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Abstract: In this work we construct holographic boundary theories for linearized 3D gravity, for a
general family of finite or quasi-local boundaries. These boundary theories are directly derived from
the dynamics of 3D gravity by computing the effective action for a geometric boundary observable,
which measures the geodesic length from a given boundary point to some center in the bulk manifold.
We identify the general form for these boundary theories and find that these are Liouville-like with a
coupling to the boundary Ricci scalar. This is illustrated with various examples, which each offer
interesting insights into the structure of holographic boundary theories.
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1. Introduction

Holographic dualities, for instance the AdS/CFT framework, suggest that a theory of quantum
gravity can be dually described by a field theory defined on an asymptotic boundary. That is,
the partition functions of such dual boundary field theories, which would depend on the (asymptotic)
boundary metric, can be interpreted as a partition function for gravity, which is however restricted to
asymptotic boundary data.

Here we are interested in extending such holographic dualities to finite and more general
boundaries. One reason is that the partition function with boundary can also serve as the vacuum
(physical) wave function for gravity [1]. Thus, aiming to employ holography to construct such physical
wave functions, we need to understand such dualities for arbitrary boundaries.

A holographic boundary field theory would allow an easier access to the partition function of
quantum gravity: instead of solving the full bulk dynamics of quantum gravity for given boundary
data, and deal with the diffeomorphism gauge theory, one would have to “just” solve the dynamics
of the boundary field theory. For this to be a useful approach, the boundary field theory should be
ideally local or an approximation to a local theory, with finitely many fields. Please note that otherwise
the notion of holographic boundary field theory is quite empty, as one can construct boundary field
theories by integrating out almost all bulk fields, except some degrees of freedom that one can attribute
to the boundary. This will however generically lead to non-local boundary field theories, which could
be converted to local ones at the price of introducing infinitely many fields.

The construction of “quasi-local” holographic dualities has already been quite successful for 3D
gravity. Here, due to the topological nature of the theory, one can indeed expect to encounter a local
field theory, if one goes through the procedure described above. Thus, there are several approaches in
which such boundary field theories for gravity can be constructed. Moreover, again due to the fact
that there are no propagating bulk degrees of freedom, the boundary field theories describe so-called
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boundary degrees of freedom, which in the case of gravity can often be understood as encoding the
shape of the boundary in the embedding space time.

This starts with the relation between the Chern–Simons description of gravity [2] to its
WZW boundary theory [3–5], which however relies on connection boundary data. Restricting to
asymptotically AdS or asymptotically flat boundary conditions one obtains a Liouville (like) boundary
field theory [6–10]. See also [11–13] for derivations of Liouville theory for the asymptotic AdS boundary
which do not start from the Chern–Simons formulation.

Using metric boundary data [14] showed that a Liouville- like dual-field theory can also be
identified more directly for finite boundaries. This work considered a specific background space time,
so-called twisted thermal flat space [15], and employed (linearized) Regge calculus [16], a discretization
of gravity, in which the variables are given by edge lengths in a piecewise flat geometry. Thus, these
variables can be identified as geodesic lengths. Using discretization independence of the one-loop
partition function of the theory [17], one can choose a discretization in which a class of variables
describes the geodesic lengths from the boundary to some central axis. These can be taken as boundary
field variables, and one can thus easily integrate out all variables except these boundary field variables.
Bonzom et al. [14] also computed the one-loop partition function for a finite boundary, which led
to the same result as for asymptotically flat boundaries [18], see [19] for a corresponding result for
asymptotic AdS boundaries.

In the approach of [14], the boundary field theory is directly derived from gravity and obtained
as an effective action for a geometric observable, which encodes the shape of the boundary.1 Thus, one
has the advantage that the boundary field theory gives direct access to the dynamics of a geometric
observable, which allows a “bulk reconstruction”. Such effective actions for geometric observables
have also been studied independently from holographic considerations [22,23].

The choice of the geodesic distance from the boundary to a center also resonates with earlier
studies [13], which argued that boundary degrees of freedom arise in gravity due to the fact that the
boundary breaks diffeomorphisms. In fact, we will see that the geodesic distance captures the change
in the shape of the boundary that arises from diffeomorphisms generated by vector fields normal to
the boundary.

Quasi-local holographic dualities have also been derived in a completely non-perturbative
framework [24–28], in particular for the Ponzano-Regge model [29] of 3D quantum gravity. This model
constitutes a quantization of first-order (Palatini) gravity. It offers precise control on the (quantum)
boundary conditions and their (quantum) geometric interpretations via loop quantum gravity
techniques [30]. In particular one can again choose (quantum) metric boundary conditions. Different
kinds of boundary field theories arise, e.g., in the form of spin chain models, or in the form of
sigma models, depending on the precise choice of (quantum) boundary conditions and the choice of
geometric variable that describes the embedding of the boundary. In particular Riello [27] provides a
fully non-perturbative version of having the geodesic lengths as a boundary field, in which case one
obtains so-called RSOS models as boundary theories. Dittrich et al. [25] performs the semi-classical
analyses for a particular family of boundary conditions, which are encoded in a particular choice of
boundary wave functions [31]. This led to a confirmation of the one-loop partition function found
in [14,18], albeit with Planckian corrections, which arise due to the fact that the Ponzano–Regge
framework allows for an arbitrary winding number of the boundary around the central axis.

To a great extend these works rely on the topological nature of 3D gravity. Thus, the question
arises whether these constructions can be also applied to 4D gravity. A first step to answer this question
can be found in [32], which uses again (linearized) Regge calculus to consider a background spacetime,
which is a 4D version of twisted thermal flat space. Restricting to boundary data which induce a 4D

1 Please note that this is not a Dirac observable, as Dirac observables should be independent of the shape of the boundary,
and are very hard to come by, see e.g., [20,21]. Here the chosen geometrical observable should rather encode the shape of
the boundary.
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flat solution, Asante et al. [32] finds the same type of boundary theory as in 3D. However, due to the
fact that 4D Regge calculus does not feature a local discretization independent measure [33], it is hard
to extend this result to the (one-loop) quantum theory.2

To extend these results to more general backgrounds and to tackle the main task, namely including
gravitons, we need a framework that is applicable to 4D gravity and for which we can expect to
solve the dynamics. Being particularly interested in length observables, we will therefore consider
(linearized) metric gravity. As the geodesic lengths have so far been shown to be a convenient choice
for the boundary field, which moreover is connected to obtaining Liouville (like) boundary theories,
we will stick with this choice. This does however present us with a challenge, namely to compute the
effective action for a composite observable.

In this work we will therefore go back to 3D gravity to develop and test a general framework
in which such effective actions can be computed. As we will see this allows us to consider more
general backgrounds and boundaries and to systematize and greatly extend the results which have
been obtained so far.

In this paper, we will show how to compute, directly from the 3D gravitational theory, boundary
dual-field theories for a variety of backgrounds and boundaries. These boundary field theories
arise as effective theories for geodesic lengths variables. The computations can be performed for
non-asymptotic boundaries, and allow for negative, vanishing, or positive cosmological constant. For a
torus boundary, with negative or vanishing cosmological constant, we also reproduce the one-loop
partition functions, which have previously been computed for asymptotic boundary conditions, using
heat kernel methods [18,19].

A first key result will be the computation of the Hamilton–Jacobi functional for 3D (linearized)
gravity for a large family of boundaries3, in Section 2. (This amounts to the classical limit of the
physical vacuum wave function associated with the given boundary.) It turns out that a convenient
way to express this Hamilton–Jacobi function is in terms of the diffeomorphism generating vector field
that generates the on-shell metric perturbations. In fact, the Hamilton–Jacobi functional is local in
terms of these vector fields. Note however that the vector fields themselves are non-local functionals
of the boundary metric data.

This allows us to propose in Section 3 a field theory for a scalar field defined on the boundary,
whose Hamilton–Jacobi functional reproduces the one for gravity and whose equation of motion
imposes that the scalar field equals the geodesic lengths from the boundary to some center.
The proposed action confirms the earlier findings of Liouville-like boundary theories: for a boundary
with background intrinsic metric hAB and background extrinsic curvature KAB the scalar field is
governed by a quadratic form ρ∆ρ := ρ(2(KCD − KhCD)DCDD − 2RK)ρ, where ρ denotes the scalar
field and DC denotes the covariant derivative compatible with hAB. Additionally, the scalar field
has a Liouville coupling to the (first-order perturbation of the) boundary Ricci scalar, i.e., the full
Lagrangian is given by L =

√
h(ρ∆ρ− 2ρδ(2R)), where δ(2R) of the first-order perturbation of the

boundary Ricci scalar.
For this proposed boundary field theory, we will however ignore some subtlety, which is the

precise definition of the ‘center’ at which the geodesics starting from the boundary end. We will take
care of this subtlety in the subsequent examples and will see that it can lead to a certain modification
for the boundary field theory.

In the Sections 5–7, we will more directly compute the effective action for the geodesic lengths,
using a Lagrange multiplier method, which we introduce in Section 4. We will see in Sections 5 and 6
that a priori this method does not lead to the expected results for the cases of backgrounds with
intrinsically flat boundaries, such as the torus boundaries appearing for the twisted thermal flat and

2 One can consider a model for quantum flat space [34], for which a discretization independent model does exist. In this case
one can compute the one-loop partition function [32], which captures the effect of the boundary degrees of freedom.

3 We consider boundaries with homogeneous intrinsic curvature ∂A
2R = 0 and with non-vanishing extrinsic curvature.
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AdS spaces, which form our first two examples. The reason is that the geodesic lengths turns out to be
in a certain sense a degenerate observable. This can be changed however by carefully implementing
smoothness condition at the central axis of the solid torus. This procedure will lead to an effective
action, which differs from the one proposed in Section 3 by the insertion of a non-local operator.
This insertion also implements a remnant of the diffeomorphism symmetry of the gravitational theory,
which turns the precise location of the central axis into a gauge degree of freedom, also for the boundary
field theory.

These findings confirm the boundary field theory found in [14] for the flat space example.4 We will
also find that the one-loop partition functions of the boundary field theories for the twisted thermal
flat and AdS spaces reproduce the gravitational one-loop partition functions [14,18,19].

The last example, which we consider in Section 7, is a spherical boundary in flat space (and thus
with intrinsic background curvature), which has so far not been discussed in the literature. Here the
mechanism for constructing the effective action differs slightly from the one with flat boundaries,
as the smoothness conditions at the center play less of a key role. The effective action will be local and
agree with the proposed one from Section 3.

We will close with a discussion and outlook in Section 8. To avoid deviating from the key
points in the main body of the paper, we deferred all more involved calculations and proofs to the
appendices. This includes a summary of the conventions used in Appendix A, the defining formulas for
a convenient parametrization of the perturbative boundary metric in Appendix B, and the calculation
of the 3D Hamilton–Jacobi functional in Appendix C. Appendix D evaluates the commutator of
two specific operators (∆ and the radial derivative ∂r, which here serves as a kind of time evolution
operator), which is needed for the subsequent Appendices E and G. We discuss the derivation of
solutions to the linearized Einstein equations with a Lagrange multiplier term in Appendices E and F.
Appendix G evaluates the Lagrange multiplier dependent boundary term, Appendix H construct the
(linearized) geodesic length observable, and in Appendix I we derive the smoothness conditions which
we need to implement at the center of the bulk manifolds. Appendix J discusses the computation of
effective actions for observables, which in a certain sense are degenerate. Finally, Appendix K collects
definitions for spherical vector and tensor harmonics, which are useful to discuss the example with
spherical boundary in Section 7.

2. The Hamilton–Jacobi Functional for 3D Gravity

In this section, we will determine the Hamilton–Jacobi functional, that is the on-shell action,
for 3D linearized gravity, for a large class of boundaries. To start with we will summarize our
conventions and define the type of boundaries we will be considering. We will then introduce
a convenient parametrization of the boundary metric perturbations in terms of diffeomorphism
generating vector fields. The first key result we will present is to invert the relationship between
metric perturbations and the vector field, that is to express the vector field components in terms of the
boundary metric perturbations. We will then move on to our second key result, which is the evaluation
of the Hamilton–Jacobi functional. This turns out to be a local functional, if we use the parametrization
in terms of diffeomorphism generating vector fields.

2.1. Assumptions and Conventions

Here we consider 3D linearized gravity, with Euclidean signature, with or without a cosmological
constant Λ, on a manifold M with smooth boundary ∂M. We consider vacuum 3D general relativity,

4 The smoothness conditions are there however automatically implemented with the (Regge) formalism.
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that is all (background) solutions have homogeneous curvature Rabcd = Λ (gacgbd − gadgbc). We choose
for the background solution Gaussian coordinates

gabdxadxb = dr2 + hABdyAdyB , (1)

and assume that r = 0 defines a point or a one-dimensional submanifold in M. We also assume that
the boundary ∂M is given by the set of points with fixed radial coordinate r = rb. Here we denote with
indices a, b, . . . space–time indices and with A, B, . . . = 1, 2 “spatial” indices for the surfaces r = const.
We also use ⊥ as index for the radial coordinate.

We will consider perturbations of the background metric

gfull
ab = gab + γab (2)

and describe with γ⊥⊥, γ⊥A and γAB the various components of the metric perturbations according to
the foliation defined by the r = const surfaces.

For a two-dimensional (boundary) metric the Ricci tensor is determined by the Ricci scalar
2RAB = 1

2
2RhAB. We assume that the background boundary curvature is homogeneous ∂A

2R = 0.
In the next Section 2.2 we will see that we will also need to assume a non-vanishing extrinsic curvature
for the background boundary. More precisely we consider boundaries for which the relation between
the boundary metric perturbations and the diffeomorphism inducing vector field leading to these
boundary metric perturbations, is invertible.

With a Gaussian metric the Christoffel symbols are given by

Γa
⊥⊥ = 0 , Γ⊥⊥B = 0 , Γ⊥AB = −KAB , ΓA

⊥B = KA
B , ΓA

BC = 2ΓA
BC , (3)

where the extrinsic curvature tensor is given by KAB = 1
2 ∂⊥hAB.

This allows the expression of the relations between space–time covariant derivatives and spatial
covariant derivatives, e.g.,

∇AξB = DAξB + KAB ξ⊥ ,

∇Aξ⊥ = DA(ξ⊥)− KB
AξB (4)

where ξ⊥ is treated as a spatial scalar, that is DAξ⊥ = ∂Aξ⊥. We use ∇ for the covariant derivative
compatible with g, and D for the covariant derivative compatible with h.

In Appendix A we collect our conventions for the curvature tensors and the Gauss–Codazzi
relations. We will in particular need that the Gauss–Codazzi relations imply for a surface embedded
into a 3D vacuum solution

K2 − KABKAB = 2R− 2Λ , DAKA
B − DBK = 0 . (5)

2.2. A Basis for the Boundary Metric Perturbations

In 3D vacuum gravity the solutions to the equations of motion are diffeomorphism equivalent to
a homogeneously curved space time. We can therefore express the metric perturbations in terms of
the diffeomorphism generating vector fields. In fact, the Hamilton-Jacobi functional for 3D gravity
will appear in a particular simple form, if we parametrize the boundary metric perturbations via the
diffeomorphism generating vector fields ξa, i.e., γAB is parametrized in terms of the vector components
ξ⊥ and ξA by

γAB = [Lξ g]AB = ∇AξB +∇BξA

= 2ξ⊥KAB + [Lξ‖h]AB . (6)
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For this work we will assume that the transformation from (ξ⊥, ξ1, ξ2) to (γ11, γ22, γ12) is
invertible. Clearly, this requires that the extrinsic curvature tensor KAB is non-vanishing. To explicitly
invert this transformation requires some calculations, which we detail in Appendix B. Here we state
only the result:

Result 1. The vector components ξ⊥ and ξ A are determined by the equations

∆ ξ⊥ = ΠABγAB

DA
B ξB = 2(KBC − KhBC) δ 2ΓA

BC (7)

where

∆ = 2(KCD − KhCD)DCDD − 2R K ,

DA
B = 2

(
KCD − KhCD

)
DCDD hA

B − 2RKA
B ,

ΠAB = DADB − hABDCDC − 1
2

2R hAB ,

δ 2ΓA
BC = 1

2 hAD (DBγAC + DCγBA − DAγBC) . (8)

To obtain ξ⊥ and ξA we need to invert the operators ∆ (on the space of spatial scalars) and
DA

B (on the space of spatial vectors). Thus, the vector components are non-local functionals of the
spatial metric perturbations. Please note that by construction, ξ⊥ is a functional of the boundary
metric perturbations, which is invariant under (linearized) boundary tangential diffeomorphisms.
That is, ΠAB is zero on perturbations induced by boundary tangential diffeomorphisms. This suggest
a relation of ΠABγAB to the first variation of the boundary Ricci scalar δ(2R), which is also vanishing
on boundary tangential diffeomorphisms . In fact,

ΠABγAB = (DADB − hABDCDC)γAB − 1
2

2R hABγAB

= (DADB − hABDCDC)γAB − 2RABγAB

= δ(2R) , (9)

as we have 2RAB = 1
2

2R hAB for two-dimensional metrics.
Having found the vector components ξ⊥ and ξA as functions of the boundary metric components,

we can also express the lapse γ⊥⊥ and shift γ⊥A of the metric perturbations as functions of the
generating vector field (ξ⊥, ξA), and thus in terms of the boundary metric perturbations γAB:

γ⊥⊥ = 2∂⊥ξ⊥ ,

γ⊥A = ∇⊥ξA + ∇Aξr

= ∂⊥(hABξB)− ΓB
⊥AξB + ∂A(g⊥⊥ξ⊥)− ΓB

A⊥ξB

= DAξ⊥ + hAB∂⊥ξB . (10)

2.3. The Hamilton–Jacobi Functional

2.3.1. Zeroth and First-Order Contributions

The (Euclidean) Einstein–Hilbert action, with Gibbons—Hawking–York boundary term, is given by

S = − 1
2κ

∫
M

d3x
√

g (R− 2Λ) − 1
κ

∫
∂M

d2y
√

h εK , (11)

where κ = 8πGN and GN is Newton’s constant. We will also use the following convention regarding
the (sign of the) extrinsic curvature tensor: KAB will be understood as the extrinsic curvature tensor
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associated with the foliation of M by surfaces of constant radius, i.e., with our use of Gaussian
coordinates, defined by KAB = 1

2 ∂⊥hAB. This differs however by a sign from the extrinsic curvature
tensor associated with an inner boundary, which has outward pointing normal na = (−1, 0, 0). We
will therefore make the sign explicit and use the variable ε = ±1.

The equations of motions demand Rab = 2Λgab and thus R = 6Λ. The action evaluated on a
(background) solution is therefore given by

S = −4Λ
2κ

3V − 1
κ

∫
∂M

d2y
√

hεK (12)

where 3V is the volume of the manifold M.
The first variation of the action

−κδS =
1
2

∫
M

d3x
√

g
((

1
2 R−Λ

)
gab − Rab

)
δgab +

1
2

∫
∂M

d2y
√

hε
(

KhAB − KAB
)

δgAB (13)

determines the (background) equations of motions as well as the first order of the on-shell action.
It also determines the momentum conjugated to the metric πAB =

√
h(KAB − KhAB).

Using the parametrization δgab = γab = Lξ gab for the boundary metric fluctuations, the first
order of the on-shell action evaluates to

−κS(1)
HJ =

1
2

∫
∂M

d2y
√

hε
(

KhAB − KAB
)
(∇AξB +∇BξA)

=
∫

∂M
d2y
√

hε
(

KhAB − KAB
) (

DAξB + KABξ⊥
)

=
∫

∂M
d2y
√

hε
((
−DBK + DAKAB

)
ξB +

(
K2 − KABKAB

)
ξ⊥
)

=
∫

∂M
d2y
√

hε
(

2R− 2Λ
)

ξ⊥ . (14)

where we have used the Gauss–Codazzi relations (5) to arrive at the last line.
Please note that the presence of these first-order terms may lead to second order terms which

are not invariant under the tangential boundary diffeomorphisms, even if we have
(2R− 2Λ

)
= 0.

Such second order terms might be needed to make the full action invariant under tangential boundary
diffeomorphisms to higher order.

2.3.2. Second Order Contributions

The second order bulk and boundary terms5 of the action arise from the variation of the first-order
bulk and boundary terms, respectively. They are given by

−κS(2) =
1
4

∫
d3x
√

g γab

(
Vabcd γcd + 1

2 Gabcde f ∇c∇dγe f

)
+

1
4

∫
d2y
√

h ε γab

(
(B1)

abcdγcd + (B2)
abcde∇cγde

)
, (15)

where the tensors Vabcd and Gabcde f as well as (B1)
abcd and (B2)

abcde are detailed in Appendix E.
From the bulk term we can read of the equations of motion for the metric perturbations

Vabcd γcd + 1
2 Gabcde f ∇c∇dγe f = 0 . (16)

5 The bulk and boundary terms are not uniquely determined, as one can redefine them using integration by parts. Here we
have chosen a form, where the bulk term vanishes on-shell.
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Thus, the second order contribution to the on-shell action comes only from the boundary term
in (15). 3D gravity has no propagating degrees of freedom. This is due to the diffeomorphism symmetry,
which renders the three degrees of freedom, given by the spatial metric perturbations γAB to be gauge.
This gauge symmetry also means that three of the six equations of motion in (16) are redundant.
With our assumptions that include that the transformation between the spatial metric perturbations
γAB and the diffeomorphism generating vector field ξb are invertible, the three remaining equations
of motions allow determination of the lapse and shift components γ⊥⊥ and γ⊥A as functions of the
spatial metric γAB, see also Equation (10).

Inserting these solutions for γ⊥⊥ and γ⊥A into the boundary term in (15) one obtains a functional
of the boundary metric fluctuations. Due to the fact that we do not have propagating degrees of
freedom, this functional will not include any radial derivatives of γAB. In general we have however to
expect that the Hamilton–Jacobi functional is boundary non-local, that is the integrand involves the
inverse of (boundary) differential operators acting on γAB.

We detail in Appendix C the evaluation of the boundary term, which shows that the
Hamilton–Jacobi functional is a local functional, if written in terms of the diffeomorphism generating
vector field ξb.

Result 2. The second order of the Hamilton–Jacobi functional is (with our assumptions stated in Section 2.1)
given by

−κS(2)
HJ =

1
4

∫
∂M

d2y
√

hε
(

ξ⊥∆ ξ⊥ − ξADABξB
)

, (17)

where

∆ = 2(KCD − KhCD)DCDD − 2R K ,

DAB = 2
(

KCD − KhCD
)

DCDD hAB − 2RKAB . (18)

We see that the Hamilton–Jacobi functional expressed in terms of the diffeomorphism generating
vector field is has a strikingly simple form. Note that the boundary normal component ξ⊥ and
the boundary tangential components ξA of the diffeomorphism generating vector field decouple.
This seems to hold specifically only in 3D gravity. The part invariant under the boundary tangential
diffeomorphism is given by ξ⊥∆ ξ⊥ = δ(2R)∆−1δ(2R).

As we will see the lengths of geodesics which are normal (in the background geometry) to the
boundary will be basically given by ξ⊥. The differential operator ∆ will therefore also be a key
ingredient in the effective action for the geodesic lengths.

3. Dual Boundary Field Theories

Although the on-shell action is local as a functional of the ξa, it is a rather non-local functional
of the boundary metric perturbations itself. Here we are interested in defining a (local) field theory,
defined on the boundary ∂M, whose Hamilton–Jacobi functional agrees with the one of gravity. We will
refer to such a field theory as dual boundary field theory.

Moreover, we would like to have boundary fields which can be identified with observables of the
gravitational theory. As the Hamilton—Jacobi functional measures in particular the extrinsic curvature
of the boundary, it is reasonable to look for observables which describe the shape of the boundary,
or in other words, the embedding of the boundary in the (homogeneously curved) bulk solution.

One such observable is the geodesic distance of a boundary point to a central bulk axis or a central
bulk point at r = 0. More precisely we consider a geodesic from the point (rb, yA) on the boundary
∂M to the point (r = 0, yA). We can therefore understand the geodesic length as a field defined on the
boundary itself.
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Since the metric is of Gaussian form with respect to the radius and the boundary is a r = const.
surface, the tangent vector to the geodesic is orthogonal to the boundary. For this reason the geodesic
length will be to first order in the (boundary) metric perturbations invariant under boundary tangential
diffeomorphisms. Thus, we can only expect to reproduce the part of the gravitational Hamilton–Jacobi
functional, which is invariant under these boundary tangential diffeomorphisms, that is the part
quadratic in ξ⊥. On the other hand, knowing that the first order of the geodesic lengths is boundary
diffeomorphism invariant, we can suspect that it is proportional to ξ⊥ evaluated on the boundary,
which in turn is related to the first variation of the boundary Ricci scalar.

In the following we will determine the (first order of the) geodesic length as a function of the
boundary metric. This will allow us to ‘guess’ a candidate for a dual-field theory, which (a) reproduces
the equation of motion for this geodesic length and (b) reproduces the boundary diffeomorphism
invariant part of the gravitational Hamilton–Jacobi functional. In the process we will encounter a
subtlety, namely that the geodesic lengths are also affected by the position of the central axis or point.
This position is determined by the bulk metric perturbations, which are however gauge degrees
of freedom.

The positions of a central point or axis do however only require three degrees of freedom for a
central point and three degrees of freedom per axis point, whereas the boundary field describes one
degree of freedom per boundary surface point. Indeed, we will see later that this arbitrariness affects
only certain momentum modes of the boundary field. But this feature will be also responsible for a
certain modifications which arise, if we determine the action for the geodesic length more directly
from the gravitational action.

In Section 3.2 we will furthermore find dual fields which reproduce the parts of the gravitational
Hamilton–Jacobi functional which describe the tangential boundary diffeomorphisms.

3.1. Action for the Geodesic Length

To start with we need to know the lengths of geodesics (r(τ), yA) as a functional of the metric
perturbations to first order. As a second step we should express such geodesics as functionals of the
boundary metric.

Please note that the parametrized curves xa(τ) = (r1 + (rout − rin)τ, 0, 0) with τ ∈ [0, 1] are
affinely parametrized geodesics with respect to background metrics of the form (1). This follows from
the geodesic equation

dxa

dτ
∇a

dxb

dτ
= Γb

⊥⊥ (r2 − r1)
2 = 0 . (19)

We now consider a geodesic za(τ) with respect to the full metric gfull
ab with fixed endpoints za(0)

and za(1). As explained in Appendix H its length is given to first order in metric perturbations by

` =
1

2(r2 − r1)

∫ 1

0
dτ

dxa

dτ

dxb

dτ
γab(x(τ)) =

1
2

∫ r2

r1

dr γ⊥⊥(r) . (20)

For a solution generated by a diffeomorphism parametrized by a vector field ξa, the first order
metric perturbation is given by

γ⊥⊥ = (Lξ g)⊥⊥ = ξa∂ag⊥⊥ + 2g⊥b∂⊥ξb =
(1)

2∂⊥ξ⊥. (21)

We thus find

` = ξ⊥(r2)− ξ⊥(r1) . (22)
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With (7) and (9) we can express the ξ⊥ component as a functional of the boundary metric

ξ⊥ =
1
∆

ΠABγAB =
1
∆

δ(2R) . (23)

However, we see that the geodesic lengths need the metric γAB at the outer boundary at rout

and at the inner boundary at rin. In the following we will assume that rin = 0 describes a one- or
zero-dimensional locus, that is a central axis or point. We will later see that in these cases, making
certain smoothness assumptions on the metric perturbations and Fourier transforming in the spatial yA

coordinates, ξ⊥(r = 0) is indeed vanishing for almost all momentum modes. The following will hold
for momentum modes for which ξ⊥(r = 0) is vanishing. For these modes we have that ` = ξ⊥(rout) is
a functional of the (outer) boundary metric only.

Now consider the action

κSρ =
1
4

∫
d2y
√

h
(

ρ ∆ρ− 2ρ δ(2R)
)

. (24)

Its equation of motion

ρ =
1
∆

δ(2R) = ξ⊥ (25)

shows that on-shell ρ = `, and that the on-shell action

κSρ =
solu
−1

4

∫
d2y
√

h ξ⊥∆ξ⊥ (26)

does indeed reproduce the boundary tangential invariant part of the gravitational Hamilton–Jacobi
functional.

The action (24) is local, with a quadratic term defined by ∆ = 2(KCD − KhCD)DCDD − 2R K and a
Liouville-like coupling to the Ricci scalar of the boundary.

In Section 4 we will derive an effective action for the geodesic length observable more directly
from the gravitational action, i.e., we integrate out from the gravitational action all fields excepts for a
degree of freedom describing the geodesic length. This resulting effective action will be very similar
to (24), but there will be also a non-local modification. This modification will take into account that
ξ⊥(r = 0) might be non-vanishing for certain momentum modes.

3.2. Action for the Boundary Tangential Diffeomorphisms

So far we have found a boundary theory which reproduces the boundary diffeomorphism
invariant part of the gravitational on-shell action. Its equation of motion for the field ρ imposes that
ρ = ξ⊥, where ξ⊥ is understood as a functional of the boundary metric. Similarly, we can find an
action which reproduces the remaining parts of the gravitational on-shell action, which are quadratic
in the tangential boundary diffeomorphism parameters ξ A. The dynamical variable is a boundary
vector field σA and the equations of motion will impose that σA = ξA.

To this end remember that the relation between ξA and the boundary metric perturbations is
given by

DA
B ξB = 2(KBC − KhBC) δ 2ΓA

BC . (27)

The action

−κSσ =
1
4

∫
d2y
√

h
(

σADABσB − 4σAhAD(KBC − KhBC) δ 2ΓD
BC

)
(28)
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leads to the equation of motion

DABσB = 2hAD(KBC − KhBC)δΓD
BC (29)

which are solved by σA = ξA. On-shell the action evaluates to

−κSσ =
solu
−1

4

∫
d2y
√

h ξADABξB. (30)

Hence we can define a boundary theory, with three dynamical fields ρ, σ1, σ2,

−κS(ρ,σ) =
1
4

∫
d2y
√

h
(
−ρ ∆ρ + σADABσB + 2ρ δ(2R)− 4σA(KBC − KhBC)δ2ΓA

BC

)
(31)

which reproduces the second order gravitational on-shell action

−κS(2)
HJ =

1
4

∫
d2y
√

h
(

ξ⊥∆ ξ⊥ − ξADAB ξB
)

. (32)

4. The Effective Action for the Geodesic Length

We have seen that we can postulate an action for a boundary field theory, such that the boundary
field variable evaluates to the geodesic lengths on solutions, and the action reproduces the (boundary
diffeomorphism invariant part of the) Hamilton–Jacobi functional of gravity. Later we will however
encounter examples for which the postulated action will differ in some subtle ways from the
effective action for the geodesic lengths. This effective action is obtained by integrating out all
degrees of freedom from the gravitational action, except those parametrizing the geodesic lengths.
These differences concern in particular the proper reflection of the (gauge) symmetries of the theory,
and are, as we will discuss, in particular important for the one-loop correction for the gravitational
partition function.

Integrating out all variables except for the geodesic lengths is hard to do directly6, as the geodesic
lengths is a composite observable in terms of the metric perturbations. Instead we will add a Lagrange
multiplier term to the second order action,

−κS(2)
λ =

1
4

∫
M

d3x
√

g γab

(
Vabcd γcd + 1

2 Gabcde f ∇c∇dγe f

)
+

1
4

∫
∂M

d2y
√

h ε γab

(
(B1)

abcdγcd + (B2)
abcde∇cγde

)
+

1
4

∫
(∂M)out

d2y λ(y) (ρ(y)− `[γ⊥⊥]) (33)

where λ is a scalar density with respect to the boundary metric, which we treat as first-order variable.
The boundary field ρ is a scalar, and the λ equation of motion imposes that, evaluated on solutions,
it gives the geodesic lengths

` =
1
2

∫ rout

rin

dr γ⊥⊥ . (34)

Here we allow for now to have either one outer boundary or one outer and an inner boundary.
In the latter case we consider geodesics which go from the point (rout, y) on the outer boundary to the
point (rin, y) on the inner boundary. In the case where we have only an outer boundary the geodesic

6 This can be achieved in Regge calculus [14,32], but requires to employ a discretization of the theory, which might break the
underlying diffeomorphism symmetry for backgrounds with curvature [35,36].
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goes from (rout, y) to a bulk point (r = 0, Pr→0(y)) where Pr→0(y) is a projection of the y-coordinate to
the set of points described by r = 0, e.g., if we have a cylindrical set-up with coordinates (r, t, θ) we
have Pr→0(t, θ) = t describing a point along the axis (r = 0, t).

Varying the action (33) with respect to the metric components we find the equations of motion

Ĝab :=
(

Vabcd γcd + 1
2 Gabcde f ∇c∇dγe f

)
=

1
4

λ(y)√
h

δa
⊥δb
⊥ , (35)

where we have used that with our choice of Gaussian coordinates
√

g =
√

h.
At this point one might wonder about the fate of the contracted Bianchi identities

∇aĜab = 0 (36)

which guarantee that three of the (vacuum) Einstein equations are redundant. But the divergence is
also vanishing for the right-hand side of (35)

∇a
λ(y)√

h
δa
⊥δb
⊥ =

(
λ(y)∂⊥

1√
h
+

λ(y)√
h

ΓA
A⊥

)
δ⊥b = 0 . (37)

Hence we still have three redundancies between the six equations of motion. We can therefore
expect to be able to solve for the three metric components γ⊥⊥ and γ⊥A in terms of the ‘spatial’ metric
γAB and λ. In the examples, we will consider in the following, it is sufficient to consider the three
Equation (35) for a =⊥ and b =⊥, A. Putting back the (possible λ-dependent) solutions for lapse and
shift into ĜAB = 0, one will find that these are automatically satisfied.

In the following we will consider three examples: a torus boundary embedded into flat space,
a torus boundary embedded into hyperbolic (AdS) space, and a spherical boundary embedded into
flat space. The cases with a torus boundary have a boundary internal curvature 2R = 0 and we will see
that these cases are qualitatively different from the spherical boundary where 2R 6= 0.

In particular for the cases with 2R = 0 the solution for the lapse γ⊥⊥ resulting from (35) will not
depend on λ. This applies in general for boundaries with 2R = 0 as will be shown in Appendix E.
This prevents us from finding a solution for λ, and the resulting action will be simply the gravitational
Hamilton–Jacobi functional with the Lagrange multiplier term added.

There is however a resolution, if we consider only having an outer boundary and thus include
r = 0 into the bulk manifold M. In this case one must take into account smoothness conditions for the
metric perturbations at r = 0. These conditions will constraint certain Taylor expansion coefficients of
the ‘spatial’ metric components γAB, and in case we have a Lagrange multiplier term, render these
λ-dependent. This mechanism will allow us to find an effective action for the geodesics lengths which
can also serve as a gravitational dual boundary field theory. The subtle point here is that certain
properties of this boundary field theory are determined by the smoothness conditions at r = 0, even if
we consider an asymptotic boundary rout → ∞.

5. Twisted Thermal Flat Space with Finite Boundary

As our first example we consider a background geometry known as twisted or spinning thermal
flat space [15]. An effective action for the geodesic lengths has been found in [14] using a Regge
discretization of gravity. This will allow us to compare and check the results obtained here.

The metric of thermal spinning flat space is given by

ds2 = dr2 + dt2 + r2dθ2 (38)

with periodic identification (r, t, θ) ∼ (r, t + β, θ + γ) in addition to the usual identification θ ∼ θ + 2π

for the angular variable.
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If we consider the spacetime for 0 ≤ r ≤ rout we obtain a solid torus. Contractible cycles
include curves described by t = const, r = const and non-contractible cycles include curves along
θ = const., r = const. The torus can be obtained by identifying the top and bottom discs of a cylinder
of height β, with a twisting angle (or angular potential) γ.

The boundary extrinsic (background) curvature is given by KAB = rδθ
Aδθ

B and the boundary
intrinsic (background) curvature is vanishing 2R = 0. Hence we have a differential operator
∆ = −2r−1∂2

t , which involves only derivatives in t-direction.
As the intrinsic curvature is vanishing we can define a Fourier transform for the metric

perturbation components. We must be however careful to implement the periodicity (r, t, θ) ∼
(r, t + β, θ + γ) of these functions into the Fourier transform. This can be done by ‘twisting’ the phase
factors for the Fourier transform so that these have the same periodicity:

γab(r, kt, kθ) =
1√
2πβ

∫ β/2

−β/2
dt
∫ π

−π
dθ γab(r, t, θ) e−iθkθ e−i 2πt

β (k′t−
γ

2π kθ) , (39)

where we will use the abbreviation kt := 2π
β (k′t −

γ
2π kθ), and kθ , k′t ∈ Z. The inverse transform is

given by

γab(r, t, θ) =
1√
2πβ

∑
kt ,kθ

γab(r, kt, kθ) eiθkθ ei 2πt
β (k′t−

γ
2π kθ) . (40)

5.1. Equations of Motion

Using the Fourier transform the equations of motion (35)

Ĝab =
1
4

λ(y)√
h

δa
⊥δb
⊥ , (41)

can be straightforwardly evaluated. The (ab) = (⊥ B) equations can be solved for the lapse and shift
components γ⊥⊥ and γ⊥A of the metric perturbations. (See also Appendix E, which discusses the
solutions for general backgrounds with flat spatial slices, that is with 2R = 0.)

One finds

γ⊥⊥ = 2∂⊥

(
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

))
= 2∂⊥ξ⊥ ,

γ⊥θ = ikθ
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

)
+ r2∂⊥

(
i

r2

(
kθ

2k2
t

γtt −
1
kt

γθt

))
− ikθλ

1
4k2

t

= ikθξ⊥ + r2∂⊥ξθ − ikθλ
1

4k2
t

,

γ⊥t = ikt
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

)
+ ∂⊥

(
− i

2kt
γtt

)
− iktλ

1
4k2

t

= iktξ
⊥ + ∂⊥ξt − iktλ

1
4k2

t
. (42)

For λ = 0 these confirm the relations (10) between the metric perturbations and the
diffeomorphism generating vector ξa. Note also that the λ dependence can be described by replacing
ξ⊥ by

ξ̂⊥ = ξ⊥ − 1
2∆

λ√
h

= ξ⊥ − 1
4k2

t
λ . (43)
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Using the solutions for lapse and shift perturbations in the remaining equations ĜAB = 0,
one finds that these are automatically satisfied, see also the discussion in Section 4.

Thus, if we are solving the equations for r ∈ [rin, rout] with rin > 0 we can conclude that the ‘spatial’
metric perturbations γAB can be freely chosen in the bulk. If we consider only an outer boundary and
thus include r = 0 in M, we will however argue that we have to impose some smoothness conditions
on the metric components at r = 0. We will see that this restricts certain Taylor expansion coefficients
(arising from an expansion around r = 0) of the spatial metric components.

We have one remaining equation, coming from the variation of the Lagrange multiplier, namely

ρ =
1
2

∫ r2

r1

dr γ⊥⊥ = ξ⊥(r2)− ξ⊥(r1) , (44)

where7

ξ⊥ =
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

)
(45)

does not depend on λ, at least not for non-vanishing radius. Considering the case with non-vanishing
r1, r2 this equation only involves fixed boundary data and the field ρ, which we treat here as parameter,
and not as a variable to solve for. There is no variable left, for which we can solve (44) and thus λ

remains a free parameter.

5.2. Evaluating the Action on Solutions

We proceed by inserting the solutions (42) into the action with Lagrange multiplier term (33).
Let us first consider the case that we have an outer boundary at rout and an inner boundary at rin.

From the bulk term of the action we get a contribution

−κS(2)
bulk =

1
4

∫
M

d3x
√

g γab Ĝab =
1
16

∫
M

d2ydr γ⊥⊥(r, y)λ(y) =
1
8

∫
∂M

d2y λ(y) εξ⊥ , (46)

where ε = +1 for the outer boundary component and ε = −1 for the inner boundary component.
The boundary terms split into two parts: firstly, the part which arises from the vacuum solution

(without λ), and secondly, the part which appears due to the presence of λ. We have determined the
first part S(2)

HJ in (17) (and Appendix C). The λ-dependent part is derived in Appendix G, where it is
shown that it amounts also to a boundary integral over ελξ⊥. We thus have

−κS(2)
bdry = −κS(2)

HJ −
1
8

∫
∂M

d2y ελ(y)ξ⊥ . (47)

We see that the λ-dependent terms cancel from the gravitational action. We are left with the
gravitational Hamilton–Jacobi functional and the Lagrange multiplier term

−κS(2)
λ =

solu
−κS(2)

HJ +
1
4

∫
(∂M)out

d2y λ(y) (ρ(y)− `[(γAB)out, (γAB)in]) (48)

where the geodesic lengths ` is now understood as a functional of the boundary metric perturbations.
This is an effective action for the geodesic lengths as the boundary field ρ evaluates to the geodesic

length on solutions. But we cannot interpret (48) as a proper dual boundary field theory for gravity.

7 We could also write ρ = ξ̂⊥(r2)− ξ̂⊥(r1) with a λ-dependent ξ̂⊥(r) defined in (43). However, note that the λ-dependent
terms drop out, as the λ-dependent term in ξ̂⊥(r) is r-independent.
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Please note that the same cancellation between the λ-dependent terms in the bulk and boundary
contributions to the action seems to appear if we have only an outer boundary, that is if we consider as
manifold M the full solid torus. This however conflicts with the result of [14], which used a Regge
calculus set-up. There the geodesic length variables can be explicitly identified with certain edge
lengths, which serve as basic variables in Regge calculus. This allows integration out of all variables
except for those edge lengths identified with the geodesic lengths. This results in an effective action,
which can be interpreted as a dual boundary field theory.

In fact, adopting the approach of [14] to the case of an outer and inner boundary, that is to a torus
ring, one finds the same result as in (48). As one now deals with a finite dimensional system one
can identify the reason for this behavior. To this end, one splits the variables into two sets. The first
set of variables L give the geodesic lengths, the other set E contains all remaining edge lengths.
The linearized action has a Hessian with non-vanishing8 determinant, which allows integration out
of all variables. However, the subdeterminant associated with the variables E is actually vanishing.
Thus we cannot integrate out straightforwardly all variables but the geodesic lengths. If one uses
an action with a Lagrange multiplier term one will find that λ remains a free parameter, and that
the on-shell action is of the form (48), that is given by the Hamilton–Jacobi functional of the original
system plus the Lagrange multiplier term. Appendix J, explains this general mechanism.

This opens the question why one does get a different result in Regge calculus for the case with
just the outer boundary, that is for the solid torus [14]. The answer is that in Regge calculus certain
conditions, which guarantee the smoothness of the solution (in the continuum limit) around r = 0 are
automatically implemented. We will thus proceed by implementing similar smoothness conditions for
the continuum theory.

5.3. Implementing Smoothness Conditions for the Metric at r = 0

The smoothness conditions we are going to impose arise from assuming Taylor expandable
metric perturbations around the origin in Cartesian coordinates. After transformation to cylindrical
coordinates we can deduce a certain behavior in the radial coordinate r:

γ⊥θ = a(1)rθ r + a(2)rθ r2 + O(r3) ,

γθθ = a(2)θθ r2 + O(r3) ,

γθt = a(1)θt r + a(2)θt r2 + O(r3) , (49)

and all other metric perturbations starting with r0 terms. For a detailed derivation we refer to
Appendix I.

We will impose these conditions for the metric perturbations, also for the case that we include
the Lagrange multiplier term. The same behavior can be deduced from Regge calculus, if one studies
which conditions on the variables one needs to impose, in order to reach the Regge action for the solid
torus from the Regge action for the torus ring in the limit where the inner radius goes to zero.

We will see that we now need to consider three separate cases, namely |kθ | ≥ 2, kθ = ±1 and
kθ = 0. We will start with the generic case |kθ | ≥ 2.

8 Linearized Regge calculus on a flat background exhibits a remnant of the gauge symmetries of the continuum theory [35–37].
But these gauge symmetries are associated with bulk vertices and one can triangulate the torus ring without any such bulk
vertices, but nevertheless allow for an arbitrarily fine boundary triangulation. Thus, one would not find gauge symmetries
for this case. Please note that the triangulation invariance of 3D linearized Regge calculus (and the associated one-loop
partition function) [17] allows to use the coarsest possible bulk triangulation.
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5.3.1. For Modes |kθ | ≥ 2

For the convenience of the reader we again display the solutions for the lapse and shift
variables (42):

γ⊥⊥ = 2∂⊥

(
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

))
,

γ⊥θ = ikθ
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

)
+ r2∂⊥

(
i

r2

(
kθ

2k2
t

γtt −
1
kt

γθt

))
− ikθλ

1
4k2

t
,

γ⊥t = ikt
1
2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ

kt
γθt

)
+ ∂⊥

(
− i

2kt
γtt

)
− iktλ

1
4k2

t
. (50)

We Taylor expand all metric perturbations in r and arrive at equations for the expansion
coefficients a(n)ab . Imposing the conditions that a(n)ab = 0 for n < 0 and that a(0)aθ = 0 as well as

a(1)θθ = 0 we arrive at the conclusions:

• In order for a(−2)
rr to vanish, we need

k2
θ

k2
t

a(0)tt = 0 . (51)

Thus, we have a(0)tt = 0 for kθ 6= 0. This also ensures that a(−1)
rθ and a(−1)

rt vanishes.

• Notice that according to the first equation in (42) the coefficient a(−1)
rr vanishes and we do allow

for non-vanishing a(0)rr . The remaining requirement comes from demanding that a(0)rθ is vanishing.
This leads to the equation (for kθ 6= 0)(

1− 1
k2

θ

)(
k2

θ

k2
t

a(1)tt − 2
kθ

kt
a(1)θt

)
=

λ

2k2
t

. (52)

In summary we obtain the conditions (51) and (52) for the boundary components of the metric.
We also see that we need a special treatment for the case kθ = 0 and kθ = ±1. (The case
k2

t = 4π2

β2 (k′t −
γ

2π kθ)
2 = 0, which arises for rational values for γ

2π will be discussed in Section 5.4.)
Please note that both (51) and (52) are a restriction on expansion coefficients for the spatial metric

perturbations. These conditions also determine the value of the r-component ξ⊥ of the diffeomorphism
generating vector field at r = 0,

ξ⊥(0) = lim
r→0

1
2r

(
γθθ(r) +

k2
θ

k2
t

γtt(r)− 2
kθ

kt
γθt(r)

)

=
1
2

(
k2

θ

k2
t

a(1)tt − 2
kθ

kt
a(1)θt

)

=
1
4

k2
θ

(k2
θ − 1)

λ

k2
t

(53)

which now is λ-dependent.
Thus, considering the equation of motion imposed by the Lagrange multiplier, we now find

ρ =
1
2

∫ rout

0
dr γ⊥⊥(r) =

∫ rout

0
dr ∂⊥ξ⊥(r) = ξ⊥(rout)− ξ⊥(0) , (54)
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where

ξ⊥(rout) =
1

2rout

(
γθθ(rout) +

k2
θ

k2
t

γtt(rout)− 2
kθ

kt
γθt(rout)

)
(55)

is a function of the boundary data. As ξ⊥(0) is now λ-dependent, we do obtain a solution for the
Lagrange multiplier

λ = 4k2
t

(
1− 1

k2
θ

)(
ξ⊥(rout)− ρ

)
. (56)

Please note that on-shell of the solutions to the effective action for ρ, we will have ρ = ξ⊥(rout)

and thus for |kθ | ≥ 2 vanishing λ as well as a vanishing component ξ⊥(0).
The evaluation of the action proceeds similarly as in Section 5.2. The bulk term still leads to

−κS(2)
bulk =

1
8

∫
∂M

d2y λ(y) (ξr(rout, y)− ξ⊥(0, y)) , (57)

where we have used ε = +1 as we have only the outer boundary. The boundary term gives

−κS(2)
bdry = −κS(2)

HJ (rout)−
1
8

∫
∂M

d2y λ(y)ξr(rout, y) . (58)

The Lagrange multiplier term vanishes on the solutions to (54).
Thus, the terms with λξ⊥(rout) still cancel, but we remain with the λξ⊥(0) term.

We therefore obtain

−κS(2)
λ =

solu
−κS(2)

HJ (rout)−
1
8

∫
∂M

d2y λ(y)ξ⊥(0, y)

= −κS(2)
HJ (rout) +

1
2

∫
∂M

d2y
(

ξ⊥(rout)− ρ
)

∂2
t

(
1 +

1
∂2

θ

)(
ξ⊥(rout)− ρ

)
= −κS(2)

HJ (rout) +
1
2

∫
∂M

d2y ξ⊥(rout)∂
2
t

(
1 +

1
∂2

θ

)
ξ⊥(rout) +

1
2

∫
∂M

d2y

(
ρ ∂2

t

(
1 +

1
∂2

θ

)
ρ− 2ρ ∂2

t

(
1 +

1
∂2

θ

)
ξ⊥(rout)

)
. (59)

The Hamilton-Jacobi functional is given by (remember that ∆ = −2r−1∂2
t )

−κS(2)
HJ (rout) =

1
4

∫
∂M

d2y
√

h
(

ξ⊥∆ξ⊥ − ξADAB ξB
)

= −1
2

∫
∂M

d2y
(

ξ⊥∂2
t ξ⊥ − ξ AhAB∂2

t ξB
)

(60)

and with ξ⊥ = ∆−1δ(2R) = −2−1r∂−2
t δ(2R) we can write

−κS(2)
λ =

solu
−1

4

∫
∂M

d2y
√

h

(
ρ ∆

(
1 +

1
∂2

θ

)
ρ− 2ρ

(
1 +

1
∂2

θ

)
δ(2R)

)
+

1
4

∫
∂M

d2y
√

h

(
ξ⊥∆

1
∂2

θ

ξ⊥ − ξADAB ξB

)
. (61)

This does define an action for the boundary field ρ, whose on-shell value does reproduce the
gravitational Hamilton–Jacobi function SHJ.
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We note that

κS′ρ :=
1
4

∫
∂M

d2y
√

h

(
ρ ∆

(
1 +

1
∂2

θ

)
ρ− 2ρ

(
1 +

1
∂2

θ

)
δ(2R)

)
(62)

differs from the action Sρ which we found in Section 3.1 by the insertion of the non-local operator

(1 + ∂−2
θ ). (It does also reproduce S(2)

HJ multiplied with this factor.) This insertion has an important
consequence: the effective action for the geodesic lengths S′ρ does vanish for modes kθ = ±1.
The effective action is furthermore ill-defined for kθ = 0.

As we will see shortly, the modes kθ = ±1 have a special status, as we can have in this case a
non-vanishing ξ⊥(r = 0) (for vanishing λ). It can be expressed as a function of the spatial metric
components. But in the bulk these are gauge degrees of freedom. We therefore cannot determine
the geodesic length at kθ = ±1 from the boundary data. In fact, in the Regge calculus set-up [14]
the geodesic length variables at kθ = ±1 can be identified with gauge parameters resulting from the
residual diffeomorphism symmetry of Regge calculus [35–37]. For this reason the effective action for
the geodesic length should vanish—and we show below that it in fact does.

For the case kθ = 0 one has also a diffeomorphism generating vector field, which does not need
to vanish at r = 0. But this time it is the component ξt that does not need to vanish and can be
furthermore identified as a gauge parameter. We will see that here we are back to a situation similar
to what we described for the case with two boundaries: one cannot straightforwardly integrate out
all variables except the geodesic lengths and the on-shell value of the action Sλ will reproduce the
Hamilton–Jacobi functional and the Lagrange multiplier term.

The special status of these modes is also reflected in the one-loop partition function for gravity,
which reproduces the vacuum character of the BMS group [14,18]. As we will discuss shortly in
Section 5.6 the one-loop determinant for gravity does coincide with the one-loop determinant of the
boundary field theory (62). Here it is important that this determinant does only include a product over
the modes kθ ≥ 2, as the modes kθ = 0 and kθ = ±1 do describe gauge degrees of freedom [14].

5.3.2. For Modes with kθ = 0

For kθ = 0 we obtain the following solutions for the lapse and shift components

γ⊥⊥ = 2∂⊥

(
1
2r

γθθ

)
= 2∂⊥ξ⊥ ,

γ⊥θ = r2∂⊥

(
− i

r2
1
kt

γθt

)
= r2∂⊥ξθ ,

γ⊥t = ikt
1
2r

γθθ + ∂⊥

(
− i

2kt
γtt

)
− iktλ

1
4k2

t
= iktξ

⊥ + ∂⊥ξt − iktλ
1

4k2
t

. (63)

We see that for kθ = 0 we can have a(0)tt 6= 0. This is the only non-vanishing component of the
spatial metric γAB at r = 0, and as it remains arbitrary, should be understood as gauge parameter.
Please note that this (additional) gauge parameter only appears for kθ = 0, as it is forced to vanish for
kθ 6= 0 by the equations of motion.

We also see that the vector field component ξ⊥ does vanish at r = 0. The requirement that a(0)rθ

vanishes, imposes a(1)θt = 0. From the last equation in (63) we obtain that the only λ-dependent shift
component is given by

a(0)rt = − i
2kt

a(1)tt − iktλ
1

4k2
t

. (64)
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From the Lagrange multiplier equation, we obtain

ρ = ξ⊥(rout) =
1

2rout
γθθ(rout) , (65)

where different from the general case, we do not have a λ-dependent term as ξ⊥(r = 0, kθ = 0) = 0.
Therefore, we cannot determine λ as a function of ρ and the boundary variables. We are now

in the same situation as described for the case with two boundaries in Section 5.2. One can compute
explicitly that the evaluation of the action yields the same result as in this case, namely

κS(2)
λ |kθ=0 =

solu
κS(2)

HJ |kθ=0
+ 1

4 λ
(

ρ− ξ⊥(rout)
)
|kθ=0

. (66)

5.3.3. For Modes with kθ = ±1

Here we find from Equation (52) that(
1− 1

k2
θ

)(
k2

θ

k2
t

a(1)tt − 2
kθ

kt
a(1)θt

)
=

λ

2k2
t

!
= 0 , (67)

and thus λ = 0. The vector field component ξ⊥(0) does not need to vanish and is given by

ξ⊥(0) =
1
2

(
k2

θ

k2
t

a(1)tt − 2
kθ

kt
a(1)θt

)
. (68)

Thus, we have for the geodesic length variable

ρ = ξ⊥(rout)− ξ⊥(0) . (69)

However, here we should understand ξ⊥(0) as a bulk variable—in fact it is a gauge parameter
that only appears at kθ = ±1.

Inserting the solutions into the action, we will have, due to λ = 0 that

κS(2)
λ (kθ = 0) =

solu
κS(2)

HJ (kθ = 0) (70)

and that thus the effective action for the boundary field ρ vanishes. This is also confirmed in the Regge
calculus setting [14].

5.4. Modes with kt = 0

Remember that we have defined kt := 2π
β (k′t −

γ
2π kθ). Thus, if γ is a rational multiple of 2π there

will be certain k′t, kθ ∈ Z for which kt = 0. At these angles and for such modes with kt = 0 we do not
have a well-posed boundary problem, that is solutions do not exist for all possible boundary metric
fluctuations.9 The condition of rational γ can be translated in how geodesics along the torus would
wind around this torus, see [24,25].

These modes with kt = 0 will lead to divergencies of the one-loop correction, which appear for all
rational angles. This can be treated with an ad-hoc regularization, as in [18]. Alternatively, one can
use a discretization, e.g., Regge calculus as in [14] or the Ponzano–Regge model as in [24–26]. Such a
discretization allows only rational angles γ, but the discretization does introduce a cut-off. For a given

9 The boundary fluctuations for which one can and cannot find solutions for lapse and shift can be read off from (50).
e.g., allowing only for non-vanishing fluctuations γθθ still allows for a solution.
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rational angle, there is a choice of (minimal) discretization, for which such modes with kt = 0 do
not appear.

As discussed in [24,25] the appearance of such divergencies seems to be an artifact of the
linearization, or in the quantum theory an artifact of the semi-classical (or one-loop) approximation,
at least if one considers a boundary with finite radius. Dittrich et al. [24] shows however that the
exact partition function, for a particular choice of boundary conditions, does reproduce the divergence
structure in the limit to infinite radius.

5.5. The Limit of Large Radius

We found as effective action for the geodesic length

κS′ρ :=
1
4

∫
∂M

d2y
√

h

(
ρ ∆

(
1 +

1
∂2

θ

)
ρ− 2ρ

(
1 +

1
∂2

θ

)
δ(2R)

)
(71)

which features a non-local operator (1− 1/∂2
θ). If we fix however the physical wave lengths of the

angular modes r−2∂2
θ = const. = C we see that(

1 +
1
r2

1
C

)
−→
r→∞

1 , (72)

and the effective action becomes local and we recover the action Sρ proposed in Section 3.1.
In this way we define (radial) scalings

[kθ ] = 1 , [γtt] = 0 , [γθθ ] = 2 , [γθt] = 1 . (73)

Then we have [ξ⊥] = 1 and [ξθ ] = −1 as well as [ξt] = 0. We have also [∆] = −1 and [Dθθ ] = +1
as well as [Dtt] = −1. We thus find that [ξ⊥∆ξ⊥] = +1 comes with the dominant radial scaling,
as compared to the terms which are not invariant under boundary tangential diffeomorphisms,
which are given by [ξθDθθξθ ] = −1 and [ξtDttξ

t] = −1. In this sense we have that for large radius the
diffeomorphism invariant term ξ⊥∆ξ⊥ dominates.

5.6. One-Loop Determinant of the Dual Boundary Field Theory

By construction we have that the dual action S′ρ reproduces the (boundary diffeomorphism
invariant part of the) gravitational action—modulo the insertion of (1 + ∂−2

θ ). (To compensate one
adds the gravitational action with −∂−2

θ inserted.) Here we will show that the dual action also
reproduces the one-loop determinant of gravity, which has been computed in the continuum for
asymptotic boundaries in [18] and in the discrete for finite boundaries in [14].

To compute the one-loop determinant for S′ρ given in (62), we will adopt a simple lattice
regularization for the Hessian of the action, which is given by k2

t (1− k−2
θ ):

k2
θ →

(
2− 2 cos

(
2π

Nθ

))−1 (
2− 2 cos

(
2π

Nθ
κθ

))
k2

t → N2
t

β2

(
2− 2 cos

(
2π

Nt
(κt −

γ

2π
κθ)

))
, (74)

where κθ = 0, . . . , Nθ − 1 and κt = 0, . . . Nt − 1. With this choice we still have that (1− k−2
θ ) = 0 for

κθ = ±1. Now, as our dual action is only defined for |kθ | ≥ 2 we consider

Nθ−2

∏
κθ=2

1−
2− 2 cos

(
2π
Nθ

)
2− 2 cos

(
2π
Nθ

κθ

)
 =

1

2 + 2 cos
(

2π
Nθ

) (75)
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and

Nt−1

∏
κy=0

(
2− 2 cos

(
2π

Nt
(κt −

γ

2π
κθ)

))
= 2− 2 cos(γκθ) . (76)

Ignoring some inessential constants, we therefore have

Nθ−2

∏
κθ=2

Nt−1

∏
κy=0

1√
k2

t (1− k−2
θ )

∼
Nθ /2−1

∏
κθ=2

1
|1− qκθ |2 (77)

where q = exp(iγ). This reproduces the one-loop determinant of the gravitational theory [14,18].
Thus, the (only) essential contribution to the one-loop determinant arises from the degrees of
freedom describing the geodesic lengths from the boundary to some central point. This confirms the
interpretation of the action S′ρ as dual action for gravity.

Please note that to get the correct result, it is essential to not to include the modes kθ = 0
and kθ = ±1, which in our case follows from the appearance of the non-local operator (1− k−1

θ ).
The exclusion of the kθ = ±1 modes is a feature of the vacuum BMS character [38], which is reproduced
by the one-loop partition function for asymptotic boundaries [18]. Inserting a point particle in the
center, one rather expects a massive character. Indeed, the insertion of a point particle will break the
diffeomorphism symmetry described by the kθ = ±1 modes. This can be also expected to happen in
the current framework, as we would have to modify the smoothness conditions, which we introduced
in Section 5.3, and which were essential for obtaining a suitable dual action.

6. Twisted Thermal AdS Space with Finite Boundary

Next we will consider as background AdS space with metric

ds2 = dr2 + sinh2r dθ2 + cosh2r dt2 , (78)

where we have fixed Λ = −1. As for the flat space metric we impose the periodicity conditions
(r, t, θ) ∼ (r, t + β, θ + γ) and θ ∼ θ + 2π for the angular variable. This defines twisted thermal
AdS space. The one-loop partition function for this background with asymptotic boundary has been
computed from the gravity side in [19] and reproduces the vacuum character of the asymptotic
symmetries of AdS3 space [39]. This example has been intensively discussed in the literature,
e.g., [8,9,40] and references therein. The derivation of the (Liouville) dual boundary field theory starts
often with the Chern–Simons formulation of 3D gravity. One exception is [13], which derives a dual
boundary theory from the breaking of diffeomorphism symmetry at the asymptotic boundary. In fact
the field introduced in [13] agrees (in the linearized theory) with the geodesic distance employed here.
Our derivation of the dual-field theory is somewhat more direct and applicable to finite boundaries.

We will again consider a torus boundary at r = rout and thus the background intrinsic curvature
of the boundary (which we constrained to be homogeneous) must vanish 2R = 0.

The computation of the effective geodesic action is very similar to the flat case, and we will
therefore be brief. One again finds that one needs to invoke smoothness conditions at r = 0 to obtain
an effective action, which can also serve as dual boundary field theory. The modes kθ = 0 and kθ = ±1
will also play a special role.

One difference with the flat case is that the extrinsic curvature has now full rank

Kθθ = Ktt = cosh r sinh r , Kθt = 0 and K = tanh r + coth r . (79)



Universe 2019, 5, 181 22 of 46

Thus,

∆ = 2(KCD − KhCD)DCDD =
−2

coshr sinhr

(
∂2

θ + ∂2
t

)
=
−2√

h

(
∂2

θ + ∂2
t

)
(80)

is now non-degenerate.
The Fourier transformation for the y = (θ, t) variables can be defined as for the flat background,

see (39), which allows us to invert the various differential operators.

6.1. Equations of Motion and Evaluation of the Action

The equations of motion

Ĝab =
1
4

λ(y)√
h

δa
⊥δb
⊥ , (81)

resulting from varying γab of the Lagrange multiplier action (33) can be solved for the lapse and shift
metric perturbations. The solutions are given by

γ⊥⊥ = 2∂⊥
( k2

θγtt + k2
t γθθ − 2ktkθγtθ

2 coshr sinhr(k2
t + k2

θ)

)
(82)

= 2∂⊥ξ⊥ ,

γ⊥t = ikt
k2

θγtt + k2
t γθθ − 2ktkθγtθ

2 coshr sinhr(k2
t + k2

θ)
+ cosh2r∂⊥

(−iktγtt + iktγθθ − 2ikθγtθ

2 cosh2r(k2
t + k2

θ)

)
− iktλ

4(k2
t + k2

θ)
(83)

= iktξ
⊥ + cosh2r∂⊥ξt − iktλ

4(k2
t + k2

θ)
,

γ⊥θ = ikθ
k2

θγtt + k2
t γθθ − 2ktkθγtθ

2 coshr sinhr(k2
t + k2

θ)
+ sinh2r∂⊥

( ikθγtt − ikθγθθ − 2iktγtθ

2 sinh2r(k2
t + k2

θ)

)
− ikθλ

4(k2
t + k2

θ)
(84)

= ikθξ⊥ + sinh2r∂⊥ξθ − ikθλ

4(k2
t + k2

θ)
.

Thus, the lapse and shift perturbations arise by replacing ξ⊥ with

ξ̂⊥ = ξ⊥ − 1
2∆

λ√
h

= ξ⊥ − 1
4(k2

t + k2
θ)

. (85)

As for the flat case we have that the solution for γ⊥⊥ a priori does not involve λ. Appendix E
shows that this will be always the case for foliations for which 2R = 0. Thus, we will also find here that
for the case of an outer and inner boundary, λ remains a free parameter and the action (33) evaluated on
the solutions (82) will just reproduce the gravitational Hamilton–Jacobi functional plus the Lagrange
multiplier term.

If we consider only the case of an outer boundary we have to impose smoothness conditions for
r = 0. Adopting the same strategy as for the flat case we choose to impose

γ⊥θ = ra(1)rθ + r2a(2)rθ + O(r3) , (86)

γθθ = r2a(2)θθ + O(r3) , (87)

γtθ = ra(1)tθ + r2a(2)rθ + O(r3) , (88)

with the remaining metric components starting with a(0)ab r0 coefficients.
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Ensuring that a(−2)
rr = 0 requires again kθa(0)tt = 0. To make a(1)rθ vanish we need

λ = (k2
θ − 1)(2a(1)tt − 4

kt

kθ
a(1)tθ ) . (89)

This leads to a non-vanishing vector component ξ⊥ at r = 0:

ξ⊥(r=0) =
1
4

k2
θ

(k2
θ − 1)

λ

(k2
t + k2

θ)
, (90)

which allows us to solve the Lagrange multiplier equation ρ = ξ⊥(rout)− ξ⊥(r=0) for λ:

λ = 4(k2
t + k2

θ)

(
1− 1

k2
θ

)
(ξ⊥(rout)− ρ) . (91)

The evaluation of the action proceeds completely parallel to the flat case and we arrive at

−κS(2)
λ =

solu
−1

4

∫
∂M

d2y
√

h

(
ρ ∆

(
1 +

1
∂2

θ

)
ρ− 2ρ

(
1 +

1
∂2

θ

)
δ(2R)

)
+

1
4

∫
∂M

d2y
√

h

(
ξ⊥∆

1
∂2

θ

ξ⊥ − ξADAB ξB

)
. (92)

where now ∆ = −2
coshr sinhr

(
∂2

θ + ∂2
t
)

and
√

h = coshr sinhr.
The cases kθ = ±1 and kθ = 0 require again special attention. For kθ = ±1 we find that λ = 0

and that thus the action for the field ρ vanishes. For kθ = 0 we have that ξ⊥(r=0) vanishes, and that
thus λ remains undetermined. The on-shell evaluation of the λ-action will therefore give the same
result (66) as in the flat case.

In summary we find that the action for the boundary field ρ features the same insertion of the
non-local differential operator (1 + ∂−2

θ ) as in the flat case

κS′ρ :=
1
4

∫
∂M

d2y
√

h

(
ρ ∆

(
1 +

1
∂2

θ

)
ρ− 2ρ

(
1 +

1
∂2

θ

)
δ(2R)

)
. (93)

6.2. One-Loop Correction from the Dual Field

We have thus found an effective boundary action for the AdS background. The kinetic part is
describing a free scalar field on a torus. Additionally, we have the operator (1 + ∂−2

θ ) but we have seen
in Section 5.6, that, apart from suppressing the kθ = ±1 modes, this operator does only contribute a
constant to the one-loop partition function. But the Laplace operator ∆ ∼ ∂2

t + ∂2
θ defined on the torus

leads to the one-loop correction

∏
κθ≥2

1
|1− qκθ |2 (94)

where q = exp(iτ) with the torus modular parameter τ = 1
2π (γ− iβ). This agrees with the one-loop

correction computed directly from gravity [19].

7. Flat Space with Spherical Boundary

We have seen that for the cases with flat boundaries that is with 2R = 0, we need to carefully take
into account smoothness conditions at r = 0, to obtain an effective action, which can also be interpreted
as dual-field theory. This effective action does however differ by the insertion of a non-local operator
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from the action, which we postulated in Section 3.1. This non-local operator plays an important role in
correctly transferring the symmetries of the gravitational theory to the dual-field theory.

In Appendix E we show that for all cases with 2R = 0, the solution for the lapse fluctuation,
and therefore for the geodesic lengths, will not depend on the Lagrange multiplier λ. We can therefore
expect that the mechanism for constructing the effective action is similar to the cases discussed here.
That is, we have to carefully consider smoothness conditions at r = 0, and might have to expect the
insertion of a non-local operator.

Let us now consider a case with non-vanishing background intrinsic curvature 2R 6= 0. As we
consider only boundaries with homogeneous curvature, we must change the topology. We will choose
a spherical one. Using Regge lengths one can argue that for a sphere boundary the effective action
for the geodesic length should be local10 and that we thus might confirm the action we postulated in
Section 3.1.

We choose as background metric

ds2 = dr2 + r2dθ2 + r2 sin2θdϕ2 (95)

with spherical boundary defined by r = const. The intrinsic boundary curvature is now non-vanishing
2R = 2

r2 . We will see that this alters the computations in several ways from the cases with intrinsically
flat boundary.

We have furthermore KCD = 1
2 KhCD and thus KAB − KhAB = − 1

2 K. This gives

∆ = −
(

KDCDC + 2RK
)

= − 2
r

(
DCDC + 2

r2

)
,

DAB = −
(

KDCDC + 1
2

2RK
)

hAB = − 2
r

(
DCDC + 1

r2

)
hAB (96)

with K = 2
r and 2R = 2

r2 .
As we have now intrinsic curvature, the differential operators Dθ and Dϕ are non-commuting and

we cannot simultaneously diagonalize these operators. However, one can use scalar, vector, and tensor
spherical harmonics, which allow for the diagonalization of the Laplacian D2

Lap = hABDADB acting on
scalars, vectors, and second rank tensors. Furthermore, one has certain properties for the divergence
of the vector and tensor harmonics as well as for the trace of the tensor harmonics, see Appendix K.

We will however not need these harmonics for most of the discussion. It will be sufficient to know
that we can find the inverse of the operators ∆ and DAB, e.g., by using the spherical harmonics to
diagonalize these operators.

7.1. Solutions to Equations of Motion

We again start by solving the lapse and shift components of the equations of motion

Ĝab =
1
4

λ(y)√
h

δa
⊥δb
⊥ , (97)

10 The reason is that the one-loop partition function for 3D Regge calculus is bulk triangulation independent [17]. One can
therefore choose the coarsest bulk triangulation available. For the spherical boundary one can choose a triangulation with
only one bulk vertex and where all bulk edges go from the boundary to this bulk vertex. The edge lengths can therefore
be interpreted as geodesic lengths and the Regge action, which is local, can be identified with the effective action for the
geodesic lengths [32].
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for the lapse and shift components of the metric perturbations. The derivation of the solutions is now
more involved, due to the non-commutativity of the differential operators. We have collected the
essential details in Appendix F and reproduce here just the resulting solutions for lapse and shift:

γ⊥⊥ = 2∂⊥∆−1
(

ΠABγAB

)
− r−1∆−1 λ√

h

= 2∂⊥

(
ξ⊥ − 1

2
1
∆

λ√
h

)
,

γ⊥B = DB∆−1
(

ΠCDγCD

)
− 1

2
DB∆−1 λ√

h
+ hBA ∂⊥

(
D−1

(
−2

r
hCDδ2Γ◦CD

))A

= DB

(
ξ⊥ − 1

2
1
∆

λ√
h

)
+ hBA∂⊥ξ A . (98)

We again find that the introduction of the Lagrange multiplier amounts to shifting the vector
component ξ⊥ to

ξ̂⊥ = ξ⊥ − 1
2

1
∆

λ√
h

. (99)

However, different from the cases with flat boundary we now have a λ-dependence for the lapse
components γ⊥⊥. Here it arises due to the fact that

√
h∆ is now r-dependent.

Let us also shortly discuss the smoothness conditions for the metric perturbations at r = 0.
Assuming Taylor expandable metric perturbations in Cartesian coordinates and transforming these
to spherical coordinates, see Appendix I, we find that γ⊥⊥ has an expansion in the r-coordinate that
starts with r0, γ⊥A components start with an r1-term and the γAB-components start with r2.

Now assuming that the γAB components start with r2 one will find that the solutions (A77) ensure
that the remaining conditions are satisfied. This holds also if we do include a non-vanishing λ. To see
this, one can use the scaling properties of the differential operators in r, e.g.,

∆ = r−3∆̃ , DA
B = r−3D̃A

B , ΠAB = r−4Π̃AB (100)

where Õ is the operator O evaluated at r = 1.
Using these scaling properties we can also deduce that the vector component ξ⊥ is vanishing at

r = 0, that is we have ξ⊥(r = 0) = 0 as well as ξ̂⊥(r = 0) = 0.
Finally, we consider the Lagrange multiplier equation, which is now given by

ρ =
1
2

∫ rout

rin

dr γ⊥⊥ = ξ̂⊥(rout)− ξ̂⊥(rin)

= ξ⊥(rout)− ξ⊥(rin)−
(rout − rin)

2
√

h̃∆̃
λ (101)

Thus, we obtain as a solution for λ

λ =
2
√

h̃∆̃
(rout − rin)

(
ξ⊥(rout)− ξ⊥(rin)− ρ

)
, (102)

where ξ⊥(r = 0) = 0.

7.2. Evaluation of the Action

Let us consider the case that we have an outer boundary at rout and an inner boundary at rin.
As we have ξ̂⊥(r = 0) = ξ⊥(r = 0) = 0, it will be straightforward to derive from this the case with only
an outer boundary.
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For the evaluation of the boundary we need to consider the bulk and boundary term in (33)—the
Lagrange multiplier term vanishes on solutions of (102). We will however treat for the moment λ as a
variable, and only use the explicit solution for λ at the very end.

The bulk term gives evaluated on solutions of (97)

−κS(2)
bulk =

1
4

∫
M

d3x
√

g γab Ĝab =
1

16

∫
M

d2ydr γ⊥⊥(r, y)λ(y)

=
1
8

∫
(∂M)out

d2y λ (ξ̂⊥(rout)− ξ̂⊥(rin)) . (103)

Please note that we now have ξ̂⊥ appearing, instead of just ξ⊥. (In the cases with flat boundaries
(ξ̂⊥ − ξ⊥) is constant in r and we could thus use ξ⊥.)

For the boundary term we find (see Appendix G)

−κS(2)
bdry = −κS(2)

HJ −
1
8

∫
(∂M)out

d2y λ
(

ξ⊥(rout)− ξ⊥(rin)
)

. (104)

We are thus left with

−κS(2)
λ =

solu
−κS(2)

HJ +
1
8

∫
(∂M)out

d2y λ
(
(ξ̂⊥ − ξ⊥)(rout)− (ξ̂⊥ − ξ⊥)(rin)

)
= −κS(2)

HJ −
1
8

∫
(∂M)out

d2y λ
(rout − rin)

2
√

h̃∆̃
λ . (105)

Inserting the solution (102) for λ

λ =
2
√

h̃∆̃
(rout − rin)

(
ξ⊥(rout)− ξ⊥(rin)− ρ

)
, (106)

we obtain

−κS(2)
λ =

solu
−κS(2)

HJ −
1
4

∫
(∂M)out

d2y

√
h̃

(rout − rin)

[
ρ∆̃ρ − 2ρ∆̃

(
ξ⊥(rout)− ξ⊥(rin)

)
+(

ξ⊥(rout)− ξ⊥(rin)
)

∆̃
(

ξ⊥(rout)− ξ⊥(rin)
) ]

. (107)

The terms in S(2)
HJ , in which ξ⊥ appears are given by

√
hξ⊥(rout)∆ξ⊥(rout) = r−1

out

√
h̃ξ⊥(rout)∆̃ξ⊥(rout) and

−
√

hξ⊥(rin)∆ξ⊥(rin) = −r−1
in

√
h̃ξ⊥(rin)∆̃ξ⊥(rin) (108)

Thus, for rin 6= 0 we will not have a cancellation between these terms and

(rout − rin)
−1
√

h̃
(

ξ⊥(rout)− ξ⊥(rin)
)

∆̃
(

ξ⊥(rout)− ξ⊥(rin)
)

(109)

appearing in (107).
Thus, although (107) is an effective action for the geodesic lengths between the outer and inner

boundary, we cannot interpret the ρ-dependent part as a dual action for gravity. This might not be a
surprise as the geodesic lengths does only detect the difference between ξ⊥(rout) and ξ⊥(rin), whereas
for the evaluation of the gravitational boundary term we need to know both ξ⊥(rout) and ξ⊥(rin).
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These problems do not appear if we choose to have only an outer boundary, that is rin = 0,
in which case we have ξ⊥(rin) = 0. Then we can write

−κS(2)
λ =

solu
−κS(2)

HJ −
1
4

∫
∂M

d2y
√

h
[

ρ∆ρ − 2ρ∆ξ⊥(rout) + ξ⊥(rout)∆ξ⊥(rout)

]
.

= −1
4

∫
∂M

d2y
√

h
(

ρ∆ρ − 2ρ δ 2R
)
− 1

4

∫
∂M

d2y
√

hξADABξB . (110)

The ρ-dependent part is given by

S′ρ = −1
4

∫
∂M

d2y
√

h
(

ρ∆ρ − 2ρ δ 2R
)

(111)

and can be taken as dual boundary field theory, which reproduces the boundary
diffeomorphism-invariant part of the gravitational Hamilton–Jacobi functional.

Thus, we see that for the case of a spherical boundary we produce exactly the action Sρ which we
derived in Section 3.1, that is S′ρ = Sρ. In contrast to the cases with flat boundary discussed previously
there is no insertion of a non-local operator in S′ρ.

Please note that there are also special modes that appear for the spherical boundary. Using
spherical harmonics Ylm one will find that ∆ is vanishing on Ylm with l = 1. One thus has three
modes l = 1 and m = −1, 0,+1 for which S′ρ is vanishing. These modes do describe the geometric
position of the central point at r = 0, which is encoded in the metric perturbations γAB around
r = 0. Thus, we can understand these three modes as (diffeomorphism) gauge parameters for the
gravitational field, which do happen to affect the geodesic length variable.

As discussed above we can use the Regge calculus set-up to argue that the geodesic effective
action should be indeed local. In (107) there is still the term ξADABξB, which is a priori non-local
through the expressions of ξA in terms of the boundary metric components γBC. Using the spherical
(tensor) harmonics in Appendix K one finds however that ξA is determined by

ξΨ = 1
2 γΨ , ξΦ = 1

2 γΦ (112)

where we used an expansion γAB = γΨΨAB + γΦΦAB + γΘΘAB and ξA = ξΨΨA + ξΦΦB of the metric
and vector field into tensor and vector harmonics respectively. Please note that ΨAB and ΦAB are a
basis for the trace free part of the metric perturbations.

8. Discussion and Outlook

In this work we determined holographic boundary theories for 3D linearized metric gravity,
directly by computing the effective action for a geometric observable as determined from the
gravitational action. This geometric observable is the geodesic distance from the boundary to some
center or central axis and describes so-called boundary degrees of freedom [13,41,42], or boundary
gravitons. This degree of freedom encodes the shape of the (fluctuating) boundary in the embedding
space time. Together with the holographic boundary theories we also determined the Hamilton–Jacobi
functional for linearized gravity, for a large class of boundaries.

The resulting boundary theories depend on the chosen type of boundary and the choice
of cosmological constant. It is known that Liouville theory arises for an asymptotic AdS
boundary [8,13,40,43]. We have shown that the effective theory for the geodesic lengths leads to
Liouville-like theories also for finite and more general boundaries. In particular one can always expect
a Liouville-like coupling to the Ricci scalar of the boundary. The reason is that the first variation of
the Ricci scalar is proportional to the first variation of the lengths of geodesics that start normal to
the boundary.

The boundary theories are furthermore defined by a quadratic form given by ∆ = 2(KCD −
KhCD)DCDD − 2RK. This gives a (non-degenerate) flat Laplacian for the torus boundary in AdS space
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and a degenerate Laplacian for the torus boundary in flat space. For a spherical boundary in flat space
we obtain a differential operator proportional to the Laplacian on the sphere, but also a mass term
resulting from 2RK.

We have seen that in the case of a torus boundary the derivation of the effective action for the
geodesic lengths requires some subtle procedure. This is the imposition of smoothness condition at the
central axis at r = 0. It leads to the insertion of a non-local operator (1 + ∂−2

θ ) into the effective action.
This has an important consequence, namely that the modes kθ = ±1 describe a gauge freedom of

the boundary field theory. Indeed, this follows from diffeomorphism symmetry modes, which affect
the precise definition of the central axis. Accordingly the geodesic length at these modes is a gauge
parameter and the geodesic effective action is independent of the boundary field and just given by the
gravitational Hamilton–Jacobi functional, which does not depend on the boundary field, for kθ = ±1.
The kθ = 0 mode is also affected by diffeomorphism symmetry—but here it is a diffeomorphism
along the central axis, which to first order does not affect the lengths of the geodesics. In this case
the geodesic effective action is given by the gravitational Hamilton–Jacobi functional, but with the
addition of the Lagrange multiplier term, which imposes that the boundary field mode reproduces the
geodesic length at kθ = 0.

This illustrates an interesting interplay between the bulk and the possibly asymptotic boundary.
It deserves further study: for instance, the inclusion of a point particle at r = 0 should change the
smoothness conditions, and in fact break the gauge symmetry at kθ = ±1. Correspondingly one would
expect that the one-loop partition function now reproduces a massive BMS character instead of the
vacuum one, see also [25,44].

Another interesting direction is to investigate other geometric observables. For the asymptotically
flat [10] and AdS boundaries [40] one can employ certain angle variables, which are better suited to
capture the BMS or Virasoro symmetry, respectively. It would be interesting to see whether one can
also identify germs for these symmetries at finite boundaries. It would also be interesting to study
Lorentzian spacetimes, null boundaries and different boundary conditions [45–47].

The method to construct holographic duals directly from gravity, which we employed here,
will allow us to study the 4D case. In this regard a first step has been taken in [32]. Here a geodesic
effective action has been computed for a 4D generalization of twisted thermal flat space. For this [32]
restricted to boundary conditions which impose flat perturbations, that is excluded propagating bulk
gravitons. The resulting boundary action is then however a straightforward generalization of the 3D
result that is given by the same action with a Liouville-like coupling to the boundary Ricci scalar and
a degenerate kinetic term. The next step is to study how the inclusion of bulk gravitons affects the
geodesic effective action, and in particular whether non-localities arise [48]. One might also be led to
introduce additional boundary fields, which encode (better than the geodesic length) the dynamics of
the bulk gravitons. A key question will be which kind of geometric observables are best suited for
such boundary fields.

We hope that these investigations will help for the understanding of the renormalization flow of
quantum gravity models, e.g., [49–51]. A key issue is to find suitable truncations, as one otherwise has
to deal with an infinite dimensional space of possible couplings. The framework introduced in [52–55]
employs boundaries and boundary Hilbert spaces to determine dynamically preferred truncation
maps. Here a crucial question is to identify geometric boundary observables which encode efficiently
the bulk dynamics, which is also a key point in the quasi-local holography program.
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Appendix A. Conventions and Gauss–Codazzi Relations

Here we collect some conventions for the curvature tensors and list the Gauss–Codazzi relations,
which we make frequently use of.

The Riemann tensor is defined through the following commutator of covariant derivatives

(∇a∇b −∇b∇a)ξc = Rabc
eξe , (A1)

and the Ricci tensor is given by Rab = Racb
c. We define likewise the Riemann tensor for the boundary

geometry, where we replace the space–time covariant derivative ∇a with the spatial covariant
derivative DA. With our Gaussian coordinates we can define the extrinsic curvature as KAB = 1

2 ∂⊥hAB.
For the class of maximally symmetric solutions, which we consider here, the Riemann tensor is

given by

Rabce =
2Λ

(d− 1)(d− 2)
(gacgbe − gaegbc) . (A2)

The Gauss–Codazzi relation, which relates the Riemann tensor of the d-dimensional manifold M
and the Riemann tensor of the (d− 1)-dimensional surfaces r = const., states that

(d−1)RABC
D = RABC

D + KACKB
D − KBCKA

D , (A3)

For vacuum solutions to the Einstein equations we have

Rab =
2Λ

d− 2
gab ⇒ R =

2dΛ
d− 2

(A4)

and for such solutions the contracted Gauss–Codazzi relations become

(d−1)RAB =
2Λ

d− 1
hAB + KKAB − KA

CKCB , (A5)

(d−1)R = 2Λ + K2 − KABKAB . (A6)

The last equation coincides with the Hamiltonian constraint, that is the (⊥⊥) component of the
vacuum Einstein equations.

The Gauss–Codazzi relations furthermore state that

DAKBC − DBKAC = RABCene =
max. sym. sol.

0 ,

DAKB
A − DBKA

A = RBene =
vac.-sol.

0 . (A7)

The last set of relations DAKB
A − DBKA

A = 0 coincide with the momentum constraints, that is
the (⊥ A)-components of the Einstein equations.
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Appendix B. Vector Basis for Induced Perturbations

In this appendix, we show Result 1 relating the diffeomorphism induced perturbations γAB and
the components ξ⊥, ξ A∂A = ξ‖ of the diffeomorphism inducing vector field. The result holds for 2D
boundaries with homogeneous scalar curvature on the background, DA(

2R) = 0, and a 3D background
spacetime satisfying the vacuum Einstein equations.

From (6) we see that a vector field ξ⊥∂⊥ + ξA∂A acting on the background metric leads to an
induced perturbation

γAB = 2ξ⊥KAB + DAξB + DBξA, (A8)

where KAB, DA and ξA = hABξB pertain to the background.
Our first claim is:

Claim A1.

ΠABγAB = ∆ξ⊥ where (A9)

ΠAB = DADB − DCDChAB − 1
2
(2R)hAB , (A10)

∆ = 2(KCD − KhCD)DCDD − (2R)K. (A11)

Proof. For any background and dimension we have

(DADB − DCDChAB)(DAξB + DBξA) = DBDADBξA + DADBDBξA − 2DBDBDAξA

= (DADB − DBDA)DBξA + 2DB(DADB − DBDA)ξ
A

= 2DB(RABξA), (A12)

where we used that the first summand vanishes identically. For a 2D boundary, under the homogeneous
curvature assumption, the last expression becomes (2R)DAξA, hence

ΠAB(DAξB + DBξA) = 0. (A13)

Further note that

(DADB − DCDChAB)(ξ⊥KAB) = DA
(
KABDBξ⊥ − KDAξ⊥ + ξ⊥(DBKAB − DAK)

)
= KABDADBξ⊥ − KDADAξ⊥ + (DAKAB)DBξ⊥ − (DAK)DAξ⊥

= (KABDADB − KDADA)ξ
⊥, (A14)

where for the second and third lines we have used the momentum constraint DA(KAB − KhAB) = 0
(which follows from the (A ⊥)-components of the Einstein equations). Putting the previous two
expressions together proves our first claim.

Secondly, we have the

Claim A2.

DA
BξB = 2(KBC − KhBC)δ 2ΓA

BC where

DA
B = 2(KCD − KhCD)DCDDhA

B − (2R)KA
B and

δ 2ΓA
BC =

1
2

hAD(DBγCD + DCγBD − DDγBC) (A15)

is the variation of the boundary Christoffel symbols.
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To proof it we need a

Lemma A1. Consider a (d− 1)-dimensional hypersurface in a d-dimensional spacetime, which satisfies the
vacuum Einstein solutions. We furthermore assume that the boundary comes with a Ricci tensor of the form
(d−1)RAB = 1

(d−1)
(d−1)RhAB. Then we have:

(d− 1)(KA
CKCB − KKAB) = hAB(KCDKCD − K2) . (A16)

Please note that for two-dimensional surfaces 2RAB = 1
2

2RhAB does hold automatically. This identity can
be easily proven by using the Gauss–Codazzi relations for vacuum spacetimes (A5).

Proof. We start by writing

2(KBC − KhBC)δ 2ΓA
BC = 2(KBC − KhBC)DBγA

C − (KBC − KhBC)DAγBC. (A17)

where indices are raised with the induced background metric hAB. Let us first evaluate the contribution
of ξ⊥, i.e., set γAB = 2ξ⊥KAB in the previous expression. One gets, distributing the derivatives,

2(KBC − KhBC)δ 2ΓA
BC

∣∣∣
γAB=2ξ⊥KAB

= 4(KA
CKCB − KKAB)DBξ⊥ − 2(KBCKBC − K2)DAξ⊥

+ ξ⊥
(

4(KBC − KhBC)DBKA
C − 2(KBCDAKBC − KDAK)

)
. (A18)

The first line vanishes due to (A16). For the first term in the second line we use the momentum
constraint and (A16) to rewrite it as

4(KBC − KhBC)DBKA
C = 2DA(KCDKCD − K2) . (A19)

We have also for the second term in the second line

−2(KBCDAKBC − KDAK) = −DA(KCDKCD − K2) (A20)

so that we remain with

2(KBC − KhBC)δ 2ΓA
BC

∣∣∣
γAB

= ξ⊥DA(KCDKCD − K2) . (A21)

The right-hand side vanishes due to the Hamiltonian constraint (A6), which demands that
K2−KCDKCD = (2R)− 2Λ and the homogeneous curvature assumption. Thus, ξ⊥ does not contribute
to 2(KBC − KhBC)δ 2ΓA

BC.
We are thus left with evaluating

2(KBC − KhBC)δ 2ΓA
BC = 2(KBC − KhBC)δ 2ΓA

BC

∣∣∣
γAB=DAξB+DBξA

= (KBC − KhBC)
(
(DBDC + DCDB)ξ

A + 2RB
A

CDξD + 2RC
A

BDξD)
= 2(KBC − KhBC)DBDCξ A − RKABξB, (A22)

where we have straightforwardly evaluated δ2ΓA
BC|γAB=DAξB+DBξA and used 2RABCD =

1
2 (

2R)(hAChBD − hADhBC). This proves the second claim.

.
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Appendix C. Second Order of the Hamilton-Jacobi Functional

Here we are going to prove:

Result A1. We consider a 2D boundary component ∂M in a 3D space–time satisfying the vacuum Einstein
equations. We assume the parametrization (A8) for the boundary fluctuations γAB in terms of the diffeomorphism
generating vector field ξa. We furthermore assume that the boundary has homogeneous curvature ∂A

2R = 0.
The second order of the Hamilton–Jacobi functional is then given by

−κS(2)
HJ =

1
4

∫
∂M

d2y
√

hε
(

ξ⊥∆ ξ⊥ − ξADABξB
)

, (A23)

where

∆ = 2(KCD − KhCD)DCDD − 2R K ,

DAB = 2
(

KCD − KhCD
)

DCDD hAB − 2RKAB . (A24)

We remind the reader that we defined the extrinsic curvature tensor through the foliation, which with our
choice of Gaussian coordinates amounts to KAB = 1

2 ∂⊥hAB. We thus introduced ε, which is equal to +1 for
boundary components where the outward pointing normal in the background geometry is given by n ≡ ∂⊥
(that is the outer boundary), and ε = −1 if n ≡ −∂⊥ (that is the inner boundary).

Proof. We must evaluate

−κS(2) =
1
4

∫
∂M

d2y ε δ(
√

h
(

KhAB − KAB
)
)δhAB . (A25)

with δhAB = γAB given by (A8).
The following calculation applies to a space time of general dimension d, up to the point where

we will explicitly set d = 3 in (A33). We abbreviate πAB =
√

h(KAB−KhAB) and find for the integrand
in (A25)

F := δ
(√

h
(

KhAB − KAB
))

δhAB

= −δ
(

πAB
) (

2ξ⊥KAB + Lξ‖hAB

)
= −δ

(
πAB

(
2ξ⊥KAB + Lξ‖hAB

))
+ πABδ

(
2ξ⊥KAB

)
+ πABLξ‖δhAB (A26)

We use that by definition δξ⊥ = δξA = 0 and that πABLξ‖hAB is, modulo a total divergence,
given by 2ξBDAπAB, where DAπAB is the momentum constraint and thus vanishes. Thus, also the
variation of πABLξ‖hAB vanishes. We again use δhAB = 2ξ⊥ + Lξ‖hAB in the last term, and indicate
with ' that we are calculating modulo total divergences:

F ' −2ξ⊥δ
(

πABKAB

)
+ 2ξ⊥πABδKAB + πABLξ‖(2ξ⊥KAB) + πABLξ‖Lξ‖hAB . (A27)

We have for the third term

πABLξ‖(2ξ⊥KAB) = Lξ‖

(
πAB(2ξ⊥KAB)

)
− 2ξ⊥Lξ‖

(
πABKAB

)
+ 2ξ⊥πABLξ‖ (KAB) (A28)

and drop here the first term on the RHS, as it is a total derivative (since it is a Lie derivative of a scalar
density). We find

F ' −2ξ⊥
(

δ + Lξ‖

) (
πABKAB

)
+ 2ξ⊥πAB

(
δ + Lξ‖

)
KAB + πABLξ‖Lξ‖hAB . (A29)
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Now for any derivation δ̃

δ̃
(

πABKAB

)
= δ̃

(√
h(hAChBD − hABhCD)KABKCD

)
= 2

√
h(hAChBD − hABhCD)KAB δ̃KCD + KABKCD δ̃

(√
h(hAChBD − hABhCD)

)
= 2πAB δ̃KAB +

(
1
2

πABKAB hCD − 2πCAKA
D
)

δ̃hCD . (A30)

Using Lemma (A16), which holds for boundaries with homogeneous curvature, we see that
(d− 1)πCAKA

D = πABKAB hCD and we therefore have

δ̃
(

πABKAB

)
= 2πAB δ̃KAB +

(d− 5)
2(d− 1)

πABKAB hCDδhCD . (A31)

We apply this identity for −ξ⊥
(

δ + Lξ‖

) (
πABKAB

)
in (A29) and obtain

F ' −ξ⊥
(

δ + Lξ‖

)(
πABKAB

)
− (d−5)

2(d−1) ξ⊥πABKAB hCD
(

δ + Lξ‖

)
hCD + πABLξ‖Lξ‖hAB

' −ξ⊥
(

δ + Lξ‖

)(
KABKAB − K2

)
+ (3−d)

(d−1) ξ⊥πABKAB hCD
(

δ + Lξ‖

)
hCD + πABLξ‖Lξ‖hAB.

Now KABKAB − K2 = 2Λ− (d−1)R is the scalar constraint equation, which also holds under the
variation δ. Furthermore, with our assumptions (d−1)R− 2Λ is constant on the boundary and thus its
Lie derivative vanishes. We remain with

F '
√

hξ⊥δ(d−1)R + ξ⊥
(3− d)
(d− 1)

√
h
(

2Λ−(d−1)R
)

hCD
(

2ξ⊥KCD + 2Lξ‖hCD

)
+πABLξ‖Lξ‖hAB . (A32)

We now restrict to the d = 3 and thus the second term on the right-hand side vanishes. Using
δ2R = ∆ξ⊥ we obtain

F '
d=3

√
hξ⊥∆ξ⊥ + πABLξ‖Lξ‖hAB . (A33)

For the last term in (A33) we can write

πABLξ‖Lξ‖hAB = 2πABLξ‖(DAξB)

= 2πAB
(

ξCDCDAξB + DAξCDBξC + DCξBDAξC
)

= −2πAB
(
−ξCDCDAξB + ξCDADBξC + ξCDADCξB

)
+
[
2πAB

(
DA(ξCDBξC) + DA(ξ

CDCξB

)]
' −2ξCπABDADBξC − 2πAB 2RACBDξCξD . (A34)

where going from the third to the fourth equation we dropped the term in square bracket, as it is a
total divergence due to the momentum constraint DAπA

B = 0.
Finally, 2RACBD = 1

2
2R(hABhCD − hADhCB), giving.

πABLξ‖Lξ‖hAB ' −2ξC πABDADBξC +
√

hξC 2RK ξC + 2R πABξAξB

= −
√

h ξADABξB . (A35)
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Thus, we have for the 3D Hamilton–Jacobi functional

−κS(2)
HJ =

1
4

∫
∂M

d2y
√

hε
(

ξ⊥∆ξ⊥ − ξADABξB
)

. (A36)

Appendix D. Evaluation of the Commutator [∂⊥, ∆]

For Appendices E and G we will need the evaluation of the commutator[
∂⊥, ∆−1

]
= −∆−1 [∂⊥, ∆]∆−1 . (A37)

With ∆ = 2(KCD − KhCD)DCDD − 2RK let us therefore consider

∂⊥∆ f = ∆∂⊥ f + 2
(

∂⊥(KCD − KhCD)
)

DCDD f

−2(KCD − KhCD)(∂⊥
2ΓE

CD)DE f − (∂⊥(
2R))K f −2 R(∂⊥K) f (A38)

where f is a scalar function. We compute all the terms appearing in this expression. To start with we
employ the Ricci equation adapted to Gaussian coordinates

RA⊥B
⊥ = ∂⊥Γ⊥AB −∑

C
ΓC
⊥BΓ⊥CA

= −∂⊥KAB + KC
B KCA (A39)

With RA⊥B⊥ = ΛgAB we obtain

∂⊥KAB = KC
AKBC −ΛhAB (A40)

We also have ∂⊥hAB = 2KAB and ∂⊥hAB = −2KAB. Therefore

∂⊥KAB = −3KACKB
C −ΛhAB ,

∂⊥K = −KABKAB − 2Λ ,

∂⊥(KABKAB) = −2KA
C KCBKAB − 2ΛK . (A41)

To find the radial derivative of the Ricci scalar, we apply the Gauss–Codazzi relation for the Ricci
scalar (before taking the radial derivative) and for the Ricci tensor (after taking the radial derivative).
This gives

∂⊥(
2R) =

G.-C.
−2 (2RAB)KAB = −2RK (A42)

where we used that 2RAB = 1
2

2RhAB. Thus, using the Gauss–Codazzi relations repeatedly

∂⊥(KCD − KhCD) = KABKABhCD + ΛhCD + 2KKCD − 3KDEKC
E

=
G.-C.

K2hCD − KKCD + 2RCD (A43)

For the radial derivative of the Christoffel symbols we compute

∂⊥(
2ΓE

CD) = 1
2 hEF (DC∂⊥hDF + DD∂⊥hCF − DF∂⊥hCD)

= hEF (DCKDF + DDKCF − DFKCD)

=
G.-C.

DCKE
D = DDKE

C = DEKCD (A44)
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Therefore we have to consider the term

−2(KCD − KhCD)(∂⊥
2ΓE

CD)DE f =
G.-C.

2(KhCD − KCD)(DCKE
D)DE f

=
G.-C.

2DC(KKCE − KCDKE
D)DE f

=
G.-C.

2DC(
2RCE −ΛhCE)DE f . (A45)

This term vanishes due to our homogenous curvature condition DA
2R = 0. Hence we have

∂⊥∆ f = ∆∂⊥ f + 2(K2hCD − KKCD + 2RCD)DCDD f + 2RK2 f + 2R(2Λ + KCDKCD) f

= ∆∂⊥ f − K∆ f + 2 2RCDDCDD f + 2R(2Λ + KCDKCD) f

= ∆∂⊥ f − K∆ f + 2R(hCDDCDD + 2Λ + KCDKCD) f , (A46)

and thus

[∂⊥, ∆] = −K∆ + 2R(hCDDCDD + 2Λ + KCDKCD) , (A47)[
∂⊥, ∆−1

]
= ∆−1

(
K∆− 2R(hCDDCDD + 2Λ + KCDKCD)

)
∆−1 . (A48)

Appendix E. Solutions of Equations of Motion for the Case 2R = 0

The second order gravitational action with Lagrange multiplier term (33) is given by

−κS(2)
λ =

1
4

∫
M

d3x
√

g γab

(
Vabcd γcd + 1

2 Gabcde f ∇c∇dγe f

)
+

1
4

∫
∂M

d2y
√

h ε γab

(
(B1)

abcdγcd + (B2)
abcde∇cγde

)
+

1
4

∫
(∂M)out

d2y λ(y) (ρ(y)− `[γ⊥⊥]) (A49)

where

Vabcd =
1
2

[
1
2
(R− 2Λ)

(
gabgcd − 2gacgbd

)
− Rabgcd − gabRcd + 2

(
gacRbd + gbcRad

)]
(A50)

Gabe f cd = gabgecg f d + gacgbdge f + gaegb f gcd − gabge f gcd − ga f gbdgec − gacgb f ged (A51)

Babcd
1 =

1
2
(Khab − Kab)gcd − hachbdK− habKcd + hacKbd + hbcKad (A52)

Babecd
2 =

1
2

((
haehbd − habhed

)
nc +

(
hachbe − habhce

)
nd −

(
hachbd − habhcd

)
ne
)

. (A53)

The derivation for the second order expansion of the boundary term can be found in [14].
Using the form of the Ricci tensor and Ricci scalar for vacuum solutions, we can write

Vabcd =
Λ

d− 2

(
2gacgbd − gabgcd

)
. (A54)

The variation of the action (A49) with respect to the metric perturbations γab leads to the equations
of motion

Ĝab :=
(

Vabcd γcd + 1
2 Gabcde f ∇c∇dγe f

)
=

1
4

λ(y)√
h

δa
⊥δb
⊥ . (A55)

One can show that γab = ∇aξb +∇bξa satisfies (A55) for λ = 0. Here we want to solve the
equations including the Lagrange multiplier term. As explained in Section 4 it is sufficient to solve the
(⊥⊥) and (⊥ A) components for of the equations of motion for the lapse and shift perturbations.
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In the following we will therefore consider the Hamiltonian constraint

H := 2V⊥⊥cd γcd + G⊥⊥cde f ∇c∇dγe f , (A56)

as well as the momentum constraint

MA := 2V⊥Acd γcd + G⊥Acde f ∇c∇dγe f . (A57)

To rewrite the constraints, we will make use of the fact that we have a maximally symmetric
background solution (A2) and that the Gauss–Codazzi relations (A5)–(A7) hold.

Using our Gaussian coordinates, we furthermore replace the space–time covariant derivatives
with

∇Aγ⊥⊥ = DAγ⊥⊥ − 2KB
Aγ⊥B,

∇Aγ⊥B = DAγ⊥B − KC
AγBC + KABγ⊥⊥,

∇AγBC = DAγBC + KABγ⊥C + KACγ⊥B,

∇⊥γAB = ∂⊥γAB − KE
AγEB − KE

BγAE,

∇⊥γ⊥B = ∂⊥γA⊥ − KE
AγE⊥, (A58)

where the spatial covariant derivative DA acts on only the spatial indices B. Please note that ∇⊥γAB
involves only the spatial metric perturbations.

Employing the equations above we can expand the following expressions quadratic in the
covariant derivatives:

∇A∇BγCD = DADBγCD + DA (KBCγ⊥D + KBDγ⊥C) + KACDBγ⊥D + KADDBγ⊥C

+KAB∇⊥γCD + (KACKBD + KADKBC)γ⊥⊥ − KACKE
BγDE − KADKE

BγCE,

∇D∇Cγ⊥B = DDDCγ⊥B + DD (KBCγ⊥⊥)− DD(KE
CγBE) + KCD∇⊥γ⊥B + KBDDCγ⊥⊥

−2KE
CKBDγ⊥E − KE

D (DCγBE + KBCγ⊥E + KCEγ⊥B) ,

∇B∇⊥γCD = DB∇⊥γCD + KBC∇⊥γ⊥D + KBD∇⊥γ⊥C

−KE
B (DEγCD + KCEγ⊥D + KDEγ⊥C ) . (A59)

With these ingredients the Hamiltonian and momentum constraints become after some algebra

H = 2(KhAB − KAB)DAγ⊥B + (2R− 2Λ)γ⊥⊥ −ΛhABγAB

−HABCD
(

DADBγCD + KAB∇⊥γCD − KACKE
BγDE

)
, (A60)

MA = 2(2RAB)γ⊥B + (KAB − KhAB)DBγ⊥⊥ + HABCD(DDDCγ⊥B + DB∂⊥γCD)

−HABCD(DD(KE
CγBE) + DB(KE

CγDE) + DB(KE
DγCE) + KE

BDEγCD + KE
DDCγBE) (A61)

where we abbreviated HABCD := hABhCD − hAChBD.
To commute the radial derivative with the spatial covariant derivatives, we employ (A44)

∂⊥DBγCD = DB∂⊥γCD − (∂⊥
(d−1)ΓE

BC)γDE − (∂⊥
(d−1)ΓE

BD)γDE

=
(A44)

DB∂⊥γCD − DBKE
CγDE − DBKE

DγCE . (A62)

Thus, the momentum constraint can be simplified to

MA = 2(2RAB)γ⊥B + (KAB − KhAB)DBγ⊥⊥ + HABCD(DDDCγ⊥B + ∂⊥DBγCD)

−HABCD(DD(KE
CγBE) + KE

CDBγDE + KE
DDBγCE + KE

BDEγCD + KE
DDCγBE) . (A63)
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We will now restrict to the case 2RAB = 0. Please note that terms of the form

HABCDDADDT··· ··· =
(

DBDC − DCDB
)

T··· ··· (A64)

are now vanishing as they involve the boundary curvature tensor. Furthermore, HABCDDAKE
D = 0 as

DAKE
D = DDKE

A = DEKAD due to the Gauss–Codazzi relation (A7). We thus obtain for the divergence
of the momentum constraint

DA MA = DA((KAB − KhAB)DBγ⊥⊥) + HABCD(DA∂⊥DBγCD)

−HABCDDA(KE
CDBγDE + KE

DDBγCE + KE
BDEγCD + KE

DDCγBE)

= (KAB − KhAB)DADBγ⊥⊥ + ∂⊥(HABCDDADBγCD)− (∂⊥HABCD)DADBγCD

−HABCD(KE
CDADBγDE + KE

DDADBγCE + KE
BDADEγCD + KE

DDADCγBE) . (A65)

where we have used the Gauss Codazzi relations, the fact that HABCDDAKE
D = 0 and the formula for

commuting the radial derivative with the spatial covariant derivative to arrive at the second equation.
Now with ∂⊥hAB = −2KAB we have for the radial derivative of HABCD = hABhCD − hAChBD

(∂⊥HABCD)DADBγCD = −2(hABKCD + hCDKAB − hACKBD − hBDKAC)DADBγCD

= −2HABCD(KE
CDADBγDE + KE

DDADBγCE

+KE
BDADEγCD + KE

DDADCγBE) . (A66)

Therefore, the momentum constraint is further simplified as

DA MA = (KAB − KhAB)DADBγ⊥⊥ + ∂⊥(HABCDDADBγCD)− 1
2 ∂⊥(HABCD)DADBγCD

= 1
2 ∆γ⊥⊥ − ∂⊥(Π

ABγCD)− 1
2 ∂⊥(HABCD)DADBγCD . (A67)

where we have used the definitions ∆ = 2(KAB − KhAB)DADB and ΠABγAB = −HABCDDADBγCD,
which apply to the case that 2R = 0.

We now adopt the parametrization

γCD = 2ξ⊥KCD + DCξD + DCξD (A68)

for the boundary metric. We note that

(∂⊥HABCD)DADB(DCξD + DCξD) = 0 (A69)

as we have 2R = 0 and thus can commute the spatial covariant derivatives. Furthermore, using again
that spatial covariant derivatives commute we have

(∂⊥HABCD)DADB(2KCDξ⊥) = −4KCDhAB(DADB(KCDξ⊥)− DADC(KBDξ⊥)

+DCDD(KABξ⊥)− DCDA(KDBξ⊥)
)

. (A70)

Employing the Gauss–Codazzi relation (A7) repeatedly one sees that all the derivatives acting on
the extrinsic curvature tensor cancel out and we are left with

(∂⊥HABCD)DADB(2KCDξ⊥) = −4
(

KCDKCDhAB + KKAB − 2KACKC
B
)

DADBξ⊥

=
(A16)

4K
(

KAB − KhAB
)

DADBξ⊥

= 2K∆ξ⊥ . (A71)
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We thus arrive at

DA MA = 1
2 ∆γ⊥⊥ − ∂⊥∆ξ⊥ − K∆ξ⊥

= 1
2 ∆γ⊥⊥ − ∆∂⊥ξ⊥ (A72)

where for the last equation we have used the result (A46) for the commutator of ∆ and ∂⊥.
Therefore, in the case that 2R = 0 the solution for the lapse is given by

γ⊥⊥ = 2∂⊥ξ⊥ , (A73)

even if we include the Lagrange multiplier term into the equation of motion, as in (A55).
We now insert this solution into the Hamiltonian

H = 2(KhAB − KAB)DAγ⊥B − 2Λγ⊥⊥ −ΛhABγAB

−HABCD
(

DADBγCD + KAB∇⊥γCD − KACKE
BγDE

)
. (A74)

Inserting furthermore γ⊥A = DAξ⊥+ hAB∂⊥ξB, and making use of the identities we have derived
so far, one finds that H = 0. To take into account the Lagrange multiplier term consider the ansatz
γ⊥A = DAξ⊥ + hAB∂⊥ξB + tB. We then must solve

H = 2(KhAB − KAB)DAtB
!
=

1
2

λ√
h

. (A75)

Choosing tB = −DB
1

2∆
λ√

h
we see that we satisfy this equation. The addition of such a tB to γ⊥B

does also leave the momentum constraint (A63) invariant, if we use that 2R = 0 and spatial covariant
derivatives commute.

Thus, we find that in the case of vanishing spatial curvature the Lagrange multiplier term is
accommodated by the solutions

γ⊥⊥ = 2∂⊥

(
ξ⊥ − 1

2∆
λ√

h

)
= 2∂⊥ξ⊥ ,

γ⊥A = DA(ξ
⊥ − 1

2∆
λ√

h
) + hAB∂⊥ξB (A76)

where the second equation in the first line follows from the commutator of ∂⊥ and ∆ (for 2R = 0)
in (A46) and the fact that ∂⊥h−1/2 = −Kh−1/2.

Appendix F. Equations of Motion in Spherical Coordinates

Here we will consider the equations of motions with Lagrange multiplier term (A55) for the case
with spherical boundary, where we have 2R 6= 0. Using the definitions for the Hamiltonian H and
momentum constraints MA in (A56) and (A57) respectively, as well as the expressions (96) for the
operators ∆ and D, one can verify in a straightforward way that the following equations hold for the
background metric (95):

DA MA − 1
r

(
H − 1

2
λ√

h

)
=

1
2

∆γ⊥⊥ −
1
r3 ∂⊥

(
r3ΠABγAB

)
+

1
2r

λ√
h

(A77)

DA

(
H − 1

2
λ√

h

)
+

2
r

MA = −DA
Bγ⊥B + DA

(
ΠCDγCD

)
− 1

2
DA

λ√
h

−hAB
r3 ∂⊥

(
2r2hCDδ2ΓB

CD

)
. (A78)
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For the geometry of the sphere we have

∆ =
1
r3 ∆̃ (A79)

where we define ∆̃ to be equal to ∆, but with the radial coordinate set to r = 1. Thus, ∆̃∂⊥ = ∂⊥∆̃ and
we can rewrite (A77) as

DA MA − 1
r

(
H − 1

2
λ

)
=

1
2

∆γ⊥⊥ − ∆∂⊥∆−1
(

ΠABγAB

)
+

1
2r

λ√
h

. (A80)

To treat the remaining equations, we observe that DA
B = 1

r3 D̃A
B and thus

1
r3 ∂⊥ r3VA =

(
D∂⊥D−1V

)A
(A81)

for any vector field VA. Furthermore, remember that bothD and ∆ contain a Laplacian operator DCDC.
For the commutation of DCDC with DA we have

DCDCDA f = DADCDC f + 2RAEDE f = DADCDC f + 1
2

2RhAEDE f . (A82)

for any scalar f . Using that DA 2R = 0 and DAK = 0 for the sphere we see that

DABDB f = DA∆ f . (A83)

This allows us to write (A78) as

DA

(
H − 1

2
λ√

h

)
+

2
r

MA = −DA
Bγ⊥B +DA

BDB∆−1
(

ΠCDγCD

)
− 1

2
DA

BDB∆−1 λ√
h

+DAB∂⊥

(
D−1

(
−2

r
hCDδ2Γ·CD

))B
(A84)

In summary we obtain the solutions

γ⊥⊥ = 2∂⊥ ξ̂⊥ ,

γ⊥A = DA ξ̂⊥ + hAB∂⊥ξB (A85)

with

ξ̂⊥ = ξ⊥ − 1
2∆

λ√
h

(A86)

and ξ⊥ and ξA defined in (7). These solutions can be inserted into the spatial–spatial part of the
Einstein equations, and one will find that these evaluate to zero, ĜAB = 0. This can be also expected
from the fact that the divergence of the Einstein equations, including the Lagrange multiplier term,
vanishes identically.

Appendix G. Lagrange Multiplier Dependent Boundary Terms

For our examples we consider the Einstein equations with Lagrange multiplier term

Ĝab =
1
4

λ(y)√
h

δa
⊥δb
⊥ , (A87)
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and solve the G⊥⊥ and G⊥A equations for the lapse and shift perturbations γ⊥⊥ and γAB. In all cases
we find that the solutions can be expressed as

γ⊥⊥ = 2∂⊥ ξ̂⊥ ,

γ⊥A = DA ξ̂⊥ + hAB∂⊥ξB , (A88)

where

ξ̂⊥ = ξ⊥ − 1
2∆

λ√
h

(A89)

and the components ξa are understood as functionals of the spatial metric perturbations γAB, as defined
in (7). In particular we see that the addition of the Lagrange multiplier term results in the shift of ξ⊥

to ξ̂⊥.
Here we are going to evaluate the (second order) boundary term on solutions of the form (A88).

We already know the result for λ=0 (see Appendix C), we therefore need only keep track of the
λ-dependent terms.

These terms only arise through the lapse and shift components. The only terms where these
appear in the second order contribution to the boundary action (A49) are given by

γAB

(
BAB⊥⊥

1 γ⊥⊥ + BABC⊥D
2 ∇Cγ⊥D + BABCC⊥

2 ∇DγC⊥
)

= γAB

(
1
2 (KhAB − KAB)γ⊥⊥ + (hAChBD − hABhCD)∇Cγ⊥D

)
(A90)

For the covariant derivative of the shift components we have

∇Cγ⊥D = DCγ⊥D − ΓE
C⊥γED − Γ⊥CDγ⊥⊥

=
γAB=0

DCγ⊥D + n⊥KCDγ⊥⊥

=
γAB=0

−1
2

DCDD
1
∆

λ√
h
− n⊥KCD ∂⊥

1
∆

λ√
h

(A91)

and for the lapse

γ⊥⊥ = −∂⊥
1
∆

λ√
h

. (A92)

Thus, we obtain (
1
2 (KhAB − KAB)γ⊥⊥ + (hAChBD − hABhCD)∇Cγ⊥D

)
=

γAB=0
− 1

2

(
DADB − hABDCDC

) 1
∆

λ√
h
− 1

2

(
KAB − KhAB

)
∂⊥

(
1
∆

λ√
h

)
. (A93)

Now, with (A48) we have

∂⊥

(
1
∆

λ√
h

)
=

1
∆

∂⊥
λ√

h
+ ∆−1

(
K∆− 2R(hCDDCDD + 2Λ + KCDKCD)

)
∆−1 λ√

h

= −∆−1 2R(hCDDCDD + 2Λ + KCDKCD)∆−1 λ√
h

(A94)

where we used ∂⊥h−1/2 = −h−1/2K and ∂⊥λ = 0.
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Let us first consider the case that 2R = 0, which applies to the cases in Sections 5 and 6. In this
case we have that ΠAB = DADB − DCDChAB. We then obtain for the λ-dependent boundary term

−1
8

∫
∂M

d2y
√

hε γab

((
DADB − hABDCDC

) 1
∆

λ√
h

)
= −1

8

∫
∂M

d2y
√

hε
(

∆−1ΠABγAB

) λ√
h

= −1
8

∫
∂M

d2y ε ξ⊥ . (A95)

Secondly we have for the spherical boundary embedded in flat space that is the case in Section 7,
K = 2

r and KAB = 1
2 KhAB as well as 2R = 2

r2 so that ∆ = − 2
r

(
DCDC + 2

r2

)
. This gives

(
KAB − KhAB

)
∂⊥

(
1
∆

λ√
h

)
= −

(
KAB − KhAB

) 1
∆

2R(hCDDCDD + 2Λ + KCDKCD)
1
∆

λ√
h

=
1
r

hAB 1
∆

2
r2

(
DCDC +

2
r2

)
1
∆

λ√
h

= −1
r

hAB 1
∆

1
r

∆
1
∆

λ√
h

= −1
2

2RhAB 1
∆

λ√
h

. (A96)

With ΠAB = DADB−DCDChAB− 1
2

2RhAB we obtain that also in this case, the λ-dependent terms
in the boundary term are given by

−1
8

∫
∂M

d2y
√

hε
(

∆−1ΠABγAB

) λ√
h

= −1
8

∫
∂M

d2y ε ξ⊥λ . (A97)

Appendix H. Geodesic Length to First Order in Metric Perturbations

We are interested in the geodesic distance between two fixed coordinate points, for a given
(Euclidean) metric. The full metric will differ from a background metric by a perturbation, and we
need the expansion of the geodesic distance in the metric perturbations to first order.

The background metric is gab, and the background geodesic xa(τ) with τ ∈ [0, 1]. The full metric
is gfull

ab and the gfull-geodesic will be called z(τ) = x(τ) + δz(τ). We will assume that z is affinely
parametrized, so it has constant modulus w.r.t gfull and thus satisfies

∇full
ż ża = 0,

d
dτ

(ża żbgfull
ab ) = 0. (A98)

These equations continue to hold under variations.
We will consider the variation of the square of the geodesic length

L2 =
∫ 1

0
dτ ża żbgfull

ab . (A99)

This is indeed the square length as z(τ) has constant modulus. The variation is given by

δL2 =
∫ 1

0
dτ
[
2

d
dτ

(
δza ẋbgab

)
− 2δza d

dτ

(
gab ẋb)+ δzc∂cgab ẋa ẋb + ẋa ẋbγab

]
(A100)

=2
[
δza ẋbgab

]1

τ=0
− 2

∫ 1

0
dτ δza(∇ẋ ẋa) +

∫ 1

0
dτẋa ẋbδγab , (A101)

where second and third term in the first line combine to the covariant derivative in the second line.
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Since δz vanishes at the end points, we can drop the first term. Furthermore, as x is an affine
geodesic, we can also drop the second term and are left with

δL2 =
∫ 1

0
dτ ẋa ẋbγab . (A102)

With xa = (rin + (rout − rin)τ, 0, 0) we therefore have for the first-order perturbation of the
geodesic length

` := δL =
1

2(rout − rin)

∫ 1

0
dτ (rout − rin)

2 γ⊥⊥ =
1
2

∫ rout

rin

dτ γ⊥⊥(r) . (A103)

Appendix I. Smoothness Conditions for the Metric at r = 0

Consider metric perturbations γµν expressed in Cartesian coordinates (x, y, t) such that the
components of the metric γµν are smooth at the origin and can thus be expanded in a Taylor series in
the coordinates. We shall transform the metric from flat into polar coordinates (r, θ, t) and spherical
coordinates (r, θ, ϕ) and study the behavior of the metric components near the origin r → 0. Let us
denote the components of the metric perturbations in polar or spherical coordinates by γab.

In polar coordinates, we have the transformation of the coordinates and the components of the
metric are given by

x = r cos θ, y = r sin θ, γab = γµν
∂xµ

∂xa
∂xν

∂xb . (A104)

The components of the metric in polar coordinates are therefore given by

γ⊥⊥ = γxx cos2 θ + γyy sin2 θ + γxy sin 2θ,

γθθ = r2
(

γxx sin2 θ + γyy cos2 θ − γxy sin 2θ
)

,

γtt = γtt,

γ⊥θ = r
(

1
2 sin(2θ)(γyy − γxx) + γxy cos 2θ

)
,

γ⊥t = γxt cos θ + γyt sin θ,

γθt = r
(
γyt cos θ − γxt sin θ

)
. (A105)

Given that the metric components (γxx, γyy, γtt, γxy, γxt, γyt) are smooth functions near the origin,
a Taylor expansion of the metric perturbations around the origin for the thermal flat spinning space is
given by

γab = a(0)ab + a(1)ab r + a(2)ab r2 +O(r3) for ab = rr, tt, rt;

γab = a(1)ab r + a(2)ab r2 +O(r3) for ab = rθ, θt;

γθθ = a(2)θθ r2 +O(r3) . (A106)

In spherical coordinates, we have the coordinate transformation

x = r sin θ cos ϕ, y = r sin θ sin ϕ, t = r cos θ . (A107)

The components of the metric in spherical coordinates are given by

γ⊥⊥ = sin2θ(γxx cos2 ϕ + γyy sin2 ϕ) + γtt cos2θ + γxy sin2θ sin2ϕ + sin2θ(γyt sinϕ + γxt cosϕ),

γθθ = r2
(

cos2θ(γxx cos2 ϕ + γyy sin2 ϕ) + γtt sin2θ + γxy cos2θ sin2ϕ− sin2θ(γyt sinϕ + γxt cosϕ)
)

,
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γϕϕ = r2
(

sin2θ(γxx sin2 ϕ + γyy cos2 ϕ)− γxy sin2θ sin2ϕ
)

,

γ⊥θ = r
(

1
2 sin2θ(γxx cos2 ϕ + γyy sin2 ϕ− γtt + γxy(sin2ϕ + cos2θ))−2 sin2θ(γxt cosϕ + γyt sinϕ)

)
,

γ⊥ϕ = r sin2θ
(

1
2 sin2ϕ(γyy − γxx) + γxy cos2 ϕ

)
,

γθϕ = r2 sin2θ
(

1
4 sin2ϕ(γyy − γxx) + γxy cos2 ϕ

)
. (A108)

The Taylor expansion for the metric perturbations in spherical spacetime region around the origin
r = 0 is thus

γ⊥⊥ = a(0)rr + a(1)rr r + a(2)rr r2 +O(r3);

γab = a(1)ab r + a(2)ab r2 +O(r3) for ab = rθ, rϕ;

γab = a(2)ab r2 +O(r3) for ab = θθ, ϕϕ, θϕ . (A109)

Appendix J. On Effective Actions

Here we will consider a quadratic dynamical system with two dynamical variables (x, y) and
integrate out one of these variables y to define an effective action for the remaining variable x. We will
then consider the case that the action for the variable y is degenerate and show that the effective action
will take a special form. This can be easily generalized to systems with more variables.

We start with an action

Sλ =
1
2

(
x
y

)t

·M ·
(

x
y

)
+

(
x
y

)t

·
(

bx

by

)
+

(
(ρ− x)

0

)t

·
(

λ

0

)
(A110)

with dynamical variables (x, y), “boundary values” (bx, by) and a Lagrange multiplier term, which
enforces x = ρ. We will assume that the matrix M is invertible.

Variation with respect to x and y leads to equations of motion, which are solved by(
x
y

)
= −M−1 ·

(
bx

by

)
+ M−1 ·

(
λ

0

)
. (A111)

We will now differentiate two cases, firstly the case (i) Myy 6= 0 (or in the higher-dimensional
case detMyy 6= 0) and secondly the case (ii), which is that Myy = 0.

In case (i), as

(M−1)xx =
Myy

detM
(A112)

we find that the solution for x is λ-dependent. Let us denote by x0[bx, by] the solution for λ = 0.
Then we have the solution

x = x0[bx, by] +
Myy

detM
λ , (A113)

which we insert into the Lagrange multiplier equation ρ = x and solve for λ:

λ =
detM
Myy

(
ρ− x0[bx, by]

)
. (A114)
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Inserting these solutions back into the action we find

Sλ =
sol. for x,y

−1
2

(
bx

by

)t

·M−1 ·
(

bx

by

)
+

1
2

(
λ

0

)t

·M−1 ·
(

λ

0

)
+ λ(ρ− x0[bx, by]−

Myy
detM λ)

=
sol. for λ

detM
Myy

(
1
2

ρ2 − ρ x0[bx, by]

)
+

1
2

detM
Myy

(x0[bx, by])
2 − 1

2

(
bx

by

)t

·M−1 ·
(

bx

by

)
, (A115)

which can be adopted as effective action for the dynamical variable ρ = x.
For case (ii) we will however find that the solution for x does not depend on λ, but is determined

only by the boundary values x = x0[bx, by]. Thus, we cannot solve the Lagrange multiplier equation
ρ = x = x0[bx, by] for λ. We have rather to understand this equation as a condition on the parameter ρ.
Evaluating the action on the solution we obtain

Sλ =
sol. for x,y

−1
2

(
bx

by

)t

·M−1 ·
(

bx

by

)
+ λ(ρ− x0[bx, by]) (A116)

where λ remains a free variable, enforcing ρ = x0[bx, by]. The term quadratic in λ which appears
in (A115) is now vanishing, as we have (M−1)xx = 0. Thus, the on-shell action is just given by the
on-shell action of Sλ=0 plus the Lagrange multiplier term, with the solution for x inserted.

Appendix K. Spherical Tensor Harmonics

Here we define scalar, vector, and tensor spherical harmonics. These spherical harmonics are
eigenfunctions of the Laplace operator and are furthermore characterized by their divergence and their
trace [56]. We denote by Ylm the scalar spherical harmonics (and omit the indices (l, m)). Furthermore,
we consider here a unit sphere, that is fix r = 1. The vector and tensor harmonics are defined by

ΨA = DAY, ΦA = εA
BDBY,

ΨAB = DBDAY + 1
2 l(l + 1)hABY, ΦAB = 1

2 (DAΦB + DBΦA) , ΘAB = hABY . (A117)

with εθ
ϕ = sin−1θ and εϕ

θ = − sin θ.
We have the following properties for D2 = DADA:

D2Y = −l(l + 1)Y ,

D2ΨB = (1− l(l + 1))ΨA , D2ΦB = (1− l(l + 1))ΦA ,

D2ΨBC = (4− l(l + 1))ΨBC, D2ΦBC = (4− l(l + 1))ΦBC , D2ΘBC = −l(l + 1)ΘBC .(A118)

Furthermore

DAΨA = −l(l + 1)Y , DAΦA = 0

DAΨAB = 1
2 (2− l(l + 1))ΨB, DAΦAB = 1

2 (2− l(l + 1))ΦB, DAΘAB = ΨB . (A119)

Finally, we have for the trace of the tensor modes

hABΨAB = 0 , hABΦAB = 0 , hABΘAB = 2Y . (A120)
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