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Abstract: Quantum cosmology is traditionally formulated in a minisuperspace setting, implicitly
averaging fields over space to obtain homogeneous models. For universal reasons related to the
uncertainty principle, quantum corrections then depend on the size of the averaging volume.
In minisuperspace truncations, the value of this volume remains an arbitrary parameter devoid
of physical meaning, but in an effective field theory it is identified with the infrared scale of
inhomogeneous modes. Moreover, the infrared scale is running during gravitational collapse,
when regions in which homogeneity remains approximately valid shrink to increasingly smaller
co-moving sizes. Conceptual implications of this infrared renormalization for perturbative
inhomogeneity in quantum cosmology are presented here, mainly for the example of loop quantum
cosmology. Several claims made in this framework are altered by infrared renormalization.
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1. Introduction

Quantum cosmology aims to perform two main tasks: to describe in a meaningful way what
is indicated by general relativity as the big-bang singularity and to derive potentially observable
predictions in early-universe cosmology. Both questions are of a physical nature and therefore require
a detailed understanding of the relevant equations and solutions of Planck-scale physics. In the absence
of a complete theory of quantum gravity, effective field theory provides important means to highlight
implications that are sufficiently generic to be insensitive to quantization ambiguities or choices made
in specific models. As we will see here, mainly in an application to loop quantum cosmology [1,2],
an effective field theory of quantum cosmology indeed revises some claims extracted from a limited
set of simplified models.

These revisions can be split into two types: those related to the background dynamics and
those related to the behavior of inhomogeneity. As for the former, a central role is played by the
averaging volume V0 used to express an inhomogeneous geometry by a simplified homogeneous
model. While the classical equations are invariant under changing the size of this volume, quantum
corrections depend on this parameter as a consequence of uncertainty relations: The averaging volume
V0 can be made arbitrarily small, such that the geometrical volume V = V0a3 of a given region in
an isotropic geometry with scale factor a has no lower bound. However, in a canonical quantization,
volume fluctuations ∆V are bounded from below by the uncertainty relation ∆V∆H ≥ π`2

P (noting that
H/4πG is canonically conjugate to V). Since the Hubble parameter H and the Planck length `P are
invariant under changing V0, it is impossible that fluctuations (∆V, ∆H) scale in the same way as
(V, H) under changes of V0. Quantum corrections from fluctuations therefore generically break the
classical V0-invariance. (The fact that new quantum effects may depend on the size of a region in
which the theory is formulated is well-known from the Casimir force.)

Canonical effective field theory, as reviewed in the next section, has provided a physical
interpretation for the appearance of V0 in quantum corrections of minisuperspace models [3]:
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These corrections describe the infrared contribution of quantum back-reaction in the underlying
inhomogeneous theory of which the minisuperspace model gives an averaged description. The main
new contribution of the present paper is an elaboration of this result for perturbative inhomogeneity
around the background of a minisuperspace model. Because minisuperspace quantum corrections
already contain the infrared contribution from inhomogeneous modes, additional modes brought in
by perturbative inhomogeneity must be restricted to (co-moving) wavelengths less than the cubic root
of the averaging volume. Without this restriction, some quantum corrections would be duplicated.
(As another consequence, it follows that V0 is not an infrared regulator, which should be sent to infinity
after observables have been computed, but rather an infrared scale which separates modes described
in different ways—by averaging and more directly through perturbative inhomogeneity, respectively.)

If one uses a minisuperspace model amended by perturbative inhomogeneity to probe deep
quantum regimes, evolving toward increasing curvature, the co-moving size of regions in which
homogeneity is approximately realized shrinks due to gravitational collapse. In order to maintain the
approximation implied by averaging, the value of V0 should therefore be progressively reduced.
Combined with the interpretation of V0 as an infrared scale, reducing V0 amounts to infrared
renormalization. Based on the same interpretation, the modes of perturbative inhomogeneity have
to be restricted to wavelengths less than the cubic root of V0; therefore, the number of modes
changes during evolution, as a consequence of infrared renormalization [4]. This behavior cannot
be described by unitary evolution on a single Hilbert space, but effective field theory provides the
appropriate setting.

Quantum cosmology has another effect on the behavior of inhomogeneity, related to the form of
quantum space–time structure. In particular in the context of theories such as loop quantum gravity
that indicate some kind of spatial or space–time discreteness, effective field theory is relevant also for
conceptual questions. For instance, while it is easy in minisuperspace models to avoid divergences
such as the big-bang singularity by modifying classical equations in terms of bounded functions,
this common practice raises several questions: A modification in minisuperspace equations ignores
consistency conditions imposed by the requirement that equations for inhomogeneity be covariant.
If the theory resulting from such a modification is not consistent with covariance, one has to
demonstrate that one can still avoid low-energy problems [5]. Moreover, the physical nature of
any mechanism that helps to avoid the big-bang singularity often remains unclear in minisuperspace
models. For instance, some studies in loop quantum cosmology have claimed that the big bang
is replaced by a “bounce” [6]. However, these models modify the gravitational terms in the Friedmann
equation while keeping the matter terms largely unchanged. How, then, can it be possible that one
evades singularity theorems without violating energy conditions? These theorems do not use Einstein’s
equation or the Friedmann equation and should therefore remain valid after a modification of the
latter—provided the modified theory has the same (Riemannian) space–time structure as classical
gravity, a property which is often assumed implicitly in models of loop quantum cosmology [7–10].

As we will discuss, a canonical effective field theory of quantum cosmology provides insights
into space–time structures and is thereby able to answer the conceptual questions posed here. The two
main topics of this paper—averaging and covariance—are related by the presence of an infrared scale,
which is implied by averaging and has an effect on possible covariant formulations.

2. Averaging Volume

Going back to [11], minisuperspace models have traditionally been used in quantum cosmology,
in which one eliminates the spatial dependence of all fields by averaging them over a specified region
in space. The resulting model has only temporal dependence, a fact which trivializes many consistency
conditions imposed by covariance. However, it turns out that minisuperspace models remain sensitive
to the covariance problem in a subtle way, which is related to the coordinate volume of the region used
to define the spatial averaging.
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This result has been illustrated in [3] by a model of a minisuperspace model, using a scalar field
theory in flat space–time with Lagrangian

L =
∫

d3x
(

1
2

φ̇2 − 1
2
|∇φ|2 −W(φ)

)
. (1)

This theory has a minisuperspace model in which φ is assumed spatially constant, such that the
Lagrangian can be integrated over some region with finite coordinate volume V0 =

∫
d3x:

Lmini = V0

(
1
2

φ̇2 −W(φ)

)
. (2)

We obtain the minisuperspace momentum

p =
∂Lmini

∂φ̇
= V0φ̇ (3)

and the Hamiltonian

Hmini =
1
2

p2

V0
+ V0W(φ) . (4)

The minisuperspace Hamiltonian can straightforwardly be quantized to

Ĥmini =
1
2

p̂2

V0
+ V0W(φ̂) . (5)

In a semiclassical analysis, for instance using [12,13], the minisuperspace potential is found to
have first-order corrections given by

Wmini
eff (φ) = W(φ) +

1
2V0

h̄
√

W ′′(φ) . (6)

The full scalar theory, on the other hand, has first-order corrections given by the Coleman–Weinberg
potential [14]

Weff(φ) = W(φ) +
1
2

h̄
∫ d4k

(2π)4 log
(

1 +
W ′′(φ)
||k||2

)
(7)

with an explicit k0-integration [15]

Weff(φ) = W(φ) +
1
2

h̄
∫ d3k

(2π)3

(√
|~k|2 + W ′′(φ)− |~k|

)
. (8)

The minisuperspace potential Equation (6) is therefore obtained as the infrared contribution from
quantum field theory. Integrating

1
2

h̄
∫ d3k

(2π)3

(√
|~k|2 + W ′′(φ)− |~k|

)
(9)

over |~k| ≤ kmax = 2π/V1/3
0 results in

Weff(φ) ≈W(φ) +
h̄

12π2 k3
max

√
W ′′(φ) = W(φ) +

2π

3V0
h̄
√

W ′′(φ) . (10)

2.1. Infrared Renormalization

We conclude that a minisuperspace truncation can capture some quantum effects of the
full theory, as long as V0 6→ ∞. If one sends V0 to infinity, as sometimes done following
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a misinterpretation of V0 as an infrared regulator [16], all quantum corrections are erased. For finite V0,
on the other hand, quantum corrections, unlike the classical equations, depend on the seemingly
arbitrary V0. While minisuperspace models could not explain the relevance of V0, the connection
with the quantum-field theory Equation (1) makes it clear: V0 represents the infrared scale of modes
included in a minisuperspace model through averaging. Quantum effects of long-wavelength modes
are therefore captured by minisuperspace effective potentials. If short-wavelength modes are physically
relevant, they should be added onto the minisuperspace model, either as a full quantum-field
theory or as an effective field theory of perturbative inhomogeneity. In order to avoid duplicating
quantum corrections already contained in the infrared contribution, perturbative inhomogeneity must
be restricted to modes with wavelengths less than V1/3

0 .
Based on Equation (10), a minisuperspace approximation is expected to be reliable for large V0

because it implicitly replaces the integration in Equation (9) with the k-volume multiplied with the
integrand at |~k| = 0. Geometrically, the averaging is justified only if there is no strong inhomogeneity
on scales less than V0. This condition is realized at late times in cosmology, thanks to large-scale
homogeneity. However, if one tries to use the same models to explain the big-bang singularity,
the Belinskii–Khalatnikov–Lifshitz (BKL) scenario [17] shows that generically one has to extend them
to small V0: This scenario indicates that homogeneous dynamics may be relevant even close to
a space-like singularity, but only because the geometries at different spatial points decouple from one
another even while inhomogeneity grows on all scales. The homogeneous dynamics indicated by BKL,
viewed in a minisuperspace model, is therefore compatible only with small V0. If one evolves from
small curvature to large curvature, the averaging volume V0 must be progressively reduced in order
to keep up with the shrinking scales of approximate homogeneity. Adjusting the infrared scale V0

amounts to infrared renormalization [4].
Infrared renormalization has two main implications. First, any quantum treatment of perturbative

inhomogeneity must be such that modes are restricted to wavelenths less than V1/3
0 . As V0 changes

during infrared renormalization, the number of field-theory modes changes as well. This behavior
cannot be modeled by unitary evolution on a fixed Hilbert space. At this point, effective field theory
is essential. Secondly, regarding the background dynamics in minisuperspace models, small V0 are
relevant near the big bang. It turns out that models of loop quantum cosmology are especially sensitive
to this conclusion.

2.2. Models of Loop Quantum Gravity

In isotropic models of loop quantum cosmology [18], one uses an isotropic connection Ai
a = cδi

a
and a densitized triad Eb

j = pδb
j parameterized by a pair of canonical variables, c = γȧ and |p| = a2.

In this form, the flat-space classical Friedmann equation is written as

− c2

γ2|p| +
8πG

3
ρ = 0 . (11)

Loop quantization, however, does not provide an operator directly for c but only for matrix
elements of holonomies [19,20], given in this model by exp(iµc) with a real number µ [21].
In order to become loop quantizable, the Friedmann equation is therefore modified by using
“holonomies”, replacing c2/|p| with sin(`c/

√
|p|)2/`2 in Equation (11), with some length parameter `.

(The p-dependence of the argument of the sine was first evaluated in a cosmological setting in [22]
and is motivated by lattice refinement [23,24].) Taken in isolation, holonomy modifications indicate
a “bounce” of isotropic models: The equation

sin(`c/
√
|p|)2

γ2`2 =
8πG

3
ρ (12)



Universe 2019, 5, 44 5 of 15

implies a bounded energy density which, for macroscopic ρ, remains true in terms of expectation
values in any nearly semiclassical state.

Gravitational effective actions are usually written in higher-curvature form; see for instance [25,26].
This well-known result is a combination of two properties, the fact that quantum corrections generically
imply higher-derivative terms together with the condition of space–time covariance. Covariance will be
discussed in more detail in the next section, and for now we focus on higher-derivative corrections or
their canonical analog. The canonical approach to effective theory [12,13], which is suitable for canonical
quantum cosmology, realizes higher-derivative corrections through auxiliary degrees of freedom,
which have a useful physical interpretation as moments of an evolving quantum state, back-reacting on
the trajectory of its basic expectation values. These terms therefore originate from quantum-cosmological
analogs of effective potentials such as Equation (6). As we just learned, these terms depend on the
averaging volume V0, as can be seen also in explicit derivations such as [27–29].

An important consequence of the V0-dependence can be seen easily if the modified Friedmann
Equation (12) is rewritten as [30]

ȧ2

a2 =
8πG

3
ρ

(
1− ρ

ρQG

)
(13)

with
ρQG =

3
8πG`2 . (14)

This equation is obtained by expressing the canonical momentum c in terms of ȧ = 1
2 ṗ/

√
|p| using

an equation of motion generated by Equation (12), and is therefore equivalent to Equation (12).
If quantum back-reaction is included, there is an additional coupling term to quantum fluctuations

and correlations which can be written as [27,28]

ȧ2

a2 =
8πG

3
ρ

(
1− ρ

ρQG
+ σ

)
(15)

where

σ =
(∆V)2 − C + (2πG`h̄/3)2

(V + 2πG`h̄/3)2 (16)

and V = V0a3. The fluctuation ∆V of V appears explicitly in Equation (16), and C depends on the
quantum correlation CVH between the volume and its canonical momentum, the Hubble parameter H.
Not much is known about the quantum state of the universe, which makes it difficult to provide
an estimate of CVH . However, for given fluctuations, quantum correlations cannot be arbitrarily large
owing to uncertainty relations. We may therefore consider the term C in Equation (16) less significant
than (∆V). The expression Equation (16) can be used whenever higher-order moments of the state are
small compared with the second-order moments that appear in Equation (16), that is, if the state is
sufficiently semiclassical. More generally, one can extend (16) to a series in higher moments, as given
in [27,28].

For V � 2πG`h̄/3 (close to the Planck volume if ` ∼ `P) and a semiclassical state, we have
σ� 1 and the σ-term in Equation (15) can be ignored. However, when the term ρ/ρQG in Equation (15)
is relevant, we expect to be close to a classical singularity. We may then be justified in using homogeneous
(although anisotropic) models to analyze the local dynamics, appealing to the BKL scenario. This scenario
is asymptotic and does not set any lower bound, not even the Planck volume, on the size V0 of regions of
approximate homogeneity. Generically, we should therefore use small V0 in this regime. If V � 2πG`h̄/3,
even a semiclassical state results in σ ≈ 1, and quantum back-reaction cannot be ignored. Unfortunately,
small-V0 solutions have so far been neglected in loop quantum cosmology, following an influential
claim [6] that argues for large V0 but overlooks infrared renormalization, the central lesson of the BKL
scenario for quantum cosmology.

The process of reducing the value of V0 is related (but not equivalent) to coarse-graining in which
one views a continuum description as an averaged microscopic formulation of many discrete patches.
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In coarse-graining, one is led to consider small V0 even in late-time cosmological eras in which one
is not forced to do so by inhomogeneity. In the context of loop quantum cosmology, coarse graining has
been studied, for instance, in [31]. In [32], it has been observed that it is possible to construct coherent
states which, at least in some models, are insensitive to coarse-graining in that their moments behave
additively when several such states are patched together. Such a behavior could be of interest also in
the context of changing V0. However, even though the coherent state in such a model is adapted to
coarse-graining, it would still give rise to V0-dependent quantum corrections. In the example of [32],
for instance, the analog of the volume operator is called ẑ, and the scale V0 is replaced by a Casimir
quantum number j. The expectation value 〈ẑ〉 as well as the variance (∆z)2 of ẑ scale like j, such that
a collection of N coherent states behaves like a single coherent state with scale Nj. However, the same
proportionality implies that 〈ẑ2〉 = 〈ẑ〉2 + (∆z)2 does not have a clear scaling behavior since it is the
sum of two terms, one of which scales like j2 and one like j. Therefore, quantum corrections violate the
classical scaling behavior of z2 even in a coherent state. (This violation can be traced back to generic
properties of uncertainty relations mentioned in the introduction.)

3. Covariance

Another set of quantum corrections in gravitational models is, generically, given by higher-curvature
contributions. In loop quantum cosmology, even if we do not include higher-curvature corrections in the
classical Friedmann Equation (11), from which we set out to quantize a cosmological model, such terms
are expected in the semiclassical or effective dynamics that describes an evolving wave function through
the time dependence of its basic expectation values. As explicitly shown in [33], such a dynamics
generically contains higher-derivative terms. If these terms are to descend from a covariant action, they
must be of a higher-curvature type. (In loop quantum gravity, the usual assumption is that covariance
should not be broken by quantum space–time effects, although it may be deformed. More generally,
it could be possible to construct theories that are not covariant in the ultraviolet, as in [34], but have
covariance restored in the infrared; see for instance [35]. In such models, the covariance-breaking terms
in an action can usually be written as a non-invariant higher-curvature contribution, for instance using
the extrinsic curvature of a preferred foliation. Such theories are therefore included in the broad setting
of higher-curvature effective actions.)

Any effective dynamics of loop quantum cosmology, such as a complete version of Equation (12),
should therefore contain isotropic reductions of higher-curvature terms. No such terms are included
in Equation (12), as can easily be seen from the observation that they would imply higher-derivative
corrections (or auxiliary fields) that are absent in Equation (12). (This statement should not be confused
with the existence of higher-curvature analogs that can mimic the modified isotropic dynamics of
loop quantum cosmology [36–38] but differ in the presence of anisotropies or perturbations [39–41].)
Since models of loop quantum cosmology are not based on a derivation from a covariant quantum theory,
suitable higher-curvature corrections have not been derived yet in this framework. As long as they
remain unknown, it is not justified to trust the full function sin2(`c/

√
|p|)/`2 which, as a power series,

contains contributions of arbitrarily high order in `2c2/|p|. Instead, one should use only the first term in
the expansion, such as

sin(`c/
√
|p|)2

`2 ∼ c2

|p|

(
1− 1

3
`2 c2

|p| + · · ·
)

. (17)

If ` ∼ `P, the leading corrections are `2
Pc2/|p| ∼ ρ/ρP, which is indeed of the same order as expected

for higher-curvature terms. Once suitable higher-curvature corrections have been derived from loop
quantum cosmology, they may well change the high-density behavior; see for instance [42].

3.1. Problem of States

Higher-derivative terms are a general feature in effective equations of quantum mechanics,
and they are state-dependent. The low-energy limit of effective actions often used in particle physics
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or for semiclassical gravity [25,26] results in a unique effective action, but only because an expansion
around the ground state is assumed. In quantum gravity, it is not clear whether there is a suitable
ground state. Even if there is a candidate, it would likely not be the right choice for Planckian physics
near a spacelike singularity.

This issue is exacerbated by the problem of time: Cosmology is dynamical and therefore
requires a reliable understanding of time. The classical equations of cosmological models are
time-reparameterization-invariant, which provides a simplified setting in which covariance can be
studied in quantum cosmology. Moreover, the classical cosmological dynamics is constrained.

Consider a quantum constraint of the form Ĉ = p̂2
φ − Ĥ2. If H does not depend on φ, we can

write the constraint equation Ĉψ = 0 for states as an “evolution” equation

− p̂φψ = ih̄
∂ψ

∂φ
= ±|Ĥ|ψ. (18)

However, the choice of φ as time affects quantum corrections [43], and it is unclear how one should
choose relevant initial states for φ-“evolution”. Moreover, in a cosmological model, the classical
constraint is strongly restricted by its reduction from a covariant theory. Consistency conditions
are needed to find corresponding restrictions on quantum corrections in a minisuperspace model,
which does not have a clear relationship with a covariant quantum theory.

Dealing with the problem of states requires parameterizations of a large class of models, which again
calls for an application of effective field theory. In a canonical version, moments as auxiliary variables
in an effective field theory describe the freedom contained in the choice of states. In the absence of
a distinguished state, quantum corrections, such as higher-derivative terms from quantum back-reaction,
depend on the choice of state. As a consequence, it is not clear whether the “bounce” claimed in loop
quantum cosmology is generic if higher-derivative terms are uncontrolled.

3.2. Space–Time Structure

While the dynamical high-density behavior of models in loop quantum cosmology remains
ambiguous, the space–time structure at high density turns out to be more controlled. Canonical
quantization does not presuppose the space–time structure of a potential covariant quantum theory of
gravity. Formulated in terms of an action, both the Lagrangian density and the measure in

S[g] =
1

16πG

∫
d4x

√
|det g| (R[g] + · · · ) (19)

may then be subject to quantum corrections. If this possibility is realized, quantum-field theory
on curved space–time, which presupposes a Riemannian structure of space–time, is different from
quantum gravity, in which the very structure of space–time is likely modified by quantum effects.

Formal aspects of these statements may be illustrated for perturbative inhomogeneity, assuming
that we are perturbing the basic field as A(x) = Ā + δA(x), which appears in a sample Hamiltonian
h[A] := A(x)2. As in models of loop quantum gravity, a modified background dynamics is then
imposed by replacing Ā with `−1 sin(`Ā).

The classical, unmodified theory has a perturbative Hamiltonian

h[Ā, δA] = Ā2 + 2ĀδA(x) + δA(x)2 . (20)

A version of quantum-field theory on modified space–time, as proposed in models of loop quantum
cosmology in different guises [7–10], has the perturbative Hamiltonian

hQFT
` [Ā, δA] = `−2 sin(`Ā)2 + 2ĀδA(x) + δA(x)2 (21)
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in which classical equations are used for perturbations but not for the background. From an effective field
theory of cosmological perturbations within loop quantum cosmology [44–46], however, one obtains

hQG
` [Ā, δA] = `−2 sin(`Ā)2 + F`(Ā)δA(x) + G`(Ā)δA(x)2 (22)

with two functions F` and G`, which are constrained by the classical limit, lim`→0 F`(Ā) = 2Ā and
lim`→0 G`(Ā) = 1, as well as covariance conditions. The latter are rather lengthy, but they imply that
F`/Ā and G` are comparable to (`Ā)−2 sin(`Ā)2. Therefore, they cannot be ignored if the background
dynamics is modified, presenting a crucial difference between quantum-field theory on a modified
background and effective quantum cosmology. In particular, quantum-field theory on a modified
background, as used in [7–10], is inconsistent because it ignores terms that are of the same order as
crucial terms included in the modification.

3.3. Covariance from Hypersurface Deformations

In canonical gravity, the generators D[Na] of deformations along a vector field Na(x) tangential
to a spatial slice together with the generators H[N] of normal deformations by a displacement of N(x)
obey brackets [47]

[D[Na], D[Mb]] = −D[LMb Na] (23)

[H[N], D[Mb]] = −H[LMb N] (24)

[H[N1], H[N2]] = D[qab(N1∂bN2 − N2∂bN1)] (25)

of a Lie algebroid [48] in which the inverse of the induced metric qab on spatial slice appears in
“structure functions.” Covariance in canonical quantum gravity then requires an anomaly-free
representation of these brackets by operators D̂, Ĥ, and q̂, such that the commutators of smeared D̂
and Ĥ are still proportional to constraints and equal Equations (23)–(25) in a suitable classical limit.

Although there has been some recent progress [49–55], both the anomaly problem and the
question of the classical limit remain open in loop quantum gravity. It is, however, possible to analyze
potential outcomes by using methods of effective constraints [56,57] which, like effective Hamiltonians,
are defined as expectation values of constraint operators written as functions of basic expectation values
and moments. These variables are subject to a Poisson bracket that replaces the commutator. In the
classical limit, these effective constraints should therefore obey the hypersurface-deformation brackets

{D[Na], D[Mb]} = −D[LMb Na] (26)

{H[N], D[Mb]} = −H[LMb N] (27)

{H[N1], H[N2]} = D[qab(N1∂bN2 − N2∂bN1)] (28)

in Poisson-bracket form.
It is important to note that this condition constitutes an off-shell property that cannot be tested

in gauge-fixed models. (See also [58].) It turns out that this condition is stronger than formal
anomaly-freedom in a reformulated system. For instance, it is possible to write the constraints
in spherically symmetric and polarized Gowdy models such that the {H, H}-bracket with structure
functions is replaced by an Abelian bracket of the form {H + D, H + D} = 0 [59,60]. However,
these formally consistent models are not always covariant in the sense just defined [61,62]. Similarly,
in some versions of the full theory, it is possible to rewrite the bracket with structure functions in
the form {H, H} = {D′, D′} and quantize this theory [52] which, however, does not imply that the
covariance condition is maintained.
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3.4. Model

Generic consequences of covariance in the presence of holonomy modifications can be illustrated
by another scalar model [63], now for a canonical pair of a field φ(x) with momentum p(x) in one
spatial dimension. The Hamiltonian and diffeomorphism constraints

H[N] =
∫

dxN
(

f (p)− 1
4
(φ′)2 − 1

2
φφ′′

)
, D[w] =

∫
dxwφp′ (29)

can be chosen such that the latter generates spatial diffeomorphisms,

δwφ = {φ, D[w]} = −(wφ)′ , δw p = {p, D[w]} = −wp′ (30)

(showing that the field φ has density weight one), while the former has a bracket

{H[N], H[M]} = D[β(p)(N′M− NM′)] (31)

with β(p) = 1
2 d2 f /dp2 that mimics results from detailed evaluations of covariance in models of loop

quantum cosmology [45,64].
We have Lorentzian-type hypersurface deformations for f (p) = p2. With “holonomy”

modifications f (p) = p2
0 sin2(p/p0), however,

β(p) =
1
2

d2 f /dp2 = cos(2p/p0) (32)

can be negative. In particular, at the maximum of f (p),

{H[N], H[M]} = D[−(N′M− NM′)] (33)

implies Euclidean signature: linear N and M give boosts for β(p) = 1, such that ∆x = v∆t, but rotations
if β(p) = −1, such that ∆x = −θ∆y if y is transversal to hypersurfaces. The opposite sign is
also obtained if hypersurface-deformation brackets are derived for Euclidean gravity, and using the
methods of [65,66], one can show that the brackets imply elliptic field equations if β(p) < 0 [67].

In the scalar model, {H[N], D[w]} does not close, but there are several consistent gravity versions,
including spherical symmetry and cosmological perturbations [45,68]. The role of p in the model is
then played by some curvature variable K, usually a component of extrinsic curvature of space in the
canonical splitting of space–time. Replacing K2 −→ f (K) in the Hamiltonian constraint then modifies
the bracket such that

{H[N1], H[N2]} = D[βqab(N1∂bN2 − N2∂bN1)] (34)

with
β(K) =

1
2

d2 f (K)/dK2 = cos(2`K) (35)

for f (K) = `−2 sin2(`K), with a free parameter ` often related to the Planck length. For small `K, β(K) ∼ 1,
and the classical hypersurface-deformation brackets are approximately realized. In cosmological models,
the small-`K limit is usually achieved dynamically at late times, but, more in the spirit of coarse-graining
or renormalization, one could interpret it as an infrared limit of the theory, akin to [35].

If `K is not small, the structure of space–time can be subject to strong modifications. In particular,
we obtain signature change, β(K) < 0, around any local maximum of f (K). In the same regime, we
would conclude, in a purely homogeneous setting, that we obtain an upper bound of the energy density
Equation (12). Since this point is surrounded by four-dimensional Euclidean-type space, however,
any “bounce” obtained in this way is indeterministic. (It is possible to have holonomy modifications
without signature change in models that use self-dual connections [69–71] or implement only the
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Euclidean version of the Hamiltonian constraint [72]. Given the special form of simplified constraints
in these models, the genericness of this outcome remains unclear.)

These conclusions about modified structure functions are not undone by quantum back-reaction
or higher time derivatives [73]. They are distinct from higher-curvature corrections, which would not
alter the geometry of hypersurface deformations [74]. In general, effects of holonomy modifications
cannot be described by an effective line element on a standard space–time, as postulated in [10],
because dxa in

ds2
eff = q̃abdxadxb (36)

do not transform by changes dual to deformed gauge transformations {q̃ab, H[N] + D[w]}.
Field redefinitions to a standard qab are possible as long as β does not change sign [75,76]. With signature
change, however, we have a new model of non-classical space–time.

This result explains one of the questions posed in the introduction: Bounce models of loop
quantum cosmology can evade singularity theorems even without violating energy conditions
because they can be embedded in inhomogeneous settings only with non-Riemannian space–time
structures. Since singularity theorems are formulated in the Riemannian setting, there is no reason
why they should be applicable. While this observation resolves a conceptual question behind these
bounce models, it also sheds doubt on the usual deterministic interpretation of such a bounce:
The modified space–time structure implies signature change at high density, such that the bounce
regime is contained in a four-dimensional space without time or a well-posed initial-value problem.

3.5. Signature Change

A well-posed formulation of a mixed-type partial differential equation such as

− ∂2u
∂t2 + β(H)∆u = 0 (37)

requires data on a characteristic where the equation is hyperbolic and on an arc in the elliptic regime [77].
The arc implies that we need future data for well-posedness, so there is no deterministic evolution.
Mixed-type partial differential equations such as Equation (37) are more familiar from hydrodynamical
descriptions of transonic flow, in which case they give rise to the well-known sonic boom. Mathematically,
this phenomenon corresponds to a root-like pole, which generically appears in solutions of Equation (37)
at the end of the elliptic arc [77]. The same consequence should be expected in cosmological
applications [78], implying a cosmic boom. While solutions u of Equation (37) are finite, their derivatives
may diverge at isolated points. This behavior is more well-behaved than the usual big-bang singularity,
which implies diverging derivatives of the space–time metric everywhere on a spatial slice. Nevertheless,
the existence of cosmic booms indicates that cosmological perturbations are not sufficient for reliable
solutions. The existence of signature change, on the other hand, is more robust because it happens also in
spherically symmetric models with non-perturbative inhomogeneity [68,76,79–82]. Signature change in
models of loop qantum cosmology means that instead of a “bounce” we have a non-singular beginning.

Signature change also has implications for black-hole models, and in particular for the
information-loss problem [63]. A non-singular, non-rotating black-hole model can be envisioned
by evolving through the classical singularity using quantum evolution of the homogeneous interior.
In an inhomogenous completion, there is then no event horizon [83,84]. However, consistent quantum
space–time structure again tells us that the high-curvature region is Euclidean. A well-posed problem
requires arbitrary boundary values at the top boundary of the Euclidean region, which affect the future
space–time. In addition to the event horizon, there is now a Cauchy horizon [63].

In contrast to these cautionary results, dynamical signature change from holonomy modifications
may be beneficial in a variety of scenarios. For instance, non-commutative geometry [85] gives rise
to discrete spectra in Euclidean signature, which can help to regularize some of its features [86].
Dynamical signature change is surprisingly productive [87–89] in an application to the no-boundary
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proposal [90]. An analysis of the Lorentzian path integral has recently revealed severe stability
problems of perturbative inhomogeneity with no-boundary initial conditions [91–93]. Signature
change from holonomy modifications of loop quantum gravity changes the form of the relevant
off-shell instantons such that stability is found [88]. “Off-shell” here means that one does not impose
the Friedmann equation (or the Hamiltonian constraint) but only the equations of motion it generates.
The relationship Equation (12) between holonomy modifications and the energy density is therefore lost,
and as a consequence it is conceivable that signature change occurs at lower than Planckian densities.
This result is in fact borne out by a detailed analysis [88], making signature change applicable at the
sub-Planckian densities used in the no-boundary proposal.

There is a final question which links the last result with our first statements about the averaging
volume. Even though off-shell instantons do not impose the Friedmann equations, the background
equations of motion they do use should contain quantum corrections in which the averaging
volume appears. In contrast to our previous discussion of bounce models, infrared renormalization
now appears in a different form. In the no-boundary proposal, spatial slices are assumed compact,
such that they can foliate a four-dimensional Euclidean sphere rounding off space–time at the big
bang. Near the pole of this four-sphere (replacing the big-bang singularity), the universe is nearly
homogeneous because it “started” in a single point, the pole, and inhomogeneous perturbations
are now under control thanks to the effects described in [88]. There is then no need for infrared
renormalization, and any constant V0 may be used, such as the full coordinate volume 2π2 of a unit
three-sphere. Therefore, V0 does not become smaller and smaller as in the BKL picture, and quantum
corrections, just like perturbative inhomogeneity, remain under control.

4. Further Directions

In order to ensure reliable approximations, minisuperspace models can be applied in the following
way: Starting at low curvature, where our universe indicates large-scale homogeneity and a large
value of V0 is consistent with its role as an infrared scale, one progressively evolves toward larger
curvature. As the scale of homogeneity within a co-moving region is reduced by gravitational collapse,
the value of V0 must be set smaller and smaller, with implications for perturbative inhomogeneity as
discussed in this paper.

First, a fixed infrared scale means that modes of perturbative inhomogeneity must be restricted to
wave lengths less than V1/3

0 . Secondly, a fixed infrared scale breaks covariance, but for consistency one
must still ensure that the infrared-fixed modes are obtained from a covariant theory. This condition
can be enforced by following the canonical procedure of implementing the hypersurface-deformation
algebroid, as derived for cosmological perturbations in loop quantum cosmology in [44,45].
The resulting covariant equations should then be evolved with a running infrared scale, a task which
has not been completed yet. The changing number of modes implies that effective field theory is
essential at this point and cannot be replaced by unitary evolution on a fixed Hilbert space.

As V0 becomes smaller and smaller, quantum corrections in the background dynamics are
magnified and, through their state dependence, the problem of states gains in relevance. However,
in such a regime, the minisuperspace approximation is much less justified because an infrared regulator
is pushed into the ultraviolet. An effective field theory based on minisuperspace approximations
should break down at these scales, at the latest. It might, of course, break down earlier, for instance
in the presence of energy cascades as in hydrodynamics: If energy is pumped into the system at
large distance scales, and dissipates due to friction at small distance scales, the distance scales do not
sufficiently decouple from one another to allow a reliable effective evolution over long time scales.
There may be a similar picture in quantum cosmology, where expansion provides the analog of
pumping energy into inhomogeneous modes on large scales (particle production), while a modified
Planck-scale dynamics can often lead to new friction phenomena on small scales [94] or repulsive
contributions to the usually attractive gravitational force [95]. The analysis of energy cascades in
quantum cosmology requires a deeper understanding of inhomogeneity, but even if they are absent,
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it remains doubtful whether a minisuperspace treatment, even one combined with perturbative
inhomogeneity and infrared renormalization, can reliably describe the fate of the big-bang singularity.
At least for the approach to high curvature, a well-defined formulation is available.
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