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Abstract: This review is a pedagogical introduction to models of gravity and how they are constrained
through cosmological observations. We focus on the Horndeski scalar-tensor theory and on the
quantities that can be measured with a minimum of assumptions. Alternatives or extensions of
general relativity have been proposed ever since its early years. Because of the Lovelock theorem,
modifying gravity in four dimensions typically means adding new degrees of freedom. The simplest
way is to include a scalar field coupled to the curvature tensor terms. The most general way of doing
so without incurring in the Ostrogradski instability is the Horndeski Lagrangian and its extensions.
Testing gravity means therefore, in its simplest term, testing the Horndeski Lagrangian. Since local
gravity experiments can always be evaded by assuming some screening mechanism or that baryons
are decoupled, or even that the effects of modified gravity are visible only at early times, we need to
test gravity with cosmological observations in the late universe (large-scale structure) and in the early
universe (cosmic microwave background). In this work, we review the basic tools to test gravity at
cosmological scales, focusing on model-independent measurements.

Keywords: dark energy; modified gravity; large-scale structure

1. Introduction

Gravity is the force that shapes the overall temporal and spatial structure of the universe. There is
not much need then to explain why it is important to test its validity at all scales and regimes.
The substantial progress in collecting cosmological data achieved in the last couple of decades has
made it possible, for the first time, to test gravity and measure its properties at astrophysical and
cosmological scales. To test a theory, one either has to build a set of alternatives against which to
compare the standard model, or to parametrize the deviations from it in some meaningful and general
way: both approaches are referred to as “modified gravity”.

Lovelock’s theorem [1] states that Einstein’s gravity is the unique local diffeomorphism invariant
theory of a tensor field in 4D with second-order equations of motion. It is clear then that modifying
gravity often implies adding new degrees of freedom, either scalars, vectors, or tensors. Adding a
mass to the graviton, for instance, requires an additional tensor field; including more derivatives is
also equivalent to adding more propagating degrees of freedom. Other options based on torsion,
non-metricity, or non-locality can also be contemplated (see for instance the review [2]).

In this paper, we review the main properties of an important class of modified gravity based
on a single scalar field, the so-called Horndeski Lagrangian (HL). This model is general enough to
display most of the phenomenology of non-Einsteinian gravity: the generalized Poisson equation,
Yukawa corrections to Newton’s potential, the presence of anisotropic stress, changes in the
gravitational wave speed, instabilities, and ghosts. Still, the HL is relatively simple in that it contains a
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single propagating degree of freedom in addition to general relativity. Using the HL as a paradigm
of modified gravity, we focus on its observability at various scales, from the local environment to
galaxy clusters, with emphasis on cosmological observations. Although the recent measurement of
the gravitational wave speed [3] severely constrains one of the phenomenological time-dependent
parameters of the Horndeski model, as we will see, the other parameters are still mostly unconstrained
and open to theoretical and observational investigation. A major topic of this review is the question of
which properties of gravity can be measured as model-independently as possible.

We will not try to cover exhaustively the field of research in modified gravity; good reviews are
already available [2,4]. Rather, we wish to discuss pedagogically some aspects or issues that are generic
to the quest for traces of modified gravity.

We assume units such that c = 8πGN = M−2
Planck = 1 and metric signature −+++. An overdot

denotes derivation with respect to cosmic time t, a prime with respect to log a. A comma will refer
to a partial derivative, i.e., ∂µφ ≡ φ,µ. Additionally, �φ = gµν∇µ∇νφ where ∇µ is the covariant
derivative. Greek indexes run over space and time coordinates, while Latin indexes run over space
coordinates only.

2. Beyond Einstein

The re-discovery of the most general scalar-tensor theory that gives second-order equations of
motion, Horndeski action [5], or covariant Galileons [6], and their extensions [7–13] provides a very
general framework for such theories (see [14] for a recent review). The HL is defined as the sum of
four terms L2 to L5. Defining with X = −gµνφ,µφ,ν/2 the canonical kinetic term, the four terms are
specified by two non-canonical kinetic functions K(φ, X) and G3(φ, X) and by two coupling functions
G4,5(φ, X), all of them in principle arbitrary:

S =

ˆ
d4x
√
−g

5

∑
i=2
Li + Sm (1)

where Sm is the action for matter fields—dark matter, baryons, and radiation—and

L2 =K(φ, X) ,

L3 =− G3(φ, X)�φ ,

L4 =G4(φ, X)R + G4,X

[
(�φ)2 −

(
∇µ∇νφ

)2
]

,

L5 =G5(φ, X)Gµν∇µ∇νφ− G5,X

6

[
(�φ)3 − 3 (�φ)

(
∇µ∇νφ

)2
+ 2

(
∇µ∇νφ

)3
]

.

(2)

Note that G3 and G5 must have an X dependence; otherwise, they are total derivatives and could
be rewritten—after integration by parts—as K and G4, respectively. (Notice that the number of these
functions cannot be reduced by field redefinitions without going beyond Horndeski action [7,15]).
As usual, each term in the HL has dimension mass4. Often one chooses the scalar field to have
dimensions of mass, but this is not necessary. As already mentioned, the Horndeski Lagrangian is
the most general Lagrangian for a single scalar, which gives second-order equations of motion for
both the scalar and the metric on an arbitrary background. This is a necessary, but not a sufficient,
condition for the absence of instabilities, as we will see later on. The terms L4,L5 couple the field
φ to the Ricci scalar R and the Einstein tensor Gµν = Rµν − Rgµν/2. As a consequence, G4,5 are the
gravity-modifying coupling function. The background equations of motion of the HL are given for
completeness in the appendix, although we do not need them in the following. It is enough to realize
that the large freedom offered by the HL allows one to find a background evolution that satisfies all
observational constraints.

Let us now briefly discuss some useful limits of the HL.
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• If G4 = 1/2 and G5 = 0 (it is actually sufficient G5 = const), the HL reduces to the Einstein–Hilbert
Lagrangian with a scalar field having a non-canonical kinetic sector given byL2,L3. The canonical
form is obtained for K = X−V(φ) and G3 = 0 (G3 = const is sufficient). ΛCDM is recovered for
K = −2Λ.

• The “minimal” form of modified gravity within the HL is provided by G4 = G4(φ) and
G5 = const: this is then equivalent to a Brans–Dicke scalar-tensor model, again with a
non-canonical kinetic sector.

• The original Brans–Dicke model is recovered assuming a kinetic sector, K = (ωBD/φ)X, G3 = 0,
and G4(φ) = φ/2.

• If the kinetic sector vanishes, K,X = G3 = 0, then we reduce ourselves to an f (R) model [16],
whose Lagrangian isLR = (R+ f (R))/2. In fact, this model is equivalent to a scalar-tensor theory
with G4(φ) = e2φ/

√
6/2 and a potential K(φ) = −(R f,R − f )/2 where φ =

√
6/2 log(1 + f,R).

This relation should then be inverted to obtain R = R(φ) and used to replace R with φ in K(φ).
• If one sets Gi(φ, X) = Gi(X), then the Lagrangian is invariant under the shift φ → φ + c with

c = const. This shift-symmetric version of the HL is connected to the covariant Galileon when
the functional dependence of the Gi is fixed [6] and is able to produce the accelerated expansion
without a potential that makes the field slow roll.

In general, the equations of motion for the scalar will couple it to the matter-energy density.
The full set of equations of motion has been studied in several papers, for instance in [17,18].
Any modification of the HL, or addition of terms (except the so-called Beyond Horndeski terms),
based on the same scalar field, will introduce higher-order equations of motion and associated
instabilities, as a consequence of the Ostrogradsky theorem [19,20]. (See [21] for a discussion on
how to exorcise Ostrogradski ghosts in non-degenerate theories.) Of course one can in principle add
several scalar fields; however, on grounds of simplicity, this is rather unnatural. Notice that we do
not demand that the φ drives the present-day accelerated expansion. It could be, after all, that the
modification of gravity and the accelerated expansion are independent phenomena. It would be very
interesting, though, to explain the latter in terms of the former.

3. Decomposition in Modes and Stability

Einstein’s gravity is carried by a massless spin-2 field, the metric. Being represented by a
symmetric matrix, a metric in four dimensions has 10 degrees of freedom (DOFs). These DOFs
can be collected according to how they behave under spatial rotations, i.e., as scalars, vectors and
tensors. There are then four scalars (4 DOFs), two divergence-free vectors (4 DOFs), and one traceless,
divergence-free tensor (2 DOFs). However, only the tensor DOFs propagate; that is, they are subject to
linearized equations of motion that are second-order in the time derivatives. The other DOFs obey
constraint equations, fully determined by the matter content. This should have been expected, since a
massless tensor field, like the gravitational field, has only two independent degrees of freedom.

The two propagating degrees of freedom are associated with the two polarizations +,× of the
gravitational waves. To see that there are no other propagating DOFs, one can proceed by linearly
expanding the metric around Minkowski

gµν = ηµν + hµν (3)

and keeping only scalar terms, i.e., functions that can be obtained from scalar or derivatives of scalars.
The most general such metric is then

ds2 = −(1 + 2Ψ)dt2 + 2B,idxidt + ((1 + 2Φ)δij + 2E,ij)dxidxj. (4)

Inserting this metric into the Einstein–Hilbert Lagrangian without matter and developing it to a
second order, one finds the second-order action in Minkowski space:
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Sg =
1
2

ˆ
d3xdt[8B,i

,iΦ̇ + 4Φ,iΨ,i − 4Φ̇Ė,i
,i + 2Φ2

,i − 6Φ̇2]. (5)

The linearly perturbed equations of motion can be obtained then by the Euler–Lagrange equations
with respect to Φ, Ψ, E, B, but here we need only identify the degrees of freedom. When one varies
the action with respect to B, one gets the constraint Φ̇ = 0, which then shows that Φ is not a
propagating DOF. The same is true for Ψ, since there are no time derivatives for it. As we know, in fact,
the potentials Φ, Ψ are determined by the matter distribution through two constraints, the Poisson
equations, which do not involve time derivatives. Therefore, there are no scalar propagating DOFs in
Einstein gravity without matter.

The same holds for the vector degrees of freedom. If one instead considers the tensor DOFs in hµν

ds2 = −dt2 + (δij + hij)dxidxj (6)

where, after imposing the traceless, divergence-less conditions, and considering a wave propagating
in direction x3,

h̄ij = hij −
1
2

ηijh =

 h+ h× 0
h× −h+ 0
0 0 0

 , (7)

one finds that the two modes hα = {h+, h×} obey in vacuum the same gravitational wave equation,
�hα = 0, analogous to electromagnetic waves. GWs propagate therefore with speed cT equal to unity.

The same procedure can be applied to the HL. One finds then in the absence of matter fields [18,22]

S =

ˆ
d3xdt{QS[ϕ̇

2 − c2
s

a2 (∂i ϕ)
2] +

2

∑
α=1

QT [ḣα
2 −

c2
T

a2 (∂ihα)
2]} (8)

where ϕ is the scalar mode perturbation, hα represents the two tensor modes, and cS, cT represents
their speed of propagation, respectively. As expected, HL has now three propagating DOFs, plus those
belonging to the matter sector.

The four coefficients, QS, cS, QT , cT , depend on the HL functions. Their expression will be given in
Section 6. From the classical point of view, stability is guaranteed when Qx, c2

x (with x = S, T) have the
same sign. In fact, in this case, the equations of motion are well-behaved wave equations with speed cx,
whose amplitude is constant (or decaying in an expanding space), rather than growing exponentially
as it would happen for c2

x < 0 (gradient instability). For the quantum stability, however, one must also
require Qx > 0 (or more exactly, the same sign of the kinetic energy of matter particles, assumed by
convention to be positive), since otherwise the Hamiltonian is unbounded from below, which means
particles can decay into lower and lower energy states, without limit, generating so-called ghosts.
Therefore, for the overall stability of the theory, one requires Qx, c2

x > 0.

4. The Quasi-Static Approximation

In what follows, we put ourselves in Fourier space. That is, we replace every perturbation variable
X(~x, t) with a plane wave parametrized by the comoving wavevector~k, X(~x, t) = Xk(t)ei~k·~x. Since we
deal only with linearized equations, this simply means replacing every perturbation variable or their
time derivative with its corresponding Fourier coefficient Xk or its time derivative Ẋk, and every space
derivative ∂

(n)
i of order n with (iki)

nXk. We drop from now on the k subscripts. We then assume that
the so-called quasi-static approximation (QSA) is valid for the evolution of perturbations. This implies
that we are observing scales well inside the cosmological horizon, k̂ ≡ k/(aH) � 1, where k is
the comoving wavenumber, and cSk̂ � 1 inside the Jeans length of the scalar, such that the terms
containing k (i.e., the spatial derivatives) dominate over the time-derivative terms. For the scalar
field, this means we neglect its wavelike nature and convert its Klein–Gordon differential equation
into a Poisson-like constraint equation. If cS ≈ 1, the scales at which the QSA is valid correspond
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to all sub-horizon scales, which are also the observed scales in the recent universe. For models with
cS → 0, the QSA might be valid only in a narrow range of scales, or even be completely lost in the
non-linear regime.

Let us explain in more detail the QSA procedure by using standard gravity as an example. Let us
write down the perturbation equations for a single pressureless matter fluid in ΛCDM. From now
on, we adopt the Friedmann–Lemaître–Robertson–Walker (FLRW) perturbed metric in the so-called
longitudinal gauge, namely

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdxidxj. (9)

If we use N = log a as a time variable, such that ẋ = Hx′, the coefficients of the perturbation
variables become dimensionless, and we are left with [23]

δ′ = −θ − 3Φ′ (10)

θ′ = −
(

2 +
H′

H

)
θ + k̂2Ψ (11)

k̂2Ψ = −3
2

Ωm

(
δ + 3k̂−2θ

)
(12)

Ψ = −Φ (13)

where, instead of the matter density ρm, we use Ωm,

ρm = 3H2Ωm (14)

and where δ ≡ δρm/ρm, and θ = ikivi/aH if vi = adxi/dt is the peculiar velocity, such that θ = iki(xi)′.
A glance at these equations tells us that, as an order of magnitude, δ ∼ θ ∼ k̂2Ψ ∼ k̂2Φ. Moreover,
we assume X ∼ X′, X′′ for every perturbation variable X = {δ, θ, Ψ, Φ} (unless there is an instability,
see below) and, consequently, k̂2X � X′, X′′. Therefore, for k̂� 1, the equations become

δ′ = −θ (15)

θ′ = −
(

2 +
H′

H

)
θ − 3

2
Ωmδ, (16)

and one can derive the well-known second-order growth equation with dimensionless coefficients

δ′′ +

(
2 +

H′

H

)
δ′ − 3

2
Ωmδ = 0. (17)

The same QSA procedure can be followed for more complicated systems. When a coupled scalar
field is present, its perturbation is of the same order as the gravitational potentials, δφ ∼ Ψ ∼ Φ.

The QSA says nothing about the background behavior. Additional conditions might be imposed:
for instance, that the background scalar field slow rolls are such that the kinetic terms, proportional
to the derivatives φ′, φ′′, are negligible with respect to the potential ones. This is indeed expected in
order to produce an accelerated regime not too dissimilar from ΛCDM; however, first, one can have
acceleration driven by purely kinetic terms, and second, acceleration can be produced even with a
significant fraction of energy in the kinetic terms. Therefore, slow-roll approximation and QSA should
be kept well distinguished. However, in some formulas below, we will explicitly make use of the
slow-roll approximation on top of the QSA.

Let us emphasize that the QSA applies only for classically stable systems. Imagine a scalar field
obeying a second-order equation in Fourier space

φ′′ + Fφ′ + c2
Sk2φ = S (18)
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where from now on we use the physical wavenumber

kphys =
kcom

a
(19)

instead of the comoving one, and where F, S are the friction and the source, respectively, depending in
general on the background solution and on other coupled fields. If c2

S < 0, the solution φ will increase
asymptotically as e|cS |k log a = a|cS |k, and in this case φ′′ ∼ |c2

S|k2φ will not be negligible with respect to
c2

Sk2φ as we assumed in the QSA.
For simplicity, from now on we assume that the space curvature has been found to be vanishing,

so |Ωk0| � 1. Using Einstein’s field equations and a pressureless perfect fluid for matter, we can derive
from the HL two generalized Poisson equations in Fourier space, one for Φ and one for Ψ:

k2Φ =
1
2

Y(k, z)η(z, k)ρm(z)δm(z, k) (20)

k2Ψ = −1
2

Y(k, z)ρm(z)δm(z, k) (21)

where z is the redshift, k the physical wavenumber, δm the matter density contrast, and η and Y are
two functions of scale and time that parametrize deviations from standard gravity (we remind the
reader that, in our units, 8πGN = 1). In some papers, the function Y is also called µ. Comparing
with Equations (12) and (13), we see that in Einstein’s general relativity they reduce to η = Y = 1.
Clearly, the anisotropic stress η, or gravitational slip, is defined as

η = −Φ
Ψ

. (22)

(From now on, all the perturbation quantities are meant to be root-mean-squares of the corresponding
random variables and are therefore positive definite; we can therefore define ratios such as η.) A value
of η 6= 1 can be generated in standard general relativity only by off-diagonal spatial elements of
the energy-momentum tensor. For a perturbed fluid, these elements are quadratic in the velocity,
Tij ∼ ρvivj, and therefore vanish at first order for non-relativistic particles. Free-streaming relativistic
particles can instead induce a deviation from η = 1: this is the case of neutrinos. However, they play a
substantial role only during the radiation era and are negligible today [24]. Therefore, η 6= 1 in the late
universe means that gravity is modified, unless there is some hitherto unknown abundant form of hot
dark matter.

In the QSA, one can show that for HL [17,25]

η = h2

(
1 + k2h4

1 + k2h5

)
, Y = h1

(
1 + k2h5

1 + k2h3

)
, (23)

for suitably defined functions h1−5 of time alone that depend only on K, G3,4,5. Their full form will
be given in Section 6 along with another popular parametrization of the HL equations proposed
in [22]. In general, the functions h3,4,5 are proportional to µ−2, where µ is a mass scale. In the simplest
cases, µ corresponds to the standard mass m, i.e., the second derivative of the scalar field potential,
plus other terms proportional to φ′ or φ′′. These kinetic terms are expected to be subdominant if
φ drives acceleration today or, more in general, during an evolution that is not strongly oscillating,
so often we can assume that h3,4,5 scale simply as m−2. This approximation will be adopted in the
explicit expression for f (R) and conformal coupling that are given below. If the scalar field drives the
acceleration, one expects m to be very small, of order H0 ≈ 10−33 eV. In this case, at the observable
sub-horizon scales, η → h2h4/h5 and Y → h1h5/h3. If instead this scale is of the order of the
linear scales that can be directly observed (e.g., 100 Mpc), then one could observationally detect the
k-dependence of Y, η and find that, at sufficiently large scale, such that k� m, η → h2, Y → h1.
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The same form of Y, η can be obtained also in other theories not based on scalars that produce
second-order equations of motion, namely, in bimetric models [26] and in vector models [27].

It is worth stressing the fact that the time dependence of Y, η, expressed by the functions h1−5,
is essentially arbitrary. Given observations at several epochs, one can always design an HL that
exactly fits the data, no matter how precise they are. In contrast, the space dependence, which in
Fourier space becomes the k dependence, is very simple and fixed. The reason is that the HL equations
are by definition second-order, and therefore contain at most factors of k2. The k dependence is
therefore potentially a more robust test for the validity of the HL than the time one. A model with two
coupled scalar fields would instead generate for Y, η a ratio of polynomials of order k4 (see, e.g., [28]).
Clearly, one has to remember that all this is valid at linear scales: if the k dependence is important only
at non-linear scales, e.g., for k > 1 Mpc−1, then it might be completely lost.

Another equivalent form that we will employ often is

Yη = h1h2

(
1 +

αsk2

m2 + k2

)
, Y = h1

(
1 +

αtk2

m2 + k2

)
(24)

where

αt ≡ (h5 − h3)/h3

αs ≡ (h4 − h3)/h3 (25)

m2 ≡ 1/h3.

This form has a simple physical interpretation. Yη is the modifier of the Φ-Poisson equation,
just as Y is the modifier of the Ψ-Poisson equation. The parameters αt, αs are the strengths of the
fifth-force mediated by the scalar field for Ψ (the metric time-time perturbed component) and for Φ
(the metric space-space perturbed component), respectively. Finally, m is the effective mass of the scalar
field, and λ ≡ 1/m its spatial range. This interpretation will be discussed in the next section.

A particularly simple case is realized with the f (R) models, where f (R) is the function of the
curvature R that is to be added to the Einstein–Hilbert Lagrangian. In this case in fact,

η = 1− 1
2

k2

(3/4)m2
R + k2

, Y =
1

1 + f,R

(
1 +

1
3

k2

m2
R + k2

)
. (26)

The derivative f,R is often negligible at the present epoch, in order to reproduce a viable cosmology.
In this case, m2

R = (3 f,RR)
−1 and, for large k, η → 1/2 and Y → 4/3, regardless of the specific

f (R) model.
Another simple case is conformal scalar-tensor theory, with G3 = G5 = 0, G4 = F(φ)/2, and K =

(1− 3αt)F(φ)X−V(φ), where αt = (F,φ/F)2/2. In this form, the strength of the fifth force is αt. In this
case, we have

η = 1− 2αtFk2

(1 + αt)Fk2 + M2 , Y =
1
F

(
1 +

αtk2

k2 + M2

)
(27)

where M2 = V,φφ. When M is vanishingly small, η → 1− 2αt/(1+ αt) and Y = (1+ αt)/F. Comparing
with Equation (26), we see that, for f (R), αt = −αs = 1/3.

5. Potentials in Real Space

In real space, one can derive the modified Newtonian potential for a radial mass density
distribution ρ(r) by inverse Fourier transformation. Let us start with Equation (24):

Y = h1

(
1 +

αtk2

m2 + k2

)
. (28)
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For a non-linear static structure (e.g., the Earth or a galaxy) the local density is much higher than
the background average density, so δm(k) = [ρm(k)− ρm]/ρm ≈ ρm(k)/ρm, where ρm = 〈ρm(k)〉 is the
background density, and

ρm(k) =
ˆ

ρ(r)eikrd3r (29)

is the Fourier transform of ρ(r). The Poisson Equation (21) becomes then

k2Ψ = −1
2

Y(k)ρm(k). (30)

In real space and for a radial configuration, this reads

r−2 ∂

∂r

(
r2 ∂

∂r

)
Ψ =

1
2

σ(r) (31)

where
σ(r) =

V
(2π)3

ˆ
eikrY(k)ρm(k)d3k (32)

is the inverse Fourier transform of Y(k)ρm(k), and V is an arbitrary large volume that encompasses
the structure (since we use the physical k, r now refers to the physical distance). Assuming that Ψ
vanishes at infinity, Equation (31) has the general solution

Ψ(y) = −h1

4

ˆ ∞

0
dr
ˆ 1

−1
dz

(
1

|r− y| +
αte−m|r−y|

|r− y|

)
ρ(r)r2 (33)

= ΨN + ΨY (34)

where z = cos θ and where ΨN is the standard Newtonian potential, while ΨY is the Yukawa correction
proportional to αt. This can be solved for any given radial density distribution ρ(r). For m → ∞
(or αt → 0), we are back to the Newtonian case.

Let us focus now on the modified gravity part. This can be analytically integrated in some simple
cases. We write

ΨY(y) = −
h1

4
αt

ˆ ∞

0
dr
ˆ 1

−1
dze−m|r−y||r− y|ρ(r)r2 (35)

= −h1

4
αt

ˆ ∞

0
ρ(r)r2dr

ˆ 1

−1

e−m
√

r2+y2−2ryz√
r2 + y2 − 2ryz

dz (36)

= −h1

4
αt

ˆ ∞

0
ρ(r)r2drF(y, r) (37)

where F has two parts

F1(y, r) =
e−m(r−y) − e−m(r+y)

mry
, r > y (38)

F2(y, r) =
em(r−y) − e−m(r+y)

mry
, r < y. (39)

For a mass point at the origin, for instance, one has ρ(r) = Mδ
(3)
D (r) where δ

(3)
D is the Dirac delta

function in 3D, defined for any regular function f (r) as
´

d3r f (r)δ(3)D (r) = 4π
´

f (r)r2drδ
(3)
D = f (0);

therefore,
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ΨY(y) = −
h1

4
αt

ˆ ∞

0
dr
ˆ 1

−1
dz

e−m|r−y|

|r− y| ρ(r)r2 (40)

= − h1

8π
αt M

e−m|y|

|y| (41)

i.e., the so-called Yukawa correction. The total potential is then

Ψ(r) = −h1
GN M

r
(1 + αte−mr) (42)

where we reintroduced for a moment Newton’s constant GN . As anticipated, αt gives the strength
of the Yukawa interaction, and λ ≡ 1/m its spatial range. The prefactor h1 renormalizes the product
GN M, such that only the product h1GN M is then observable (besides αt, m). Sometimes h1GN is
denoted Geff because it can be seen as a renormalization of Newton’s constant.

A typical dark matter halo can be approximated by a Navarro–Frenk–White profile [29] with scale
rs and density parameter ρ0,

ρ(r) =
ρ0

r
rs
(1 + r

rs
)2 . (43)

In this case, we have [30]

ΨY(y) = −2πh1αt

ˆ ∞

0
ρ(r)r2drF(y, r) (44)

=
2πh1αtρ0

y
r3

s [e
−m(rs+y)(Ei(mrs)− Ei[m(rs + y)]) (45)

− em(rs+y)Ei[−m(rs + y)] + em(rs−y)Ei(−mrs)] (46)

where Ei(x) is the ExpIntegral function,

Ei(x) = −
ˆ ∞

−x

e−t

t
dt . (47)

Exactly the same procedure can be applied to the second potential Φ, which obeys another
Poisson equation

k2Φ =
1
2

Yηρmδm . (48)

One has now

Yη = h1h2

(
1 +

αsk2

m2 + k2

)
. (49)

Notice that the mass m is the same for Ψ, Φ: there is only one boson, not two. The real-space
expression for Φ for a point-mass M is then identical to the one for Ψ with αs in place of αt and h1h2 in
place of −h1,

Φ(r) = h1h2
GN M

r
(1 + αse−mr). (50)

Finally, the so-called lensing potential ψ(r) = Ψ(r)− Φ(r) is responsible for the gravitational
lensing of source images in the linear regime. In this regime, given an elliptical source at distance rs

characterized by semiaxes of angular extent θs
i = (θs

x, θs
y), the image we see is distorted by intervening

matter into a new set of semiaxes θj = (δij + Dij)
−1θs

i where the distortion matrix is proportional
to ψ(r)

Dij =

ˆ rs

0
dr′(1− r′

rs
)r′ψ,ij. (51)
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All observations of gravitational lensing lead therefore ultimately to an estimation of ψ(r). What is
observed in practice is the power spectrum of ellipticities, i.e., the correlation of ellipticities of galaxies
in the sky due to a non-zero ψ(r) along the line of sight (see, e.g., [31], chap. 10).

From Equations (20) and (21), we see then that

k2ψ = −1
2

Y(k, z)(1 + η(z, k))ρm(z)δm(z, k) . (52)

In our formalism, the lensing potential in real space amounts then to

Ψ(r)−Φ(r) = −h1(1 + h2)
GN M

r
(1 + ALe−mr) (53)

where
AL =

h2αs + αt

1 + h2
. (54)

Since h2 is in general different from unity, the mass M(Ψ) ≡ h1M one infers at infinity from the Ψ
potential (often called dynamical mass) is different from the mass M(Φ) ≡ h1h2M that one infers from
the Φ potential and from the lensing combination Ψ−Φ, i.e., M(Ψ−Φ) = h1(1 + h2)M/2 (lensing mass).
These masses of course coincide in standard gravity. As we will see below, one can indeed compare
observationally the estimations and extract η by taking suitable ratios.

6. The Parameters of the Yukawa Correction

In [22], it has been shown that the HL perturbation equations can be entirely written in terms of
four functions of time only, αK,B,M,T , given as

M2
∗ ≡2

(
G4 − 2XG4X + XG5φ − φ̇HXG5X

)
(55)

HM2
∗αM ≡ ˙(M2∗) (56)

H2M2
∗αK ≡2X

(
KX + 2XKXX − 2G3φ − 2XG3φX

)
+ (57)

+ 12φ̇XH
(
G3X + XG3XX − 3G4φX − 2XG4φXX

)
+

+ 12XH2
(

G4X + 8XG4XX + 4X2G4XXX

)
−

− 12XH2
(

G5φ + 5XG5φX + 2X2G5φXX

)
+

+ 4φ̇XH3
(

3G5X + 7XG5XX + 2X2G5XXX

)
HM2

∗αB ≡2φ̇
(
XG3X − G4φ − 2XG4φX

)
+ (58)

+ 8XH
(
G4X + 2XG4XX − G5φ − XG5φX

)
+

+ 2φ̇XH2 (3G5X + 2XG5XX)

M2
∗αT ≡2X

(
2G4X − 2G5φ − (φ̈− φ̇H) G5X

)
. (59)

This parametrization (collectively called αi) is linked to the physical properties of the HL.
Briefly, αT expresses the deviation of the GW speed from c, c2

T = 1 + αT ; αK is connected to the
field kinetic sector, and αB to the mixing (“braiding”) of the scalar and gravitational kinetic terms; M?

is the time-dependent effective reduced Planck mass, and αM its running. They are designed such that
αi = 0 for ΛCDM. They do not vanish, in general, for standard gravity with a non-ΛCDM background
expansion, nor for non-standard gravity with a ΛCDM expansion. Several observational limits on
these parameters in specific models have already been obtained (see, e.g., [32]).

It is clear that cancellations can occur among terms belonging to different Gi sectors. However,
one should distinguish between dynamical cancellations, i.e., involving a particular background
solution for φ(t), H(t), and algebraic cancellations, which only depend on a special choice for the
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functions Gi(φ, X). The former ones, if they exist at all and are not unstable, can be guaranteed only
for some particular set of initial conditions, and might occur only for some period, unless the solution
happens to be an attractor. The algebraic cancellations, however, are independent of the background
evolution and therefore valid at all times. Therefore, usually only the second class is regarded as an
interesting one.

We can now express the four coefficients introduced in Equation (8) that determine the stability of
the HL as [22]

QS =
M2
∗(2αK + 3α2

B)

(2− αB)2 , (60)

c2
S =

(2− αB) α1 + 2α2

2αK + 3α2
B

,

QT =
M2
∗

8
, (61)

c2
T = 1 + αT

where

α1 ≡ αB + (αB − 2) αT + 2αM (62)

α2 ≡ αBξ + α′B − 2ξ − 3(1 + wm)Ω̃m (63)

and where ξ = H′/H and Ω̃m = ρm
3M2

?H2 = 1− ρHL
3M2

?H2 (with this last relation one can get rid of ρm

everywhere). Here, “matter” represents all the components in addition to the scalar field, i.e., baryons,
dark matter, neutrinos, and radiation. The matter equation of state wm = ∑i wiΩi/Ωm is then an
effective value for all the matter components. Note that c2

S = 1 in the standard minimally coupled
scalar field case K = X−V(φ), G3 = G5 = 0, and G4 = 1/2.

The relation between the “observable” parameters h1−5 that enter the Yukawa correction and the
“physical” parameters αK,B,M,T is

h1 =
αT + 1

M2
?

, (64)

h2 =
1

αT + 1
, (65)

h3 =
1

2H2µ2 ((2− αB)α1 + 2α2) (66)

h4 =
1

H2µ2 (α1 + α2) (67)

h5 =
1

H2µ2

(
αM + 1
αT + 1

α1 + α2

)
(68)

where

µ2 ≡ −3[2ξ2 + ξ ′ + ξ(3 + αM)]αB − 3ξα2. (69)

(With respect to the mass defined in [22], we have µ2 = M2/H2.)
Two remarks are in order. First, the quantity µ2 acts as an effective squared mass in the

perturbation equation of motion for φ; we need to assume therefore that it is non-negative to avoid
instability below some finite value of k. Second, the expressions for αi and hi are completely general
and do not assume the QSA. The QSA is needed only when we connect the theory to observations
through Y, η.
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Considering now only pressureless matter, from the background equations in the Appendix A,
we see that,

ξ = −3
2
− pHL

2H2M2
?
= −3

2
(1 + wHLΩ̃HL) (70)

where wHL = pHL/ρHL. In a ΛCDM background, 2ξ + 3Ωm = 0, and µ2 simplifies to µ2 =

−3ξ(αMαB + α2) = −3ξ(αMαB + αBξ + α′B + 3(Ωm − Ω̃m)). Notice that αK does not appear in the
hi-αi relation: this means that the kinetic parameter αK is not an observable in the QSA linear regime.
In Section 13, we will discuss which combinations of αi are model-independent (MI) observables
in cosmology.

Assuming Einstein–Hilbert action for the gravitational sector and a canonical kinetic term for the
scalar field, we have M2

? = 1 and αB,M,T = 0, so α1 = 0 and

µ2 = −9ξΩ̃HL(1 + wHL) (71)

α2 = 3Ω̃HL(1 + wHL). (72)

Therefore, h1 = h2 = 1 and

h3,4,5 = − 1
3ξH2 =

2
9H2(1 + wHLΩ̃HL)

(73)

so that, as per construction, Y, η → 1.
It is worth noticing that the stability conditions QT , QS, c2

S > 0 imply (2− αB)α1 + 2α2 > 0 and
therefore h3 > 0 if one also requires µ2 > 0. As we have seen, λ =

√
h3 is the range of the fifth-force

interaction, so it makes sense that it is positive definite for stable systems. In the standard Brans–Dicke
model with a potential V(φ), for instance, and neglecting several subdominant kinetic terms, we have

µ2 =
3αMm2

φφ′

3H2 (74)

where m2
φ = V,φφ ; therefore, finally,

h3 =
3 + 2ω

2φm2
φ

(75)

where φ = M2
∗ (notice that in Brans–Dicke φ has dimensions mass2, and mφ is therefore dimensionless),

so the fifth-force range is

λ = m−1 = (mφ M∗)−1

√
3 + 2ω

2
. (76)

Assuming a ΛCDM expansion and αT = 0, the conditions for stability during the matter era
simplify to αK > −3α2

B/2 and

(2− αB)(αB + 2αM + 3Ωm) + 2α′B − 6Ω̃m > 0. (77)

Generalizing, we have that for a background parametrized by a (possibly time-dependent)
EOS wHL and for matter with an effective wm, one has

(2− αB)(αB + 2αM)− 3[1 + wHL + (wm − wHL)Ω̃m]αB + 2α′B + 6(wHL + 1)(1− Ω̃m) > 0. (78)

To these stability conditions, arising from Equations (60) and (61), one should add the requirement
that the friction term in the perturbation equations for δφ, or equivalently, for the gravitational
potentials Φ, Ψ, is positive. This condition is quite milder than those from Equations (60) and (61).
While a negative c2

s , for instance, even for a short period, induces a unbounded growth for k → ∞,
a negative friction term typically leads to a power-law growth ap, which might be a problem only if it
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lasts for too long. However, in order to obtain the friction instability condition, one should carefully
investigate the existence of growing modes also when the various coefficient are time-dependent and
no simple criteria have been identified so far. Therefore, we just quote the condition for negative
friction (i.e., stability) for the gravitational waves, best obtained by writing down the equation in
conformal time, since in this case the k2 term is time-independent (provided αT = const). The condition
is simply αM > −2.

From the hi − αi relations (64), we can derive the Yukawa strengths

αs =
h4 − h3

h3
=

α1αB
(2− αB)α1 + 2α2

αt =
h5 − h3

h3
=

α2
1

((2− αB)α1 + 2α2) (αT + 1)
. (79)

The Yukawa strength αt is always positive, so the fifth force is attractive if QT , QS, c2
S > 0. We also

notice that if αM = αT = 0, then α1 = αB and the two strengths become equal, and h2 = 1. Therefore,
Ψ = −Φ, and, finally, η = 1, even if both potentials do actually have a non-vanishing Yukawa
correction, such that Y 6= 1. In order for the parameters αM, αT to vanish, the gravity sector of the
HL must be standard, G4 = const, G5 = 0, barring the case of accidental dynamical cancellation for
some particular background evolution. Therefore, we conclude that η 6= 1 implies, and is implied by,
modified gravity, at least when matter is represented by a perfect fluid [33]. One cannot make a similar
statement for Y. This is a crucial statement for what follows. Notice, however, that, as we show below,
although modified gravity implies η 6= 1, a value η = 1 does not necessarily imply standard gravity,
but only scale-free gravity, at least at the quasi-static level. In [34], it has been shown that η = 1 at all
scales implies indeed standard gravity.

We can draw more conclusions from Equations (79).

• The two strengths αt, αs are equal also if αM = αT . In this case, η = (1 + αT)
−1 and has no

scale dependence.
• The k→ ∞ limit of the modified gravity parameters (provided we are still in the linear regime) is

Y∞ =
h1h5

h3
=

2
M2

?

α1(1 + αM) + α2(1 + αT)

2α2 + α1(2− αB)
(80)

η∞ =
h2h4

h5
=

α1 + α2

α1(1 + αM) + α2(1 + αT)
. (81)

This coincides with Equation (4.9) of [22]. If αT = 0, then

Y∞ =
1

M2
?

[
1 +

(2αM + αB)
2

2α2 + (2αM + αB)(2− αB)

]
(82)

η∞ = 1− (2αM + αB)αM
(2αM + αB)(1 + αM) + α2

. (83)

It turns out that, if one imposes stability, c2
s > 0, then Y is always larger than, or equal to, 1/M2

?,
such that matter perturbations in Horndeski with αT = 0 always grow faster, in the quasi-static
regime, than any standard gravity model with the same M? and the same background. It also
follows that the lensing combination that appears in Equation (52) amounts to

Σ ≡ Y(1 + η) = 2
[

1 +
(2αM + αB)(αB + αM)

2α2 + (2− αB)(2αM + αB)

]
. (84)

Since the denominator has to be positive for stability, the sign of the effect on the gravitational
lensing depends only on αM, αB.
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• The Yukawa corrections disappear completely if α1 = 0, i.e., for

αB = 2
αT − αM
1 + αT

. (85)

This is therefore the general condition to have a scale-free gravity, corresponding to h3 = h4 = h5

(we recently noticed that this relation was first provided in an unpublished draft by Mariele
Motta in early 2016). If we also assume αT = 0 and consequently G4X = G5 = 0 (conformal
coupling) in the HL, as required by the GW speed constraints we discuss in Section 8, it follows
that αB = −2αM [35,36] (note that in [35] αB is defined as our −αB/2), and that

G4φ = −XG3X , (86)

which gives an algebraic cancellation for G3 = − f ′(φ) log X and G4 = f (φ). In this particular
model, the local gravity experiments would not detect a Yukawa correction, even if gravity
actually couples to the scalar field. Gravity then becomes scale free. The Planck mass would still
vary with time, however. Therefore, in this model, η → 1 even if gravity is actually modified.
Assuming a ΛCDM background, for this model to be stable, c2

s > 0 implies the condition
(αB H)′ > 0. For αB constant or slowly varying, the stability condition amounts to αB < 0,
so αM > 0; therefore, Y, or the effective Newton’s constant, will decrease with time. A larger Y in
the past means faster perturbation growth for the same Ωm. Once again, however, since Ωm is
not an MI observable quantity, whether this means that perturbations grow faster than in ΛCDM
or not is a model-dependent statement.

• From Equation (52), we find also that the lensing potential lacks a Yukawa term whenever AL = 0,
defined in (54), i.e., h2αs + αt = 0, which amounts to

α1αB + α2
1 = 0. (87)

We then see that AL = 0, not only when α1 = 0 but also for α1 = −αB. Again imposing the GW
speed constraint, this becomes αB = −αM. On the HL functions, this implies

G3X = 0, (88)

which actually means that the G3 sector, after an integration by parts, can be absorbed in K(φ, X).
Therefore, for the conformal coupling and when the G3 term is absent or does not depend on X,
the lensing potential becomes simply twice the standard Newtonian potential

Ψ(r)−Φ(r) = 2h1
GN M

r
. (89)

This means that radiation, being conformally invariant (the electromagnetic Lagrangian√−gFαβgβµgανFµν does not change for gµν → f (φ)gµν), does not feel the modification of gravity,
except for the overall factor h1, which, if time-dependent, induces a time-dependent mass or
Newton’s constant.

• In the same case as above, αB = −αM and αT = 0, one has

αt =
α2

M
c2

s (2αK + 3α2
M)

, (90)

which becomes
αt =

1
3c2

s
(91)
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when the kinetic component αK is small. Similarly, αs = −1/(3c2
s ). For cs = 1, one obtains

a Yukawa strength of 1/3 (−1/3) for the Ψ (Φ) potential. This case is exactly realized for the
f (R) models.

• Finally, in the uncoupled case αM = αT = 0, in which only the kinetic sector of the scalar field
is modified, one has that αs = αt > 0, such that there is a Yukawa correction, but η = 1 at all
quasi-static scales.

7. Local Tests of Gravity

Gravity has been tested for a long time in the laboratory and within the solar system (see, e.g., [37]).
The generic outcome of these experiments is that Einsteinian gravity works well at all of the scales
that have been probed so far. In many experiments one assumes the existence of the same type of
“fifth-force” Yukawa correction to the static Newtonian potential predicted by the HL model,

Ψ(r) = −GN M
r

(1 + αe−mr). (92)

(Here we drop the subscript from αt since we need to consider only Ψ; moreover, any overall parameter
can be absorbed in GN M.) Current limits on α and λ = 1/m have been obtained in a range of scales
from micrometers to astronomical units. The constraints on the strength α obviously weakens for
very small λ. To give an idea, at the smallest scales probed in the laboratory, one has [38] |α| ≤ 106

at λ ∼ 10−5 m and |α| ≤ 10−2 at λ ∼ 10−3 m (Casimir-force experiments probe even shorter scales,
but the constraints on |α| become correspondingly weaker). At planetary scales, one has |α| ≤ 10−6

for λ ∼ 106 m (Earth–Moon distance), and |α| ≤ 10−8 at λ ∼ 1011 m (planetary orbits). Beyond this
distance, the constraints from direct tests of the Newtonian 1/r potential weaken again.

However, the scalar field responsible for the Yukawa term induces also two post-Newtonian
corrections to the Minkowski metric. For a mass distribution with velocity field vi(x, t) and density
distribution ρ(x, t), we define U as the potential that solves the standard Poisson equation for
non-relativistic particles, i.e., [37]

U =

ˆ
ρ(x, t)
|x− x′|d

3x′, (93)

and Vi as a velocity-weighted potential

Vi =

ˆ
ρ(x, t)vi
|x− x′| d3x′. (94)

We can then write the parametrized post-Newtonian metric as follows:

g00 = −1 + 2U − 2(1 + β)U2 (95)

g0i = − 1
2 (3 + 4(1 + γ))Vi (96)

gij = (1 + 2(1 + γ)U)δij. (97)

(The full post-Newtonian metric includes several other terms that are not excited by a conformally
coupled scalar field, see, e.g., [2]). Clearly, γ = β = 0 produces the standard weak-field metric.
Taking the extreme case of λ→ ∞, one has

β = 1
2

β0α

(1+α)2 (98)

γ = −2 α
(1+α)

(99)

where β0 = d
√

α(φ)/dφ. The parameter 1 + γ can be seen as the local-gravity analogue of the
anisotropic stress η, both being the ratio of (gii − 1)/(g00 + 1) at a linear level.
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Local tests of gravity can, therefore, measure the Yukawa correction for both Φ, Ψ, i.e., αt, αs and
λ, and the ratio Φ/Ψ, in a model-independent way. The parameter |γ|, for instance, is constrained to
be less than 10−5 [39], inducing a similar constraint on α at large scales. A similar constraint applies
also to β. With such a small strength, there would hardly be any interesting effect in cosmology.

However, all these tests are performed within a limited range of scales, both spatial and temporal.
Moreover, the tests are performed with (some of) the standard matter particles and not with, say,
dark matter. Therefore, they are completely escaped if standard model particles do not feel modified
gravity, for instance, because the scalar field that carries the modification of gravity does not couple to
them or because of screening effects, as we discuss next.

So far we have considered only linear scales. At strongly non-linear scales, e.g., in the galaxy or
in the solar system, the effects of modified gravity depend on the actual configuration of the scalar
field. If such a configuration is static and homogeneous within a scale rs, then the effects of modified
gravity can be screened within rs, since they are proportional to the variation of φ. This is the so-called
chameleon effect [40,41]. On the other hand, screening can occur also because of non-linearities in
the kinetic part of the Klein–Gordon equation: this is the Vainshtein effect [42,43]. Finally, a third
mechanism appears if the coupling α sets on a vanishing value in structures (high density regions),
via a symmetry restoration, while being different from zero at the background (low density) [44–47].
In all cases, the strong deviation from standard gravity that we might see in cosmology are no longer
visible by local experiments. In this sense, one can always build models that escape the local gravity
constraints. This can be achieved also by assuming that the baryons are completely decoupled from
the scalar field.

In light of these arguments, let us consider for instance in more detail the constraint on GN
associated with the big bang nucleosynthesis (BBN), sometimes quoted as one of the most stringent
cosmological bound. The yields of light elements during the primordial expansion depends on
both the baryon-to-photon constant ratio ηb and the cosmic expansion rate during nucleosynthesis,
which in turn depend on GN at that time and on various standard model parameters. Fixing the
standard model parameters and estimating ηb by CMB measurements, one can find constraints on
GN(tBBN)/GN(t0) ≈ 1± 0.2 [48] by comparing the predicted abundances with the observed ones,
for instance deuterium in quasar absorption systems. This means that GN at nucleosynthesis was
close to GN on Earth today. The easiest explanation, which is that GN did not vary at all or at least
in any way less than 0.2 throughout the expansion, implies |αM(t0)| < 0.2(H0T0)

−1 (equal to ≈ 0.2
in ΛCDM), where T0 is the cosmic age. However, GN in the solar system might be screened, as we
have mentioned, and therefore equal to the “bare” GN of standard gravity. Therefore, any model
which is standard general relativity in the early universe, like essentially all models built to explain
present day’s acceleration, will automatically pass the BBN constraint. Moreover, one should notice
that this constraint depends on an estimate of Ωbh2 from CMB that assumes ΛCDM. Additionally,
GN is, in fact, degenerate with the number g∗ of relativistic degrees of freedom at nucleosynthesis,
such that the bound applies to GN g∗ rather than to GN alone. Finally, a simultaneous change in the
other standard-model parameters might considerably weaken the constraint (see [49,50]).

8. The Impact of Gravitational Waves

The Horndeski model predict an anomalous propagation speed cT for gravitational waves
(or rather, cT/c), since the scalar field is coupled in a non-conformal way. As already mentioned,
one has [25,51],

c2
T = 1 + αT . (100)

The almost simultaneous detection of GWs and the electromagnetic counterparts tells us that,
within 40 Mpc (at z ∼ 0.008) from us, GWs propagate essentially at the speed of light [3]. Since the
signals arrived within a 1s difference and since the light took 1015 s to reach us, we have that |c2

T/c2 −
1| < 10−15. Such a tight constraint immediately ruled out most of the scalar-tensor theories containing
derivative couplings to gravity or at least those models which show this effect in the nearby universe
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(in cosmological scales) [35,52–56]. That is, we need to have G5 = 0 and G4,X = 0. In other words,
the surviving Lagrangian has an arbitrary K, G3 but a vanishing G5 and an X-independent G4. This kind
of Lagrangian is just a form of Brans–Dicke gravity (plus a scalar field potential and a non-canonical
kinetic term). It is also equivalent to standard gravity with matter conformally coupled to a scalar field,
i.e., coupled to a metric ĝµν = f (φ)gµν. A dynamical cancellation among the terms depending on G5

and G4,X appears extremely fine-tuned. A possible way out is to design a model with an attractor on
which the conformal coupling holds, as proposed in [57]. In this case, after the attractor is reached,
we measure cT = 1, but this does not have to be true in the past. Deviations from the speed of light in
the past could be detected in B-mode CMB polarization [58].

The constraints on cT also affect directly η. From Equation (65), one has in fact

h2 =
1
c2

T
. (101)

Hence, the GW constraint h2 = 1 implies that η should also be equal to unity for sufficiently
large scales (small k) [59]; i.e., it should recover its general relativity value. The obvious exception are
theories without a mass scale in addition to the Planck mass [60], in which case η = h4/h5 at all scales.
On the other hand, no obvious GW constraint affects Y.

Gravitational waves might in principle measure another HL parameter: the running of the Planck
mass, αM. In fact, as it has been shown, for instance, in [33], the GW amplitude h obeys the equation

ḧ + (3 + αM)Hḣ + c2
T

k2

a2 h = 0. (102)

Assuming cT = 1, this equation in the sub-horizon limit is solved by [61]

ha =

(
M∗,em

M∗,obs

)
× hs , (103)

where the prefactor is the ratio of the Planck mass values at emission and at observation, and hs is
the standard amplitude expression that, for merging binaries, can be approximated as (see, e.g., [62],
Equation (4.189))

hs =
4

dL

(
GMc

c2

)5/3 (π fGW

c

)2/3
. (104)

Here, dL is the luminosity distance,Mc the so-called chirp mass, and fGW the GW frequency
measured by the observer.

GWs in standard gravity can measure the luminosity distance dL because the chirp mass and the
frequency can be independently measured by the interferometric signal. In modified gravity, what is
really measured is therefore a GW distance [61,63,64]

dGW =

(
M∗,obs

M∗,em

)
dL. (105)

Comparing this with an optical determination of dL leads to a direct measurement of M? at
various epochs, and therefore of αM.

It is, however, likely that both the emission and the observation occur in heavily screened
environments. In this case, M? is the same at both ends, and no deviation from dL would be observed.
If emission occurs in a partially unscreened environment, then one should see instead some deviation,
although not necessarily connected to the cosmological, unscreened, value of αM.
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9. Model Dependence

The standard model of cosmology, ΛCDM, is amazingly simple. It consists of a flat, homogeneous,
and isotropic background space with perturbations that, at scales above some Megaparsec, have been
evolving linearly until recently. The initial conditions for perturbations are set by the inflationary
mechanism and provide an initially linear and scale-invariant spectrum of scalar, vector, and tensor
perturbations, i.e., power-law spectra knx , where x stands for the three types of perturbations that can
be excited in general relativity. These are encoded in a spin-2 massless field that mediates gravitational
interactions via Einstein’s equations. The energy content is shared among relativistic particles (photons)
as well as quasi-relativistic particles, neutrinos, pressureless “cold” dark matter particles, standard
model particles (“baryons”), and a cosmological constant. The density of photons can be directly
measured via the CMB temperature: it amounts to 0.005%; the density of neutrinos depends on their
mass and is known to be less than 1% of the total content today. Therefore, today, only the last three
components are important. The density of baryons can be fixed by the primordial BBN [65]. Since the
space curvature has been measured (although so far only in a model-dependent way) to be negligible,
only a single parameter is left free: the present fraction of the total energy density in pressureless
matter, Ωm0. The fraction in the cosmological constant is then ΩΛ0 = 1−Ωm0.

With this one free parameter, the fraction of energy in the cosmological constant, ΩΛ ≈ 0.7,
ΛCDM fits all the current cosmological data: the cosmic microwave background (CMB), the weak
lensing data, the redshift distortion data (RSD), and the distance indicators (supernovae Ia, SNIa;
baryon acoustic oscillations, BAOs; cosmic chronometers, CCH; gravitational waves, GW).

There are indeed a few discrepancies. In particular, two seem to be more robust. The first
is the value of H0 obtained through local measurements, in particular through Cepheids,
H0 = (73.45± 1.66) km/s/Mpc [66], independent of cosmology, which deviates from the Planck [67]
value obtained through extrapolation from the last scattering epoch performed assuming ΛCDM,
H0 = (67.51± 0.64) km/s/Mpc [67]. The second one is the level of linear matter clustering embodied
in the normalization parameter σ8: here again, the value from CMB (σ8 = 0.82± 0.014) [67] differs
from the late-universe value delivered by weak lensing, σ8 = 0.745± 0.039 [68] and by RSD data [69],
σ8 = 0.75± 0.024.

Another source of discrepancies is related to the dark matter clustering [70]. Dark-matter-only
simulations fail at reproducing some of the observed properties of the DM distribution. Although the
inclusion of baryon physics may solve this, so far there is no conclusive statement, and some of these
issues may in fact be due to a modification of gravity.

These conflicting results already display a basic problem of cosmological parameter estimation,
namely the fact that it is very often model-dependent. The Planck satellite estimates of the cosmological
parameters, from Ωm to h, from the equation of state of dark energy w0 to the clustering amplitude σ8,
can be obtained only by assuming, among others, a particular model of initial conditions (inflation)
and of later evolution (ΛCDM). For instance, if we assume w0 = −0.9 instead of the cosmological
constant value w0 = −1, one obtains H0 ≈ 65.5 km/sec/Mpc ([67], Figure 27), outside the error range
given above.

Another example of model-dependency comes from distance indicators and the dark energy
equation of state. Cosmological distance indicators, whether based on SNIa, BAOs, or otherwise,
basically measure the comoving distance

r(z) =
1

H0
√

Ωk0
sinh

(√
Ωk0

ˆ z

0

dẑ
E(ẑ)

)
(106)

where Ωk0 = −k/H2
0 is the present amount of spatial curvature k expressed as a fraction of total energy

density. We see that r(z) depends only on H0, Ωk0 and E(z) = H(z)/H0. However, since distance
indicators depend on the assumption of a standard candle or ruler or clock, whose absolute value
we do not know, the absolute scale of r(z), i.e., H0, cannot be measured (except for “standard sirens”,
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i.e., gravitational waves [71]). Assuming for simplicity that Ωk0 = 0, the only direct observable is
E(z) = H(z)/H0. If we also neglect radiation (a very good approximation for observations at redshift
less than a few) and assume that, besides pressureless matter, we have a dark energy component with
EOS w(z), we have

E2(z) = Ωm0(1 + z)3 + (1−Ωm0)(1 + z)3(1+w̄) (107)

where

w̄(z) =
1

ln(1 + z)

ˆ z

0

w(ẑ)
1 + ẑ

dẑ. (108)

We can then invert the relation (107) and obtain

w(z) =
2(1 + z)EE,z − 3E2

3E2 − 3Ωm0(1 + z)3 (109)

where E,z means differentiation with respect to redshift. It appears then that, in order to reconstruct
w(z), one needs to know Ωm0, in addition to E(z). For instance, if the true cosmology were ΛCDM
with Ωm0 = 0.3, and we assumed erroneously that Ωm0 = 0.31, we would infer w(z = 0) = −0.986
and w(z = 1) = −0.897, which is much different from the true value −1.

The problem is that Ωm0 is not a model-independent observable. Whenever an estimate of Ωm0 is
given, e.g., from CMB or lensing or SNIa, it always depends on assuming a model. The reason is that
there is no way, with phenomena based on gravity alone (clustering and velocity of galaxies, lensing,
integrated Sachs–Wolfe, etc.), to distinguish between various components of matter, since matter
responds universally to gravity, unless one breaks the equivalence principle (see the “dark degeneracy”
of [72]). Therefore, to measure w(z), one has to assume a model, i.e., a parametrization, with extremely
precise measurements. For instance, if w(z) = w0 + wa(1− a), then we reduce the complexity to just
two parameters, and a measurement of E(z) at at least three different redshifts can simultaneously
fix w0, wa, Ωm0. Without a parametrization, w(z) cannot be reconstructed. With a parametrization,
the result depends on the parametrization itself.

On the other hand, it is clear that we can always perform null tests on w(z), as for most other
cosmological parameters. That is, we can assume a specific w(z), e.g., w = −1, and test whether it is
consistent with the data. In this case, in flat space, one needs just three distance measurements at three
different redshifts, since there are only two parameters, H0 and Ωm0. If the system of three equations
in two parameters has no solution, the ΛCDM model is falsified. While it is relatively easy to test,
i.e., falsify, a model of gravity, it is much more complicated to measure the properties of gravity in a
way that does not demand too many assumptions. This explains why the title of this paper mentions
“measuring”, and not “testing”, gravity.

The rest of the paper will discuss what kind of model-independent measurements we can perform
in cosmology, with emphasis on parameters of modified gravity. As is obvious, one cannot claim
absolute model independence. The point is rather to clearly isolate the assumptions, and see how far
can one reach with a minimum amount of them. In the following, we will assume. the following:

(a) the universe is well-described by a homogeneous and isotropic geometry with small
(linear) perturbations;

(b) gravity is universal;
(c) standard model particles behave from inflation onwards in the same way as we test them in

our laboratories;
(d) dark matter is “cold”.
One can replace the last statement with the assumption that we know the equation of state

and sound speed of dark matter, provided it is not relativistic and that the fluid remains barotropic,
i.e., p = p(ρ), as we will show later on. Unless otherwise specified, however, for the rest of this work,
we assume pressureless, cold dark matter.
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Notice that we are not assuming any particular form of gravity, standard or otherwise: in fact,
we refer to “gravity” as to one or more forces that act universally and without screening, at least
beyond a certain scale. Therefore, we include in our treatment gravity plus at least one scalar, vector,
and tensor field. Later on, we will use the Horndeski generalized scalar-tensor model for a specific
example, but the methods discussed here are not restricted to this case.

10. Model-Independent Determination of the Homogeneous and Isotropic Geometry

What we observe in cosmology are redshifts and angular positions of sources. However, we need
to build models for and test distances. Can we convert redshifts and angles into distances in an MI
way? If this turns out not to be possible, then there is no reason to continue our investigation to the
perturbation level. Fortunately, it appears we can.

The FLRW metric of a homogeneous and isotropic universe in spherical coordinates is

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
]

(110)

where a(t) is the scale factor normalized at present time to a(t0) = 1. If we measure s, t, r in units of
the natural scale length H−1

0 , the metric can be rewritten as

ds2 = −dt2 + a2(t)
[

dr2

1 + Ωk0r2 + r2dθ2 + r2 sin2 θdφ2
]

. (111)

The value of Ωk0 has been estimated by Planck to be extremely small, |Ωk0| < 0.004 ([67],
Table 5, last column), but, again, this is a model-dependent estimate, and for now we consider it as
a free parameter. We see that, up to an overall scale, the FLRW metric depends only on Ωk0 and on
E(z) = ȧ/a, from which a(t) is obtained by inverting

t− t0 =

ˆ a

1

dā
āE(ā)

(112)

where again t is in units of H−1
0 .

BAOs are the remnant of primordial pressure waves propagating through the plasma of baryons
and photons before their decoupling. By assumption (c), we assume their interaction at all times is the
same as in our laboratories. Therefore, we can predict that the comoving scale of the BAO today is a
constant R independent of the redshift at which it is observed. For instance, in ΛCDM, R (in units of
H−1

0 ) is equal to

R =
4
3

√
Ωγ0

Ωm0Ωb0
ln


√

Rs(zdrag) + Rs(zeq) +
√

1 + Rs(zdrag)

1 +
√

Rs(zeq)

 (113)

where the indexes γ, b, m refer to radiation, baryons, and dark matter, respectively; moreover, Rs(z) =
(3Ωb0/4Ωγ0)/(1 + z), zdrag ≈ 1000 is the redshifts of the drag epoch (see the numerical formula given
in [73]), and zeq = 2.396× 104 Ωm0h2 ≈ 3200 is the redshift at equivalence. The value R can be used as
a standard ruler: as for SNIa, we do not need to know R; we need only to assume that it is constant.
Therefore, we can search in the clustering of galaxies for such a scale, in particular by identifying a
peak in the correlation function. The angle under which we observe R gives us the “transverse BAO”.
In turn, this angle gives us the dimensionless angular diameter distance

H0dA(z) ≡
R
θ
=

1
(1 + z)

√
Ωk0

sinh(
√

Ωk0

ˆ z

0

dẑ
E(ẑ)

). (114)
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The correlation function, however, depends both on the angle between sources and on their
redshift difference. That is, one can observe also a “longitudinal BAO” scale, which, for a small redshift
separation dz, amounts to

E(z) =
dz
R

. (115)

This means that BAOs can estimate at every redshift two combinations involving E(z) and
Ωk0 and therefore determine both in an MI way. Therefore, the FLRW metric can in principle be
reconstructed within the range covered by BAO observations, without assumptions in addition to (a).
Clearly, SNIa and other distance indicators can contribute to the statistics, but do not offer information
on alternative combinations of cosmological parameters. Once we have the FLRW metric, the redshifts
and angles can be converted to distance by solving ds = 0. Given two sources at redshifts z1, z2

separated by an angle θ, their relative distance r12 is [74]

r2
12(z1, z2, θ) = r2

(
z1 + z2

2

)
sin2 θ

2
+ r2

(
z2 − z1

2

)
cos2 θ

2
(116)

where the comoving distance r(z) is defined in (106). The background geometry is then recoverable in
an MI way. However, this is not a test of gravity.

We move then to the next layer: perturbations.

11. Measuring Gravity: The Anisotropic Stress

We have seen that the gravitational slip η is defined as the ratio between the two gravitational
potentials

η = −Φ/Ψ . (117)

The lensing potential Ψ− Φ is the combination that exerts a force on the relativistic particles
(i.e., for our purposes, light), while Ψ exerts a force on non-relativistic particles (i.e., for our purposes,
galaxies). The explicit form of the equation of motion for a generic particle moving with velocity v and
relativistic factor γ2 = (1− v2)−1 in a weak-field Minkowski metric is in fact [75]

γ2v̇ = γ2[2v(v ·∇(Ψ−Φ)− v2∇(Ψ−Φ)]−∇Ψ. (118)

For small velocities, only the last term on the rhs survives; for relativistic velocities, only the
square bracket term. This means that, in order to test gravity at cosmological scales, we need to
combine observations of lensing and of the clustering and velocity of galaxies.

The linear gravitational perturbation theory provides the growth of the matter density contrast
δm(k, z) at any redshift z and any wavenumber k, given a background cosmology and a gravity model.
It is convenient to also define the growth function

G(k, z) =
δm(k, z)
δm(k, 0)

(119)

and the growth rate

f (k, z) =
δ′m(k, z)
δm(k, z)

(120)

where, as usual, the prime stands for derivative with respect to N = loge a.
However, what we observe is the galaxy number density contrast in redshift space, usually

expressed in terms of the galaxy power spectrum as a function of wavenumber k and redshift, Pgal(k, z).
Since galaxies are expected to be a biased tracer of mass, we need to introduce a bias function

b(k, z) =
δgal(k, z)
δm(k, z)

(121)
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that, in general, depends on time and space (that is, on k, z). If b = 1, then the number density of
galaxies in a given place is proportional to the amount of underlying total matter, ρgal = const× ρm.
If b > 1 (< 1), then galaxies are more (or less) clustered than matter. Moreover, since we observe in
redshift space, which means we observe a sum of cosmic expansion and the radial component of the
local peculiar velocity, to convert to real space, we need the Kaiser transformation [76], which induces
a correction factor (1 + f µ2/b)2 that depends on the cosine µ of the angle between the line of sight
and the wavevector~k.

This means that the relation between what we observe, namely the galaxy power spectrum in
redshift space, and what we need to test gravity, namely δm, can be written as [77]

Pgal(k, z, µ) = (A + Rµ2)2 (122)

where

A(k, z) = Gbδm0 , R(k, z) = G f δm0 (123)

where δm0(k) = δm(k, 0) is the root-mean-square matter density contrast today. (A, R are mnemonics
for amplitude and redshift, respectively.) With this definition, δm0 is normalized as

1
2π2

ˆ
δ2

m0W2
8 (kR8)d3k = σ2

8 (124)

where W8(kR8) is the window function for an 8 h−1Mpc sphere, and W(x) = 3(sin x − x cos x)/x3.
Sometimes one defines δ̂m0 = δm0/σ8, which is then normalized to unity. δ̂m0 can be referred to
as the shape of the present power spectrum. Equation (122) shows that A, R are the only two
observables one can derive from linear galaxy clustering. This dataset is often collectively called
redshift distortion (RSD).

There is then a third observable that one can obtain from weak lensing. From Equation (52),
we see that by estimating the shear distortion, one can measure the quantity

Y(1 + η)ρmδm = Y(1 + η)
Ωm0(1 + z)3

E2 Gδm0. (125)

Since E(z) can be estimated independently, we define another observable, to be denoted L [25],
as follows:

L(k, z) = Ωm0Y(1 + η)Gδm0 . (126)

Together with E = H(z)/H0, the quantities A, R, L are the only cosmological information one can
directly gather at the linear level (as we have seen, Ωk0 is also a direct observable, but for simplicity,
we have assumed that is negligible at all relevant epochs). Other observations, like the integrated
Sachs–Wolfe or velocity fields, only give combinations of A, R, L, E, rather than new information.
A direct measurement of the peculiar velocity field and its time derivative, for instance, would produce
through the Euler Equation (11) an estimation of the combination V = Ωm0YGδm0; however, this is
equivalent to 2RE2(2 + (log ER)′)/3(1 + z)3. At least at the linear level, one could add more statistics,
but will always end up with these four quantities rather than, say, a direct estimate of Ωm0 or Y.
A preliminary non-linear analysis [78] shows that, employing higher-order statistics, we can obtain
more MI information, but we will not consider this here.

We can now write the lensing equation in Fourier space in the following way (see [79]):

−k̂2(Ψ−Φ) =
3(1 + z)3L

2E2 (127)
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where k̂ = k/aH. The linearized matter conservation equations, i.e., the continuity equation and the
Euler equation, can be combined in a single second-order equation,

δ′′m + δ′m(2 +
E′

E
) = −k̂2Ψ, (128)

which depends only on the pressureless assumption (d) and not on the gravitational model. In terms
of our observational variables and for slowly varying potentials, this becomes

−k̂2Ψ = R′ + R(2 +
E′

E
) . (129)

These equations show clearly that lensing and matter growth can measure some combination of
R, L, E and their derivatives, as will be seen explicitly below. For now, let us just rewrite Equation (129),
employing also Equation (21) as

3
2

Ωm0(1 + z)3Y
f E2 =

R′

R
+ (2 +

E′

E
) . (130)

We see then that Y is not, unfortunately, an MI quantity. Even if we have precise information on
R, E, we would still need, at any k, z, the combination Ωm0/ f , which is not an observable. Only a null
test of standard gravity plus a specific cosmological model, say ΛCDM, is possible: in this case in fact,
Y = 1, and f ≈ Ω0.55

m are known, and we have that Ωm0 is uniquely measured by a combination of
R, R′, E, E′. Any two measures at different k or z values must then give the same Ωm0. We show below
that η, in contrast to Y, is an MI quantity.

Although A, R, L might be interesting statistics on their own, our goal here is to test gravity. Now,
the bias function depends on complicated, possibly non-linear and hydrodynamical processes; thus,
even if b depends on gravity, we do not know how. Additionally, the shape δm0 of the power spectrum
depends on initial conditions (inflation) and, possibly, on processes that distorted the initial spectrum
during the cosmic evolution. In fact, even if we could exactly measure the power spectrum shape from
CMB without a parametrization such as ns or its “running”, nothing precludes the possibility that an
unknown process, for instance the presence of early dark energy or early modified gravity, has distorted
the spectrum at some intermediate redshift between the last scattering and today. Therefore, in order to
obtain model-independent measures, we should eliminate both b and δm0. It was shown in [25,79] that
one can obtain only three statistics where the effects of the shape of the primordial power spectrum is
canceled out, namely

P1 ≡
R
A

=
f
b

, (131)

P2 ≡
L
R

=
Ωm0Y(1 + η)

f
, (132)

P3 ≡
R′

R
= f +

f ′

f
=

( f σ8(k, z))′

f σ8(k, z)
. (133)

In the last equation, we introduced the often-employed quantity

f σ8(k, z) = σ8G(k, z) f (k, z) = R
σ8

δm0
. (134)

Notice that we are not defining σ8(k, z) as an integral over the power spectrum at z, as in
Equation (124), because we are interested in the k-dependence. These quantities depend in general on
k, z in an arbitrary way. Every other ratio of A, R, L or their derivatives can be obtained through P1−3

or their derivatives.
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Let us discuss the three statistics P1−3 in turn. The first quantity, P1, often called β in the literature,
contains the bias function. Since we do not know how to extract gravitational information, if any,
from the bias, we do not consider it any longer.

Concerning P3, we notice that, although related, what is observed is R and not f σ8(k, z). In order to
determine the latter from the observable R, one has to assume a value of δm0/σ8 = δ̂m0 (typically chosen
to be given by ΛCDM), such that it is not a model-independent observable. One could imagine that P3

alone is instead a direct test of gravity, since it depends only on f . However, to predict the theoretical
value of R (or f ) as a function of the gravity parameter Y from Equation (130), one needs to choose a
value of Ωm0 and the initial condition f (k, zi) at some epoch zi for every k. In almost all the papers on
this topic since [80], this initial condition is assumed to be given by a purely matter-dominated universe
at some high redshift (this is, for instance, how the well-known approximated formula f ≈ Ωγ

m(z)
is obtained). However, in models of early dark energy or early modified gravity, this assumption is
broken. Therefore, once again, P3 alone cannot provide an MI measurement of gravity. Exactly as we
have seen for the dark energy EOS w(z), if one parametrizes Y(k, z) with a sufficiently small number
of free parameters, then the RSD data alone, which provide R(k, z), can fix both Ωm0 and Y(k, z).

We can also see that P2 is trivially related to the EG statistics, whose expected value at a scale k is
(see [81] and references therein)

Eg =

〈
a∇2(Ψ−Φ)

3H2
0 f δm

〉
k

. (135)

In ΛCDM and with Planck 2015 parameters, its present value is Eg0 ≈ Ωm0/ f0 ≈ 0.58. With our
definitions, the relation with P2 is given by

P2 = 2Eg . (136)

The Eg statistics has been used several times as a test of modified gravity [81–84]. However,
it is not per se a model-independent test. In fact, the theoretical value of Eg depends on Ωm0 and on
f . As already stressed, Ωm0 is not an observable quantity. Moreover, the growth rate f is estimated
by solving the differential equation of the perturbation growth, and this requires initial conditions
and Y. As a consequence of this, when we compare Eg to the predicted value (132), we can never
know whether any discrepancy is due to a different value of Ωm0, to different initial conditions, or to
non-standard modified gravity parameters Y, η. As previously shown, one can employ Eg only to
perform a null test of standard gravity plus ΛCDM, or other specific models. This is, of course, a task of
primary importance, but is different from measuring the properties of gravity in a model-independent
way.

In contrast, we can define MI statistics to measure gravity, in particular the parameter η,
by combining the equation for the growth of structure formation, Equation (129), with the lensing
Equation (127) and with Equations (14) and (21). We see then that the gravitational slip as a function of
model-independent observables is given by

ηobs ≡
3P2(1 + z)3

2E2
(

P3 + 2 + E′
E

) − 1 = η . (137)

In order to distinguish the observables from the theoretical expectations, we denoted the
combination on the lhs of this equation as ηobs. The statistics ηobs is model-independent because
it estimates η directly without any need to assume a model for the bias, nor to guess σ8 or Ωm0, nor to
assume initial conditions for f . Therefore, if observationally one finds ηobs 6=1, then ΛCDM and all
of the models in standard gravity and in which dark energy is a perfect fluid are ruled out. As a
consequence, cautionary remarks such as those in [85], namely, that their results about Eg cannot be
employed until the tension between Ωm0 in different observational dataset is resolved, do not apply to
ηobs. The price to pay is that Equation (137) depends on derivatives of E and, through P3, of f σ8(z).
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Derivatives of random variables are notoriously very noisy. In the next sections, we will compare
several methods to extract the signal.

If we abandon the linear regime then, of course, new observables can be devised, see e.g., [78].
One interesting case is provided by relaxed galaxy clusters, for which we can reasonably expect that the
virial theorem is at least approximately respected. In this case, we can directly measure the potential
Ψ by the Jeans equation, i.e., the equilibrium equation between the motion of the member galaxies
and the gravitational force (note that the potential remains linear for galaxies and clusters, even for a
non-linear distribution of matter). The lensing potential can instead be mapped through weak and
strong lensing of background galaxies. In this case, one can gather much more information on the
modified gravity parameters than in the linear regime [30]. However, the validity of this approach
relies entirely on two important assumptions. First, we must assume the validity of the virial theorem,
which can be more or less reasonable, but cannot be proved independently. Second, since we have
access only to the radial component of the member galaxy velocities, we must assume a model for the
velocity anisotropy, i.e., how the other components are distributed within the cluster.

Concluding this section, we recap and emphasize the main points. A, R, L, E are the only
independent linear observables in cosmology. The ratios P1−3 are independent of the initial conditions
(i.e., of the power spectrum shape). P2, P3 are also independent of the galaxy bias. The combination
ηobs(P2,P3,E) is, therefore, a model-independent test of gravity: it does not depend on the bias, on initial
conditions, nor on other unobservable quantities such as Ωm0 and σ8. If ηobs 6= 1, gravity is not
Einsteinian; if ηobs does not have the same k2 dependence as the Horndeski’s theory, the entire
Horndeski model is rejected. All this, of course, assumes that our conditions (a)–(d) are verified.

12. General Perfect Fluid

What happens if we remove condition (d), namely, that matter is pressureless? If matter is a perfect
fluid and we know or hypothesize a different equation of state and sound speed, then Equation (128)
is modified since the continuity and Euler equations, which come directly from the conservation of the
energy-momentum tensor, now read

δ′ = −1 + w
aH

(θ − 3aHΦ′)− 3aH(c2
s − w)δ (138)

θ′ = −(1− 3w)θ − w′

1 + w
θ +

c2
s

1 + w
aHk̂2δ− aHk̂2σ + aHk̂2Ψ (139)

where the sound speed is c2
s ≡ δp/δρ, and σ is the matter anisotropic stress. Here we are assuming

that δ represents the density contrast of matter, both baryons and dark matter, whose microphysical
properties are described with some effective parameters σ, cs, w. Assuming a zero anisotropic stress,
since we are dealing with non-relativistic matter, and for small and constant w and c2

s , we obtain the
following second-order differential equation:

δ′′

1 + w
+

(
2 +

H′

H
+ 3(c2

s − 2w)

)
δ′

1 + w
+ 6(c2

s − w)

(
1 +

H′

H

)
δ

1 + w
= −k̂2Ψ, (140)

which reduces to Equation (17) for cold dark matter, where σ = w = c2
s = 0. In the case of a constant w,

the matter would not follow an a−3 behavior as a function of time, but it would scale with (1+ z)3(1+w),
such that the lensing Equation (127) would now read

−k̂2(Ψ−Φ) =
3(1 + z)3(1+w)L

2E2 . (141)

Taking the appropriate ratios of the two equations above, we can obtain η as we did for
Equation (137), but this time, some extra term appear:
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3(1 + w)P2(1 + z)3(1+w)

2E2
(

P3 + 2 + E′
E +W1 +

W2
f (1 + E′

E )
) − 1 = ηobs (142)

where W1 = 3(c2
s − 2w) and W2 = 6(c2

s − w). Both W1 and W2 reduce to zero for standard cold
dark matter, such that we recover Equation (137) exactly in that case. For a barotropic fluid such
that p = p(ρ), c2

s = w and W2 = 0. In this case, we have again an MI estimator for η, provided
we know cs, w. On the other hand, ifW2 6= 0, we see that this estimation of η contains the growth
rate f , which we argued is not a model-independent observable in the linear regime. However,
an extension of this formalism to the quasilinear scales [78] has shown that f can indeed be recovered
in a model-independent way, using observations of the bispectrum.

13. The Linear, Scalar, Quasi-Static, Model-Independent Horndeski Observables

For the previous sections, we can draw a remarkable conclusion. Since η is the only
linear, quasi-static, MI cosmological observable, we see that, among the HL parameters, only the
time-dependent functions h2, h4, h5 (see Equation (23)) share the same property. The GW speed
constraint has already measured h2(t0) = 1. Assuming this can be extended at all times, such that
αT = 0, and assuming H is also measured in an MI way, we see that what can still be measured at the
linear perturbation level are the combinations

O1 =
α1 + α2

µ2 (143)

O2 =
α1αM

µ2 , (144)

which correspond to the two scales one can measure in η. If O2 vanishes, h4 = h5, and η = h2 = 1,
as in the standard case. As we have already seen, this happens only in two cases: for αM = 0 and for
αM = −αB/2.

14. Data

In the next sections, we obtain an estimate of ηobs using all the currently available data (This section
and the next two are a summary of a published paper by A. M. Pinho, S. Casas, and L. Amendola,
entitled Model-Independent Reconstruction of the Linear Anisotropic Stress η, arXiv:1805.00025,
JCAP11(2018)027). The first step is to reconstruct E(z) (and therefore E′(z)), P2(z), and P3(z) using
all the currently available relevant data, shown in Figure 1, where we also plot the ΛCDM the curves
of the different functions using the cosmological parameters from the TT+lowP+lensing Planck 2015
best-fits [67]. A similar analysis, with a much smaller dataset than is available, was carried out also
in [86].

For the Hubble parameter measurements, we have used the most recent compilation of H(z)
data from [87], including the measurements from [88–91], the Baryon Oscillation Spectroscopic Survey
(BOSS) [92–94], and the Sloan Digital Sky Survey (SDSS) [95,96]. In this compilation, the majority
of the measurements were obtained using the cosmic chronometric technique. This method infers
the expansion rate dz/dt by taking the difference in redshift of a pair passively-evolving galaxies.
The remaining measurements were obtained through the position of the BAO peaks in the power
spectrum of a galaxy distribution for a given redshift. For this case, the measurements from [92]
and [93] are obtained using the BAO signal in the Lyman-α forest distribution alone or cross-correlated
with quasi-stellar objects (QSOs) (for the details of the method, we refer the reader to the original
papers). The reference [96] provides the covariance matrix of three H(z) measurements from the radial
BAO galaxy distribution. To this compilation, we add the results from WiggleZ [97]. In addition to
these, we use the recent results from [98] where a compilation of type Ia supernovae from CANDELS
and CLASH Multi-cycle Treasury programs were analyzed, yielding a few tight measurements of the
expansion rate E(z).
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The Eg data include the results from KiDS+2dFLenS+GAMA [85], i.e., a joint analysis of weak
gravitational lensing, galaxy clustering, and redshift space distortions. We also include image and
spectroscopic measurements of the Red Cluster Sequence Lensing Survey (RCSLenS) [99], where the
analysis combines the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS), the WiggleZ
Dark Energy Survey, and the Baryon Oscillation Spectroscopic Survey (BOSS). The work of VIMOS
Public Extragalactic Redshift Survey (VIPERS) [84] is also accounted for in our data. The latter reference
uses redshift-space distortions and galaxy–galaxy lensing.

These sources provide measurements in real space within the scales 3 < Rp < 60 h−1Mpc and
in the linear regime, which is the one in which we are interested. They have been obtained over a
relatively narrow range of scales λ, meaning that we can consider them relative to the k = 2π/λ-th
Fourier component, as a first approximation. In any case, the discussion about the k-dependence of η

is beyond the scope of this work, so the final result can be seen as an average over the range of scales
effectively employed in the observations. Moreover, in the estimation of Eg, based on [81], one assumes
that the redshift of the lens galaxies can be approximated by a single value. With these approximations,
indeed Eg is equivalent to P2/2; otherwise, Eg represents some sort of average value along the line of
sight. We caution that these approximations can have a systematic effect both on the measurement of
Eg and on our derivation of η. In future work, we will quantify the level of bias possibly introduced by
these approximations in our estimate.

Finally, the quantity f σ8(z) is connected to the P3 parameter. Our data include measurements
from the 6dF Galaxy Survey [100], the Subaru FMOS galaxy redshift survey (FastSound) [101],
WiggleZ [97], the VIMOS-VLT Deep Survey (VVDS) [102], the VIMOS Public Extragalactic Redshift
Survey (VIPERS) [84,103–105], and the Sloan Digital Sky Survey (SDSS) [96,106–112]. The values
from [113,114] will not be considered since the f σ8(z) value is not directly reported.
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Figure 1. Data sets used in this work (black dots with error bars), plotted with the corresponding
theoretical ΛCDM prediction as a function of redshift (solid red line), using a Planck 2015 cosmology.
Left panel: E(z) data. We used the Planck 2015 value of H0 to convert some of the data points from
H(z) to E(z) (see main text). Central panel: Plot of the logarithm of the f σ8 data points. Right panel:
Data set for P2, obtained using Eg data and the relation (136) that converts between different notations.
For z > 0.5, we see a larger discrepancy between ΛCDM and the data points, which was also noted
in [85] and references therein.

15. Reconstruction of Functions from Data

The only difficulty in obtaining ηobs is that we need to take the ratios P2, P3 at the same redshift,
while we have data points at different redshifts, and that we need to take derivatives of E(z) and
f σ8(z). This essentially means we need to have a reliable way to interpolate the data to reconstruct the
underlying behavior.

There is no universally accepted method to interpolate data. Depending on how many
assumptions one makes regarding the theoretical model, e.g., whether the reconstructed functions need
just to be continuous, or smooth, depending on few or many parameters, etc., one obtains unavoidably
different results, especially in the final errors. Here, we consider and compare three methods to obtain
the value of ηobs: binning, the Gaussian process (GP), and generalized linear regression.
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The first, and simplest, method assembles the data into bins. This consists of dividing the data
into a particular redshift interval (bin), and for each of these intervals one calculates the average value
of the subset of the data contained in that bin. The corresponding redshift and error of each bin are
computed as weighted averages.

Another way to reconstruct a continuous function from a dataset is by using a Gaussian process
algorithm as explained in [115]. This process can be regarded as the generalization of Gaussian
distributions to function space since it provides a distribution over functions instead of a distribution
of a random variable. Considering a datasetD = {(xi, yi)|i = 1, ...n}, where xi represents deterministic
variables and yi random variables, the goal is to obtain a continuous function f (x) that best describes
the dataset. A function f evaluated at a point x is a Gaussian random variable with mean µ(x)
and variance Var(x). The f (x) values depend on the function value evaluated at other x̄ points
(particularly if they are close points). The relation between these can be given by a covariance function
cov( f (x), f (x̄)) = k(x, x̄). The covariance function k(x, x̄) is in principle arbitrary. Since we are
interested in reconstructing the derivatives of the data, a Gaussian covariance function expressed as

k(x, x̄) = σ2
f exp

[
− (x− x̄)2

2`2

]
(145)

is the chosen function since it is the most common and has the least number of additional parameters.
This function depends on the hyperparameters σf and `, which allow us to set the strength of the
covariance function. These hyperparameters can be regarded as the typical scale and change in the
x and y direction. The full covariance function takes the data covariance matrix C into account by
M(x, x̄) = k(x, x̄) + C. The log likelihood is then

lnL = −1
2

N

∑
i,j=1

{[
yi − µ(xi)

]
(M−1)ij

[
yj − µ(xj)

]}
+ ln |M|+ N ln 2π (146)

where |M| is the determinant of M(xi, xj). The distribution Equation (146) is usually sharply
peaked and so we maximize the distribution to optimize the hyperparameters, although this is
an approximation to the marginalization process and it may not be the best approach for all datasets.
We employ the Python publicly available GaPP code from Seikel et al. (2012) [116].

As a third method, we use a generalized linear regression. Let us assume we have N data yi,
one for each value of the independent variable xi and that

yi = fi + ei (147)

where ei are errors (random variables) which are assumed to be distributed as Gaussian variables.
Here, fi represents theoretical functions that depend linearly on a number of parameters Aα:

fi =
n

∑
α=0

Aαgiα (148)

where giα(xi) are functions of the variable xi, chosen to be simple powers, and giα = xα
i , such that fi

represents polynomials of order n.
The order of the polynomial is in principle arbitrary, up to the number N of datapoints.

However, it is clear that, with too many free parameters, the resulting χ2 will be very close to zero,
i.e., statistically unlikely. At the same time, too many parameters also render the numerical Fisher
matrix computationally unstable (producing, e.g., a non-positive definite matrix) and the polynomial
wildly oscillating. On the other hand, too few parameters restrict the allowed family of functions.
Therefore, we select the order of the polynomial function by choosing the degree for which the reduced

chi-squared χ2
red =

χ2
min

N−n−1 , is closest to unity and such that the Fisher matrix is positive definite.
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16. Results

Let us now discuss the results of the final observable ηobs for each of these methods. The binning
method contains fewer assumptions compared to the polynomial regression or Gaussian process
methods. It is essentially a weighted average over the data points and the error bars at each redshift bin.
Since we need to take derivatives in order to calculate P3 and E′, and we have few data points, we opt
to compute finite difference derivatives. This has the caveat that it introduces correlations among the
errors of the function and its derivatives, that we cannot take into account with this simple method.
Moreover, for the binning method, we do not take into account possible non-diagonal covariance
matrices for the data, which we do for polynomial regression and the Gaussian process reconstruction.

Figure 2 shows the reconstructed functions obtained by the binning method, the Gaussian process,
and polynomial regression, alongside the theoretical prediction of the standard ΛCDM model. In all
cases, the error bars or the bands represent the 1σ uncertainty.
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Figure 2. Comparison of the three reconstruction methods for each of the model-independent variables.
The binning method is shown in blue squares with error bars, the Gaussian process is shown as a green
dotted line with green bands, and polynomial regression is shown as a solid yellow line with yellow
bands. All of them depict the 1σ uncertainty. Left panel: Plot of the reconstructed E(z) function on
the top and its derivative E′(z) on the bottom. Right panel: Plot of the reconstructed P2(z) function
on the top and the reconstructed P3(z) function on the bottom. For each case, we show the theoretical
prediction of our reference ΛCDM model as a red dashed curve.

With the binning method, the number of bins is limited by the maximum number of existing
data redshifts from the smallest data set corresponding to one of our model-independent observables.
In this case, this is the quantity Eg, for which we have effectively only three redshift bins. There are
nine Eg data points, but most of them are very close to each other in redshift, due to being measured
by different collaborations or at different scales in real space for the same z. As explained in the data
section above, we only regard this data as an average over different scales, assuming that non-linear
corrections have been correctly taken into account by the respective experimental collaboration.
Since we do not have to take derivatives of Eg, or equivalently P2, this leaves us with three possible
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redshift bins, centered at z1 = 0.294, z2 = 0.580, and z3 = 0.860, all of them with an approximate
bin width of ∆z ≈ 0.29. At these redshifts, we obtain ηobs(z1) = 0.48± 0.45, ηobs(z2) = −0.03± 0.34,
and ηobs(z3) = −2.78± 6.84. These values and the estimation of the intermediate model-independent
quantities can be seen in Table A2.

Regarding the Gaussian process method, we computed the normalized Hubble function and
its derivative, E(z) and E′(z), with the dgp module of the GaPP code. We reconstructed E(z) and
E′(z) for the redshift interval of the data using the Gaussian function as the covariance function and
the initial values of the hyperparameters θ = [σf = 0.5, ` f = 0.5] that were later estimated by the
code. The same procedure was done for the P2(z) data. We obtained, for the E(z) and E′(z) functions,
the hyperparameters σf = 2.12 and ` f = 2.06 and, for the P2 function, σf = 0.58 and ` f = 0.67.

For the P3(z) observable, the hyperparameters obtained by the GaPP code led to a very flat and
unrealistic reconstruction, so we took another approach for obtaining the optimal hyperparameters.
We sampled the logarithm of the marginal likelihood on a grid of hyperparameters σf , ` f from 0.01
to 2, setting thus a prior with the redshift range of the dataset, and 300 points equally separated in
log-space for each dimension. We remind the reader that the hyperparameter ` f constrains the typical
scale on the independent variable z. Thus, as an additional prior, we impose that ` f needs to be smaller
than the redshift range of the data, which was not guaranteed by the default GaPP code. We then chose
a pair of hyperparameters corresponding to the maximum of the log-marginal likelihood. Therefore,
for the ln( f σ8(z)) data, we obtained σf = 0.549 and ` f = 1.361. Its reconstructed derivative P3 can be
seen in the lower right panel of Figure 2. The function remains relatively flat, compared to the one
given by other methods, but this approach has improved the determination of this observable.

Regarding the choice of the kernel function, several functions were compared, each of them with
a different number of parameters, to see the impact on the output. We tested the Gaussian kernel with
two parameters, (σf , ` f ): the rational quadratic kernel with three parameters and the double Gaussian
kernel with four parameters (see the original reference for the explicit implemented formula [116]).
We performed tests using the H(z) data obtained with the cosmic chronometer technique and the f σ8(z)
data. Our tests show that the different choices shift the reconstructed function up to 6% on its central
value compared to the Gaussian kernel function. This happens for H(z), but the effect is negligible
for f σ8(z). Taking into account the above choices and procedure, we report that with the Gaussian
process method we obtain ηobs(z1) = 0.38± 0.23, ηobs(z2) = 0.91± 0.36, and ηobs(z3) = 0.58± 0.93.

For the polynomial regression method, we find ηobs(z1) = 0.57± 1.05, ηobs(z2) = 0.48± 0.96,
and ηobs(z3) = −0.11± 3.21. Note that we applied the criteria of a χ2

red closest to one and a positive
definite Fisher matrix to choose the order of the polynomial for each of the datasets. These criteria led
to a choice of a polynomial of order 3 for the E(z) and Eg(z) data and order 6 for the ln( f σ8(z)) data.
These polynomials can be seen in Figure 2 as solid yellow lines, together with their 1σ uncertainty
bands. The higher order of the polynomial of ln( f σ8(z)) explains the “bumpiness” of the reconstruction
of P3, leading to larger errors on this observable in comparison to the GP method.

In Figure 3, we show the reconstructed ηobs as a function of redshift with the three different
methods, again with GP in a green dashed line, polynomial regression in a yellow solid line, and the
binning method in blue squares with error bars. It is possible to conclude that the methods are
consistent with each other, within their 1σ uncertainties, and that in most bins the results are consistent
with the standard gravity scenario. We find that the error bars of the Gaussian process reconstruction
are generally smaller than the other methods, such that at the lowest redshift, GP is not compatible with
ηobs = 1 at nearly 2σ, while in the case of the binning method at the intermediate redshift, z = 0.58,
the tension is nearly 3σ.

Finally, we can combine the estimates at three redshifts of Table A2 into a single value. Assuming
a constant ηobs in this entire observed range and performing a simple weighted average, we find
ηobs = 0.15± 0.27 (binning), ηobs = 0.53± 0.19 (Gaussian process), and ηobs = 0.49± 0.69 (polynomial
regression). The Gaussian process method yields the smallest error and excludes standard gravity.
However, despite being sometimes advertised as “model-independent”, we believe that this method
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actually makes a strong assumption, since it compresses the ignorance of the reconstruction into a
kernel function that depends on two or a small number of parameters, which are often not even
fully marginalized over, which was done in our case. Furthermore, the binning method taken at
face value would rule out standard gravity. However, as already mentioned, we did not take into
account the correlation induced by the finite differences, and this might have decreased the overall
error. Overall, we think the polynomial regression method is the most satisfactory one, providing
the best compromise between the least number of assumptions and the best estimation of the data
derivative. Therefore, we consider it as our “fiducial” result.
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Figure 3. Plot of the reconstructed ηobs as a function of redshift, using the binning method (blue squares),
the Gaussian process (green dotted line), and linear regression (yellow solid line). The corresponding
error bands (error bars for the binning method), represent the 1 estimated error on the reconstruction.
As a reference, we show, in a dashed red line, the value in a standard gravity scenario.

17. Conclusions

Measuring the properties of gravity at large scales will be one of the main tasks of cosmology for
the next few years. Several large observational campaigns that are underway, or will soon be [117–121],
will collect enough data on galaxy clustering and lensing to render this task possible to a high level
of accuracy.

In order to test gravity, one has to provide an alternative, either a full model or at least some
parametrization, that goes beyond Einstein’s gravity. Here we chose to consider the Horndeski
Lagrangian because, although it is based on a single scalar field, it displays most of the properties
that make modified gravity models such a rich area of research. We connected a more theoretically
oriented parameterization, the αi parameters of [22], with more phenomenologically oriented ones,
the hi parameters. To gain a deeper physical understanding, we also discussed some interesting
limiting cases: how the Newtonian potentials look in real space, and the impact of the constraints from
gravitational wave speed.

The first practical goal in cosmology is to test and possibly rule out specific models of gravity and
background expansion. For instance, one can rule out ΛCDM in a number of ways, the simplest of
which being measuring a deviation from the predicted H(z) behavior (which is not equivalent, as we
have seen, to simply finding deviations from a w = −1 equation of state). Models in which gravity is
modified can often be designed to have a perfect ΛCDM background, so it is necessary to test them at
the perturbation level.
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Here, however, a problem arises, namely that many more assumptions generally need to be made.
Some of them, listed in Section 9, are in some sense of fundamental character, and we follow them in
this work. However, most cosmological analyses that test gravity assume, in addition, one or more of
the following assumptions: (1) that the initial conditions are given by a simple inflationary spectrum
described by one or two parameters; (2) that the cosmological evolution at a z value larger than a few
is given by a pure CDM-dominated universe living in standard gravity; (3) that the linear bias depends
only on time and not on scale; and (4) that the value of some parameters, such as Ωm0 obtained from
CMB analyses assuming ΛCDM, can also be applied to different models.

We have shown that the statistics called ηobs can be measured without any of these four
assumptions. These statistics can be used as an estimator of the anisotropic stress parameter η,
one of the two phenomenological functions of linearized, scalar, sub-horizon modified gravity. In this
sense, we say that ηobs is (relatively) model-independent. If ηobs differs from unity, either gravity is
modified, or at least one of the four “fundamental” assumptions of Section 9 are false.

We have provided a preliminary estimate of ηobs based on currently available data, ηobs =

0.49± 0.69 in the redshift range z = (0.2− 0.8). The full k- and z-dependence is still inaccessible with
current data. According to [25], the Euclid mission will be able to measure η to a few percent, which is
thus almost two orders of magnitude better than current values, and will be able to begin placing
interesting limits on the k- and z-dependence. As the philosopher of science Alexandre Koyré said
concerning the emergence of modern science (Koyré, A. (1948). Du monde de l’à peu près à l’univers
de la précision. In A. Koyré (Ed.), Etudes d’histoire de la pensée philosophique (pp. 341–362). Paris:
Gallimard.), and with regard to measuring gravity at cosmological scales, we will finally move “from
the world of approximation to the universe of precisi on.”
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Appendix A. Background Equations of Motion of the Horndeski Lagrangian

The equations of motion for a flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric are [17,22]

3M2
?H2 = ρm + ρHL (A1)

M2
?(2Ḣ + 3H2) = −pm − pHL.

Here, ρm, pm are the conserved background energy density and the pressure of matter, respectively;
analogously ρHL and pHL are the background energy density and pressure of the Horndeski field,
defined as

ρHL ≡ −K + 2X
(
KX − G3φ

)
+ 6φ̇H

(
XG3X − G4φ − 2XG4φX

)
(A2)

+12H2X
(
G4X + 2XG4XX − G5φ − XG5φX

)
+ 4φ̇H3X (G5X + XG5XX) ,

pHL = K− 2X
(
G3φ − 2G4φφ

)
+ 4φ̇H

(
G4φ − 2XG4φX + XG5φφ

)
−M2

∗αBH
φ̈

φ̇
(A3)

+2φ̇H3XG5X − 4H2X2G5φX

where M? is defined in Equation (55), and αB in Equation (58). Since in the literature there are various
definitions of the energy density associated with the scalar field, we report in Table A1 the relation
between the one adopted in this work and others. (We thank Jiaming Zhao for pointing out potential
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issues related to this.) Following [22], we write the equation of motion of the scalar field φ as a
(non-)conservation equation of the “shift-charge density” n,

ṅ + 3Hn = pHL,φ

with

n ≡ φ̇
(
KX − 2G3φ

)
+ 6HX

(
G3X − 2G4φX

)
+ (A4)

+6H2φ̇
(
G4X + 2XG4XX − G5φ − XG5φX

)
+

+2H3X (3G5X + 2XG5XX)

and with the non-conservation term, driven by a violation of the shift symmetry φ → φ + const,
given by the φ−derivative of pHL:

pHL,φ ≡Kφ − 2XG3φφ + 2φ̈
(
XG3φX + 3Hφ̇G4φX

)
+ 6ḢG4φ+ (A5)

+ 6H2 (2G4φ + 2XG4φX − XG5φφ

)
+ 2H3φ̇XG5φX .

Table A1. Comparison table for the different definition of energy density and pressure of the scalar field.

This Work Ref. [122] Ref. [22]

Energy density ρHL ρDE =
ρHL

3 − H2(M2
∗ − 1) Ẽ =

ρHL
M2
∗
≡ ρ̃HL

Pressure pHL pDE =
pHL

3 + (3H2 + 2Ḣ)(M2
∗ − 1) P̃ =

pHL
M2
∗
≡ p̃HL

Table A2. The reconstructed or measured model-independent variables E, E′, P2, P3, η(z) at three
different redshifts z = (0.294, 0.58, 0.86), together with their 1σ errors, for each of the reconstruction
methods. The polynomial regression method is compatible with the ΛCDM scenario, while the other
two methods show some tension at lower redshifts.

Method Parameter Redshift Bins Weighted Mean

z1 = 0.294 z2 = 0.58 z3 = 0.86

E(z) 1.12± 0.01 1.27± 0.02 1.51± 0.02
E′(z) −0.56± 0.07 −0.60± 0.36 −1.75± 0.66

Binning P2(z) 0.75± 0.10 0.54± 0.07 0.18± 0.14
P3(z) −0.17± 0.35 0.53± 0.61 −1.27± 1.52

ηobs(z) 0.48± 0.45 −0.03± 0.34 −2.78± 6.84 0.15± 0.27

E(z) 1.10± 0.01 1.30± 0.02 1.55± 0.03
E′(z) −0.73± 0.05 −1.30± 0.10 −1.89± 0.16

Gaussian Process P2(z) 0.74± 0.09 0.53± 0.06 0.23± 0.11
P3(z) −0.10± 0.20 −0.03± 0.21 −0.21± 0.30

ηobs(z) 0.38± 0.23 0.91± 0.36 0.58± 0.93 0.53± 0.19

E(z) 1.12± 0.01 1.29± 0.02 1.50± 0.02
E′(z) −0.73± 0.04 −1.06± 0.04 −1.45± 0.04

Polynomial Regression P2(z) 0.76± 0.15 0.55± 0.15 0.18± 0.14
P3(z) −0.09± 0.80 0.14± 0.78 −0.17± 3.02

ηobs(z) 0.57± 1.05 0.48± 0.96 −0.11± 3.21 0.49± 0.69
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