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Abstract: We investigate the squeezing of primordial gravitational waves (PGWs) in terms of
quantum discord. We construct a classical state of PGWs without quantum discord and compare it
with the Bunch–Davies vacuum. Then it is shown that the oscillatory behavior of the angular-power
spectrum of the cosmic microwave background (CMB) fluctuations induced by PGWs can be the
signature of the quantum discord of PGWs. In addition, we discuss the effect of quantum decoherence
on the entanglement and the quantum discord of PGWs for super-horizon modes. For the state of
PGWs with decoherence effect, we examine the decoherence condition and the correlation condition
introduced by C. Kiefer et al. (Class. Quantum Grav. 24 (2007) 1699). We show that the decoherence
condition is not sufficient for the separability of PGWs and the correlation condition implies that the
PGWs in the matter-dominated era have quantum discord.

Keywords: PGWs; squeezing; quantum discord; oscillatory behavior; decoherence

1. Introduction

In modern cosmology, the early stage of the universe is described by inflation models. The theory
of inflation predicts primordial quantum fluctuations as the origin of the structure of our universe
and primordial gravitational waves (PGWs). PGWs can be the evidence of inflation, and its quantum
feature is expected to give the information of quantum gravity. It is predicted that PGWs generated
in the inflation era have the squeezed distribution [1,2]. If their statistical feature is observed then
it can support inflation. The detection of the squeezing effect of PGWs by ground- and space-based
gravitational interferometers was discussed by B. Allen, E. E. Flanagan and M. A. Papa [3]. According
to their analysis, the detector with a very narrow band is required to detect the squeezing effect.
The estimated bandwidth is around the present Hubble parameter, and it is difficult to detect the
squeezed property of PGWs practically. On the other hand, S. Bose and L. P. Grishchuk [4] considered
the indirect observations of squeezing feature of PGWs by CMB fluctuations. They showed that
the squeezing effect appears as the oscillatory behavior of the angular-power spectrum of the CMB
temperature fluctuations induced by PGWs. This oscillation caused by PGWs is different from the
baryon acoustic oscillation induced mainly by primordial density fluctuations. The contribution of
PGWs to the acoustic oscillation is very small.

To characterize quantum features of primordial fluctuations, the notion of quantum correlations
is often applied. In particular, quantum entanglement of primordial fluctuations in the cosmological
background was investigated [5–10]. In previous works [7,10], it was shown that the entanglement
of primordial fluctuations remains during inflation. Although quantum entanglement is adopted
to characterize the nonlocal properties of quantum mechanics, it describes only a part of quantum
correlations. Quantum discord is a kind of quantum correlations [11,12] and is robust against quantum
decoherence. In the cosmological context, quantum discord was investigated in several works [6,13–16].
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In this paper, we examine the squeezed nature of PGWs in terms of quantum correlations. In the
field of quantum information, it is known that the squeezing of states is related to quantum correlations.
The oscillatory behavior of PGWs originated from the squeezing can be the evidence of quantum
correlation. To clarify the relation between the oscillatory behavior and quantum correlations, we
introduce a classical state of PGWs under several assumptions. The meaning of classicality is defined
based on the absence of quantum discord. The constructed classical state tells us that the oscillatory
feature of PGWs is associated with quantum discord. We compute the angular-power spectrum of the
CMB temperature fluctuations caused by PGWs and find that there is no oscillatory behaviors for the
classical state of PGWs unlike the Bunch–Davies vacuum. Our analysis provides the meaning of the
oscillatory behavior in terms of quantum correlations. We can regard it as the signature of quantum
discord of PGWs.

Furthermore, we investigate how the quantum correlation of PGWs is affected by the quantum
decoherence for super-horizon modes. Under the assumption that sub-horizon modes of PGWs does
not decohere, the decoherence condition and the correlation condition are computed. The decoherence
condition implies the loss of coherence of the Bunch–Davies vacuum, and the correlation condition
means the sufficient squeezing of the Wigner function for a considering mode in the phase space.
Through the calculation, we show that the decoherence condition for the super-horizon modes does not
mean the separability of the decohered state of PGWs. We further find that the correlation condition
leads to the survival of the quantum discord of PGWs in the matter-dominated era.

This paper is organized as follows. In Section 2, we review the linear theory of a tensor
perturbation of the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric and the oscillatory feature
of the correlation function of the tensor field. In Section 3, we construct a classical state of PGWs
and clarify the connection between the oscillatory behavior of the angular-power spectrum and the
quantum discord of PGWs. In Section 4, we evaluate the decoherence and the correlation conditions
for the decohered state of PGWs and discuss the relation to the quantum correlations of PGWs in the
matter era. Section 5 is devoted to a summary of the paper. We use the natural unit h̄ = c = 1 through
this paper.

2. Quantum Tensor Perturbation in Inflation, Radiation and Matter Era

In this section, we demonstrate the oscillatory behavior of the correlation function of PGWs.
We consider a tensor perturbation of the spatially flat FLRW metric. The perturbed metric of the
spacetime is

ds2 = a2(η)[−dη2 + (δij + hij)dxidxj], (1)

where η is the conformal time and hij represents the tensor perturbation with ∂jhij = δijhij = 0
(i, j = 1, 2, 3). We assume that the universe has instantaneous transitions at η = ηr and η = ηm for its
expansion law. The scale factor a is given as

a(η) =



− 1
Hinf (η − 2ηr)

(−∞ < η ≤ ηr)

η

Hinf η2
r

(ηr < η ≤ ηm)

1
4

(
1 +

η

ηm

)2 ηm

Hinf η2
r

(ηm < η)

. (2)

Each form of the scale factor represents the expansion law in the inflation, radiation and matter era.
The inflationary universe is assumed to be the de Sitter spacetime with the Hubble parameter Hinf.
The perturbed Einstein–Hilbert action up to the second order of hij is

S =
M2

pl

2

∫
d4x
√
−gR ≈

M2
pl

8

∫
dη d3x a2

(
hij ′h′ij − ∂khij∂khij

)
, (3)
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where prime denotes the derivative of the conformal time η and Mpl is the reduced Planck mass
1/
√

8πG. In the following, we use the rescaled perturbation and its conjugate momentum

yij := ahij, πij := y′ij −
a′

a
yij. (4)

Since the background spacetime is invariant under spatial rotations and translations, the tensor
perturbation can be decomposed as

yij(x, η) =

√
2

Mpl

∫ d3q
(2π)3/2 ∑

λ

yλ(q, η)eij(q̂, λ)eiq·x, (5)

πij(x, η) =
Mpl√

2

∫ d3q
(2π)3/2 ∑

λ

πλ(q, η)eij(q̂, λ)eiq·x, (6)

where λ = 1, 2 denote the labels of the polarization and the polarization tensor eij(q̂, λ) with q̂ = q/|q|
is chosen as

q̂ieij(q̂, λ) = ei
i(q̂, λ) = 0, (7)

eij∗(q̂, λ)eij(q̂, λ′) = 2δλλ′ , (8)

e∗ij(q̂, λ) = eij(−q̂, λ). (9)

Equation (7) corresponds to the traceless and transverse conditions and Equation (8) is the
normalization condition. The representation of the parity transformation for the polarization tensor
is fixed by Equation (9). The reality condition of the tensor perturbation with (9) implies that the
variables yλ and πλ satisfy

y∗λ(q, η) = yλ(−q, η), π∗λ(q, η) = πλ(−q, η). (10)

From the perturbed action (3), the mode equation is

y′′λ(q, η) +
(

q2 − a′′

a

)
yλ(q, η) = 0, (11)

where q = |q|. To quantize the tensor perturbation, we impose the canonical commutation relations

[ŷλ(q, η), ŷλ′(q
′, η)] = [π̂λ(q, η), π̂λ′(q

′, η)] = 0, (12)

[ŷλ(q, η), π̂λ′(q
′, η)] = iδλλ′δ

3(q + q′). (13)

We denote the solution of the equation of motion (11) as fq and define the function gq = i( f ′q − a′ fq/a).
We fix the normalization of the mode function as

fq(η)g∗q (η) + f ∗q (η)gq(η) = 1, (14)

and expand the canonical variables ŷλ and π̂λ as follows:

ŷλ(q, η) = fq(η)âλ(q) + f ∗q (η)â†
λ(−q), (15)

π̂λ(q, η) = (−i)
(

gq(η)âλ(q)− g∗q (η)â†
λ(−q)

)
, (16)

where âλ is the annihilation operator satisfying

[âλ(q), âλ′(q
′)] = 0, (17)

[âλ(q), â†
λ′(q

′)] = δλλ′δ
3(q− q′). (18)
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The equation of the mode function is solved for each epoch, and junction conditions at η = ηr

and η = ηm yield the full solution of the tensor perturbation in the FLRW universe. We adopt the
following mode function for the inflation era

uinf
q (η) =

1√
2q

(
1− i

q(η − 2ηr)

)
e−iq(η−2ηr), (19)

and assume that the initial quantum state of PGWs is the Bunch–Davies vacuum |0BD〉 defined by

âλ(q)|0BD〉 = 0. (20)

With the junction conditions, we find the full solution of the mode function as

fq(η) =


uinf

q (η) (−∞ < η ≤ ηr)

αqurad
q (η) + βqurad∗

q (η) (ηr < η ≤ ηm)

γqumat
q (η) + δqumat∗

q (η) (ηm < η)

, (21)

where urad
q and umat

q are the positive frequency mode solutions in the radiation- and matter-dominated
era and the coefficients αq, βq, γq and δq are fixed by the junction conditions. In particular, the mode
function urad

q is given as

urad
q (η) =

1√
2q

e−iqη . (22)

From the solution fq, the function gq is obtained as

gq(η) =


vinf

q (η) (−∞ < η ≤ ηr)

αqvrad
q (η)− βqvrad∗

q (η) (ηr < η ≤ ηm)

γqvmat
q (η)− δqvmat∗

q (η) (ηm < η)

, (23)

where the functions vinf
q , vrad

q and vmat
q are given by the definition of the function gq(η). The explicit

formulas of vinf
q and vrad

q are

vinf
q (η) =

√
q
2

e−iqη , (24)

vrad
q (η) =

√
q
2

(
1− i

qη

)
e−iqη . (25)

The normalizations of uinf
q , vinf

q , urad
q , and vrad

q are chosen so that Equation (14) is satisfied for
each pair (uinf

q , vinf
q ) and (urad

q , vrad
q ). The Bogolyubov coefficients αq, βq, γq and δq satisfy the

normalization conditions
|αq|2 − |βq|2 = 1, |γq|2 − |δq|2 = 1. (26)

The coefficients αq and βq are determined by the junction conditions at η = ηr:

αq =
(

1 +
i

qηr
− 1

2q2η2
r

)
e2iqηr , βq =

1
2q2η2

r
. (27)

The explicit formulas of the functions umat
q , vmat

q and the coefficients γq, δq are not needed in the
following analysis. This is because we are interested in the super-horizon mode at the end of inflation
and the sub-horizon mode at the radiation-matter equality time, i.e.,

qηr � 1, qηm � 1. (28)
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The sub-horizon condition qηm � 1 implies that the solution fq in the matter era can be approximated
using that of the radiation era.

Let us demonstrate the oscillatory behavior of the correlation function of PGWs. To make a clear
connection between the oscillatory behavior and quantum correlations, we introduce

Âλ(q, η) =

√
q
2

ŷλ(q, η) +
i√
2q

π̂λ(q, η). (29)

The operator Âλ for a sub-horizon mode is equivalent to the annihilation operator defined by the
positive frequency mode in each era. In fact, in the radiation or the matter era ηr < η, the operator Âλ

for the sub-horizon mode qη � 1 is approximated as

Âλ(q, η) ∼ b̂λ(q)e−iqη , (30)

where b̂λ is given by
b̂λ(q) = αq âλ(q) + β∗q â†

λ(−q). (31)

The operator b̂λ are the annihilation operator defined by the positive frequency mode urad
q after

inflation (urad
q is also the positive frequency mode in the matter era for qηm � 1). Hence the operator

Âλ for the sub-horizon mode has the same role as b̂λ. The correlation function for the field amplitude
ŷλ is

〈0BD|ŷλ(q, η)ŷλ′(q
′, η)|0BD〉 = 1

2q

(
2nq(η) + 1 + cq(η) + c∗q(η)

)
δλλ′δ

3(q + q′), (32)

where we used ŷλ(q, η) = (Âλ(q, η) + Â†
λ(−q, η))/

√
2q and introduced nq and cq by

〈0BD|Â†
λ(q, η)Âλ′(q

′, η)|0BD〉 = nq(η)δλλ′δ
3(q− q′), (33)

〈0BD|Âλ(q, η)Âλ′(q
′, η)|0BD〉 = cq(η)δλλ′δ

3(q + q′). (34)

The function nq represents the mean particle number and cq characterizes the quantum coherence of
the Bunch–Davies vacuum. The functions nq and cq completely determine the quantum property of
the Bunch–Davies vacuum. We evaluate the correlation function in the matter era. For the target range
of the wave number 1/ηm � q� 1/ηr (28), the functions nq and cq for the sub-horizon mode qη � 1
are computed as

nq(η) ∼ |βq|2, (35)

cq(η) ∼ αqβ∗qe−2iqη ∼ −|βq|2e−2iqη , (36)

where the second approximation in Equation (36) follows from qηr � 1. The behavior of the correlation
function of ŷλ in the matter-dominated era is obtained as

〈0BD|ŷλ(q, η)ŷλ′(q
′, η)|0BD〉 ∼

|βq|2

q
(1− cos(2qη))δλλ′δ

3(q + q′), (37)

where the cosine term comes from cq(η), and the correlation function oscillates in time. In terms of the
Fock space defined by Âλ, the Bunch–Davies vacuum can be expressed as

|0BD〉 ∝
⊗

q∈R3+

⊗
λ

exp
[

cq

nq + 1
Â†

λ(q, η)Â†
λ(−q, η)

]
|0; η〉

=
⊗

q∈R3+

⊗
λ

∞

∑
n=0

(
cq

nq + 1

)n
|nq,λ n−q,λ; η〉, (38)
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where the state |0; η〉 is defined by Âλ(q, η)|0; η〉 = 0 and R3+ := {(x, y, z)|(x, y, z) ∈ R3, z ≥ 0}. The
function cq, which characterizes the coherence between the modes q and −q, leads to the squeezing
and rotation of the Wigner function in the phase space. From Equation (20), the wave function of the
Bunch–Davies vacuum for a single mode q and a polarization λ is

ψBD(y, η) =

√
2ΩR

q

π
exp(−Ωq(η)|y|2), Ωq(η) =

g∗q (η)
f ∗q (η)

, (39)

where we omitted the labels q and λ, and the superscript R denotes the real part. The Wigner function
WBD(y, πy, η) of the density matrix ρBD(y, y′, η) = ψBD(y, η)[ψBD(y′, η)]∗ is given by

WBD(y, πy, η) =
1

(2π)2

∫
dxRdxI ei(πR

y xR+πI
yxI)ρBD(y− x/2, y + x/2, η)

= wBD(yR, πR
y , η)wBD(yI, πI

y, η), (40)

wBD(x, p, η) =
1
π

exp

[
−2ΩR

q x2 − 2
ΩR

q

(
p + ΩI

q x
)2
]

, (41)

where the superscript I denotes the imaginary part. Figure 1 schematically represents the behavior of
the Wigner function wBD(yR, πR

y , η).

Figure 1. The behavior of the Wigner ellipse of the Bunch–Davis vacuum in the phase space
(
√

q yR, πR/
√

q). Left panel: the initial vacuum at the past infinity. Middle panel: the squeezed
Wigner ellipse at the end of inflation. Right panel: the squeezed and rotated ellipse after the inflation.

In Figure 1, the left panel represents the initial vacuum state at the past infinity η → −∞ and the
middle panel represents the squeezed vacuum by the inflationary expansion. The right panel shows
the Wigner ellipse after the end of inflation for a sub-horizon mode. The Wigner function is further
squeezed until the horizon re-entry. After that the Wigner ellipse rotates during the radiation and
matter era. (Its thickness is around h̄ = 1 in the right panel of Figure 1; however, it can be ignored
in (37). The oscillation of the correlation function corresponds to the rotation of the Wigner ellipse in
the phase space.

To understand the oscillatory feature from the viewpoint of quantum superpositions, we have
introduced the two modes q and −q by defining the annihilation operator (29). On the other hand, we
have used the Wigner function of the single mode q for the real (or imaginary) part of the field ŷλ to
explain the squeezing feature of the state. These two treatments are connected by the following relation

ŷR
λ(q, η) =

1
2
√

2q

(
Âλ(q, η) + Â†

λ(−q, η) + Â†
λ(q, η) + Âλ(−q, η)

)
, (42)
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where q ∈ R3+ because of the relation ŷR
λ(−q, η) = ŷR

λ(q, η). The correlation function of yR
λ is

〈0BD|ŷR
λ(q, η)ŷR

λ′(q
′, η)|0BD〉 = 1

4q

(
2nq(η) + 1 + cq(η) + c∗q(η)

)
δλλ′δ

3(q− q
′
), (43)

and contains the function cq(η) characterizing the quantum coherence for the modes q and −q.

3. Relation between the Oscillatory Behavior and Quantum Discord

In this section, we clarify the relation between the oscillatory behavior of the CMB angular-power
spectrum caused by PGWs and quantum discord. For this purpose, we introduce the notion of the
classically correlated state. A given bipartite state ρAB is called classically correlated [11,17] if the state
has the following form

ρAB = ∑
i,j

pij|ψi
A〉〈ψi

A| ⊗ |φ
j
B〉〈φ

j
B|, (44)

where pij is a joint probability (pij ≥ 0, ∑i,j pij = 1) and characterizes the classical correlation between
A and B. The vectors |ψi

A〉 and |φk
B〉 of each system A and B satisfy the orthonormal conditions

〈ψi
A|ψ

j
A〉 = δij, 〈φk

B|φl
B〉 = δkl . (45)

The particular feature of classically correlated states is that there is a rank-1 projective
measurement for the subsystem A or B such that the states are not disturbed [11] in the following sense:

∑
i

P̂i
AρABP̂i

A = ∑
j

P̂j
BρABP̂j

B = ρAB, (46)

where P̂i
A and P̂j

B are rank-1 projective operators satisfying ∑i P̂i
A = ÎA and ∑i P̂i

B = ÎB. This property
is not required for separable states (non-entangled states) [18] defined by

ρAB = ∑
i

λiρ
i
A ⊗ σi

B, (47)

where λi is a probability, and ρi
A and σi

B are density operators. This is because ρi
A and ρ

j
A (i 6= j) do not

have to commute each other generally, and hence separable states can be disturbed by a projective
measurement for the subsystem A. It is obvious that the classically correlated states are included in the
separable states by the definitions of each state.

Next we introduce quantum discord [11] as a measure of quantum correlations. Quantum discord
is the difference between the mutual information of a given bipartite state ρAB and its generalization
with a projective measurement. The mutual information IAB is

IAB = SA + SB − SAB, (48)

where SA, SB and SAB are the von Neumann entropy of the density operators ρA = TrB[ρAB], ρB =

TrA[ρAB] and ρAB, respectively. For example, SA = S(ρA) = −TrA[ρA log ρA]. The mutual information
characterizes the total correlation of the bipartite state ρAB. Using the conditional entropy SB|A =

SAB − SA, the mutual information is rewritten as

IAB = SB − SB|A. (49)

This second expression leads to the notion of quantum discord. As a generalization of the
conditional entropy with a projective measurement, we can consider

J
B|{P̂j

A}
= SB −∑

i
piSB|P̂i

A
, (50)



Universe 2020, 6, 33 8 of 22

where pi = TrAB[P̂i
AρAB] and SB|P̂i

A
is the von Neumann entropy of the density operator given by

ρi
B =

TrA[P̂i
AρABP̂i

A]

pi
. (51)

The von Neumann entropy ∑i piSB|P̂i
A

is equivalent to the conditional entropy after the projective

measurement P̂i
A on the system A. Quantum discord of a bipartite state ρAB is the minimum of

difference between the two mutual informations:

δB|A := IAB −max
P̂j

A

J
B|{P̂j

A}
, (52)

where we maximize over all possible projective measurements on the system A. In general, δB|A is not
the same as δA|B. In Ref. [11], it was shown that δB|A = 0 = δA|B for a given bipartite state if and only if
the state is classically correlated. The quantities δB|A and δA|B are good indicators of the quantumness
of the correlation associated with a given state.

Now, we construct a classical model (zero quantum discord state) of PGWs. Firstly, we impose
the following three assumptions on the classical model:

Assumption 1. The mode obeys the linearized Einstein equation.

Assumption 2. The initial state is a Gaussian state.

Assumption 3. The initial state is invariant under spatial translations and rotations.

These assumptions are accepted in the standard treatment of the linear quantum fluctuations
in the FLRW universe. We denote the classical model (state) of PGWs as ρcl. By the Assumption 1,
the evolution of the Heisenberg operators is determined and hence we only have to fix the initial
condition of the state ρcl to identify the classical model. From the Assumptions 2 and 3, the state ρcl

has the following expectation values for b̂λ and b̂†
λ defined by (31) :

Tr[b̂λ(q)ρcl] = 0, (53)

Tr[b̂†
λ(q)b̂λ′(q

′)ρcl] = mq δλλ′δ
3(q− q′), (54)

Tr[b̂λ(q)b̂λ′(q
′)ρcl] = dq δλλ′δ

3(q + q′), (55)

where mq and dq are free functions characterizing the initial state. Because of the translational
invariance, the expectation value of the annihilation operator b̂λ with nonzero modes vanishes. From
the assumption of being Gaussian state, the functions mq and dq completely determine the form of the
state ρcl.

To fix the two functions mq and dq, we further impose the following two assumptions:

Assumption 4. The bipartite state with modes q and −q defined by the annihilation and creation operators
b̂λ(q) and b̂†

λ(q) is a classically correlated state (zero discord state).

Assumption 5. The classical model provides the same correlation function of PGWs at the present time as that
of PGWs with the initial Bunch–Davies vacuum.

From Assumptions 2–4, we can find that the state ρcl is classically correlated if and only if the
function dq vanishes. Let us show this statement. For simplicity, we omit the index of the polarization
λ and denote the state ρcl with the mode q and −q as ρcl

q,−q. When the function dq vanishes, the
Gaussian state ρq,−q is a product state, which corresponds to a classically correlated state with the
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weight pij = pA
i pB

j in Equation (44). Conversely, if the state ρcl
q,−q is classically correlated, then the

state ρcl
q,−q is represented by a product state

ρcl
q,−q = ρq ⊗ σ−q, (56)

where ρq and σ−q are density operators for each mode. In general, a given classically correlated
state can have correlation, but classically correlated Gaussian states are product states [19,20]. The
Appendix A is devoted to a simple proof of this property. Then the expectation value of b̂(q)b̂(−q) is
given by

Tr[b̂(q)b̂(−q) ρcl
q,−q] = Tr[b̂(q) ρq]× Tr[b̂(−q) σ−q] = 0, (57)

because the one-point function of the annihilation operator b̂(q) vanishes by the translation
invariance (53). Hence the function dq must vanish. As dq characterizes the coherence of ρcl (see
Equation (55)), the following statement holds: the quantum discord exists if and only if the quantum
coherence for the modes q and −q exists.

We emphasize that the condition dq = 0 for the classical state cannot be derived from the
separability. To judge whether a given bipartite state ρAB is entangled or not, the positive partial
transposed (PPT) criterion is useful [21,22]; if a bipartite state ρAB is separable then the following
inequality holds

(ρAB)
TB ≥ 0, (58)

where TB is the transposition for the subsystem B and the inequality means that (ρAB)
T
B has no negative

eigenvalues. For the Gaussian bipartite state ρcl
q,−q defined by b̂(q) and b̂(−q), it is known that the

PPT criterion is the necessary and sufficient condition for the separability [23–25]. The inequality (58)
for the state ρcl

q,−q is given by
mq ≥ |dq|. (59)

The derivation of the inequality (59) is shown in the Appendix B. We can admit the non-entangled
model of PGWs with nonzero dq (non-zero discord). Such a model has the following expectation value
for the sub-horizon modes (qη � 1),

Tr[Âλ(q, η)Âλ′(q
′, η)ρcl] ∼ dqe−2iqηδλλ′δ

3(q + q′), (60)

and shows the oscillatory behavior of the correlation function. Hence we cannot distinguish
whether the model has quantum entanglement (between q and −q modes) by just observing the
oscillatory behavior.

The function mq is determined by the Assumption 5. Using the approximated form of the
annihilation operator Âλ for the sub-horizon scale (30), we obtain the correlation function of the state
ρcl for qη0 � 1 as

Tr[ŷλ(q, η0)ŷλ′(q
′, η0)ρ

cl] ∼ 1
2q

(2mq + 1)δλλ′δ
3(q + q′), (61)

where η0 is the conformal time of the present day. The Assumption 5 requires that the correlation
function of the variables ŷλ should be equal to that given by the Bunch–Davies vacuum (37). For qη0 �
1 and qηr � 1 the function mq can be fixed as

mq = nq(η0) +
1
2

(
cq(η0) + c∗q(η0)

)
∼ |βq|2(1− cos(2qη0)), (62)

where we used Equation (37) at the present time η0.
Here we compare our analysis with the previous work in [4]. They considered squeezed and

non-squeezed models of PGWs. Both of these models assume the Bunch–Davies vacuum as the
initial state of PGWs. The squeezed model corresponds to PGWs treated in the previous section.
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The non-squeezed one is constructed by assuming the following form of the mode function in the
matter-dominated era

fq(η) ∝
e−iqη√

2q
, (63)

which has only the positive frequency mode. This means that there is no particle production and any
squeezing effects. In [4], the specification (63) of the mode function was called the traveling wave
condition, which corresponds to the classically correlated assumption in our analysis. The amplitude
of the mode (63) is determined by the same procedure as our Assumption 5, which was called the fair
comparison in [4]. For the sub-horizon mode at the present time qη0 � 1, the amplitude was given by
mq without the cosine term in [4]. The disregard of the cosine term is valid in the calculation of the
angular-power spectrum. We will explain the details of this statement later (after Equation (73)).

Let us compare the two models of PGWs by the angular-power spectrum of CMB temperature
fluctuations. The temperature fluctuations caused by the tensor perturbation is

δT̂(n̂)
T0

= −1
2

n̂in̂j

∫ η0

ηL

dη

[
∂

∂η
ĥij

]
r=η0−η

= −1
2

n̂in̂j

∫ η0

ηL

dη

a(η)
π̂ij

∣∣∣
r=η0−η

, (64)

where n̂i is the unit vector describing the direction of CMB photons’ propagation and the CMB photons
are emitted at the conformal time ηL. The angular-power spectrum C` is defined by

C` =
1

4π

∫
d2n̂ d2n̂′ P`(n̂ · n̂′)

〈
δT̂(n̂)

T0

δT̂(n̂′)
T0

〉
, (65)

where P`(n̂ · n̂′) is the Legendre polynomial of degree ` and the bracket means the expectation value
for a state. The angular-power spectrum for each multipole ` is characterized by the redshift factor of
the end of inflation zend, matter-radiation equality zeq, the last scattering surface zL and the amplitude
of PGWs given by Hinf/Mpl. We suppose that the redshift factors are

1 + zend =
a(η0)

a(ηr)
=

(η0 + ηm)2

4ηmηr
& 1027, (66)

1 + zeq =
a(η0)

a(ηm)
=

1
4

( η0

ηm
+ 1
)2
∼ 104, (67)

1 + zL =
a(η0)

a(ηL)
=
( η0 + ηm

ηL + ηm

)2
∼ 103, (68)

where zend is estimated for the GUT scale Hinf ∼ 1015 GeV, the present Hubble H0 ∼ 10−43 GeV
and the e-folding N ∼ 70 to solve the horizon and flatness problem. In the following, we focus on
the target frequency 1/ηm � q � 1/ηr. By the condition qηm � 1, we can use the mode solution
in the radiation era for the CMB power spectrum. Then we obtain the following formulas of the
angular-power spectrum for ρBD = |0BD〉〈0BD| and ρcl

CBD
` =

8π

2`+ 1

∫ ∞

0
dq q2

[
(2|βq|2 + 1)|V`(q)|2 − αqβ∗qV2

` (q)− α∗q βqV∗2` (q)
]
, (69)

Ccl
` =

8π

2`+ 1

∫ ∞

0
dq q2 (2mq + 1)|V`(q)|2, (70)

where αq, βq are the Bogolyubov coefficients (27). The function V`(q) is defined by

V`(q) =
√

2
Mpl

1
(2π)3/2

√
π(2`+ 1)(`+ 2)!

2(`− 2)!

∫ η0

ηL

dη

a(η)
j`(q(η0 − η))

q2(η0 − η)2 vrad
q (η), (71)
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where j`(z) is the spherical Bessel function and vrad
q is the positive frequency mode in the radiation era

(Equation (25)). As the leading order contribution for qηr � 1, we obtain

CBD
` ∼ 16π

2`+ 1

∫ ∞

0
dq q2 |βq|2

[
|V`(q)|2 + V2

` (q)/2 + V∗2` (q)/2
]
, (72)

Ccl
` ∼

16π

2`+ 1

∫ ∞

0
dq q2 |βq|2(1− cos[2qη0])|V`(q)|2

∼ 16π

2`+ 1

∫ ∞

0
dq q2 |βq|2|V`(q)|2, (73)

where the formula of mq (62) was substituted into (70) and the approximations αq ∼ −βq and |βq|2 +
1/2 ∼ |βq|2 were used in the first line of (72) and (73). In the second approximation of Equation (73),
we used the fact that the cosine term cos[2qη0] does not contribute to the q-integral because the present
time η0 is much larger than ηr, ηm, ηL and the cosine term oscillates rapidly in the integration.

Figure 2 presents the angular-power spectrum CBD
` and Ccl

` given by (72) and (73). CBD
` shows

oscillation, on the other hand, Ccl
` decreases monotonically as the multipole ` increases. The oscillation

is attributed to the phase factor of vrad
q ∼

√
q/2e−iqη contained in the last two terms of Equation (72).

From the redshift factors given by (66)–(68), the typical value of the phase is estimated as follows:

qηL ∼
`ηL

η0 − ηL
∼ `

100
, (74)

where we have used q ∼ `/(ηL − η0). The oscillation begins from ` ∼ 100 (the corresponding phase
is q ηL ∼ 1) and the period of the oscillation is about 100 up to a numerical factor, which is observed
in Figure 2.
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Figure 2. The behavior of the angular-power spectrum of CMB temperature fluctuations CBD
` (dotted

line) and Ccl
` (dashed line). CBD

` shows the oscillatory behavior and Ccl
` does not have such a behavior.

Let us discuss how a model with free functions mq and dq defined in Equations (54) and (55)
shows the oscillatory feature. The formula of the angular-power spectrum for qηm � 1 is written by
these functions as

C` =
8π

2`+ 1

∫ ∞

0
dq q2

[
(2mq + 1)|V`(q)|2 − |dq|

(
eiθq V2

` (q) + e−iθq V∗2` (q)
)]

, (75)

where dq = |dq|eiθq and V`(q) is given by (71). The second term of the integrand in (75) is crucial
for the oscillatory feature. If the condition mq � |dq| holds then the second term is negligible.
Choosing mq as Equation (62), we can get the almost same angular-power spectrum as that for the
classical state. Also if the phase θq changes rapidly and takes various values in the q-integral, then the
second term is neglected again by the Riemann–Lebesgue lemma. The PGWs superposed with many



Universe 2020, 6, 33 12 of 22

phases (the function dq controls the coherence of PGWs) contribute to the power spectrum, and the
oscillation is reduced as a result. For the two situations mq � |dq| or rapidly changing phase θq, the
oscillation degrades sufficiently even if the state has nonzero dq, i.e., nonzero discord. Therefore we
can only conclude that the CMB power spectrum computed from the classical state has no oscillation.
The converse statement that the absence of the oscillation means zero quantum discord does not
necessarily hold.

The whole analysis is based on the free theory of the tensor perturbation, and the nonlinear
interaction with other fields is not included. Since such nonlinear interactions can induce quantum
decoherence generally, there is the possibility of loss of the quantum feature for PGWs. We discuss the
decoherence effect for the tensor perturbation in the next section.

4. Decoherence for Super-Horizon Modes and Quantum Correlations

Quantum decoherence is the loss of quantum superposition and induced by the interaction
with an environment. In cosmological situations, quantum decoherence plays a crucial role to
explain quantum-to-classical transition of primordial fluctuations. In [26], the authors discussed
the decoherence for primordial fluctuations with the super-horizon modes and introduced the two
conditions: the decoherence condition and the correlation condition. In this section, we clarify the
meaning of these two conditions in terms of quantum correlations.

To get a clear intuition of the decoherence effect, we construct a decohered Gaussian state of
PGWs. We consider the total system with the full Hamiltonian

Ĥ(η) = Ĥy
0 (η) + Ĥϕ

0 (η) + V̂(η), (76)

where Ĥy
0 (η) and Ĥϕ

0 (η) are the free Hamiltonian of the tensor perturbation ŷij and the other fields ϕ̂,
respectively. The operator V̂(η) is the interaction between the tensor perturbation and the other fields.
We assume that the initial state of the total system |Ψ〉 at η → −∞ is given by the product state

|Ψ〉 = |0BD
y 〉 ⊗ |ψϕ〉, (77)

where |0BD
y 〉 is the Bunch–Davies vacuum of the tensor field and |ψϕ〉 is the initial state of the other

fields. The wave functional of the total system is

Ψη [y, ϕ] = 〈y, ϕ|Û(η,−∞)|Ψ〉, (78)

where the time evolution operator Û(η,−∞) is expressed by using the time ordering as

Û(η,−∞) = T exp
[
−i
∫ η

−∞
dτĤ(τ)

]
. (79)

We give the decohered state by assuming the following form of the reduced density matrix of yλ :

ρη [y, y′] =
∫

ϕ
Ψη [y, ϕ]Ψ∗η [y

′, ϕ] = ΨBD
η [y](ΨBD

η [y′])∗Dη [y, y′], (80)

with ΨBD
η [y] and Dη [y, y′] are

ΨBD
η [y] = N(η) exp

[
−1

2 ∑
λ=1,2

∫
d3q Ωq(η)|yλ(q)|2

]
, (81)

Dη [y, y′] = exp

[
−1

2 ∑
λ=1,2

∫
d3q Γq(η)|yλ(q)− y′λ(q)|2

]
, (82)
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where N(η) is the normalization and Ωq(η) is given by (39). A phenomenological positive function
Γq(η) represents decoherence effect. The function Γq depends on the structure of interaction with
other fields ϕ. The decoherence factor Dη [y, y′] is invariant under spatial rotations and translations,
which preserves the same symmetry imposed in the linear theory of PGWs. As Γq becomes large, the
off-diagonal components ρη [y, y′] decays exponentially. This behavior expresses quantum decoherence.
The form of the decoherence factor Dη [y, y′] respects the facts that the field operator (growing mode)
is the pointer observable [27] in cosmology. For super-horizon modes, in the Heisenberg picture,
the field becomes constant in time and its conjugate momentum decays rapidly. Thus, the field
operator effectively commutes with the interaction Hamiltonian. Such an operator commuting with
the interaction Hamiltonian is called a pointer observable. The density matrix of the system approaches
diagonal form with respect to the basis of the pointer observable (pointer basis) by decoherence effect.
In [26,28,29], for the super-horizon mode (qη � 1), the decoherence factor was derived using the
quantum master equations with the Lindblad form [30,31]. Also the decoherence factor were computed
from nonlinear interactions for primordial fluctuations in [16,32,33].

In [26], the authors focused on the Wigner function of the density matrix of the decohered state
and discussed its shape in the phase space. The density matrix ρ(y, y′, η) for a fixed mode q and
polarization λ is

ρ(y, y′, η) = ψBD(y, η)[ψBD(y′, η)]∗ exp
(
−Γq|y− y′|2

)
, (83)

where ψBD(y, η) is the wave function of the Bunch–Davies given in (39). The real part ΩR
q characterizes

the quantum superposition with respect to the field basis y. Such a superposition is suppressed by the
decoherence factor if the parameter Γq satisfies the inequality

Γq � ΩR
q . (decoherence condition) (84)

The decoherence degrades the superposition of the field amplitudes and makes the width of the
Wigner function large in the direction of the conjugate momentum as follows. The Wigner function of
the density matrix ρ(y, y′, η) is

W(y, πy, η) = w(yR, πR
y , η)w(yI, πI

y, η), (85)

w(x, p, η) =

√√√√ ΩR
q

π2(ΩR
q + 2Γq)

exp

−2ΩR
q x2 − 2

(
p + ΩI

q x
)2

ΩR
q + 2Γq

 . (86)

For a large Γq, the Gaussian width for the conjugate momentum becomes large, and then Wigner
ellipse approaches a circle. To observe the oscillation of the angular-power spectrum, the Wigner
function should be squeezed even if decoherence occurs. In terms of the length of the major axis a and
the minor axis b of the Wigner ellipse, the condition of squeezing [26] is expressed as

a� b. (correlation condition) (87)

The word “correlation” does not mean quantum correlations but the correlation between the real (or
imaginary) part of the field variable and its conjugate momentum.

In the following, we clarify the relation among the quantum correlations of PGWs at the matter era
and the above conditions (84) and (87). For this purpose we consider the scenario that the decoherence
due to the interaction halts just before the second horizon crossing of PGWs and the state of PGWs
evolves unitarily after that. In this scenario, the decohered state of PGWs (83) is prepared at the
conformal time ηc which satisfies

ηr ≤ ηc, q ηc = ε, (88)

where ε ∼ 1 is a model parameter. The whole evolution of PGWs in our setting is presented in Figure 3.
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Figure 3. The assumption for the evolution of PGWs. Quantum decoherence continues until ηc and
then the PGW evolves unitarily.

We examine the decoherence condition (84) and the correlation condition (87) at η = ηc. To observe
the decohered but squeezed state of PGWs, these conditions should be satisfied at the horizon crossing
ε ∼ 1. For a super-horizon mode at ηr, qηr � 1, the decoherence condition is estimated as

1
|βq|2

�
Γq(ηc)

q
(89)

and the correlation condition is given as

Γq(ηc)

q
� |βq|2, (90)

where βq is the Bogolyubov coefficient given in (27).
Let us investigate the entanglement and quantum discord of PGWs in the matter era. For

η, η′ > ηc, we have the two-point function 〈yy〉

〈Ψ|ŷH
λ (q, η)ŷH

λ′(q
′, η′)|Ψ〉 = 〈Ψ|Ω̂†(ηc,−∞)ŷI

λ(q, η)ŷI
λ′(q

′, η′)Ω̂(ηc,−∞)|Ψ〉, (91)

where ŷH
λ and ŷI

λ are the tensor field in the Heisenberg and interaction picture, respectively and
Ω̂(η,−∞) is given by

Ω̂(η,−∞) = T exp
[
−i
∫ η

−∞
dτV̂I(τ)

]
. (92)

The concrete expression of the interaction Hamiltonian is not needed because the reduced density
matrix of the tensor field (80) is given at ηc. In Equation (91), we assumed that the interaction continues
until ηc, i.e., Ω̂(η,−∞) = Ω̂(ηc,−∞) for ηc ≤ η. The field operator ŷI

λ(q, η) can be written by the
linear combination of ŷI

λ(q, ηc) and π̂I
λ(q, ηc) at ηc as

ŷI
λ(q, η) = Xq(η, ηc)ŷI

λ(q, ηc) + Yq(η, ηc)π̂
I
λ(q, ηc), (93)

where Xq and Yq are defined by

Xq(η, η′) = fq(η)g∗q (η
′) + f ∗q (η)gq(η

′), (94)

Yq(η, η′) = i[ fq(η) f ∗q (η
′)− f ∗q (η) fq(η

′)]. (95)
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From the form of the density matrix at ηc (80), the correlation functions of the tensor field at the
time ηc in the interaction picture can be computed as follows:

〈Ψ|Ω̂†(ηc,−∞)ŷI
λ(q, ηc)ŷI

λ′(q
′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈0BD

y |ŷI
λ(q, ηc)ŷI

λ′(q
′, ηc)|0BD

y 〉, (96)

〈Ψ|Ω̂†(ηc,−∞)ŷI
λ(q, ηc)π̂

I
λ′(q

′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈0BD
y |ŷI

λ(q, ηc)π̂
I
λ′(q

′, ηc)|0BD
y 〉, (97)

〈Ψ|Ω̂†(ηc,−∞)π̂I
λ(q, ηc)π̂

I
λ′(q

′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈0BD
y |π̂I

λ(q, ηc)π̂
I
λ′(q

′, ηc)|0BD
y 〉

+ Γq(ηc)δλλ′δ
3(q + q′). (98)

The derivation of these equations is presented in the Appendix C. Substituting Equation (93) into
the correlator (91) and using the Formulas (96)–(98), we obtain the correlator (91) for the different time
η and η′ as

〈Ψ|ŷH
λ (q, η)ŷH

λ′(q
′, η′)|Ψ〉 = 〈0BD

y |ŷI
λ(q, η)ŷI

λ′(q
′, η′)|0BD

y 〉

+ Yq(η, ηc)Yq(η
′, ηc)Γq(ηc)δλλ′δ

3(q + q′). (99)

We can also calculate the other two-point functions 〈yπ〉 and 〈ππ〉. The conjugate momentum
π̂I

λ(q, η) is given by the following linear combination of ŷI
λ(q, ηc) and π̂I

λ(q, ηc):

π̂I
λ(q, η) = zq(η, ηc)ŷI

λ(q, ηc) + wq(η, ηc)π̂
I
λ(q, ηc), (100)

where zq and wq are defined by

zq(η, η′) = (−i)
[

gq(η)g∗q (η
′)− g∗q (η)gq(η

′)
]

, (101)

wq(η, η′) = gq(η) f ∗q (η
′) + g∗q (η) fq(η

′). (102)

Through a similar procedure, we can derive the other correlators as

〈Ψ|ŷH
λ (q, η)π̂H

λ′(q
′, η′)|Ψ〉 = 〈0BD

y |ŷI
λ(q, η)π̂I

λ′(q
′, η′)|0BD

y 〉

+ Yq(η, ηc)wq(η
′, ηc)Γq(ηc)δλλ′δ

3(q + q′), (103)

〈Ψ|π̂H
λ (q, η)π̂H

λ′(q
′, η′)|Ψ〉 = 〈0BD

y |π̂I
λ(q, η)π̂I

λ′(q
′, η′)|0BD

y 〉

+ wq(η, ηc)wq(η
′, ηc)Γq(ηc)δλλ′δ

3(q + q′). (104)

From Equations (99), (103) and (104), the correlators of ÂH
λ and ÂH†

λ at η are given by

〈Ψ|ÂH†
λ (q, η)ÂH

λ′(q
′, η)|Ψ〉 = ndec

q (η)δλλ′δ
3(q− q′), (105)

〈Ψ|ÂH
λ (q, η)ÂH

λ′(q
′, η)|Ψ〉 = cdec

q (η)δλλ′δ
3(q + q′), (106)

where we introduced the following quantities

ndec
q (η) := nq(η) +

∣∣∣∣∣
√

q
2

Yq(η, ηc) +
i√
2q

wq(η, ηc)

∣∣∣∣∣
2

Γq(ηc), (107)

cdec
q (η) := cq(η) +

(√
q
2

Yq(η, ηc) +
i√
2q

wq(η, ηc)

)2

Γq(ηc). (108)

We focus on the target wave mode 1/ηm � q � 1/ηr (28) and examine the PPT criterion in the
matter era η > ηm. The decohered state is the bipartite state with the mode q and −q defined by the
annihilation operators ÂH(q, η) and ÂH(−q, η). For the sub-horizon mode, the operator ÂH(q, η) is
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the counterpart of b̂λ(q) due to the relation ÂI ∼ b̂ exp(−iqη) (Equation (30)). Using Equations (107)
and (108), we can rewrite the PPT criterion (59) ndec

q ≥ |cdec
q | as

Γq(ηc)

q
≥

nq(η)

|qYq(η, ηc) + iwq(η, ηc)|2 nq(ηc)− Re[cq(η)(qYq(η, ηc)− iwq(η, ηc))2]
. (109)

For qηc = ε ∼ 1, this inequality is evaluated up to the numerical factor as

Γq(ηc)

q
& 1, (110)

where we used the approximated Formulas (35) and (36) and

qYq(η, ηc) + iwq(η, ηc) ∼ ie−iq(η−ηc) (111)

for a sub-horizon scale qη � 1.
For the target frequency qηr � 1, the tensor fields have the large occupation number |βq|2 � 1,

and the PPT criterion (110) implies the decoherence condition (89)

Γq(ηc)

q
& 1 =⇒

Γq(ηc)

q
� 1
|βq|2

(112)

Hence the decoherence condition (89) is not sufficient to eliminate the entanglement of PGWs. Next
we evaluate the degree of quantum coherence cdec

q (η) to examine the quantum discord of PGWs. For
the target wave number 1/ηm � q� 1/ηr, we can approximate the function cdec

q (η) as

cdec
q (η) ∼ −

(
|βq|2 +

Γq(ηc)

2q
e2iε
)

e−2iqη , (113)

where we applied the approximated Formulas (35), (36) and (111) again. If the phenomenological
parameter Γq(ηc) satisfies the correlation condition (90), then the decoherence effect is negligible
in (113). In this case, the quantum coherence of the Bunch–Davies vacuum survives. Because the
decohered state is a Gaussian state, the nonzero cdec

q implies quantum discord in the matter-dominated
era. Hence the correlation condition given in [26] means that the PGWs have a chance to keep the
quantum discord in the matter-dominated era.

Let us demonstrate the behavior of the angular-power spectrum for the decohered state. By the
Formula (104), the angular-power spectrum Cdec

` for the decohered state is given by

Cdec
` = CBD

` + ∆C`, (114)

where the impact of the decoherence on the angular-power spectrum is represented as

∆C` =
8π

2`+ 1

∫ ∞

0
dqq2 Γq(ηc)|W`(q)|2, (115)

with

W`(q) :=

√
2

Mpl

1
(2π)3/2

√
π(2`+ 1)(`+ 2)!

2(`− 2)!

∫ η0

ηL

dη

a(η)
j`(q(η0 − η))

q2(η0 − η)2 wq(η, ηc). (116)

In principle, the function Γq(η) can be determined by assuming nonlinear interactions with other fields.
Since a macroscopic system easily decoheres, we can expect that the value of Γq(ηc) increases for the
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larger system. For simplicity we assume that Γq(ηc) per mode is proportional to the number density
|βq|2, i.e.,

Γq(ηc)

q
= γ|βq|2, (117)

where γ is a dimensionless positive constant. For γ ∼ 1, the correlation condition (90) is violated. In
Figure 4, we present the behavior of `(`+ 1)Cdec

` /2π for γ = 1.0 and γ = 0.1 with ε = 0.5, 1.0, 1.5. As
have already mentioned, the decoherence changes the ellipse of the Wigner function to a circle and
hence the observable oscillation is reduced. However, in the left panel of Figure 4 for γ = 1.0, we still
observe the oscillation after the decoherence for the super-horizon mode ε = 0.5 even if the correlation
condition (90) is violated. This is because the Wigner function of PGWs with the super-horizon mode
is squeezed until the horizon crossing after the decoherence (see Figure 5).

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

● ●
●

●
●

● ● ● ●
●

●

●

●

●

●
● ● ●

●
● ● ● ● ●

●
●

●
●

●
●

● ● ● ●

0 200 400 600 800 1000

5. ×10-11
1. ×10-10

5. ×10-10
1. ×10-9

5. ×10-9
1. ×10-8

ℓ

ℓ
(ℓ
+
1)
C

ℓ
/2
π

γ=1.0

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ●

●
●

●

●

●

●
● ●

●
●

●
● ● ● ●

●
●

●
●

●
●

● ● ●
●

●

0 200 400 600 800 1000

5. ×10-11
1. ×10-10

5. ×10-10
1. ×10-9

5. ×10-9
1. ×10-8

ℓ

ℓ
(ℓ
+
1)
C

ℓ
/2
π

γ=0.1

Figure 4. The anguler power spectrum of CMB fluctuations by PGWs with the decoherence effect (left
panel: γ = 1.0 and right panel: γ = 0.1). The different curves correspond to ε = 0.5 (dotted line),
ε = 1.0 (dashed line) and ε = 1.5 (solid line).

Figure 5. For the super-horizon mode, the Wigner function is squeezed until the mode re-enters the
horizon after decoherence.

We observe that the oscillation vanishes for ε = 1.5. In this case, the Wigner ellipse becomes
a circle and its shape does not change after the decoherence because of no squeezing effect for the
sub-horizon modes. In the right panel of Figure 4, we show the behavior of `(` + 1)Cdec

` /2π for
γ = 0.1. The oscillation does not vanish since the quantum discord of PGWs survives for γ = 0.1 (in
other words, the correlation condition is satisfied).

In Figure 6, we compare the angular-power spectrum for the Bunch–Davies vacuum and the
classical state with the decoherence effect (γ = 1.0). The left panel presents the behaviors of CBD

` and
Cdec
` with ε = 0.5 which show oscillation. The right panel shows the behaviors of Ccl

` and Cdec
` with

ε = 1.5. The oscillations are reduced by the decoherence effect. In this case, Cdec
` is almost 2Ccl

` . For
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γ = 1.0 and ε = 1.5, ∆C` has the same amplitude and almost opposite phase as CBD
` . That is ∆C` can

be evaluated by CBD
` using the mode function eiπ/2vrad

q . Thus, we find that

∆C` ∼
16π

2`+ 1

∫ ∞

0
dq q2 |βq|2

[
|V`(q)|2 −V2

` (q)/2−V∗2` (q)/2
]
, (118)

and Cdec
` = CBD

` + ∆C` ∼ 2Ccl
` .
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Figure 6. Left panel: CBD
` (dashed line) and Cdec

` (dotted line) with ε = 0.5. Right panel: Ccl
` (dashed

line) and Cdec
` (dotted line) with ε = 1.5.

In Figure 7, we summarize the relation among the entanglement, the quantum discord of PGWs,
the decoherence condition and the correlation condition for super-horizon modes. As we mentioned
after Equation (59), the oscillation of the angular-power spectrum implies the quantum discord of
PGWs but does not guarantees the existence of entanglement.

Figure 7. The relation among the quantum correlations of PGWs, the decoherence condition and
the correlation condition. In the left side region of the red vertical line, the decoherence condition is
satisfied. In the right side region of the blue vertical line, the correlation condition is satisfied.

For the decohered state, we can choose the parameter Γq(ηc) both satisfying the PPT criterion and
the correlation condition. Thus, it is also confirmed that the entanglement of PGWs is not required to
obtain the oscillatory behavior of the angular-power spectrum of CMB fluctuations.

5. Summary

Focusing on quantum correlations, we examined the oscillation of the angular-power spectrum
of CMB fluctuations induced by PGWs. This oscillatory feature is different from the observed
acoustic oscillation. The dominant contribution of the acoustic oscillation is due to primordial density
perturbations not PGWs. However, the oscillation caused by PGWs is related to the quantum discord
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of PGWs. We demonstrate that the constructed classical state of PGWs without quantum discord has
no oscillatory feature for the angular-power spectrum of the CMB temperature fluctuations. For PGWs
with quantum origin, the oscillation of the CMB power spectrum can be interpreted as the signature of
the quantum discord of the PGWs.

We also investigated the decoherence effect for super-horizon modes on the squeezing property
of PGWs. In particular, we discussed the decoherence condition and the correlation condition [26] in
terms of quantum correlations. Through the comparison of the PPT criterion and the decoherence
condition, we found that the decoherece condition is not sufficient for the separability of the PGWs
state in the matter-dominated era. Also we showed that the correlation condition implies the quantum
discord of PGWs in the matter-dominated era. This argument is obvious because the correlation
condition ensures the squeezed Wigner function if there is no decoherence after the horizon crossing.
What we have done here is to furnish the meaning of the correlation condition in terms of quantum
discord. We expect that the oscillatory feature of PGWs gives a hint for the question whether PGWs
are quantum or not in our observable universe.

Author Contributions: Both authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: JSPS KAKENHI Grant Number 19K03866.

Acknowledgments: Y.N. was supported in part by the JSPS KAKENHI Grant Number 19K03866.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of the Equation (56)

To show that the state satisfying the Assumptions 2–4 in the Section 3 requires dq = 0, we
consider a two-mode continuous variable state defined by two annihilation operators âA and âB. Then
we can prove the following lemma: a two-mode classically correlated Gaussian state ρAB satisfies
Tr[âA âBρAB] = αAαB where the parameters αA,B are displacement of each system. By the assumption of
classically correlated (Equation (44)), the state ρAB is represented as ρAB = ∑i,j pij〉ψi

A|〈ψi
A| ⊗ |φ

j
B〉〈φ

j
B|.

Tracing out the system B, we have ρA = ∑i pi〉ψi
A|〈ψi

A| where pi = ∑j pij. Since the state ρAB is
Gaussian, ρA is a Gaussian state with the displacement αA. By the orthonormal property of 〉ψi

A|, the
vectors 〉ψi

A| are eigenvectors of the state ρA. From the Williamson theorem [34], we can identify the
state vector 〉ψi

A|with a state D̂A(α)〉NA|. Here D̂A(α) is the displacement operator of the system A. The
parameter αA does not depend on the label i, and 〉NA| is an N-particle state defined by an annihilation
operator b̂A, whose label N corresponds to the label i up to the ordering. Furthermore, the Williamson
theorem implies that there is the unitary operator generated by the symplectic transformation such
that âA = ξAb̂A + ηAb̂†

A where ξA and ηA are the parameters of the symplectic transformation. The
above statement holds for the system B. Hence we find the following equation

Tr[âA âBρAB] = ∑
i,j

pij〈ψi
A|âA|ψi

A〉〈φ
j
B|âB|φ

j
B〉

=
∞

∑
N,M=0

pNM〈NA|(âA + αA)|NA〉〈MB|(âB + αB)|MB〉 = αAαB, (A1)

where we identified |φj
B〉 with D̂B(α)|MB〉. D̂B(α) is the displacement operator for the system B and

|MB〉 is an M-particle state of the system B. The Equation (A1) implies that the Gaussian state is a
product state.

Appendix B. Derivation of the Inequality (59)

We consider a two-mode Gaussian state ρAB, whose modes are defined by the annihilation
operators âA and âB. We introduce the vector α̂ =

[
âA, â†

A, âB, â†
B
]T. The covariance matrix of the state
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ρAB is defined by the Hermitian matrix Cij =
1
2 Tr[{α̂†

i , α̂j} ρAB] where {·, ·} is the anti-commutator.
The explicit form of the matrix C is

C =


1
2 〈{â†

A, âA}〉 〈(â†
A)

2〉 〈â†
A âB〉 〈â†

A â†
B〉

1
2 〈{âA, â†

A}〉 〈âA âB〉 〈âA â†
B〉

1
2 〈{â†

B, âB}〉 〈(â†
B)

2〉
1
2 〈{âB, â†

B}〉

 , (A2)

where 〈·〉 = Tr[· ρAB] and the omitted components are determined by the Hermiticity. The covariance
matrix satisfies the following uncertainty relation: for any z = [z1, z2, z3, z4]

T, zi ∈ C,

z†Cz =
1
2

Tr[{(z · α̂)†, z · α̂} ρAB] = Tr[(z · α̂)†z · α̂ρAB] +
1
2

z†Ωz ≥ 1
2

z†Ωz,

that is C ≥ 1
2 Ω where the matrix Ω is given by [α̂j, α̂†

k ] = Ωjk. The partial transpose operation for the
subsystem B is represented by b̂A → b̂A and b̂B → b̂†

B[24]. We denote the partial transposed matrix
as C̃. Then the inequality for the PPT criterion is C̃ ≥ 1

2 Ω. The state of interest has only the two
expectation values

〈â†
A âA〉 = 〈â†

B âB〉 = n, 〈âA âB〉 = c. (A3)

Then the covariance matrix C and its partial transposed matrix C̃ are computed as

C =


n + 1

2 0 0 c∗

0 n + 1
2 c 0

0 c∗ n + 1
2 0

c 0 0 n + 1
2

 , C̃ =


n + 1

2 0 c∗ 0
0 n + 1

2 0 c∗

c 0 n + 1
2 0

0 c 0 n + 1
2

 . (A4)

From this formula of C̃, we easily get the PPT criterion as n ≥ |c|.

Appendix C. Derivation of the Equations (96)–(98)

We compute the two-point functions of the decohered state (80). For convenience, we use the
Schrödinger picture to calculate them:

〈Ψ|Ω̂†(ηc,−∞)ŷI
λ(q, ηc)ŷI

λ′ (q
′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈Ψ|Û†(ηc,−∞)ŷλ(q)ŷλ′ (q

′)Û(ηc,−∞)|Ψ〉, (A5)

〈Ψ|Ω̂†(ηc,−∞)ŷI
λ(q, ηc)π̂

I
λ′ (q

′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈Ψ|Û†(ηc,−∞)ŷλ(q)π̂λ′ (q
′)Û(ηc,−∞)|Ψ〉, (A6)

〈Ψ|Ω̂†(ηc,−∞)π̂I(q, ηc)π̂
I(q′, ηc)Ω̂(ηc,−∞)|Ψ〉 = 〈Ψ|Û†(ηc,−∞)π̂λ(q)π̂λ′ (q

′)Û(ηc,−∞)|Ψ〉, (A7)

where ŷλ(q) := ŷI
λ(q,−∞) and π̂λ(q) := π̂I

λ(q,−∞) are the field operators and its conjugate
momentum in the Schrödinger picture and Û is the evolution operator given by (79). The correlation
function 〈yy〉 at the time ηc is

〈Ψ|Û†(ηc,−∞)ŷλ(q)ŷλ′(q
′)Û(ηc,−∞)|Ψ〉 =

∫
y

yλ(q)yλ′(q
′)ρηc [y, y]

=
∫

y
yλ(q)yλ′(q

′)|ΨBD
ηc [y]|2 = 〈0BD

y |ŷI
λ(q, ηc)ŷI

λ′(q
′, ηc)|0BD

y 〉. (A8)

Similarly the other correlation functions 〈yπ〉 and 〈ππ〉 are computed as

〈Ψ|Û†(ηc,−∞)ŷλ(q)π̂λ′(q
′)Û(ηc,−∞)|Ψ〉 =

∫
y

yλ(q)
[
−i

δ

δỹλ′(−q′)

]
ρηc [ỹ, y]

∣∣∣
ỹ=y

=
∫

y
y(q)

[
−i

δΨBD
ηc [y]

δyλ′(−q′)

]
ΨBD∗

ηc [y] = 〈0BD
y |ŷI

λ(q, ηc)π̂
I(q′, ηc)|0BD

y 〉, (A9)
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and

〈Ψ|Û†(ηc,−∞)π̂λ(q)π̂λ′(q
′)Û(ηc,−∞)|Ψ〉 =

∫
y

[
i

δ

δyλ(−q)

][
−i

δ

δỹλ′(−q′)

]
ρηc [ỹ, y]

∣∣∣
ỹ=y

=
∫

y

[
−i

δΨBD
ηc [y]

δyλ′(−q′)

][
i
δΨBD∗

ηc [y]
δyλ(−q)

]
+ Γq(ηc)δλλ′δ

3(q + q′)

= 〈0BD
y |π̂I

λ(q, ηc)π̂
I
λ′(q

′, ηc)|0BD
y 〉+ Γq(ηc)δλλ′δ

3(q + q′), (A10)

where we used the functional representation of the conjugate momentum π̂λ(q) = −iδ/δyλ(−q).
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