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Abstract: This article is a review of what could be considered the basic mathematics of
Einstein–Cartan theory. We discuss the formalism of principal bundles, principal connections, curvature
forms, gauge fields, torsion form, and Bianchi identities, and eventually, we will end up with
Einstein–Cartan–Sciama–Kibble field equations and conservation laws in their implicit formulation.
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1. Introduction

The formulation of torsion gravity and the consequent coupling with spin rely on a different
formulation compared to the one of original works on General Relativity. This formulation regards
geometrical objects called principal bundles. In this context, we can formulate General Relativity
(or Einstein–Cartan–Sciama–Kibble (ECSK) theory in the presence of torsion) with a principal connection,
which can be pulled back to the base manifold in a canonical way and further restricted to the only
antisymmetric component, giving birth to the well-known spin connection. This process shows the
possibility of formulating General Relativity as a proper gauge theory rather than using the affine
formulation and Christoffel symbols Γ. What permits the equivalence of the two formulations is a bundle
isomorphism called tetrads or vierbein, which is supposed to respect certain compatibility conditions. Then,
we can define the associated torsion form and postulate the Palatini–Cartan action as a functional of such
tetrads and spin connection. This leads to ECSK field equations.

We will first set up all the abstract tools of principal bundles, tetrads, and principal connection;
secondly, we will derive the Einstein–Cartan–Sciama–Kibble theory in its implicit version; and finally,
we will discuss conservation laws coming from local SO(3, 1) and diffeomorphism invariance of
ECSK theory.

Throughout the article, we will give theorems and definitions. However, we would like to stress that
hypotheses for such theorems will often be slightly redundant: we will take spaces and functions to be
differentiable manifolds and smooth, even though weaker statements would suffice. This is because we
prefer displaying the setup for formalizing the theory rather than presenting theorems and definitions
with weaker hypotheses that we will never use for the theory. Nontheless, we will specify where such
hypotheses are strengthened. In spite of this, the discussion will be rather general, probably more general
than what is usually required in formulating ECSK (Einstein–Cartan–Sciama–Kibble) theory.
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2. Bundle Structure

The introduction of a metric g and an orthogonality relation via a minkowskian metric η are two
fundamental ingredients for building up a fiber bundle where we want the orthogonal group to act freely
and transitively on the fibers. This will allow us to have a principal connection and to see the perfect
analogy with an ordinary gauge theory ([1] chapter III).

Such a construction underlies the concept of principal bundle, and tetrads will be an isomorphism from
the tangent bundle1 TM to an associated bundle V .

2.1. G-Principal Bundle

We give some definitions2.

Definition 1 (G-principal bundle3). Let M be a differentiable manifold and G be a Lie group.
A G-principal bundle P is a fiber bundle π : P→ M together with a smooth (at least continuous) right action

P : G× P→ P such that P acts freely and transitively on the fibers4 of P and such that π(Pg(p)) = π(p) for all
g ∈ G and p ∈ P.

We need to introduce a fundamental feature of fiber bundles.

Definition 2 (Local trivialization of a fiber bundle). Let E be a fiber bundle over M, a differentiable manifold,
with fiber projection π : E→ M, and let F be a space5.

A local trivialization (U, ϕU) of E, is a neighborhood U ⊂ M of u ∈ M together with a local diffeomorphism.

ϕU : U × F → π−1(U) (1)

such that π(ϕU(u, f )) = u ∈ U for all u ∈ U and f ∈ F.

This definition implies π−1(u) ' F ∀u ∈ U.

Definition 3 (Local trivialization of a G-principal bundle). Let P be a G-principal bundle.
A local trivialization (U, ϕU) of P is a neighborhood U ⊂ M of u ∈ M together with a local diffeomorphism.

ϕU : U × G → π−1(U) (2)

such that π(ϕU(u, g)) = u ∈ U for all u ∈ U and g ∈ G and such that

ϕ−1
U (Pg(p)) = ϕ−1

U (p)g = (u, g′)g = (u, g′g). (3)

1 Disjoint union of tangent spaces: TM = ∪x∈M{x} × Tx M
2 References [2–4] are recommended for further details.
3 We give the definition based on our purposes; in general, we can release some hypotheses. In particular, G needs to be only

a locally compact topological group and M needs to be a topological Hausdorff space. This definition is a version with a stronger
hypothesis than the one contained in Reference [5].

4 Fibers are π−1(x) ∀x ∈ M.
5 In the present case, F will be a differentiable manifold, a vector space, a topological space, or a topological group. Furthermore, if

we write “space”, we mean one among these.
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Observation 1: A fiber bundle is said to be locally trivial in the sense that it admits a local trivialization for
all x ∈ M, namely there exists an open cover {Ui} of M and a set of diffeomorphisms ϕi such that every
{Ui, ϕi} is a local trivialization6.

Here, we recall the similarity with a differentiable manifold. For a manifold when we change
charts, we have an induced diffeomorphism between the neighborhoods of the two charts, given by the
composition of the two maps.

Thus, having two charts (Ui, φi) and (Uj, φj), we define the following:

φj ◦ φ−1
i : φi(Ui ∩Uj)→ φj(Ui ∩Uj). (4)

At a level up, we have an analogous thing when we change trivialization. Of course, here, we have
one more element: the element of fiber.

Taking two local trivializations (Ui, ϕi) and (Uj, ϕj) and given a smooth left action T : G → Diffeo(F)
of G on F, we then have

(ϕ−1
j ◦ ϕi)(x, f ) =

(
x, T (gij(x))( f )

)
∀x ∈ Ui ∩Uj, f ∈ F. (5)

where the maps gij : Ui ∩Uj → G are called the transition functions for this change of trivialization and G
is called the structure group.

Such functions obey the following transition functions conditions for all x ∈ Ui ∩Uj:

– gii(x) = id
– gij(x) = (gji(x))−1

– gij(x) = gik(x)gkj(x) for all x ∈ Ui ∩Uk ∩Uj.

The last condition is called the cocycle condition.

Theorem 1 (Fiber bundle construction theorem). Let M be a differentiable manifold, F be a space, and G be a Lie
group with faithful smooth left action T : G → Diffeo(F) of G on F.

Given an open cover {Ui} of M and a set of smooth maps,

tij : Ui ∩Uj → G (6)

defined on each nonempty overlap, satisfying the transition function conditions.
Then, there exists a fiber bundle π : E→ M such that

– π−1(x) ' F for all x ∈ M
– its structure group is G, and
– it is trivializable over {Ui} with transition functions given by tij.

A proof of the theorem can be found in Reference [6] (Chapter 1).

2.2. Coframe Bundle and Minkowski Bundle

It is clear now that having E as a fiber bundle over M with fibers isomorphic to F and F′ as a space
equipped with the smooth action T ′ of G, implies the possibility of building a bundle E′ associated to

6 The bundle is said to be trivial if U = M.
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E, which shares the same structure group and the same transition functions gij. By the fiber bundle
construction theorem, we have a new bundle E′ over M with fibers isomorphic to F′.

This bundle is called the associated bundle to E.
Depending on the nature of the associated bundle7, we have the following two definitions:

Definition 4 (Associated G-principal bundle). Let π : E→ M be a fiber bundle over a differentiable manifold
M, G be a Lie group, F′ be a topological space, and P be a smooth right action of G on F′. Let also E′ be the associated
bundle to E with fibers isomorphic to F′.

If F′ is the principal homogeneous space8 for P, namely P acts freely and transitively on F′, then E′ is called
the G-principal bundle associated to E.

Definition 5 (Associated bundle to a G-principal bundle). Let P be a G-principal bundle over M, F′ be a space,
and ρ: G→ Diffeo(F′) be a smooth effective left action of the group G on F′.

We then have an induced right action of the group G over P× F′ given by

(p, f ′) ∗ g = (Pg(p), ρ(g−1)( f ′)). (7)

We define the associated bundle E to the principal bundle P, as an equivalence relation:

E := P×ρ F′ =
P× F′

∼ , (8)

where (p, f ′) ∼ (Pg(p), ρ(g−1)( f ′)), p ∈ P, and f ′ ∈ F′ with projection πρ : E→ M s.t. πρ([p, f ′]) = π(p) =
x ∈ M.

Therefore πρ : E→ M is a fiber bundle over M with π−1
ρ (x) ' F′ for all x ∈ M.

Observation 2: The new bundle, given by the latter definition, is what we expected from a general
associated bundle: a bundle with the same base space, different fibers, and the same structure group.

Idea: We take a G-principal bundle P as an associated bundle to TM, and we build a vector bundle
associated to P with a fiber-wise metric η. We shall call this associated bundle V .

First of all, we display the G-principal bundle as the G-principal bundle associated to TM.

Definition 6 (Orthonormal coframe). Let (M, g) be a pseudo-riemannian n-dimensional differentiable manifold
and (V, η) be an n-dimensional vector space with minkowskian metric η.
A coframe at x ∈ M is the linear isometry.

xe :=
{

xe : Tx M→ V
∣∣ xe∗η := ηab xea

xeb = g
}

, (9)

equivalently xea forms an ordered orthonormal basis in T∗x M.
An orthonormal frame is defined as the dual of a coframe.

7 We will be dealing with two particular types of associated bundles: a principal bundle associated to a vector bundle and a vector
bundle associated to a principal bundle.

8 The space where the orbits of G span all the space.
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Observation 3: Locally, coframes can be identified with local covector fields. A necessary and sufficient
condition for identifying them with global covector fields (namely a coframe for each point of the manifold)
is to have a parallelizable manifold, namely a trivial tangent bundle.

Definition 7 (Orthonormal coframe bundle). Let (M, g) be a differentiable n-dimensional manifold with
pseudo-riemannian metric g and T∗M be its cotangent bundle (real vector bundle of rank n).

We call the coframe bundle F∗O(M) the G-principal bundle where the fiber at x ∈ M is the set of all orthonormal
coframes at x and where the group G = O(n− 1, 1) acts freely and transitively on them.

The dual bundle of this is the orthonormal frame bundle, and it is denoted by FO(M), made up of
orthonormal frames (dual of orthonormal coframes).

Observations 4:

i. The orthonormal frame bundle is an associated G-principal bundle to TM.
ii. We can consider the Minkowski bundle V the vector bundle over M with fibers V. It is clear that such a

bundle and FO(M) are one of the associated bundles of the other via action of the orthogonal group
O(n− 1, 1). Therefore, V := FO(M)×ρ V, where ρ is taken to be the fundamental representation of
O(n− 1, 1).

iii. We stress that this bundle V is not canonically isomorphic to TM; in general, there is no canonical
choice of a representative of xe of the equivalence class [xe, v] ∈ V , of which the inverse xe−1(v) gives
rise to a canonical identification of a vector in Tx M. Namely, fixed a v ∈ V, not all choices of xe
give rise to a fixed vector X ∈ Tx M. As a matter of fact, the reference metric fixed on V does not
allow in general the existence of a canonical soldering (Section 7). In Reference [7], it is shown how
to define the Minkowski bundle without deriving it from FO(M); the authors refer to that as fake
tangent bundles.

iv. If the manifold is parallelizable, we have the bundle isomorphism e : TM → V , which is given
by the identity map over M and xe : Tx M → V ∀x ∈ M. It can be regarded as a V-valued 1-form
e ∈ Ω1(M,V). We can identify e with an element of Ω1(M, V), thus with global sections of the
cotangent bundle such that, at each point in M, the corresponding covectors xea obey ηab xea

xeb = g.

We are now ready to define tetrads.

Definition 8 (Tetrads). Let ρ : O(3, 1)→ Aut(V) be the fundamental representation.
Tetrads are the bundle isomorphisms e : TM→ V . They are identifiable with elements e ∈ Ω1(M,V), and if

M is parallelizable, tetrads can be identified with Ω1(M, V) 3 eava such that {va} is an orthonormal basis of V,
ea ∈ Ω1(M), and ηabeaeb = g.

3. Principal Connection

Is there any difference?

In the ordinary formulation of General Relativity (as in the original Einstein’s work, for instance), we
have objects called Γs, which are coefficients of a linear connection ∇ and thus determined by a parallel
transport of tangent vectors.
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The biggest advantage of treating O(3, 1) as an “explicit symmetry” of the theory is that we have
obtained the possibility of defining a principal connection, which is the same kind of entity we have in an
ordinary gauge theory9.

3.1. Ehresmann Connection

If we consider a smooth fiber bundle π : E→ M, where fibers are differentiable manifolds, we can of
course take tangent spaces at points e ∈ E. Having the tangent bundle TE, we may wonder if it is possible
to separate the contributions coming from M to the ones from the fibers.

This cannot be done just by stating TE = TM⊕ TF, unless E = M× F is the trivial bundle. Namely,
we cannot split directly vector fields on M from vector fields on the fibers F.

We can formalize this idea: use our projection π for constructing a tangent map π∗ = dπ : TE→ TM,
and consider its kernel.

Definition 9 (Vertical bundle). Let M be a differentiable manifold and π : E→ M be a smooth fiber bundle.
We call the sub-bundle VE = Ker(π∗ : TE→ TM) the vertical bundle.

Following this definition, we have the natural extension to the complementary bundle of the vertical
bundle, which is somehow the formalization of the idea we had of a bundle that takes care of tangent
vector fields on M.

Definition 10 (Ehresmann connection). Let M be a differentiable manifold and π : E→ M be a smooth fiber bundle.
Consider a complementary bundle HE such that TE = HE⊕VE. We call this smooth sub-bundle HE the

horizontal bundle or Ehresmann connection.

Thus, vector fields will be called vertical or horizontal depending on whether they belong to Γ(VE) or
Γ(HE), respectively.

3.2. Ehresmann Connection and Horizontal Lift

We recall the case of the linear connection∇; it was uniquely determined by a parallel transport procedure.
In the case of a principal connection, we have an analogous.

Definition 11 (Lift). Let π : E→ M be a fiber bundle, M be a differentiable manifold, x ∈ M and e ∈ E such that
π(e) = x.

Given a smooth curve γ : R→ M such that γ(0) = x, we define a lift of γ through e as the curve γ̃, satisfying

γ̃(0) = e and π(γ̃(t)) = γ(t) ∀t. (10)

If E is smooth, then a lift is horizontal if every tangent to γ̃ lies in a fiber of HE, namely

˙̃γ(t) ∈ HEγ̃(t) ∀t. (11)

It can be shown that an Ehresmann connection uniquely determines a horizontal lift. Here, it is the
analogy with parallel transport.

9 Think of (U(1), Aµ) for electromagnetism.
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3.3. Connection Form in a G-Principal Bundle

We now focus on the case where the smooth fiber bundle is a G-principal bundle with smooth
action P.

Here, we need a group G, that we generally take to be a matrix Lie group. We then have the
corresponding algebra g, a matrix vector space in the present case.

The action P defines a map σ : g→ Γ(VE) called the fundamental map10, where at p ∈ P, for an element
ξ ∈ g, it is given via the exponential map Exp : g→ G.

σp(ξ) =
d
dt

Petξ (p)
∣∣
t=0. (12)

The map is vertical because

π∗σp(ξ) =
d
dt

π(Petξ (p))
∣∣
t=0 =

d
dt

π(p) = 0. (13)

Thus, the vector σp(ξ) is vertical and it is called the fundamental vector.
Before proceeding, we need some Lie group theory.

Recall of Lie machinery: Let G be a Lie group (a differentiable manifold) with g as its Lie algebra and
∀g, h ∈ G. We define:

– Lg : G → G and Rg : G → G, such that Lgh = gh and Rgh = hg are the left and right actions,
respectively;

– the adjoint map Adg : G → G via such left and right actions is Adg := Lg ◦ Rg−1 , namely Adgh =

ghg−1. It also acts on elements of the algebra ξ ∈ g as Adg : g→ g via the exponential map11

Adgξ =
d
dt
(
(Lg ◦ Rg−1)(etξ)

)∣∣
t=0 =

d
dt

(getξ g−1)
∣∣
t=0

= gξg−1 ∈ g,
(14)

where the last two equalities hold in the present case of matrix Lie groups. This is not to be confused
with the adjoint action ad : g× g→ g, which is generated by the derivative of the adjoint map with
g = etχ and χ ∈ g, such that adχξ = [χ, ξ];

– the left invariant vector fields v ∈ Γ(TG) as Lg∗ ◦ v = v, namely v(g) = Lg∗v(e);
– the Maurer–Cartan form is the left invariant g-valued 1-form θ ∈ Ω1(G, g) defined by its values at g.

θg := Lg−1∗ : TgG → TeG ∼= g. (15)

For any left invariant vector field v, it holds ∀g ∈ G that θg(v(g)) = v(e). Therefore, left invariant
vector fields are identified by their values over the identity thanks to the Maurer–Cartan form θ. So
we can state ([8]) that this identification v(e) 7→ v defines an isomorphism between the space of left

10 It turns out that it is an isomorphism, since P is regular.
11 We stress that the exponential map is not an isomorphism for all Lie groups; thus, the elements generated by the exponential map

belong, in general, to a connected subgroup of the total group, which is usually homeomorphic to its simply connected double
cover. More in general, the isomorphism is between a subset of the algebra containing 0 and a subset of the group containing the
identity. Moreover, for a compact, connected, and simply connected Lie group, the algebra always generates the whole group via
the exponential map.
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invariant vector fields on G and the space of vectors in TeG, thus, the Lie algebra g. For matrix Lie
groups, it holds that θg = g−1dg.

By definition, the action of an element of the group on P is Pg : P → P, and therefore, it defines
a tangent map Pg∗ : TP→ TP, for which the following Lemma holds:

Lemma 1.
Pg∗ ◦ σ(ξ) = σ(Adg−1 ξ). (16)

Proof. At p ∈ P

Pg∗σp(ξ) =
d
dt
(
(Pg ◦Petξ )(p)

)∣∣
t=0 =

d
dt
(
(Pg ◦Petξ ◦Pg−1 ◦Pg)(p)

)∣∣
t=0, (17)

we then use the fact that Pg ◦Petξ ◦Pg−1 = Pg−1etξ g = PAdg−1 etξ and the identity for matrix groups

Adgetξ = etAdgξ to get the following:

Pg∗σp(ξ) =
d
dt
(
P

e
t(Ad

g−1 ξ)(Pg(p))
)∣∣

t=0 = σPg(p)(Adg−1 ξ). (18)

It is time to define what we were aiming to define at the beginning of the section: the connection form.

Definition 12. Let P be a smooth G-principal bundle and HE ⊂ TP be an Ehresmann connection.
We call the g-valued 1-form ω ∈ Ω1(P, g), satisfying

ω(v) =

{
ξ i f v = σ(ξ), ξ ∈ C∞(P, g)

0 i f v horizontal,
(19)

the connection 1-form.

Proposition 1.
P∗gω = Adg−1 ◦ω. (20)

Proof. Suppose v = σ(ξ), since the other case left is trivial.
We can carry out some calculations on the left-hand side, and following from the definition of

pull-back and Lemma 1, we have(
P∗gω

)(
σ(ξ)

)
= ω

(
Pg∗ ◦ σ(ξ)

)
= ω

(
σ(Adg−1(ξ)

)
= Adg−1(ξ). (21)

Then, we only need to manipulate the right-hand side as

Adg−1
(
ω(σ(ξ))

)
= Adg−1(ξ). (22)

Both times, we used just the given definition of connection 1-form (Equation (19)).

Remark 1. This last Proposition is called G-equivariance. It can be imposed instead of by assuming that HE is
an Ehresmann connection, and then HE can be shown to be such an Ehresmann connection.
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Another fundamental concept is given in the following:

Definition 13 (Tensorial form). Let ρ : G → Aut(V) be a representation over a vector space V and α ∈ Ωk(P, V)

be a vector valued differential form.
We call α a tensorial form if it is the following:

– horizontal, i.e., α(v1, ..., vk) = 0 if at least one vi is a vertical vector field, and
– equivariant, i.e., for all g ∈ G, P∗gα = ρ(g−1) ◦ α.

We define horizontal and equivariant forms as maps belonging to Ωk
G(P, V).

Observation 5: The connection form ω is not, in general, horizontal; thus, it is not a tensorial form,
ω /∈ Ω1

G(P, g). This will be clear when taking into account how the gauge field transforms under a change
of trivialization in Section 4.

3.4. Curvature Forms

Given our connection 1-form ω, we can proceed in two ways: the first consists in taking a map called
the horizontal projection and in defining the curvature as this projection applied on the exterior derivative
of ω. In this way, we naturally see that curvature measures the displacement of the commutator of two
vectors from being horizontal.

We will proceed in a different way though. We will define the curvature through a structure equation.

Definition 14. Given ω ∈ Ω1(P, g), a principal connection 1-form, the 2-form Ω ∈ Ω2
G(P, g) satisfies

the following:

Ω = dω +
1
2
[ω ∧ω] (23)

whic is called curvature 2-form.

In Equation (23), [ω ∧ ω] denotes the bilinear operation on the Lie algebra g called differential Lie
bracket. It is defined as follows:

[ω ∧ η](u, v) =
1
2
(
[ω(u), η(v)]− [ω(v), η(u)]

)
, (24)

where u and v are vector fields.
It follows straightforwardly that, if we take two general horizontal vector fields u, v ∈ Γ(HE) and we

use the ordinary formula12 for the exterior derivative of a 1-form dω(u, v) = uω(v)− vω(u)−ω([u, v]),
since ω(u) = ω(v) = 0, we get

Ω(u, v) = −ω([u, v]). (25)

We see that Ω measures how the commutator of two horizontal vector fields is far from being
horizontal as well.

12 Here, we regard ω(u) as a function ω(u) : P→ g belonging to the algebra of smooth functions to g, C∞(P, g).
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4. Exterior Covariant Derivative

4.1. For an Ehresmann Connection HE

Observation 6: Ωk
G(P, V) is not closed under the ordinary exterior derivative. In that sense, if

α ∈ Ωk
G(P, V), then dα /∈ Ωk+1

G (P, V). This is what a covariant differentiation will do instead.

The idea of a covariant exterior derivative for a connection HE is, given such an Ehresmann connection
HE, the one of projecting vector fields onto this horizontal bundle and then feed our ordinary exterior
derivative with such horizontal vector fields.

First of all, we define a map acting as a pull-back. Namely that, given a map h : TP→ HE such that,
for all vertical vector fields v, we get h ◦ v := hv = 0 (called the horizontal projection), we define the dual
map h∗ : T∗P→ HE∗ such that, for α ∈ Ω1(P, V) and V a vector space, we have h∗ ◦ α := h∗α = α ◦ h.

Definition 15 (dh). Let P be a G-principal bundle, V be a vector space, and α ∈ Ωk(P, V) be an equivariant form.
We define the exterior covariant derivative dh as a map dh : Ωk(P, V)→ Ωk+1

G (P, V) such that

dhα(v0, ..., vk) := h∗dα(v0, ..., vk) = dα(hv0, ..., hvk), (26)

where v0, ..., vk are vector fields.

It depends on the choice of our Ehresmann connection HE, which reflects onto the horizontal
projection h; that is why we have the index h.

Observation 7: We can make our covariant derivative depend only on ω, if we restrict it to only forms
in Ωk

G(P, V) and if we consider the representation of the algebra induced by the derivative of ρ that we
denote dρ : g→ End(V). Then, we have dρ ◦ω ∈ Ωk(P, End(V)

)
.

4.2. For a Connection Form ω

Definition 16 (dω). Let P be a G-principal bundle, V be a vector space, and α ∈ Ωk
G(P, V) be a tensorial form.

We define the exterior covariant derivative dω as a map dω : Ωk
G(P, V)→ Ωk+1

G (P, V) such that13

dωα := dα + ω ∧dρ α

:= dα + dρ ◦ω ∧ α.
(27)

Remark 2.

– We observe that d2
ωα 6= 0 for a general α ∈ Ωk

G(P, V), but it is easy to show that it holds14

d2
ωα = Ω ∧dρ α, (28)

Thus, for a flat connection such that Ω = 0, we have d2
ωα = d2α = 0.

13 For a general k-form:

(ω ∧dρ α)(v1, ..., vk+1) =
1

(1 + k)! ∑
σ

sign(σ)dρ
(
ω(vσ(1))

)(
α(vσ(2), ..., vσ(k+1)

)
.

14 See the first Bianchi identity in Equation (56) for the proof.
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– We have observed that ω /∈ Ω1
G(P, g). Therefore, dωω is not well defined. However, we can consider

dhω ∈ Ω2
G(P, g), and this is precisely our curvature Ω = dω + 1

2 [ω ∧ ω], where the anomalous 1
2 factor

comes from the "non-tensoriality" of ω. As a matter of fact, there is no representation that would make the 1
2

term arise if we considered dωω instead.
– The fact that dω is not well defined for non-tensorial forms does not mean that ω defines a less general derivative

than what dh does. As a matter of fact, HE could be defined starting from ω, as we mentioned above, since
HE = Ker ω.

5. Gauge Field and Field Strength

5.1. Make It Clear

Definition 17 (Gauge field). Let P→ M be a G-principal bundle, G be a Lie group with g as the respective Lie
algebra, {Uβ} be a cover of M, and sβ : Uβ → P be a section.

We define the gauge field as the pull-back of the connection form ω ∈ Ω1(P, g) as

Aβ = s∗βω ∈ Ω1(Uβ, g). (29)

We notice that, under a change of trivialization, such a gauge field changes via the action of the
adjoint map.

In fact, we have the following:

Lemma 2. The restriction of ω to π−1(Uβ) agrees with

ωβ = Adg−1
β
◦ π∗Aβ + g∗βθ, (30)

where gβ : π−1(Uβ)→ G is the map induced by the inverse of the trivialization map ϕβ defined in Equation (2),
and with Adg−1

β
, we intend for the adjoint map at the group element given by gβ(p)−1 at a point p ∈ π−1(Uβ).

The proof comes from the observation that Equations (19) and (30) coincide in π−1(Uβ) for both a
horizontal (for which they are zero) and a vertical vector field.

Thanks to this, we easily have the following:

Proposition 2. Let G be a matrix Lie group. Then it holds the following transformation for a gauge field:

Aβ = gβγ Aγg−1
βγ − dgβγg−1

βγ . (31)

Proof. Using Equations (29) and (30) for all x ∈ Uβ ∩Uγ,

Aβ = s∗βω

= s∗βωβ = s∗βωγ

= s∗β
(
Adg−1

γ
◦ π∗Aγ + g∗γθ

)
= Adg−1

βγ
◦ Aγ + g∗γβθ (using gγ ◦ sβ := gβγ : Uβ ∩Uγ → G)

= Adgβγ
◦
(

Aγ − g∗βγθ
)

(Adgβγ
◦ g∗βγθ = −g∗γβθ),

(32)

which reduces to the assert for matrix Lie groups.
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Observations 8:

i. We observe that a local gauge transformation of the gauge field corresponds to a change of
trivialization chart.

ii. Non-tensoriality of ω was given by the fact that it is, in general, not horizontal. For the gauge field
A, we can generalize to forms on M the concept of tensoriality/non-tensoriality by noticing that
a form obtained by the pull-back of a tensorial form, denoted with t ∈ Ω1

G(P, V), would transform
differently compared to A, namely as

tβ := s∗βt = gβγtγg−1
βγ . (33)

The Maurer–Cartan form θ reflects the non-horizontality of ω to the gauge field, from Equation (30).
iii. A difference of two gauge fields like A− A′ transforms as Equation (33). In fact, the transformation

rule is one of a tensorial form, since the Maurer–Cartan forms simplify.
iv. We notice that (iii) is a particular case of a more general one. Indeed, it is possible to show with proof

in Reference [2] (Chapter 5) that Ωk
G(P, V) ∼= Ωk(M, P×ρ V). This is essentially due to the fact that,

thanks to the equivalence relation of the associated bundle and the gluing condition of sections on
overlaps, the pull-backs by sections sβ : Uβ → P give a one-to-one correspondence between these
two spaces. Therefore, we can obtain forms with a tensorial transformation like Equation (33) just by
taking the pull-back of tensorial forms on P; these will be forms on M with values into the associated
bundle P×ρ V.

v. Observations (iii) and (iv) ensure that an object built with gauge fields Aβ ∈ Ω1(Uβ, g) (which
transform on overlaps by Equation (31)) will be in Ω2(M, P×Ad g); see Observation 9.

Claim. This gauge field defines an exterior covariant derivative for bundle-valued forms on M. We denote such a
map with

dA : Ωk(M, P×ρ V)→ Ωk+1(M, P×ρ V). (34)

Anyway, we will further develop this argument in Section 6.1.
We can proceed analogously and can define the pull-back of the curvature:

Definition 18 (Field strength). Let P→ M be a G-principal bundle, G be a Lie group with g as the respective Lie
algebra, {Uβ} be a cover of M, and sβ : Uβ → P be a section.

We define the field strength as the pull-back of the curvature form Ω ∈ Ω2
G(P, g) as

Fβ = s∗βΩ ∈ Ω2
G(Uβ, g), (35)

which, by definition of Ω, is

Fβ = dAβ +
1
2
[Aβ ∧ Aβ]. (36)

Similarly to what we have done for the gauge field, we can show15 that the field strength transforms as

Fβ = Adgβγ
◦ Fγ = gβγFγg−1

βγ , (37)

15 Using the Cartan structure equation for θ, dθ = − 1
2 [θ, θ].
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where the last equality holds for matrix Lie groups with g and g−1 in G. This is indeed the transformation
of a tensorial form, as in Equation (33).

Observation 9: Thanks to our previous observation, i.e., there is a canonical isomorphism between
Ωk

G(P, V) and Ωk(M, P×ρ V), we can relate Ω and Fβ with a form16 FA ∈ Ω2(M, adP). Namely there is
a canonical isomorphism sending Ω ∈ Ω2

G(P, g) to FA ∈ Ω2(M, adP). Indeed, given the transformation
law for the field strength in Equation (37), we see that {Fβ} is horizontal and equivariant and, thus,
forms a global section belonging to Ω2(M, adP), which is usually denoted as FA.

The notation FA stresses that it is obtained from gauge fields in Ω1(Uβ, g).
In the case of a trivial bundle, it is also possible to define a global gauge field A ∈ Ω1(M, g).

5.2. 2nd Bianchi Identity

Consider dA : Ωk(M, P ×ρ V) → Ωk+1(M, P ×ρ V) as the exterior covariant derivative and FA ∈
Ω2(M, ad P) as the field strength.

Then, we have the following:

Proposition 3.
dAFA = 0. (38)

This is the second Bianchi identity.

Proof. Given
FA = dA +

1
2
[A ∧ A], (39)

then

dAFA = dFA + [A ∧ FA]

= d2 A +
1
2

d[A ∧ A] + [A ∧ dA] +
1
2
[A ∧ [A ∧ A]]

=
1
2
[A ∧ [A ∧ A]] (d2 A = 0 and

1
2

d[A ∧ A] = −[A ∧ dA])

= 0. (because of Jacobi identity)

(40)

6. Affine Formulation

In the usual formulation of General Relativity, one defines a covariant derivative ∇, which is a map
among tensors. Then, one can define curvature and torsion and eventually get the field equations for
ECSK theory or General Relativity by setting torsion to zero.

One may wonder if this latter formulation is equivalent to the one we have been implementing
through principal bundles and principal connection.

The answer is positive and is given in the next two sections.

16 Where we have introduced the notation Ωk(M, P×Ad g) := Ωk(M, adP).
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6.1. Affine Covariant Derivative

We have built our setup by taking ρ to be the fundamental representation of O(3, 1), P = FO(M),
and V = FO(M)×ρ V to be the Minkowski bundle, as in (ii) of Observations 4. Therefore, as mentioned
above, the isomorphism between Ωk

G(P, V) and Ωk(M, P×ρ V) allows to define an exterior covariant
derivative of forms in Ω1(M,V):

dA : Ωk(M,V)→ Ωk+1(M,V). (41)

In this way, we have a covariant differentiation for V-valued differential forms on M and, thus,
also for tetrads, since e ∈ Ω1(M,V).

Since we note that dρ induces a one form dρ(A) ∈ Ω1(M, End(V)
)
, we can further define another

kind of derivative that “takes care” of internal indices only; in particular, this will not be necessarily a map
between differential forms.

This derivative in components reads, for φ ∈ Γ(V),

(DAφ)a
µ = (∂µφa + Aac

µ ηcbφb) (42)

and, for α ∈ Ωk(M,V),
(DAα)a

µν1...νk
= (∂µαa

ν1...νk
+ Aac

µ ηcbαb
ν1...νk

), (43)

which shows that it does not map α to a differential form.
Now, we immediately apply the inverse of a tetrad to DAφ and identify it with ∇.
In fact, we take a vector field X ∈ Γ(TM), feed the tetrad e with it, then apply17 DA to get DA(ιXe),

and finally pull it back with the inverse of the tetrad ē.
In components, this reads as follows:(

DA(ιXe)
)a

µ
= Dµ(ea

νXν) = ∂µ(ea
νXν) + ωab

µ ηbcec
νXν, (44)

where, for reasons of metric compatibility18 with η, we have the only antisymmetric part of the gauge
field, for which we used the notation Aa

µc = ωab
µ ηbc.

Be aware: Do not get confuse. We shall refer to ω ∈ Ω1(M, Λ2V) as the spin connection. To stress that we
want DA to depend on the spin connection only, we shall denote it with Dω.

Pulling back via ē, we obtain

ēσ
a
(

Dµ(ea
νXν)

)
= ēσ

a
(
∂µ(ea

νXν) + ωab
µ ηbcec

νXν
)
. (45)

We define the Christoffel symbols Γσ
µν as

Γσ
µν = ēσ

a (Dµea
ν)

= ēσ
a (∂µea

ν + ωab
µ ηbcec

ν)
(46)

17 Here, we use the so-called interior product, i.e., a map ιξ : Ωk(M)→ Ωk−1(M), such that (ιξ α)(X1, ..., Xk−1) = α(ξ, X1, ..., Xk−1),
for vector fields ξ, X1, ...Xk−1. Furthermore it respects ιξ (α ∧ β) = (ιξ α) ∧ β + (−1)kα ∧ (ιξ β), where α ∈ Ωk(M). Therefore, it
forms an antiderivation. The relation with the Lie derivative is given by the formula Lξ α = d(ιξ α) + ιξ dα, called the Cartan
identity. The interior product of a commutator satisfies ι[X,Y] = [LX , ιY ], with X and Y vector fields.

18 In fact, imposing the condition of DAη = 0 implies the antisymmetry of the gauge field.
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and, thus, we get
∇µXσ := ēσ

a
(

Dµ(ea
νXν)

)
= ∂µXσ + Γσ

µνXν, (47)

which is the covariant derivative well known in General Relativity.
We can also see what the curvature form is in terms of the commutator of two derivatives, given by

the only antisymmetric part of the connection.
Then,

FAantis := Fω (48)

and it is given by (
D[µDν]φ

)a
=
(
∂[µων]

ab + ωad
[µ ηdeωeb

ν]

)
ηbcφc = Fab

µνηbcφc, (49)

where A[µBν] = AµBν − AνBµ is our convention for the antisymmetrization. The fact that Fω is a 2-form
shows that Fab

µν = −Fab
νµ; furthermore, metric compatibility ensures also Fab

µν = −Fba
µν, therefore Fω ∈

Ω2
G(M, Λ2V).

Observation 10: We see19 that, here, the bundle metric η acts as a map η : Ω2(M, Λ2V)→ Ω2(M, End(V))

isomorphically; thus, it permits to identify elements of the second exterior power Λ2V with linear maps
given by the fundamental representation of the algebra g = so(3, 1). We can introduce the notation for
the wedge product in the fundamental representation as ∧ f ; namely for, say, an α ∈ Ω1(M,V), we have
(ω ∧ f α)a = ωabηbc ∧ αc.

6.2. Riemann Curvature Tensor

We can now consider the commutator of two affine covariant derivatives and use Equation (47), getting

(∇[µ∇ν]X)σ = ēσ
a
(

D[µDν](ιXe)
)a

= ēσ
a Fab

µνηbcec
ωXω. (50)

We identify the Riemann tensor
Rµνω

σ = ēσ
a Fab

µνηbcec
ω, (51)

the Ricci curvature tensor
Rµω = Rµσω

σ = ēσ
a Fab

µσηbcec
ω (52)

and thus the Ricci scalar

R = gµωRµω = ēµ
d ēω

e ηde ēσ
a Fab

µσηbcec
ω = −ēµ

a ēω
b Fab

µω. (53)

It follows the antisymmetry of the Riemann tensor in the indices µν and ωσ, but it is important to
note that we cannot ensure any symmetry in the Ricci curvature instead due to the presence of torsion.

7. Torsion

Here, we start focusing on the importance of torsion, which arises quite naturally as curvature does.

19 We denote the metric acting on the bundle and the metric acting on the fibers in the same way; however, we will usually deal
with elements of the fibers.
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7.1. Torsion Form

Definition 19 (Solder form/soldering of a G-principal bundle). Let π : P → M be a smooth G-principal
bundle over a differentiable manifold M, ρ : G → Aut(V) be a representation, and G be a Lie group.

We define the solder form, or soldering, as the vector-valued 1-form θ ∈ Ω1
G(P, V) such that θ̃ : TM→ P×ρ V

is a bundle isomorphism, where θ̃ ∈ Ω1(M, P×ρ V) is the associated bundle map induced by the isomorphism of
Ω1

G(P, V) ∼= Ω1(M, P×ρ V).

Observations 11:

– The choice of the solder form is not unique, in general.
– We can observe that, taking P = FO(M), ρ as the fundamental representation of O(3, 1), and V as the

vector space with reference metric η, θ̃ corresponds to our definition of tetrads. The different choices
of soldering give rise to different tetrads.

– In the case that P = FO(M) and that the associated bundle is simply chosen to be TM, the solder
form is called canonical or tautological. Since the associated bundle TM sets the bundle isomorphism θ̃

to be the identity map id : TM→ TM.
– In Observations 4, we mentioned that the Minkowski bundle cannot be canonically identified with

the tangent bundle itself; indeed, we fixed a reference metric η, which cannot be pulled back by the
identity map to give the metric on TM in general, and thus, the solder form is not canonical.

The soldering of the principal frame bundle allows us to define the torsion form20.

Definition 20 (Torsion form). Let P = FO(M), ρ : O(3, 1)→ Aut(V) be the fundamental representation, V be
a vector space with reference metric η, and θ ∈ Ω1

G(P, V) be a solder form.
We define the torsion form Θ ∈ Ω2

G(P, V) as follows:

Θ = dωθ = dθ + ω ∧ f θ. (54)

7.2. Torsion in a Local Basis

We would like to express the torsion form in terms of tetrads and the gauge field.
In Reference[9], a formula is given and it is obtained by applying the previous definition of the torsion

form under the canonical isomorphism Ωk
G(P, V) ∼= Ωk(M,V); therefore yielding

Θ̃a = (dAe)a = dea + Aabηbc ∧ ec. (55)

7.3. 1st Bianchi Identity

Proposition 4. Following our previous definitions, we have

dωΘ = Ω ∧ f θ, (56)

which is called the first Bianchi identity.

Proof. For this proof, we prefer using Equation (26).
We consider three vector fields u, v, w ∈ Γ(TP). By definition, it follows

20 Torsion can be defined for every principal bundle, but physics arises when considering the frame bundle.
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dhΘ(u, v, w) = dΘ(hu, hv, hw)

= (dω ∧ f θ −ω ∧ f dθ)(hu, hv, hw) (because of Equation (54))

= dω ∧ f θ(hu, hv, hw) (because of Equation (19))

= Ω ∧ f θ(u, v, w).

(57)

The last equality holds because of tensoriality of θ and the second remark in Remark 2.

This proposition is a natural consequence of the property of the covariant differential expressed in
Equation (28).

7.4. Torsion Tensor

Definition 21 (Torsion tensor). Given two vector fields X, Y ∈ Γ(TM) and a 1-form τ ∈ Ω1(M), we define the
torsion tensor field Q as the tensor field of type-(1

2) such that

Q(X, Y; τ) := τ(Q(X, Y)) = τ
(
ē(dAe(X, Y))

)
. (58)

It is evidently antisymmetric in X, Y, by definition.

Proposition 5. We have the following formula:

Q(X, Y) = ∇XY−∇YX− [X, Y] (59)

and, in components, it reads
Qµν

σ = Γσ
µν − Γσ

νµ − Cσ
µν, (60)

where Cσ
µν = 0 in a holonomic basis for X and Y and ∇ is the covariant derivative21.

Proof. Recalling the definition of torsion

Q = ē · (dωe) = ēa(dωe)a, (61)

it follows
ēa(dωe)a = ēσ

a
(
∂[µea

ν] + ωa
[µbeb

ν]

)
dxµ ∧ dxν ⊗ ∂σ

= (Γσ
µν − Γσ

νµ)dxµ ∧ dxν ⊗ ∂σ (Γσ
µν = ēσ

a (Dµea
ν).)

= Qµν
σdxµ ∧ dxν ⊗ ∂σ,

(62)

then Qµν
σ = Γσ

µν − Γσ
νµ.

We have now set up all the background for building our theory and for discussing field equations of
ECSK theory.

21 See Reference [10] for references about this.
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8. Field Equations and Conservation Laws

We present here field equations for ECSK theory22. Thus, we will neither assume the possibility of
a propagating torsion (and we will always keep non-identically vanishing Riemann curvature [14]) nor
display a lagrangian for a totally independent torsion field; rather, we will only set the Palatini–Cartan
lagrangian for gravity, as done in Reference [15], and a matter lagrangian as the source. This theory is
known as Einstein–Cartan–Sciama–Kibble gravity (ECSK).

In the present case, torsion reduces to an algebraic constraint. This is a consequence of making torsion
join the action of the theory as only contained in the Ricci scalar because of a non-torsion-free connection
and not with an independent coupling coefficient. In works like References [16–19], torsion is present as
an independent part (independent coupling coefficient) of the action and it does propagate.

This is why the ECSK is considered as the most immediate generalization of General Relativity with
the presence of torsion.

Therefore, we wish to eventually obtain an action of two independent objects, tetrads and connection,
where this latter action should give rise to equations for curvature when varying tetrads and for torsion
when varying the connection.

We will focus more on the geometrical side of these equations and we will not dwell on deepening
matter interaction (couplings, symmetry breaking, etc.), as done for instance in References [20–24].

8.1. ECSK Equations

ECSK theory with cosmological constant belongs to the Lovelock–Cartan family, which describes the
most general action in four dimensions such that this action is a polynomial on the tetrads and the spin
connection (including derivatives), is invariant under diffeomorphisms and local Lorentz transformations,
and is constructed without the Hodge dual23.

Recalling that we will refer to A as ω and stressing that it must be only the antisymmetric part,
the notation for dA becomes dω.

We will be dealing with a variational problem given by an action of the kind

S = SPC + Smatter, (63)

where the Palatini–Cartan action is

SPC[e, ω] =
∫

M
Tr
[1

2
e ∧ e ∧ Fω +

Λ
4!

e4]. (64)

The wedge product is defined over both space–time and internal indices as a map24∧ : Ωk(M, ΛpV)×
Ωl(M, ΛqV) → Ωk+l(M, Λp+qV) and the trace is a map Tr : Λ4V → R, normalized such that (for vi
elements of a basis in V) Tr[vi ∧ vj ∧ vk ∧ vl ] = εijkl . The choice of the normalization of the trace works
as a choice of orientation for M (since the determinant of a matrix in O(3, 1) may be ±1). Therefore, we
reduce the total improper Lorentz group O(3, 1) to the only orientation preserving part, which is still
not connected, SO(3, 1). This gives an invariant volume form on M. In this way, we consider sections of
ΛkT∗M⊗ΛpV .

22 Some classical works about ECSK theory and General Relativity with torsion, like References [11–13].
23 See Reference [25] for details.
24 Such that, for α ∈ Ωk(M, ΛpV) and β ∈ Ωl(M, ΛqV), we have α ∧ β = (−1)(k+p)(l+q)β ∧ α.
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Be aware: Later on, we will make explicit some indices and keep implicit some others; for this purpose,
we will specify what kind of wedge product we are dealing with, even though it will be evident because it
will be among the implicit indices.

We recall the definition of Fω and deduce the identity for its variation

δω Fω = dωδω, (65)

where we stress that, despite ω being non-tensorial, δω is instead, and therefore, it transforms under the
adjoint action (as Fω does) like in Equation (33). That holds because δω may be regarded as a difference of
two spin connections.

The action for the matter is of the kind

Smatter[e, ω, ϕ] = κ
∫

M
Tr[L(e, ω, ϕ)], (66)

where L is an invariant lagrangian density form with the proper derivative order in our variables, ϕ is
a matter field, and κ is a constant.

Such matter lagrangian is supposed to be source for both curvature and torsion equations, namely it
will be set for fulfilling some conditions fitting the theory.

Therefore, varying the actions in Equations (64) and (66) and considering Equation (65), we have25∫
M Tr[δe ∧ (e ∧ Fω + Λ

3! e
3)] =

∫
M Tr[κ δL

δe ∧ δe]∫
M Tr[ 1

2 dω(e ∧ e) ∧ δω] =
∫

M Tr[κ δL
δω ∧ δω],

(67)

which is equivalent to

εabcdeb ∧ Fcd
ω + Λ

3! εabcdeb ∧ ec ∧ ed = κ
δTr[L]

δea := κTa

1
2 εabcddω(ec ∧ ed) = κ

δTr[L]
δωab := κΣab

(68)

where the wedge product here is only between differential forms.
Setting Λ = 0 and in performing the derivative, Equation (68) can be rewritten as

εabcdeb ∧ Fcd
ω = κTa

εabcd Q̃c ∧ ed = κΣab,
(69)

where we have set Q̃ = dωe.
These are equations for the ECSK theory in their implicit form26, where T and Σ are related to,

respectively, the energy momentum and the spin tensor, once pulled back.
By making all the indices explicit, as given in Reference [20], and properly setting κ according to

natural units27, Equation (69) takes the following form

Gµν = 8πTµν

Qµν
σ = −16πΣµν

σ.
(70)

25 Omitting equations of motion δL
δϕ = 0 for the matter field, which have to be satisfied for conservation laws anyway.

26 Without making space–time indices explicit.
27 All fundamental constants = 1.
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Observations 12:

i. Tµν is not symmetric, as expected from the non-symmetry of the Ricci curvature Rµν.
ii. We stress that, even though e is an isomorphism, the map e ∧ · : Ωk(M, ΛpV)→ Ωk+1(M, Λp+1V) is

not an isomorphism, in general. In fact, taking δL
δe = 0 (with Λ = 0) in Equation (67) does not imply

Fω = 0, which would imply a flat connection.
iii. Setting δL

δω = 0 in Equation (67), one recovers the condition of vanishing torsion (hence, a Levi–Civita
connection) and, therefore, the Einstein equations.

iv. It is interesting to note that, requiring a totally antisymmetric spin tensor, sets the total antisymmetry
of the torsion tensor. Namely, in the case of a totally antisymmetric Σ, we need to couple the only
totally antisymmetric part of torsion into the geometrical lagrangian. This is further discussed in
Reference [20].

8.2. Conservation Laws

We have two symmetries, i.e., local Lorentz transformations and diffeomorphisms. They are
continuous symmetries, and as such, we expect two conservation laws. Since we are dealing with
local symmetries, we shall not find two conserved currents but rather two relations for the variations of
the matter lagrangian w.r.t. e and ω.

These relations directly imply the Bianchi identities of Equations (38) and (56), but we could also
do the converse, namely assuming Equations (38) and (56) and then deriving such conservation laws.
This means that conservation laws are a consequence of symmetry on the one hand, implemented via the
following symmetries (respectively diffeomorphisms and local SO(3, 1))

δξ ea = Lξ ea = ιξ dea + dιξ ea

δξ ωab = Lξ ωab = ιξ dωab + dιξ ωab,
(71)

where ξ is the generator vector field,

δΛea = Λabηbcec

δΛωab = −dωΛab Λ ∈ so(3,1),
(72)

or a direct consequence if we impose field equations and, thus, gravitational dynamics and Bianchi
identities on the other hand.

We will follow the shortest derivation, namely to implement the Bianchi identities of Equations (38)
and (56) on field Equation (69).

Thanks to Bianchi identities, left hand side of field Equation (69) can be rewritten in the following way:

dω(εabcdeb ∧ Fcd
ω ) = ιaQ̃b ∧ (εbcdeec ∧ Fde

ω ) + ιaFbc
ω ∧ (εbcdeQ̃d ∧ ee)

dω(εabcdQ̃c ∧ ed) = − 1
2 (εacdeec ∧ Fde

ω ∧ eb − εbcdeec ∧ Fde
ω ∧ ea),

(73)

where ιa = ιēa and eb = ηbcec.
However, because of the same field in Equation (69), they reduce to

dωTa = ιaQ̃b ∧ Tb + ιaFbc
ω ∧ Σbc

dωΣab = 1
2 T[a ∧ eb],

(74)

In References [26,27], a more detailed discussion can be found. These are conservation laws for ECSK theory.
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In components, as given in Reference [20], they read

∇µTµν + TσρQσρν − ΣµσρRµσρν = 0

∇µΣσω
µ + 1

2 T[σω] = 0.
(75)

9. Conclusions

We have set up all the mathematical background for building ECSK theory, eventually achieving field
equations and conservation laws.

In ECSK theory, torsion is only an algebraic constraint and it does not propagate. This is a natural
consequence of inserting torsion into the theory without an independent coupling coefficient but
simply generalizing the Einstein–Hilbert action (or Palatini action in our formulation)

∫
R
√−gd4x to

a non-torsion-free connection∇ (or spin connection in our case). In this case, the Ricci scalar contains both
curvature and torsion.

It is possible to immediately recover General Relativity by imposing the zero torsion condition, which,
in the considered theory, translates to letting the matter field ϕ generate a null contribution to the spin
tensor Σµν

σ. The most natural matter fields which would fit with the theory are spinors; indeed, spinors are
the way in which we can have a non-vanishing spin tensor which is also dynamical because of equations
of motion for the spinor field.

This review does not want to substitute the well-known literature but to just give a self-contained
and mathematically rigorous introduction to ECSK theory, providing also some references for deepening
knowledge in the present subjects. Also, we intentionally did not dive too deeply into physical applications
to cosmology (like done in References [28–33]), that might be a valid argument for writing another review
article.
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