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Abstract: HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to
perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free
spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast
secular precession. We considered two possible scenarios—a fast, 4-h orbit with high perigee height
of 1047 km and a slow, 21-h path with a low perigee height of 642 km. HERO may detect, for the
first time, the post-Newtonian orbital effects induced by the mass quadrupole moment J2 of the
Earth which, among other things, affects the semimajor axis a via a secular trend of '4–12 cm yr−1,
depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the
passive satellite LARES was measured with an error as little as 0.7 cm yr−1. Also the post-Newtonian
spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high
accuracy depending on the level of compensation of the non-gravitational perturbations, not treated
here. Moreover, the large eccentricity of the orbit would allow one to constrain several long-range
modified models of gravity and accurately measure the gravitational red-shift as well. Each of the six
Keplerian orbital elements could be individually monitored to extract the GJ2/c2 signature, or they
could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the
competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles J`
of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors σJ`
of a recent global Earth’s gravity field model are better than 1% for all the post-Newtonian effects
considered, with a peak of ' 10−7 for the Schwarzschild-like shifts. Instead, the gravitomagnetic
spin octupole precessions are too small to be detectable.

Keywords: general relativity and gravitation; experimental studies of gravity; experimental tests of
gravitational theories; satellite orbits

1. Introduction

The (slow) motion of a test particle moving in spacetime (weakly) deformed by the mass-energy
content of an isolated, axially symmetric rotating body of mass M, angular momentum S, polar

and equatorial radii Rp, Re, ellipticity ε =
√

1− R2
p/R2

e, dimensionless quadrupole mass moment
J2 exhibits several post-Newtonian (pN) features. Some of them have never been put to the test so
far because of their smallness; they are the gravitoelectric and gravitomagnetic effects associated
with the asphericity of the central body induced by its mass quadrupole and spin octupole moments,
respectively [1–6].

Instead, the pN orbital effects which have been extensively tested so far in several terrestrial
and astronomical scenarios are the gravitoelectric and gravitomagnetic precessions due to the mass
monopole and spin dipole moments, respectively. The former is responsible for the time-honored,
previously anomalous perihelion precession of Mercury [7], whose explanation by Reference [8] was
the first empirical success of his newly born theory of gravitation. It was later repeatedly measured
with radar measurements of Mercury itself [9,10], of other inner planets [11,12], and of the asteroid
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Icarus [13,14] as well. Binary pulsars [15] and Earth’s artificial satellites [16,17] have also been used.
The latter is the so-called Lense-Thirring effect [18–22], which is currently under scrutiny in the Earth’s
surrounding with the geodetic satellites of the LAGEOS family; see, for example, Renzetti [23], and
Lucchesi et al. [24], and references therein. Another gravitomagnetic effect—the Pugh-Schiff rates
of change of orbiting gyroscopes [25,26]—was successfully tested in the field of the Earth with the
dedicated Gravity Probe B (GP-B) spaceborne mission a few years ago [27,28] to a 19% accuracy level,
despite the originally expected error level of the order of 1% [29].

By assuming the validity of general relativity, its mass quadrupole and spin octupole accelerations
are, to the first post-Newtonian (pN) order,

ApNMJ2 =
µ J2 R2

e
c2 r4

{
3
2

[(
5 ξ2 − 1

)
r̂− 2 ξ Ŝ

] (
v2 − 4 µ

r

)
− 6

[(
5 ξ2 − 1

)
vr − 2 ξvS

]
v− 2 µ

r

(
3 ξ2 − 1

)
r̂
}

,

(1)

ApNSε =
3 G S R2

e ε2

7 c2 r5 v×
{

5 ξ
[
7 ξ2 − 3

]
r̂ + 3

[
1− 5 ξ2

]
Ŝ
}

, (2)

where G is the Newtonian constant of gravitation, µ
.
= GM is the gravitational parameter of the

primary, c is the speed of light in vacuum, Ŝ is the unit vector of the rotational axis,

ξ
.
= Ŝ · r̂ (3)

is the cosine of the angle between the directions of the body’s angular momentum and the orbiter’s
position vector r, and

vr
.
= v · r̂, (4)

vS
.
= v · Ŝ (5)

are the components of the particle’s velocity v along the radial direction and the primary’s
spin respectively. The averaged rates of change of the semimajor axis a, the eccentricity e,
the inclination I, the longitude of the ascending node Ω and the argument of pericenter ω induced
by Equations (1) and (2) were analytically calculated for a general orientation of Ŝ in space by
Iorio [30,31]; previous derivations of the gravitoelectric mass quadrupole effects in the particular
case of an equatorial coordinate system with its reference z axis aligned with Ŝ can be found in
Brumberg [1], Soffel [3], Will [4], Soffel et al. [6].

In this paper, we will preliminarily explore the perspectives of measuring, for the first time, some
consequences of Equations (1) and (2) by suitably designing a dedicated drag-free satellite-based
mission around the Earth encompassing a highly eccentric geocentric orbit exploiting the frozen
perigee configuration; we provisionally name it as “HERO” (Highly Eccentric Relativity Orbiter).
For some embryonal thoughts about the possibility of using an Earth’s spacecraft to measure the pN
gravitoelectric effects proportional to GJ2/c2, see Iorio [30,32]; for deeper investigations concerning a
possible probe around Jupiter to measure them and the pN gravitomagnetic signature proportional
to GSε2/c2, see Iorio [31,32]. About the propagation of the electromagnetic waves in the deformed
spacetime of an oblate body and the perspectives of measuring the resulting deflection due to Jupiter
with astrometric techniques, see, e.g., Abbas, Bucciarelli & Lattanzi [33], Crosta & Mignard [34],
Kopeikin & Makarov [35], Le Poncin-Lafitte & Teyssandier [36], and references therein. Other more
or less similar mission concepts can be found, for example, in Angélil et al. [37], Schärer et al. [38,39].
We will show that the size of the secular rate of a predicted by Equation (1) falls within the recently
reached experimental accuracy in measuring phenomenologically such a kind of an effect with the
existing passive LARES satellite [24]. Be that as it may, we will show that, as a by-product, other
general relativistic features of motion could also be measured with high accuracy, at least as far as the
systematic error due to the current formal level of mismodeling in the competing classical precessions
due to the zonal harmonic coefficients J`, ` = 2, 3, 4, . . . of the multipolar expansion of the Earth’s
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gravity potential is concerned. To this aim, it is crucial to assess the level of possible cancellation of
the non-gravitational perturbations by the drag-free technology. Its evaluation is outside the scope of
the present paper. However, we will look in detail at the atmospheric drag, which is one of the major
disturbing non-conservative accelerations inducing relevant competing signatures, especially on a.
For the sake of simplicity, we will assume a spherical shape for a passive spacecraft.

The high eccentricity1 of the suggested orbit of HERO would allow also for accurate tests of
the gravitational redshift provided that the spacecraft is endowed with accurate atomic clocks; see
Tables A2 and A6 for the expected sizes of it. For recent tests of such an effect performed with the
H-maser clocks carried onboard the satellites GSAT0201 (5-Doresa) and GSAT0202 (6-Milena) of the
Galileo constellation by exploiting their fortuitous rather high eccentricity due to their erroneous
orbital injection, see Delva et al. [40], Herrmann et al. [41]. It is interesting to recall that the formerly
proposed Space-Time Explorer and QUantum Equivalence Space Test (STE-QUEST) space mission [42]
was pre-selected by the European Space Agency (ESA) for the Cosmic Vision M3 launch opportunity;
although it was not finally selected due to budgetary and technological reasons, its science case was
highly rated. HERO may somehow inherit (part of) its legacy.

Finally, several long-range modified models of gravity [43] imply spherically symmetric
modifications of the Newtonian inverse-square law which induce net secular precessions of the
pericenter and the mean anomaly at epoch. They would represent further valuable goals for HERO.

The paper is organized as follows. Section 2 is the main body of the paper; it contains a discussion
of two possible orbital configurations along with the magnitude of the various pN effects and the
size of the corresponding systematic errors due to the current level of mismodeling in the multipolar
zonal coefficients of the geopotential. It also deals with the linear combination approach which could
be implemented in order to reduce the bias due to the latter ones. Section 3 contains a summary of
our findings and offer our conclusions. Appendix A contains the tables and the figures. Appendix B
displays the analytically calculated orbital precessions due to the zonal harmonics of the geopotential
up to degree ` = 8. Appendix C deals in detail with the impact of the atmospheric drag on all the
orbital elements of a spherical, passive geodetic satellite in a highly elliptical orbit.

2. Two Different Orbital Configurations for HERO

In Tables A2 and A6, two different orbital configurations are proposed. They imply highly
eccentric orbits, characterized by values of the eccentricity as large as e = 0.45 and e = 0.82, respectively,
and the critical inclination Icrit = arcsin

(
2/
√

5
)

which allows one to keep the argument of perigee
ω essentially fixed over any reasonable time span for an actual data analysis and the longitude of
the ascending node Ω circulating at a relatively high pace. Their orbital periods are Pb = 4.3 h and
Pb = 21.3 h, with perigee heights of hmin = 1047 km and hmin = 642 km, respectively.

One of the most interesting relativistic features of motion is, perhaps, the relatively large value of
the expected semimajor axis increase 〈ȧ〉 induced by the pN gravitoelectric quadrupolar acceleration
of Equation (1); let us recall that it is [1,6,32]〈

da
dt

〉
=

9 a n3
b R2

e J2 e2 (6 + e2) sin2 I sin 2ω

8 c2 (1− e2)
4 , (6)

where nb =
√

µ/a3 = 2π/Pb is the Keplerian mean motion. The need of a highly eccentric orbit is
apparent from Equation (6). The frozen perigee would make the resulting integrated pN shift a secular
trend. According to Tables A3 and A7, its predicted rates for the orbital geometries considered
in Tables A2 and A6 are 〈ȧ〉 = 3.8 cm yr−1 and 〈ȧ〉 = 11.6 cm yr−1, respectively. Suffice it to say

1 Prior works [37–39] on other proposed mission concepts showed that there is a window of perhaps an hour or so over
around the perigee, over which these effects would be detectable.
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that for the existing passive satellites of the LAGEOS family, whose orbits are essentially circular,
secular decay rates have been measured over the last decades with an experimental accuracy of
σ〈ȧ〉 ' 3 cm yr−1 for LAGEOS [44–46], and σ〈ȧ〉 = 0.7 cm yr−1 for LARES [24]. It is arguable that
an active mechanism of compensation of the non-gravitational accelerations would allow the increase
of such accuracies, allowing, perhaps, to measure the pN quadrupolar effect at a ' 1− 10% level,
depending on the orbital configuration adopted. As far as possible competing effects of gravitational
origin are concerned, neither the static and time-dependent parts of the geopotential nor 3rd-body
lunisolar attractions induce nonvanishing averaged perturbations on a. Thus, the reduction of the
non-conservative accelerations is of the utmost importance. Among them, a prominent role is played
by the atmospheric drag, treated in detail in Appendix C, because it causes a net long-term averaged
decay rate of a. By modeling the spacecraft as a LARES-like cannonball geodetic satellite for the sake
of simplicity, it can be shown that, in the case of the orbital configuration of Table A2, the average
acceleration due to the neutral drag only amounts to 〈A〉drag = (2.3− 0.8)× 10−11 m s−2 over one
orbital period, so that the resulting effect on a would be as large as 〈ȧ〉drag = −(5.1− 2.0)m yr−1;
see Table A5, and Figures A1 and A2. For the more eccentric orbital configuration of Table A6, we have
〈A〉drag = (1.22− 7.3)× 10−11 m s−2 and 〈ȧ〉drag = −(27.6− 164.6)m yr−1, as shown by Table A9,
and Figures A3 and A4. An inspection of Figures A1 and A3 reveals that, as expected, most of the
disturbing effect occurs around the perigee passage, i.e., for f ' 0. This may help in suitably calibrating
the counteracting action of the drag-free mechanism.

Tables A3 and A6 show that all the other Keplerian orbital elements also exhibit non-zero secular
rates of change due to Equation (1). This is a potentially important feature since they could be linearly
combined, as suggested by2 Shapiro [9] in a different context, in order to decouple the pN effect(s)
of interest from the disturbing mismodeled Newtonian secular precessions induced by the Earth’s
zonal multipoles. Indeed, contrary to a, the other Keplerian orbital elements do exhibit long-term
averaged precessions due to the classical zonal harmonics J`, ` = 2, 3, 4, . . . of the geopotential; they
are analytically calculated in Appendix B up to degree ` = 8. Depending on the specific orbital
geometry, they can be both secular and harmonic, or entirely3 secular. To this aim, we complete the set
of the pN orbital effects by analytically calculating the averaged rate of the mean anomaly at epoch
due to the pN accelerations considered. It turns out that Equations (1) and (2) induce

〈η̇〉 =
µ nb R2 J2

[
−
(
80 + 73 e2) (1 + 3 cos 2I)− 84

(
1 + 2 e2) sin2 I cos 2ω

]
32 c2 a3 (1− e2)

5/2 , (7)

〈η̇〉 =
9 G S R2 ε2 [5 cos 3I + cos I

(
3 + 10 sin2 I cos 2ω

)]
56 a5 c2 (1− e2)

2 , (8)

respectively, while the gravitoelectric mass monopole acceleration yields

〈η̇〉 =
µ nb

[
−15 + 6

√
1− e2 +

(
9− 7

√
1− e2

)
ζ
]

c2 a
√

1− e2
, (9)

where ζ
.
= M m / (M + m)2, and m is the satellite’s mass. Instead, it turns out that there is no net

Lense-Thirring effect on η. To the benefit of the reader, we review the linear combination approach,

2 In that case, the aliasing Newtonian effect which must be disentangled from the pN perihelion precessions is due to the
quadrupole mass moment J2 of the Sun.

3 Indeed, the harmonic perturbations contain also the satellite’s perigee which, for the critical inclination Icrit = arcsin
(

2/
√

5
)

adopted in Tables A2 and A6, stays essentially constant becoming “frozen”. In this case, also the long-term, harmonic rates
become secular trends.
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which is a generalization of that proposed explicitly for the first time by Ciufolini et al. [47] to test
the pN Lense-Thirring effect in the gravitomagnetic field of the Earth with the artificial satellites
of the LAGEOS family. It should be noted that, actually, it is quite general, being not necessarily
limited just to the pN spin dipole case. By looking at N orbital elements4 κ(i) experiencing classical
long-term precessions due to the zonals of the geopotential, the following N linear combinations can
be written down

µpN 〈κ̇〉
(i)
pN +

N

∑
s=2

∂〈κ̇〉(i)Js

∂Js

 δJs, i = 1, 2, . . . N. (10)

They involve the pN averaged precessions 〈κ̇〉(i)pN as predicted by general relativity and scaled
by a multiplicative parameter µpN, and the errors in the computed secular node precessions due
to the uncertainties in the first N − 1 zonals Js, s = 2, 3, . . . N, assumed as mismodeled through
δJs, s = 2, 3, . . . N. In the following, we will use the shorthand

κ̇.`
.
=

∂〈κ̇〉J`
∂J`

(11)

for the partial derivative of the classical averaged precession 〈κ̇〉J` with respect to the generic even
zonal J` of degree `; see Appendix B. Then, the N combinations of Equation (10) are posed equal to the
experimental residuals δκ̇(i), i = 1, 2, . . . N of each of the N orbital elements considered. In principle,
such residuals account for the purposely unmodelled pN effect, the mismodelling of the static and
time-varying parts of the geopotential, and the non-gravitational forces. Thus, one gets

δκ̇(i) = µpN 〈κ̇〉
(i)
pN +

N

∑
s=2

κ̇
(i)
.s δJs, i = 1, 2, . . . N. (12)

If we look at the pN scaling parameter5 µpN and the mismodeling in the first N − 1 zonals
δJs, s = 2, 3, . . . N as unknowns, we can interpret Equation (12) as an inhomogenous linear system of
N algebraic equations in the N unknowns

µpN, δJ2, δJ3 . . . δJN︸ ︷︷ ︸
N

, (13)

whose coefficients are
〈κ̇〉(i)pN , κ̇

(i)
.s , i = 1, 2, . . . N, s = 2, 3, . . . N, (14)

while the constant terms are the N orbital residuals

δκ̇(i), i = 1, 2, . . . N. (15)

It turns out that, after some algebraic manipulations, the dimensionless pN scaling parameter,
which is 1 in general relativity, can be expressed as

µpN =
Cδ

CpN
. (16)

4 At least one of them must be affected by the pN effect one is looking for. In principle, the N orbital elements κ(i) may be
different from one another belonging to the same satellite, or some of them may be identical belonging to different spacecraft
(e.g., the nodes of two different vehicles).

5 In general, it is not necessarily one of the parameters of the parameterized post-Newtonian (PPN) formalism, being possibly
a combination of some of them.
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In Equation (16), the combination of the N orbital residuals

Cδ
.
= δκ̇(1) +

N−1

∑
j=1

cj δκ̇(j+1) (17)

is, by construction, independent of the first N − 1 zonals, being impacted by the other ones of degree
` > N along with the non-gravitational perturbations and other possible orbital perturbations which
cannot be reduced to the same formal expressions of the first N − 1 zonal rates. Instead,

CpN
.
= 〈κ̇〉(1)pN +

N−1

∑
j=1

cj 〈κ̇〉
(j+1)
pN (18)

combines the N pN orbital precessions as predicted by general relativity. The dimensionless coefficients
cj, j = 1, 2, . . . N − 1 in Equations (17) and (18) depend only on some of the orbital parameters of the
satellite(s) involved in such a way that, by construction, Cδ = 0 if Equation (17) is calculated by posing

δκ̇(i) = κ̇
(i)
.` δJ`, i = 1, 2, . . . N (19)

for any of the first N − 1 zonals, independently of the value assumed for its uncertainty δJ`.
As far as HERO is concerned, the linear combination of the four experimental residuals

δΩ, δη, δe, δω of the satellite’s node, mean anomaly at epoch, eccentricity and perigee suitably
designed to cancel out the secular precessions due to the first three zonal harmonics J2, J3, J4 of
the geopotential is

Cδ = δΩ + c1 δη + c2 δe + c3 δω. (20)

The coefficients c1, c2, c3 turn out to be

c1 =
Ω̇.2 ė.3 ω̇.4 − ė.2 Ω̇.3 ω̇.4 − Ω̇.2 ω̇.3 ė.4 + ω̇.2 Ω̇.3 ė.4 + ė.2 ω̇.3 Ω̇.4 − ω̇.2 ė.3 Ω̇.4

ė.2 η̇.3 ω̇.4 − η̇.2 ė.3 ω̇.4 − ė.2 ω̇.3 η̇.4 + ω̇.2 ė.3 η̇.4 + η̇.2 ω̇.3 ė.4 − ω̇.2 η̇.3 ė.4
, (21)

c2 =
−Ω̇.2 η̇.3 ω̇.4 + η̇.2 Ω̇.3 ω̇.4 + Ω̇.2 ω̇.3 η̇.4 − ω̇.2 Ω̇.3 η̇.4 − η̇.2 ω̇.3 Ω̇.4 + ω̇.2 η̇.3 Ω̇.4

ė.2 η̇.3 ω̇.4 − η̇.2 ė.3 ω̇.4 − ė.2 ω̇.3 η̇.4 + ω̇.2 ė.3 η̇.4 + η̇.2 ω̇.3 ė.4 − ω̇.2 η̇.3 ė.4
, (22)

c3 =
−Ω̇.2 ė.3 η̇.4 + ė.2 Ω̇.3 η̇.4 + Ω̇.2 η̇.3 ė.4 − η̇.2 Ω̇.3 ė.4 − ė.2 η̇.3 Ω̇.4 + η̇.2 ė.3 Ω̇.4

ė.2 η̇.3 ω̇.4 − η̇.2 ė.3 ω̇.4 − ė.2 ω̇.3 η̇.4 + ω̇.2 ė.3 η̇.4 + η̇.2 ω̇.3 ė.4 − ω̇.2 η̇.3 ė.4
. (23)

Their numerical values, computed with the formulas of Appendix B for the orbital configurations
of Tables A2 and A6, are listed in Tables A4 and A8, respectively. In them, the combined mismodeled
classical precessions due to the uncancelled zonals, calculated by assuming the formal, statistical
sigmas σJ` , ` = 5, 6, . . . of the recent global gravity field solution Tongji-Grace02s [48] as a measure
of their uncertainties δJ`, ` = 5, 6, . . ., are reported as well. However, caution is in order since the
realistic level of mismodeling in the geopotential’s coefficients is usually larger than the mere formal
errors released in the models produced by various institutions and publicly available on the Internet at
http://icgem.gfz-potsdam.de/tom_longtime. A correct evaluation of the actual uncertainties in the
zonal harmonics require great care by suitably comparing different global gravity field models; we
will not deal with such a task here. From an inspection of Tables A4 and A8, it can be noted that the
(formal) impact of the uncancelled zonals on the combined pN mass quadrupole effect (GJ2/c2) is at
the ' 0.6− 0.07% level for the proposed orbital configurations of Tables A2 and A6. If the pN spin
dipole Lense-Thirring effect (GS/c2) is considered, the systematic error due to the mismodeling in
J`, ` > 4 is about ' 0.1− 0.03%. The pN mass monopole combined precessions (GM/c2) are affected
at the' (20− 5)× 10−7 relative level. Instead, it turns out that the the combined mismodelled classical

http://icgem.gfz-potsdam.de/tom_longtime
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precessions are at the same level of the pN spin octupole trends (GSε2/c2). It may not be unrealistic to
expect that, when the forthcoming global gravity field models based on the analysis of the entire long
data records of the dedicated GRACE and GOCE missions will be finally available, the current merely
formal level of uncertainties in the geopotential’s zonal harmonics may be considered as realistic.
Moreover, in the next years, the mission GRACE-FO (GFO) [49], launched in May 2018, will also
contribute to the production of new global Earth’s gravity field models of increased quality.

On the other hand, the size of the coefficients c1, c2, c3 amplifies the impact of any
non-gravitational perturbations that may affect the spacecraft; thus, they should be effectively
counteracted by some active drag-free apparatus. In particular, the coefficient c2 of the eccentricity is
'30–40; Tables A5 and A9 show that the expected secular decrease rate of e due to the atmospheric
drag is rather large. Thus, some trade-off may be required among the need of reducing the systematic
error of gravitational origin and the actual performance of the drag-free mechanism by looking, e.g.,
at different linear combinations. It may be interesting to note the case of the mean anomaly at epoch.
Indeed, in the case of the high perigee orbital configuration of Tables A2, A3 and A5 tell us that the
neutral atmospheric drag would represent just '1–2% of the predicted pN GJ2/c2 precession on η.
On the other hand, the present-day formal mismodeling in the classical J2-induced rate is about 19% of
it. If the pN Schwarzschild-like effect is considered, the formal bias due to J2 is at the ' 10−5 level,
while the impact of the atmospheric drag is as little as ' 10−6. The neutral atmospheric drag has
a larger impact on the pN precessions of η in the case of the low perigee configuration of Table A6,
as shown by Tables A7 and A9.

3. Summary and Overview

The HERO concept—meant as a hopefully drag-free spacecraft moving in a highly eccentric orbit
in a frozen perigee configuration that aimed to perform several tests of relativistic gravity in the Earth’s
spacetime—represents, in principle, a promising opportunity to measure a general relativistic effect
for the first time, which has never received the same attention as the more well-known Schwarzschild
and Lense-Thirring precessions. The post-Newtonian gravitoelectric orbital shifts due to the mass
quadrupole moment of the Earth. Indeed, the systematic uncertainty in the combined satellite’s
precessions due to the formal, statistical errors in the competing Newtonian mass multipoles of the
geopotential—as per one of the most recent global gravity field models—is currently below the per
cent level for both the orbital configurations proposed. A unique feature of such a post-Newtonian
effect is also that the semimajor axis a undergoes a long-term variation which, for a frozen perigee
configuration, resembles a secular trend of the order of '4–11 cm yr−1, depending on the orbital
geometry chosen. At present, the secular decay of the semimajor axis of the existing passive geodetic
satellite LARES has been measured to an accuracy better than 1 cm yr−1 at 2σ level. As far as the
traditional Lense-Thirring and Schwarzschild-like post-Newtonian precessions, the formal systematic
bias due to the present-day mismodeling in the classical Earth’s zonal harmonics is currently . 0.1%
and . 0.0002%, respectively, if a suitable linear combination of some of the orbital elements of HERO
is adopted. However, it must be stressed that the actual uncertainties in the zonal multipoles of the
terrestrial gravity field may usually be (much) worse than the sigmas released in the various global
gravity solutions. Nonetheless, it cannot be ruled out that, if and when HERO will fly, our knowledge
of the Earth’s gravity field will have reached such levels that today’s only formal uncertainties can
finally be considered as truly realistic. In addition to the post-Newtonian accelerations, HERO may
perform an accurate test of the gravitational red-shift in view of its high eccentricity. Also several
models of modified gravity, which generally affect the perigee and the mean anomaly at epoch with
secular precessions, could be fruitfully put to the test. A crucial aspect is represented by the level of
compensation of the non-gravitational perturbation which will be practically attainable with some
drag-free apparatus; suffice it to say that the nominal size of the competing secular decrease of the
semimajor axis due to, for example, the neutral atmospheric drag reaching the ' 5–160 m yr−1 level
if a passive, cannonball satellite is considered. The variability of atmospheric density is such that,
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in order to achieve drag-free technology, one would have to measure atmospheric density at the
satellite in real-time and transmit the data back to Earth for inclusion and analysis within a drag model.
Adding such complexities will, however, add to the actual drag as antennas, batteries, solar panels
and so forth, and will increase drag and accompanying errors. Perhaps, as the orbit will have to be
determined with Satellite Laser Ranging (SLR), one could design and build a type of corner cube
reflector where some aspect of the returned SLR pulse is modulated by the atmospheric pressure signal.
SLR systems with kHz pulse rates will be useful here. The investigation of such delicate issues deserve
dedicated and detailed analyses.
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Acknowledgments: I am grateful to an anonymous referee for insightful observations on the atmospheric drag
and the drag-free technology.
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Appendix A. Tables and Figures

Table A1. Relevant physical parameters of the Earth [50–52]. The zonal harmonics of the geopotential
of degree ` are given by J` = −

√
2`+ 1 C`,0, ` = 2, 3, 4, . . ., where C`,0, ` = 2, 3, 4, . . . are the fully

normalized Stokes coefficients of degree ` and order m = 0 of the multipolar expansion of the
Newtonian part of the Earth’s gravity field. The formal, statistical errors in the first seven Stokes
coefficients of the geopotential, along with their nominal values, were retrieved from the global gravity
field solution Tongji-Grace02s [48] retrievable on the Internet at http://icgem.gfz-potsdam.de/tom_
longtime.

Physical Parameter Numerical Value Units

Newtonian constant of gravitation G 6.67259× 10−11 kg−1 m3 s−2

Speed of light in vacuum c 2.99792458× 108 m s−1

Gravitational parameter µ 3.986004418× 1014 m3 s−2

Angular speed Ψ 7.29× 10−5 s−1

Equatorial radius Re 6378.1370 km
Polar radius Rp 6356.7523 km

Angular momentum S 5.86× 1033 J s
Normalized Stokes coefficient C2,0 −4.84165299806× 10−4 -
Normalized Stokes coefficient C3,0 9.571989759740× 10−7 -
Normalized Stokes coefficient C4,0 5.399893295930× 10−7 -
Normalized Stokes coefficient C5,0 6.86499810446677× 10−8 -
Normalized Stokes coefficient C6,0 −1.49976729587105× 10−7 -
Normalized Stokes coefficient C7,0 9.05017773295824× 10−8 -
Normalized Stokes coefficient C8,0 4.94794369681244× 10−8 -

Formal error σC2,0
2.98340899705584× 10−13 -

Formal error σC3,0
8.39284383652709× 10−14 -

Formal error σC4,0
4.07426781903578× 10−14 -

Formal error σC5,0
2.57688174349872× 10−14 -

Formal error σC6,0
1.89009491873398× 10−14 -

Formal error σC7,0
1.50081719867797× 10−14 -

Formal error σC8,0
1.27528335995664× 10−14 -

http://icgem.gfz-potsdam.de/tom_longtime
http://icgem.gfz-potsdam.de/tom_longtime
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Table A2. Orbital configuration of the proposed satellite HERO: high perigee case. The orbital motion
is rather fast since the orbital period Pb is as short as ' 4 h. The period Pω of the perigee is mainly
determined by its secular precession due to J3, J4 because of the critical inclination which makes the
secular precession due to J2 nominally vanishing. Note the relatively short period PΩ of the node,
amounting to less than 2 yr.

Orbital and Physical Parameter Numerical Value Units

Semimajor axis a 13,500 km
Orbital period Pb 4.33 hr

Orbital eccentricity e 0.45 -
Perigee height hmin 1046.86 km
Apogee height hmax 13,196.9 km
Orbital inclination I 63.43 deg

Argument of perigee ω 45 deg
Period of the node PΩ −1.94 yr

Period of the perigee Pω −1363.4 yr
Gravitational redshift ∆U

c2 3.7× 10−10 −

Table A3. Nominal pN (first four rows from the top) and mismodeled Newtonian (first seven rows
from the bottom) rates of change, averaged over one orbital revolution, of the semimajor axis a,
the eccentricity e, the inclination I, the longitude of the ascending node Ω, the argument of pericenter
ω, and the mean anomaly at epoch η for the ideal (no orbital injection error on I assumed) orbital
configuration of Table A2. The units are cm yr−1 for 〈ȧ〉, and mas yr−1 for 〈ė〉 ,

〈
İ
〉

,
〈
Ω̇
〉

, 〈ω̇〉 , 〈η̇〉.
The uncertainties in the classical rates of change due to the geopotential are the formal, statistical errors
σJ` in J`, ` = 2, 3, . . . 8 of the model Tongji-Grace02s [48] quoted in Table A1.

Effect 〈ȧ〉
(
cm yr−1) 〈ė〉

(
mas yr−1) 〈

İ
〉 (

mas yr−1) 〈
Ω̇
〉 (

mas yr−1) 〈ω̇〉
(
mas yr−1) 〈η̇〉

(
mas yr−1)

J2c−2 3.8 0.42 0.02 0.82 −0.14 0.87
ε2c−2 0 −0.008 0.002 0 0.074 −0.015
Sc−2 0 0 0 32.323 −43.366 0
Mc−2 0 0 0 0 3237.8 −9292.96

σJ2 0 0 0 0.411 0 0.164
σJ3 0 0 0 0.057 0.026 0
σJ4 0 0.002 0.0006 0.034 0.049 0.004
σJ5 0 0.005 0.001 0.010 0.036 0.004
σJ6 0 0.003 0.0009 0.002 0.025 0.002
σJ7 0 0.002 0.0007 0.002 0.015 0.002
σJ8 0 0.001 0.0004 0.004 0.006 0.001

Table A4. Upper three rows: Numerical values of the coefficients c1, c2, c3 of the linear combination of
Equation (20) canceling out the classical precessions induced by the first three zonal harmonics J2, J3, J4

for the orbital configuration of Table A2. Middle rows: Uncancelled mismodeled precessions due to the
zonal harmonics J5, J6, J7, J8, in mas yr−1, linearly combined according to Equation (20); the formal,
statistical errors σJ` in J`, ` = 5, 6, 7, 8 of the model Tongji-Grace02s [48], quoted in Table A1 were
used. Lower four rows: pN precessions, in mas yr−1, linearly combined according to Equation (20).

Coefficient of δη c1 −2.51065 −
Coefficient of δe c2 29.0889 −
Coefficient of δω c3 2.13813 −

σJ5 formal 0.06 mas yr−1

σJ6 formal 0.03 mas yr−1

σJ7 formal 0.03 mas yr−1

σJ8 formal 0.02 mas yr−1

J2 c−2 10.75 mas yr−1

ε c−2 −0.03 mas yr−1

S c−2 −60.07 mas yr−1

M c−2 30,254.2 mas yr−1
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Table A5. Numerically integrated nominal rates of change, averaged over one orbital revolution,
of the semimajor axis a, the eccentricity e, the inclination I, the longitude of the ascending node Ω,
the argument of pericenter ω, and the mean anomaly at epoch η induced by the neutral atmospheric
drag for the orbital configuration of Table A2. The units are m yr−1 for 〈ȧ〉, and mas yr−1 for
〈ė〉 ,

〈
İ
〉

,
〈
Ω̇
〉

, 〈ω̇〉 , 〈η̇〉. For the satellite, assumed spherical in shape and passive, we adopted CD =

3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s neutral atmospheric density,
we adopted r0 = rmin = a (1− e) = 1046.86 km, ρ0 = ρmax = (7.3− 2.8) × 10−15 kg m−3, ρmin =

0.001 ρL, λ = 872.87 km− 938.49 km; the neutral atmospheric density at the height of LAGEOS is
ρL = 6.579 × 10−18 kg m−3 [54]. See Appendix C for details. Neither approximations in e nor in
ν

.
= Ψ/nb were used. The value of ρ0 = ρmax was kept fixed over one orbital revolution. Cfr. with the

analytical plots in Figure A1 and the numerically produced time series in Figure A2.

ρ0

(
kg m−3

)
〈ȧ〉

(
m yr−1) 〈ė〉

(
mas yr−1) 〈

İ
〉 (

mas yr−1) 〈
Ω̇
〉 (

mas yr−1) 〈ω̇〉
(
mas yr−1) 〈η̇〉

(
mas yr−1)

7.3× 10−15 −5.1 −41 −0.51 −0.21 0.12 −0.02
2.8× 10−15 −2 −16 −0.2 −0.07 0.04 −0.01

Table A6. Orbital configuration of the proposed satellite HERO: low perigee case. The orbital motion
is relatively slow since the orbital period Pb is as long as more than 21 h. The period Pω of the perigee
is mainly determined by its secular precession due to J3, J4 because of the critical inclination which
makes the secular precession due to J2 nominally vanishing. The period PΩ of the node is rather long,
amounting to more than 13 yr.

Orbital and Physical Parameter Numerical Value Units

Semimajor axis a 39,000 km
Orbital period Pb 21.29 hr

Orbital eccentricity e 0.82 -
Perigee height hmin 641.86 km
Apogee height hmax 64,601.9 km
Orbital inclination I 63.43 deg

Argument of perigee ω 45 deg
Period of the node PΩ −13.45 yr

Period of the perigee Pω −8186.71 yr
Gravitational redshift ∆U

c2 5.7× 10−10 −

Table A7. Nominal pN (first four rows from the top) and mismodeled Newtonian (first seven rows
from the bottom) rates of change, averaged over one orbital revolution, of the semimajor axis a,
the eccentricity e, the inclination I, the longitude of the ascending node Ω, the argument of pericenter
ω, and the mean anomaly at epoch η for the ideal (no orbital injection error on I assumed) orbital
configuration of Table A6. The units are cm yr−1 for 〈ȧ〉, and mas yr−1 for 〈ė〉 ,

〈
İ
〉

,
〈
Ω̇
〉

, 〈ω̇〉 , 〈η̇〉.
The uncertainties in the classical rates of change due to the geopotential are the formal, statistical errors
σJ` in J`, ` = 2, 3, . . . 8 of the model Tongji-Grace02s [48] quoted in Table A1.

Effect 〈ȧ〉
(
cm yr−1) 〈ė〉

(
mas yr−1) 〈

İ
〉 (

mas yr−1) 〈
Ω̇
〉 (

mas yr−1) 〈ω̇〉
(
mas yr−1) 〈η̇〉

(
mas yr−1)

J2c−2 11.6 0.115 0.010 0.100 −0.022 0.092
ε2c−2 0 −0.0006 0.0008 0 0.0106 −0.0004
Sc−2 0 0 0 5.09 −6.83 0
Mc−2 0 0 0 0 555.661 −1226.13

σJ2 0 0 0 0.059 0 0.015
σJ3 0 0 0 0.0128 0.006 0
σJ4 0 0.0001 0.0002 0.005 0.007 0.0009
σJ5 0 0.0002 0.0003 0.002 0.005 0.0006
σJ6 0 0.0002 0.0002 0.0002 0.003 0.0003
σJ7 0 0.0001 0.0002 0.0005 0.002 0.0002
σJ8 0 0.00008 0.0001 0.0008 0.0007 0.00007
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Table A8. Upper three rows: Numerical values of the coefficients c1, c2, c3 of the linear combination of
Equation (20) canceling out the classical precessions induced by the first three zonal harmonics J2, J3, J4

for the orbital configuration of Table A6. Middle four rows: Uncancelled mismodeled precessions due to
the zonal harmonics J5, J6, J7, J8, in mas yr−1, linearly combined according to Equation (20); the formal,
statistical errors σJ` in J`, ` = 5, 6, 7, 8 of the model Tongji-Grace02s [48], quoted in Table A1, were
used. Lower four rows: pN precessions, in mas yr−1, linearly combined according to Equation (20).

Coefficient of δη c1 −3.91939 −
Coefficient of δe c2 40.7154 −
Coefficient of δω c3 2.20981 −

σJ5 0.003 mas yr−1

σJ6 0.002 mas yr−1

σJ7 0.002 mas yr−1

σJ8 0.001 mas yr−1

J2 c−2 4.373 mas yr−1

ε c−2 −0.001 mas yr−1

S c−2 −9.952 mas yr−1

M c−2 6033.6 mas yr−1

Table A9. Numerically integrated nominal rates of change, averaged over one orbital revolution,
of the semimajor axis a, the eccentricity e, the inclination I, the longitude of the ascending node Ω,
the argument of pericenter ω, and the mean anomaly at epoch η induced by the neutral atmospheric
drag for the orbital configuration of Table A6. The units are m yr−1 for 〈ȧ〉, and mas yr−1 for
〈ė〉 ,

〈
İ
〉

,
〈
Ω̇
〉

, 〈ω̇〉 , 〈η̇〉. For the satellite, assumed spherical in shape and passive, we adopted CD =

3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s neutral atmospheric density,
we adopted r0 = rmin = a (1− e) = 641.86 km, ρ0 = ρmax = (6.9− 1.11) × 10−14 kg m−3, ρmin =

0.0001 ρL, λ = 3463.23 km− 3843.48 km; the neutral atmospheric density at the height of LAGEOS
is ρL = 6.579× 10−18 kg m−3 [54]. See Appendix C for details. Neither approximations in e nor in
ν

.
= Ψ/nb were used. The value of ρ0 = ρmax was kept fixed over one orbital revolution. Cfr. with the

analytical plots in Figure A3 and the numerically produced time series in Figure A4.

ρ0

(
kg m−3

)
〈ȧ〉

(
m yr−1) 〈ė〉

(
mas yr−1) 〈

İ
〉 (

mas yr−1) 〈
Ω̇
〉 (

mas yr−1) 〈ω̇〉
(
mas yr−1) 〈η̇〉

(
mas yr−1)

6.9× 10−14 −164.65 −152.96 −2.24 0.69 −0.30 0.02
1.11× 10−14 −27.6 −25.6 −0.41 0.15 −0.07 0.008
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Figure A1. Plots of Equations (A49) and (A54) as functions of the true anomaly f from 0 to 2π for the
orbital configuration of Table A2. For the satellite, assumed spherical in shape and passive, we adopted
CD = 3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s atmospheric density,
we adopted r0 = rmin = a (1− e) = 1046.86 km, ρ0 = ρmax = 7.3× 10−15 kg m−3, λ = 872.87 km.
Neither approximations in e nor in ν

.
= Ψ/nb were used. The areas of the regions delimited by the

curves and the f axis are the rates of change of the orbital elements averaged over one orbital period
Pb; they are numerically calculated and displayed in Table A5. The value of ρ0 = ρmax was kept fixed
over one orbital revolution.
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Figure A2. Numerically integrated shifts of the semimajor axis a, the eccentricity e, the longitude
of the ascending node Ω, the argument of the perigee ω, and the mean anomaly at epoch η for the
orbital configuration of Table A2. For the satellite, assumed spherical in shape and passive, we adopted
CD = 3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s atmospheric density,
we adopted r0 = rmin = a (1− e) = 1046.86 km, ρ0 = ρmax = 7.3× 10−15 kg m−3, λ = 872.87 km.
Cfr. with the semi-analytical results of Figure A1 and Table A5.
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Figure A3. Plots of Equations (A49) and (A54) as functions of the true anomaly f from 0 to 2π for the
orbital configuration of Table A6. For the satellite, assumed spherical in shape and passive, we adopted
CD = 3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s atmospheric density,
we adopted r0 = rmin = a (1− e) = 641.86 km, ρ0 = ρmax = 6.9× 10−14 kg m−3, λ = 3463.23 km.
Neither approximations in e nor in ν

.
= Ψ/nb were used. The areas of the regions delimited by the

curves and the f axis are the rates of change of the orbital elements averaged over one orbital period
Pb; they are numerically calculated and displayed in Table A9. The value of ρ0 = ρmax was kept fixed
over one orbital revolution.
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Figure A4. Numerically integrated shifts of the semimajor axis a, the eccentricity e, the longitude
of the ascending node Ω, the argument of the perigee ω, and the mean anomaly at epoch η for the
orbital configuration of Table A6. For the satellite, assumed spherical in shape and passive, we adopted
CD = 3.5, Σ = 2.69× 10−4 as for the existing LARES [53]. In regard to the Earth’s atmospheric density,
we adopted r0 = rmin = a (1− e) = 641.86 km, ρ0 = ρmax = 6.9× 10−14 kg m−3, λ = 3463.23 km.
Cfr. with the semi-analytical results of Figure A3 and Table A9.

Appendix B. Classical Long-Term Rates of Change of the Keplerian Orbital Elements up to
Degree ` = 8

Here, we will analytically work out the coefficients κ̇.`
.
= ∂ 〈κ̇〉J` /∂J`, κ = e, I, Ω, ω, η of the

long-term rates of change of the eccentricity e, the inclination I, the longitude of the ascending node
Ω, the argument of perigee ω, and the mean anomaly at epoch η induced by the first seven zonal
harmonics of the geopotential up to degree ` = 8; the averaged rates of change of the semimajor axis a
are all vanishing. We will adopt the Lagrange planetary equations [55–58] applied to the perturbing
potential of degree `

∆U` (r) =
µ

r

(
Re

r

)`

J` P` (ξ) , ` = 2, 3, . . . 8 (A1)
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where P` (ξ) is the Legendre polynomial of degree `, averaged over one orbital period as disturbing
function. We will not make any a-priory assumption on the orbital configuration of the satellite. As far
as the orientation of the Earth’s spin axis, we will align it to the reference z axis of an equatorial
coordinate system. The following formulas include both the genuine secular and the harmonic
components with the frequency of the perigee and its integer multiples.

Appendix B.1. The Eccentricity

ė.2 = 0, (A2)

ė.3 = −3 nb R3
e (3 + 5 cos 2I) sin I cos ω

16 a3 (1− e2)
2 , (A3)

ė.4 = −15 e nb R4
e (5 + 7 cos 2I) sin2 I sin 2ω

64 a4 (1− e2)
3 , (A4)

ė.5 =
15 nb R5

e

2048 a5 (1− e2)
4×

×
{

28 e2 (7 + 9 cos 2I) sin3 I cos 3ω +
(

4 + 3 e2
)
[2 sin I + 7 (sin 3I + 3 sin 5I)] cos ω

}
, (A5)

ė.6 =
105 e nb R6

e sin2 I

8192 a6 (1− e2)
5×

×
[
5
(

2 + e2
)
(35 + 60 cos 2I + 33 cos 4I) sin 2ω + 12 e2 (9 + 11 cos 2I) sin2 I sin 4ω

]
, (A6)

ė.7 =
21 nb R7

e

524288 a7 (1− e2)
6×

×
{

60 e2 sin3 I
[
−3

(
8 + 3 e2

)
(189 + 308 cos 2I + 143 cos 4I) cos 3ω−

−44 e2 (11 + 13 cos 2I) sin2 I cos 5ω
]
−

−5
[
8 + 5 e2

(
4 + e2

)]
(25 sin I + 81 sin 3I + 165 sin 5I + 429 sin 7I) cos ω

}
, (A7)

ė.8 = − 63 e nb R8
e sin2 I

2097152 a8 (1− e2)
7×

×
{

35
(

48 + 80 e2 + 15 e4
)
(210 + 385 cos 2I + 286 cos 4I + 143 cos 6I) sin 2ω+

+88 e2 sin2 I
[
7
(

10 + 3 e2
)
(99 + 156 cos 2I + 65 cos 4I) sin 4ω+

+26 e2 (13 + 15 cos 2I) sin2 I sin 6ω
]}

. (A8)
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Appendix B.2. The Inclination

İ.2 = 0, (A9)

İ.3 =
3 e nb R3

e cos I (3 + 5 cos 2I) cos ω

16 a3 (1− e2)
3 , (A10)

İ.4 =
15 e2 nb R4

e cos I (5 + 7 cos 2I) sin I sin 2ω

64 a4 (1− e2)
4 , (A11)

İ.5 = − 15 e nb R5
e cot I

2048 a5 (1− e2)
5×

×
{

28 e2 (7 + 9 cos 2I) sin3 I cos 3ω +
(

4 + 3 e2
)
[2 sin I + 7 (sin 3I + 3 sin 5I)] cos ω

}
, (A12)

İ.6 =
5 nb R6

e cot I

65536 a6 (1− e2)
6×

×
[
−840 e2

(
2 + e2

)
(35 + 60 cos 2I + 33 cos 4I) sin2 I sin 2ω−

−2016 e4 (9 + 11 cos 2I) sin4 I sin 4ω
]

, (A13)

İ.7 = − 21 e nb R7
e cot I

524288 a7 (1− e2)
7×

×
{

60 e2 sin3 I
[
−3

(
8 + 3 e2

)
(189 + 308 cos 2I + 143 cos 4I) cos 3ω−

−44 e2 (11 + 13 cos 2I) sin2 I cos 5ω
]
−

−5
[
8 + 5 e2

(
4 + e2

)]
(25 sin I + 81 sin 3I + 165 sin 5I + 429 sin 7I) cos ω

}
, (A14)

İ.8 =
63 e2 nb R8

e sin I cos I

2097152 a8 (1− e2)
8 ×

×
{

35
(

48 + 80 e2 + 15 e4
)
(210 + 385 cos 2I + 286 cos 4I + 143 cos 6I) sin 2ω+

+88 e2 sin2 I
[
7
(

10 + 3 e2
)
(99 + 156 cos 2I + 65 cos 4I) sin 4ω+

+26 e2 (13 + 15 cos 2I) sin2 I sin 6ω
]}

. (A15)
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Appendix B.3. The Longitude of the Ascending Node

Ω̇.2 = − 3 nb R2
e cos I

2 a2 (1− e2)
2 , (A16)

Ω̇.3 =
3 e nb R3

e (cos I + 15 cos 3I) csc I sin ω

32 a3 (1− e2)
3 , (A17)

Ω̇.4 =
15 nb R4

e
[(

2 + 3 e2) (9 cos I + 7 cos 3I)− 2 e2 (5 cos I + 7 cos 3I) cos 2ω
]

128 a4 (1− e2)
4 , (A18)

Ω̇.5 = − 15 e nb R5
e

2048 a5 (1− e2)
5×

×
{(

4 + 3 e2
)
[2 cos I + 21 (cos 3I + 5 cos 5I)] csc I sin ω + 7 e2 (2 sin 2I + 15 sin 4I) sin 3ω

}
, (A19)

Ω̇.6 =
105 nb R6

e

16384 a6 (1− e2)
6×

×
[
−
(

8 + 40 e2 + 15 e4
)
(50 cos I + 45 cos 3I + 33 cos 5I) +

+5 e2
(

2 + e2
)
(70 cos I + 87 cos 3I + 99 cos 5I) cos 2ω+

+6 e4 (47 cos I + 33 cos 3I) sin2 I cos 4ω
]

, (A20)

Ω̇.7 = − 21 e nb R7
e csc I

524288 a7 (1− e2)
7×

×
{
−5

[
8 + 5 e2

(
4 + e2

)]
(25 cos I + 243 cos 3I + 825 cos 5I + 3003 cos 7I) sin ω−

−30 e2
(

8 + 3 e2
)
(1442 cos I + 1397 cos 3I + 1001 cos 5I) sin2 I sin 3ω−

−264 e4 (149 cos I + 91 cos 3I) sin4 I sin 5ω
}

, (A21)

Ω̇.8 =
63 nb R8

e

2097152 a8 (1− e2)
8×

×
(

5
{

16 + 7 e2
[
24 + 5 e2

(
6 + e2

)]}
[1225 cos I + 11 (105 cos 3I + 91 cos 5I + 65 cos 7I)]−

−70 e2
(

48 + 80 e2 + 15 e4
)
{105 cos I + 11 [11 cos 3I + 13 (cos 5I + cos 7I)]} cos 2ω−

−616 e4
(

10 + 3 e2
)
(138 cos I + 117 cos 3I + 65 cos 5I) sin2 I cos 4ω−

−9152 e6 cos I (2 + 5 cos 2I) sin4 I cos 6ω
)

. (A22)
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Appendix B.4. The Argument of Perigee

ω̇.2 =
3 nb R2

e (3 + 5 cos 2I)

8 a2 (1− e2)
2 , (A23)

ω̇.3 = − 3 nb R3
e

64 a3 e (1− e2)
3

[
−1− 3 e2 − 4 cos 2I + 5

(
1 + 7 e2

)
cos 4I

]
csc I sin ω, (A24)

ω̇.4 =
15 nb R4

e

1024 a4 (1− e2)
4×

×
{
−27

(
4 + 5 e2

)
+ 4 cos 2I

[
−52− 63 e2 + 2

(
−2 + 7 e2

)
cos 2ω

]
+ 2

(
−6 + 5 e2

)
cos 2ω+

+7 cos 4I
[
−28− 27 e2 + 2

(
2 + 9 e2

)
cos 2ω

]}
, (A25)

ω̇.5 = − 15 nb R5
e sin I

4096 a5 e (1− e2)
5×

×
{[

8 + 74 e2 + 30 e4 +
(

20 + 113 e2 + 21 e4
)

cos 2I + 14
(

4 + 5 e2 − 9 e4
)

cos 4I−

−21
(

4 + 61 e2 + 33 e4
)

cos 6I
]

csc2 I sin ω−

−14 e2
[
−5 + 7 e2 + 4

(
−1 + 6 e2

)
cos 2I +

(
9 + 33 e2

)
cos 4I

]
sin 3ω

}
, (A26)

ω̇.6 =
105 nb R6

e

65536 a6 (1− e2)
6×

×
(

5
{(

472 + 1940 e2 + 675 e4
)

cos 2I+

+3 e2
[
2
(

292 + 99 e2
)

cos 4I + 11
(

44 + 13 e2
)

cos 6I
]}
−

−5
[
10 e2

(
6 + 7 e2

)
+
(
−68 + 254 e2 + 195 e4

)
cos 2I + 6

(
−4 + 102 e2 + 55 e4

)
cos 4I+

+33
(

4 + 34 e2 + 13 e4
)

cos 6I
]

cos 2ω+

+2
[
1128 cos 4I + 1188 cos 6I + 25

(
24 + 100 e2 + 35 e4 + 4 cos 2ω

)]
−

−6 e2
[
−28 + 45 e2 + 4

(
−4 + 33 e2

)
cos 2I + 11

(
4 + 13 e2

)
cos 4I

]
sin2 I cos 4ω

)
, (A27)

ω̇.7 = − 21 nb R7
e

524288 e a7 (1− e2)
7×

×
(
−5

(
8 + 156 e2 + 225 e4 + 40 e6

)
(25 sin I + 81 sin 3I + 165 sin 5I + 429 sin 7I) sin ω−

−60 e2
(

24 + 95 e2 + 24 e4
)
(189 + 308 cos 2I + 143 cos 4I) sin3 I sin 3ω+

+10 e2 cos I
{[

8 + 5 e2
(

4 + e2
)]

(−1198 + 2421 cos 2I − 2178 cos 4I+

+3003 cos 6I) cot I sin ω+

+3 e2
(

8 + 3 e2
)
(523 + 396 cos 2I + 1001 cos 4I) sin 2I sin 3ω

}
+

+528 e6 cos2 I (29 + 91 cos 2I) sin3 I sin 5ω−

−528 e4
(

5 + 8 e2
)
(11 + 13 cos 2I) sin5 I sin 5ω

)
,

(A28)
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ω̇.8 =
63 nb R8

e

33554432 a8 (1− e2)
8×

×
(

5
{
−1225

[
192 + 35 e2

(
48 + 56 e2 + 9 e4

)]
−

−280
[
1664 + 7 e2

(
2064 + 2400 e2 + 385 e4

)]
cos 2I−

−308
[
1472 + 7 e2

(
1776 + 2040 e2 + 325 e4

)]
cos 4I−

−3432
[
128 + 7 e2

(
144 + 160 e2 + 25 e4

)]
cos 6I−

−715
[
704 + 7 e2

(
624 + 600 e2 + 85 e4

)]
cos 8I

}
+

+70
[
35
(
−96 + 208 e2 + 950 e4 + 225 e6

)
+

+16
(
−384 + 1648 e2 + 5160 e4 + 1155 e6

)
cos 2I+

+44
(
−96 + 1360 e2 + 2870 e4 + 585 e6

)
cos 4I+

+2288 e2
(

48 + 80 e2 + 15 e4
)

cos 6I+

+143
(

96 + 1328 e2 + 1, 610 e4 + 255 e6
)

cos 8I
]

cos 2ω+

+616 e2
[
6
(
−280 + 944 e2 + 363 e4

)
+
(
−1960 + 14128 e2 + 4797 e4

)
cos 2I+

+26
(

40 + 688 e2 + 195 e4
)

cos 4I + 65
(

40 + 208 e2 + 51 e4
)

cos 6I
]

sin2 I cos 4ω+

+4576 e4
[
−22 + 39 e2 + 4

(
−2 + 25 e2

)
cos 2I + 5

(
6 + 17 e2

)
cos 4I

]
sin4 I cos 6ω

)
. (A29)

Appendix B.5. The Mean Anomaly at Epoch

η̇.2 =
3 nb R2

e (1 + 3 cos 2I)

8 a2 (1− e2)
3/2 , (A30)

η̇.3 =
3 nb R3

e

16 e a3 (1− e2)
5/2

[(
−1 + 4 e2

)
(3 + 5 cos 2I) sin I sin ω

]
, (A31)

η̇.4 = − 15 nb R4
e

1024 a4 (1− e2)
7/2×

×
[
3 e2 (9 + 20 cos 2I + 35 cos 4I) + 8

(
−2 + 5 e2

)
(5 + 7 cos 2I) sin2 I cos 2ω

]
, (A32)

η̇.5 =
15 nb R5

e

2048 e a5 (1− e2)
9/2×

×
{
−
(
−4 + 7 e2 + 18 e4

)
[2 sin I + 7 (sin 3I + 3 sin 5I)] sin ω−

−28 e2
(
−1 + 2 e2

)
(7 + 9 cos 2I) sin3 I sin 3ω

}
, (A33)

η̇.6 = − 35 nb R6
e

65536 a6 (1− e2)
11/2×

×
[
−
(
−8 + 20 e2 + 15 e4

)
(50 + 105 cos 2I + 126 cos 4I + 231 cos 6I)−

−60
(
−4 + 6 e2 + 7 e4

)
(35 + 60 cos 2I + 33 cos 4I) sin2 I cos 2ω−

−72 e2
(
−4 + 7 e2

)
(9 + 11 cos 2I) sin4 I cos 4ω

]
,

(A34)
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η̇.7 =
21 nb R7

e

524288 e a7 (1− e2)
13/2×

×
[
5
(
−8− 28 e2 + 95 e4 + 40 e6

)
(25 sin I + 81 sin 3I + 165 sin 5I + 429 sin 7I) sin ω+

+180 e2
(
−8 + 11 e2 + 8 e4

)
(189 + 308 cos 2I + 143 cos 4I) sin3 I sin 3ω+

+528 e4
(
−5 + 8 e2

)
(11 + 13 cos 2I) sin5 I sin 5ω

]
, (A35)

η̇.8 = − 63 nb R8
e

33554432 a8 (1− e2)
15/2×

×
{

5
[
−32 + 35 e4

(
4 + e2

)]
(1225 + 2520 cos 2I + 2772 cos 4I + 3432 cos 6I+

+6435 cos 8I) + 280
(
−96− 80 e2 + 470 e4 + 135 e6

)
(210 + 385 cos 2I + 286 cos 4I+

+143 cos 6I) sin2 I cos 2ω+

+2464 e2
(
−40 + 52 e2 + 27 e4

)
(99 + 156 cos 2I + 65 cos 4I) sin4 I cos 4ω+

+18304 e4
(
−2 + 3 e2

)
(13 + 15 cos 2I) sin6 I cos 6ω

}
. (A36)

Appendix C. The Atmospheric Drag

The neutral and charged atmospheric drag is potentially a major source of systematic uncertainty
since it induces long-term effects on all the satellite’s orbital elements which, for a frozen perigee
configuration, may look like secular trends on which the time variability of the atmospheric density
is superimposed.

For the sake of simplicity, we will model HERO as a cannonball, passive satellite with the same
physical properties of the existing LARES satellite in order to make some quantitative estimates of
the disturbing impact of the atmospheric drag on the pN effects of interest. Thus, its perturbing
acceleration is customarily modeled as

AD = −1
2

CD Σ ρ V V , (A37)

where CD, Σ, ρ, V are the dimensionless drag coefficient of the spacecraft, its area-to-mass ratio,
the atmospheric density at its height, and its velocity with respect to the atmosphere, respectively.
By assuming that the atmosphere co-rotates with the Earth, V can be posed equal to

V = v−Ψ× r, (A38)

where Ψ is the Earth’s angular velocity. In fact, a decrease of the co-rotation with the height is
expected. Membrado & Pacheco [59] modeled it in two scenarios involving a constant and non-constant
viscosity. In the first case, the second term in Equation (A38) must be rescaled by (Re/r)3. In general,
the atmospheric density may not be considered as constant throughout a highly eccentric orbit covering
a wide range of geocentric distances, as in our case; thus, we will model it as

ρ(r) = ρ0 exp
[
− (r− r0)

λ

]
, (A39)

where ρ0 is the atmospheric density at some reference distance r0, while λ is the characteristic scale
length. By assuming

r0 = rmin = a (1− e) , (A40)
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if the atmospheric density is known at the perigee and apogee heights, λ can be determined as

λ = − 2ae

ln
(

ρmin
ρmax

) , (A41)

where

ρmin = ρ(rmax), (A42)

ρmax = ρ(rmin). (A43)

In the case of the orbital configuration of Table A2, the perigee height is hmin = 1046.86 km; we
will determine the corresponding neutral atmospheric density ρ0 = ρmax as follows. The neutral
atmospheric density at the LARES height, which is hLR = 1450 km, amounts to ρLR = 5.644 ×
10−16 kg m−3 [53]. According to Brito, Celestino & Moraes [60], the neutral atmospheric density at
h700 = 700 km is 6.9× 10−14 kg m−3 (TD-88 model), or 1.11× 10−14 kg m−3 (NASA model). Thus, it is
possible to calculate the characteristic scale length λ valid for the range 700 km < h < 1450 km as

λ700/LR = − (h700 − hLR)

ln
(

ρLR
ρ700

) = 154.422 km− 249.139 km, (A44)

depending on the value adopted for ρ at 700 km. Since for the orbital configuration of HERO of
Table A2 it is h700 < hmin < hLR, one can determine ρmax by using just Equation (A44) in

ρmax = ρLR exp
[
− (hLR − hmin)

λ700/LR

]
= (7.3− 2.8)× 10−15 kg m−3, (A45)

depending on the value of λ700/LR adopted. As far as ρmin is concerned, since hmax = 13,169.9 km
is much larger than the height of, say, the LAGEOS satellite (hL = 5891.87 km), for which it is
ρL = 6.579× 10−18 kg m−3 [54], it does not seem unreasonable to assume

ρmin ' 0.001 ρL, (A46)

or so. Thus, Equation (A41), applied to ρmax, given by Equation (A45), and ρmin, given by
Equation (A46), allows to infer the value for λ which must be used in the calculation of the drag effect
for HERO. It is

λ = 872.87 km− 938.49 km, (A47)

depending on the value of ρmax adopted. As far as the more eccentric orbital configuration of Table A6
is concerned, by adopting for ρ0 the two possible values of ρ700 and, say, ρmin = 0.0001 ρL, it turns
out that

λ = 3463.23 km− 3843.48 km. (A48)

Actually, even the density at a given height may not be regarded as truly constant because of
a variety of geophysical phenomena characterized by quite different time scales. Anyway, in order
to have an order-of-magnitude evaluation of the perturbing action of Equation (A37) on the motion
of HERO, we calculate the averaged rates of change of its Keplerian orbital elements by keeping
ρ0 = ρmax in Equation (A39) fixed during one orbital period Pb; given its short duration, at least
in the case of Table A2, it is not an unreasonable assumption. The large value of the eccentricity
makes most of the existing results in the literature unsuitable to the present case; moreover, an exact
analytical calculation without recurring to any approximation in both e and ν

.
= Ψ/nb is difficult.

Thus, we follow two complementary approaches. In one of them, we, first, plot in Figures A1 and A3
the analytical expressions of the ratios of the right-hand-sides of the Gauss perturbing equations for
the rates of change of the Keplerian orbital elements, evaluated onto the unperturbed Keplerian ellipse,
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to Pb as functions of the true anomaly f . In the most general case, by assuming the co-rotation of the
atmosphere, they are

nb
2 π

da
d f

= −
CD Σ ρ a nb

√
1− e2 V

[
1 + 2 e cos f + e2 − ν

(
1− e2)3/2 cos I

]
2 π (1 + e cos f )2 , (A49)

nb
2 π

de
d f

= −
CD Σ ρ nb

(
1− e2)3/2 V

8 π (1 + e cos f )4

{
4 (e + cos f ) (1 + e cos f )2−

−ν

(
1− e2)3/2

[4 cos f + e (3 + cos 2 f )]√
5

}
, (A50)

nb
2 π

dI
d f

= −
CD Σ ρ nb ν

(
1− e2)3 V sin I cos2 u

4 π (1 + e cos f )4 , (A51)

nb
2 π

dΩ
d f

= −
CD Σ ρ nb ν

(
1− e2)3 V sin 2u

8 π (1 + e cos f )4 , (A52)

nb
2 π

dω

d f
=

CD Σ ρ nb
(
1− e2) V

8 π e (1 + e cos f )4

{
−4
√

1− e2 (1 + e cos f )2 sin f+

+2 ν
(

1− e2
)2

cos I [2 sin f + e cos ω sin (2 f + ω)]

}
, (A53)

nb
2 π

dη

d f
=

CD Σ ρ nb
(
1− e2)2 V sin f

4 π e (1 + e cos f )4

[
2 + 3 e2 + 2 e

(
2 + e2

)
cos f + e2 cos 2 f−

−ν
(

1− e2
)3/2

(2 + e cos f ) cos I
]

, (A54)

where

V2 = 1− ν
2
(
1− e2)3/2 cos I

1 + e2 + 2 e cos f
+ ν2

(
1− e2)3 (3 + cos 2I + 2 sin2 I cos 2u

)
4 (1 + e cos f )2 (1 + e2 + 2 e cos f )

, (A55)

and
u .
= ω + f (A56)

is the argument of latitude. It is worthwhile noticing that, in general,∣∣∣V2 − 1
∣∣∣ ≮ 1, (A57)

being even possible that ∣∣∣V2 − 1
∣∣∣ & 1 (A58)

for some values of f , thus preventing from expanding it in powers of ν. Then, we numerically
calculate the areas under the resulting curves, i.e., we numerically integrate the averaged rates of
change of the orbital elements for the given orbital configuration: see Tables A5 and A9. In the second
approach, we numerically integrate the equations of motion of the satellite in rectangular Cartesian
coordinates, referred to a geocentric equatorial coordinate system, with and without Equation (A37)
over 1 yr; both the runs share the same initial conditions. Then, we subtract the resulting time
series of the orbital elements in order to single out their shifts due to the disturbing acceleration.
Finally, we perform a linear fit of them, and look at their slopes; we plot the fitted trends as functions
of time t in Figures A2 and A4. Both the methods reciprocally agree well, as shown by Figures A1–A2
and Figures A3–A4 for the neutral drag. A slight reduction turns out to occur if the decrease of the
atmospheric co-rotation with height is taken into account as modeled by Membrado & Pacheco [59]
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by assuming the simpler case of a constant viscosity. We tested our approach by checking that it was
able to reproduce the observed features of the semimajor axis decay of LARES recently determined in
Pardini et al. [53]. However, it must be stressed that such findings should be deemed just as indicative
of the limitations of the scenario considered if a passive spacecraft were to be adopted. Indeed, they
were computed preliminarily by assuming the same physical properties of the existing LARES satellite
which, in principle, could well be superseded by a new, specifically manufactured spacecraft able to
reduce both the drag coefficient CD and the area-to-mass ratio Σ. Moreover, also the actual temporal
variability of the atmospheric density over timescales larger than the satellite’s orbital period Pb should
be taken into account, especially if data will be collected during temporal intervals several years long.
To this aim, it is important to note that an inspection of Equations (A49) and (A54) shows that no other
sources of long-term modulation are present. Indeed, the circulating node Ω does not enter them,
contrary to the perigee ω which, however, is held fixed by the adopted value of the inclination I.
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