

.
t
)

d
dx +

.
t
2

mµλe−t +
.
h

2mh

( .
h

2h −
..
h.
h
+

..
t.
t
−

.
t
)
+

.
t
2

m j( j + 1)
}

. (29)

We want to obtain the Hamiltonian in the form (1). For this the following equality must be achieved

−

.
h
h
+

..
t
.
t
−

.
t =

.
m
m

(30)

From the above equation, h has the form h =
.
te−t/m. In this case, the operator [C + j( j + 1)]

∣∣∣
Jµλ

is written with respect to z = e−t as

[C + j( j + 1)]
∣∣∣
=µλ

= mz2
.
z2

{
−

1
m

d2

dx2 +
.

m
m2

d
dx +

.
z2

mz2 [µλz + j( j + 1)] −
...z

2m
.
z
+ 3

..
z2

4m
.
z2 +

..
m

2m2 −
3

.
m2

4m3

}
. (31)

The relations between the λ,µ and j parameters and energy eigenvalue can be selected as follows

λµ = −aE + f , j( j + 1) = c0E + c1 (32)

Then we have

[C + j( j + 1)]
∣∣∣
=µλ

= mz2
.
z2

{
−

1
m

d2

dx2 +
.

m
m2

d
dx+

( f z+c1)
.
z2

mz2 −
...z

2m
.
z
+ 3

4m

..
z2

.
z2 +

..
m

2m2 −
3
4

.
m2

m3 −

.
z2

(az−c0)

mz2 E
}
. (33)

Hence, the Hamiltonian has the form

H = − 1
m

d2

dx2 +
.

m
m2

d
dx + V(x) = − 1

m
d2

dx2 +
.

m
m2

d
dx +

f z+c1−3/4
R −

3a2

16mR2 +
3

.
ma2

16m2R +
..
m

4m2 −
15
16

.
m2

m3 (34)

where Q = mz2/
.
z2,

.
z2R(z)

mz2 = 1, R(z) = az− c0.
The unbound state solution the from the expressed (28) can be written as

ψ(t) = N1 m1/4 et/2 K2 j+1
(
2
√
λµe−t/2

)
, j = −1/2 + iρ, ρ ≥ 0, λµ > 0 (35)
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where N1 is the normalization constant and K2 j+1
(
2
√
λµe−t/2

)
is the Macdonald’s function.

For special value of the parameters in the statement potential V(x), potential functions can be
written clearly. For example, we choose c1 = 3/4, a = 0, c0 = −1. Based on these parameters, from

the (32) equalities and the
.
z2R(z)

mz2 = 1 equation, we get z = es(x), s(x) =
∫ √

m(x)dx, λµ = f , E =

−( j + 1/2)2 + 1 .
Thus, we obtain the Toda type potential [42,43]

V(x) = λµ es(x) +

..
m

4m2 −
15

.
m2

16m3 (36)

3. Results

For Cartan and Gauss separations of SL(2,R) group, Casimir operators and Hamiltonians associated
with these Casimir operators and were found respectively as follows,

C = −
1
.
t
2
∂2

∂x2 −
1
.
t
2

 .
h
h
−

..
t
.
t
+

.
t

 ∂∂x
+ 2e−t ∂2

∂ϕ∂u
− e−2t ∂

2

∂u2 +

.
h

2h
.
t
2

 .
h

2h
−

..
h

2
.
h
+

..
t
.
t
−

.
t

, (37)

C = −
1
.
t
2
∂2

∂x2 −
1
.
t
2

 .
h
h
−

..
t
.
t
+

.
t

 ∂∂x
− e−t ∂2

∂u∂v
+

.
h

2h
.
t
2

 .
h

2h
−

..
h
.
h
+

..
t
.
t
−

.
t

 , (38)

H = −
1
m

d2

dx2 +

.
m
m2

d
dx

+
f z2 + az + h0 + 1

R
+

z2

R2

−5(c2
1 − 4h1c0)

4R
− h1 +

c1

z

 +

..
m

4m2 −
7

16

.
m2

m3 , (39)

H = −
1
m

d2

dx2 +

.
m
m2

d
dx

+
f z + c1 − 3/4

R
−

3a2

16mR2 +
3

.
ma2

16m2R
+

..
m

4m2 −
15
16

.
m2

m3 . (40)

The unbound state solutions from the eigenvalue equation created by the Casimir operator were
found respectively as follows

ψ(t) =
2 j+1e−nπi

|λ|− j−1

πΓ(− j + n)
m1/4 et/2 W−n, j+1/2

(
2|λ|e−t

)
(41)

ψ(t) = N1 m1/4 et/2 K2 j+1
(
2
√
λµe−t/2

)
(42)

In this study, we obtained the Casimir operators of the SL(2,R) group and Hamiltonians operators
with position mass from the equality [C + j( j + 1)] = Q[H − E]. As it is known, equations created by
these operators (Eigenvalue problem) are frequently seen in physical problems. The solution of the
Schrödinger equation is often sought for a given potential. But, in the group theory approach, an
algebraic solution of the Schrödinger equation is obtained from the symmetry property of the physical
system. A more general expression of the potential function is obtained. Important potential types
(Pöschl–Teller, Rosen–Morse, Morse), energy eigenvalues and wave functions can be obtained for the
special values of the parameters in the potential expression [15,44,45]. As an example, we gave the
potential functions Toda and Kratzer with position-dependent mass, which play important role in
quantum mechanics [43,46,47]. Depending on the potential discussed, the physical system may have
bound and unbound state solutions. The solutions (matrix elements) are solutions of the eigenvalue
equation created by the Casimir operator. Thus, wave functions of the Schrödinger equation with
position-dependent mass are given by the matrix elements of the group. Specifically, if we select the
mass m(x) as constant, the solutions given above will be the solutions of the physical system created
with Toda and Kratzer potential functions. The parameters n, λ, µ appearing in the solutions and
Casimir operators are the parameters of the group. Also, the Hamiltonians contain arbitrary real
parameters and these parameters can be specially selected. In the expression of potential and solution,
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these arbitrary parameters are written in terms of the group’s parameters, because the main parameters
are the parameters of the group.

4. Discussion

Group theory is the mathematics of symmetry [24,48]. Therefore, it occupies an important place
in physical applications. Especially, analytically solvable potentials are very useful in physics. For
example, the Morse potential is widely used in molecular physics. The Schrödinger equation with
position-dependent mass has a wide range of applications in various physical systems such as quantum
liquids, compositionally graded crystals. In this paper, we have dealt with the one-dimensional
Schrödinger equation with position-dependent mass. For this, we have obtained the infinitesimal
operators of the regular representation of the group SL(2,R) and the Casimir operators. Then, we have
obtained Hamiltonians with position-dependent mass which are connected to the Casmir operators. In
conclusion the unbound state solutions for the Schrödinger equation are given. The solutions of the
considered physical systems can be found for different expressions of the position-dependent mass
m(x).

In this work, the Schrödinger equation with position-dependent mass is independent of time.
The equation can be considered with time and position-dependent mass. In this case, Schrödinger

equation is written as Lψ =
(
i ∂∂t −Hk −V

)
ψ = 0 [49]. The fact that the equation depends on both

position-dependent mass and time makes its solution even more difficult. Even so, this situation can
be studied with the group theory technique.
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