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Abstract: We propose that gravitational interactions of cosmic neutrinos with the statistically
homogeneous and isotropic fluctuations of space-time lead to decoherence. This working hypothesis,
which we describe by means of a Lindblad operator, is applied to the system of two- and three-flavour
neutrinos undergoing vacuum oscillations and the consequences are investigated. As a result of
this decoherence we find that the neutrino entropy would increase as a function of initial spectral
distortions, mixing angles and charge-parity (CP)-violation phase. Subsequently we discuss the
chances to discover such an increase observationally (in principle). We also present the expected
flavour composition of the cosmic neutrino background after decoherence is completed. The physics
of two- or three-flavour oscillation of cosmological neutrinos resembles in many aspects two- or
three-level systems in atomic clocks, which were recently proposed by Weinberg for the study of
decoherence phenomena.
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1. Introduction

The indirect evidence for the existence of a cosmic neutrino background (CNB) is a major
achievement of observational cosmology [1–3]. Its direct detection remains an experimental
challenge [4,5].

Active neutrinos are in thermal equilibrium in the early Universe. Their momentum spectra
follow the Fermi–Dirac distribution, which is preserved after their decoupling—even after they
became non-relativistic. Non-instantaneous decoupling and neutrino heating by electron-positron
annihilation introduce distortions to the perfect Fermi–Dirac spectrum for each neutrino flavour [6,7].
These spectral distortions are smoothed out by neutrino oscillations, but do not disappear completely.
These distortions in the neutrino spectra imply a small increase of the neutrino density, giving
Neff = 3.046 in terms of effective number of neutrinos. To arrive at this result, one assumes that there
are no primordial lepton-flavour asymmetries.

Neutrino decoherence (i.e., the irreversible loss of quantum coherence) is an active research
topic [8] with particular attention to its manifestation in neutrino-oscillation experiments [9–11]
. In this work we study the cosmic evolution and decoherence of active neutrino flavours from
their decoupling (when the Universe had a temperature of ∼1 MeV) to the present time. We ask
the question what happens to the neutrino mass states when they become non-relativistic at late
times. We propose in this work that the neutrino mass states undergo decoherence when the heaviest
and second heaviest states become non-relativistic. The reasoning behind this hypothesis is that
mass states in the non-relativistic regime have very different group velocities and therefore travel
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on different paths in space-time. The isotropic and homogeneous universe described by the ΛCDM
model is homogeneous only in a statistical sense. There are fluctuations of the gravitational potential
that vary in position and time. Coherent states traveling through this space-time may accumulate
enough differences in their paths to reach an irreversible trajectory, causing the loss of information
and the respective decoherence. Corresponding to the decoherence, a time averaging of the phase of
these states traveling through different paths in space-time would also result in a breakup of time
reversibility. As a consequence of this hypothetical decoherence, there is an associated increase of
neutrino entropy. We also present the small corrections to the flavour distribution of the CNB today,
which were seeded by primordial spectral distortions.

To track the evolution of the flavour content of individual neutrinos of given momentum we
make use of the Wigner density matrix in a basis {|va〉}:

ρp(t) = ∑
a,b
|va〉ρab(p, t)〈vb| , (1)

where the entries ρab(t, p) are defined at time t and momentum p.
To obtain the distribution function for an ensemble of neutrinos specified by the flavour state

label α, we must trace the projected density matrix ρp and multiply by the appropriate momentum
spectrum and spin degrees of freedom:

fα(p, T) = f eq
α (p, T)tr

[
|vα〉〈vα| ρp

]
, (2)

where f eq
α (p, T) is the equilibrium momentum spectrum at temperature T in which we also account for

the spin degrees of freedom. The density matrix contains the flavour dependent spectral distortions,
which are also momentum dependent. Since we are only interested in the flavour composition of
spectral distortions, we focus on the normalized density matrix spanned by the basis {|va〉}. Moreover,
we drop the sub-index p that indicates the momentum dependence for simplicity, but all the equations
are momentum dependent. For this work, the momentum dependence is trivial as the comoving
momentum is conserved after neutrino decoupling.

The time evolution of the density matrix ρ is given by the von Neumann equation. In an expanding
Friedman–Lemaître model, after neutrino decoupling and after electron-positron annihilation (i.e., for
T < me/3 ≈ 0.2 MeV), it reads1:

ıDρ = [H, ρ], (3)

whereH is the free Hamiltonian. The density matrix and the Hamiltonian are both functions of the
cosmic scale factor a and the modulus of the comoving neutrino momentum q ≡ ap. Both ρ andH are
Hermitian and trρ = 1. The differential operator:

D =
d
dt

= H(a)
d

d ln a
, (4)

with H denoting the Hubble expansion rate and with a = 1 today. The cosmological redshift
z = 1/a − 1.

A pure state is characterized by trρ2 = 1, while for mixed states trρ2 < 1. Thus, any physical
system has trρ2 ≤ 1. Since the von Neumann equation preserves trρ2, it cannot describe the process of
decoherence. This follows as the von Neumann equation is a direct consequence of the unitary time
evolution described by the Schrödinger equation.

The density matrix is connected to the (von Neumann) entropy via:

S = −tr[ρ ln ρ]. (5)

1 We use units in which h̄ = c = kB = 1 and MP = 1/
√

8πG is the reduced Planck mass.
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The von Neumann entropy vanishes for pure states and is maximal for maximally mixed states.
For a two (three)-flavour state system, the maximally achievable family entropy (following Boltzmann)
obviously is S = ln 2 (ln 3). Here we ignore the spin and momentum dependence of neutrinos.
The von Neumann equation conserves this entropy and does not describe decoherence.

Here we assume that different mass states in the non-relativistic regime travel through different
stochastic gravitational potentials, which leads effectively to a phase averaging. A time average along
the neutrino path will consequently cause a definite decoherence. This loss of information cannot be
recovered, it is not a de-phasing or kinetic decoherence that can be undone by a precise measurement.
However, we will not model the different paths that the neutrino states travel and neither perform
the time average, instead we will introduce a decoherence operator in the von Neumann equation
encompassing the gravitational environmental fluctuations. The methodology of using an effective
operator to introduce environmental sources of decoherence in an open quantum system is commonly
adopted, including for neutrinos [12–14].

The modified von Neumann equation with a proper operator to describe decoherence is given by:

ıDρL = [H, ρL] + ı ∑
a

[
La,
[
ρL,La

]]
, (6)

which we refer to as Lindblad Equation [15]. The La are so-called Lindblad operators, arising from
tracking or averaging environment dynamics. The decoherence term is responsible for the fact that the
quantum system can develop dissipation and irreversibility and lose quantum coherence. As we will
show shortly, the entropy for the density matrix ρL, as well as for a time-averaged density matrix over
irreversible paths ρ̄, is not constant anymore.

Many aspects of oscillating neutrinos in the early Universe have been discussed before. The focus
of those works may be in the interplay with the primordial plasma [16,17], the matter effect [7,18],
the role of a lepton asymmetry [6,19,20] or the back-reaction effects in primeval nucleosynthesis [21,22].
Important for this work are studies of distortions in the neutrino spectral distribution [21,23,24].
These works rely on an approach similar to ours, but are not identical, especially regarding the exact
solution for three-flavour oscillations in the cosmological context, with and without including Lindblad
operators to account for decoherence. In [25] a spontaneous suppression operator is adopted to account
for decoherence, but the focus is not the evolution of entropy. Importantly, most existing studies are
concerned with the interplay of neutrino oscillations and the plasma, therefore their focus lies on the
epoch of neutrino decoupling. To our knowledge, the epoch after neutrino decoupling has not been
explored in great detail, especially the effect of the transition from the relativistic to non-relativistic
regime in a statistically homogeneous space, which we argue is the source of decoherence proposed in
this work.

Often a prescription based on wave packets is adopted to account for the process of
decoherence [26,27], e.g., for supernova neutrinos [28–31] or cosmological neutrinos [32]. In the
latter work it is argued that cosmological neutrinos should not be treated as a classical, collisionless
fluid. The author of [33] addresses the increase of neutrino entropy due to decoherence of mixed
massive neutrinos, but without solving the Lindblad equation or using wave packets. As we show
below, our findings go well beyond the studies presented in [32,33].

Lindblad operators have been used more recently to account for various decoherence
processes [34–38], as well as in the context of neutrino oscillations in laboratory experiments, and both
for two [12,35] and for three neutrino flavours [13,14,39]. However, the use of Lindblad operators for
cosmological neutrinos in this work is novel, as well as the exact solution for three neutrino flavours
that is valid throughout the relativistic and non-relativistic regimes.

Using Lindblad operators, one can mimic the damping of mixed states caused by a hypothetical
decoherence phenomenon and predict the net change in entropy in a mathematical rigorous way.
We also argue that cosmological neutrinos could be used to improve our understanding of decoherence
in analogue to the recently proposed studies of decoherence in atomic clocks [37].
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This work is structured as follows. In the next two sections we present exact solutions for two-
and three-flavour neutrino oscillations in cosmology, including decoherence. We show that suitable
Lindblad operators give rise to decoherence and that time averaging would lead to the same result for
the asymptotic density matrix, we discuss the validity and generality of this result. In Section 4 we
study the increase of family entropy associated with decoherence. We conclude with a discussion of
our findings.

Whenever we use values for neutrino mixing angles and mass square differences, we use
the best-fit values from [40]: sin2 θ12 = 0.320+0.016

−0.017, sin2 θ23 = 0.613+0.022
−0.040(0.600+0.023

−0.031)
2, sin2 θ13 =

0.0246+0.0029
−0.0028(0.0250+0.0026

−0.0027), ∆m2
21 = (7.62 ± 0.19) × 10−5 eV2 and |∆m2

31| = 2.55+0.06
−0.09(2.43+0.07

−0.06) ×
10−3 eV2. Where the values are for normal (inverted) hierarchy. The exception is the Dirac CP-violation
phase which we set to zero for the sake of simplicity, although we explore its effect in the Appendix A.
The best-fit value for the CP-violation phase is 0.8π(−0.03π), but the phase is not measured at statically
significant level. The convention adopted on the mixing angles follows the standard of the Particle
Data Group [41]. The neutrino oscillation parameters adopted here have been obtained from neutrino
oscillation experiments only [40] and are in agreement with an independent recent compilation [42]
that also uses cosmological information.

2. Neutrino Oscillations: Two-Flavour Case

We start by a discussion of the two-flavour case. Although some readers might think that this is
a trivial exercise, we think that it is useful to clarify the concepts and the method for a discussion of
the three-flavour case. We obtain an exact analytic treatment of neutrino vacuum oscillations from
the relativistic to the non-relativistic regime in an expanding universe, their decoherence and time
and/or momentum averaging for arbitrary initial conditions, neutrino parameters and cosmological
model parameters.

The physical state of a system with two neutrino flavours is described by a two-dimensional
Hilbert space (factored with the corresponding spaces for the other physical degrees of
freedom—neutrino spin and momentum). The space of all Hermitian 2× 2 matrices is spanned by
the unit matrix I and the Pauli matrices σi, where the Latin indices i run from 1 to 3. We write for any
Hermitian matrix M = M0 I + Miσi, where we sum over repeated indices. We have trM = 2M0 and
trM2 = 2(M2

0 + M2
i ). Please note that hermiticity implies that the components Mi are real numbers.

Expressing the density matrix in this matrix basis, the von Neumann Equation (3) becomes:

Dρ0 = 0, Dρi = 2εijkHjρk, (7)

with εijk denoting the totally antisymmetric symbol. The trace condition gives ρ0 = 1/2.
So far we did not specify a basis for the neutrino states. The free Hamiltonian is diagonal for the

neutrino mass states and reads:
Hm = H0 I +H3σ3, (8)

with:

H0 =
1
2

(√
m2

1 +
q2

a2 +

√
m2

2 +
q2

a2

)
, (9)

H3 =
1
2

(√
m2

1 +
q2

a2 −
√

m2
2 +

q2

a2

)
. (10)

2 There is a local minimum for the mixing angle θ23 at 0.4270.034
0.027 with a difference of ∆χ2 = 0.02 when compared to the

global minimum.
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Without restriction of generality we assume that 0 ≤ m1 < m2. For m1 = m2 we find thatH3 = 0 and
ρ is a constant matrix.

Flavour-mixing is described by a two-dimensional rotation (U†U = I), written as:

U =

(
cos θ sin θ

− sin θ cos θ

)
. (11)

The Hamiltonian in flavour space reads:

Hf = UHmU†. (12)

Thus, the solution in flavour basis is:

ρf(a, q) = Uρm(a, q)U†, (13)

where the initial condition for the mass states is given by the rotated conditions in flavour space:

ρm(aini, q) = U†ρf(aini, q)U. (14)

2.1. Exact Solution

Neutrino production and detection involves neutrino interactions, i.e., flavour states.
Thus, for both the initial conditions and the late time values of ρ we are interested in the flavour
basis. Nevertheless, the Hamiltonian is diagonal in the mass basis, giving rise to simple time evolution
of Equation (3). We thus first study the time evolution in the mass basis using Bloch vectors. Once the
time evolution is known, we can specify the initial conditions in flavour basis, transform them to the
mass basis, evolve in time and finally transform back to the flavour basis. As shown below, this can be
done analytically without any assumption on neutrino masses, momenta or cosmological model.

In the mass basis the von Neumann Equation (7) is simply:

Dρ0 = 0, Dρ1 = −2H3ρ2, Dρ2 = 2H3ρ1, Dρ3 = 0. (15)

Thus, ρ0 and ρ3 are constants. Furthermore, we define:

∆(a, q) = −2H3 =

(√
m2

2 +
q2

a2 −
√

m2
1 +

q2

a2

)
. (16)

With the new variable:

dxq =
∆(a, q)
H(a)

d ln a, (17)

we find the exact solution:

ρ1(x) = Aq cos(xq + φq), ρ2(x) = −Aq sin(xq + φq), (18)

where Aq and φq are to be fixed by the initial conditions. We find that trρ2 = 1/2 + 2(ρ2
3 + A2

q).
As we saw already, the first necessary condition for neutrino oscillation (a non-trivial evolution

of the density matrix) is m2 > m1. A second necessary condition is θ 6= 0, as for θ = 0 the mass
basis agrees with the flavour basis and only non-trivial values for ρ0 and ρ3 could be generated
(under the assumption that neutrinos can only be generated in a pure flavour state). As was shown
above, both ρ0 and ρ3 are preserved in the mass basis and thus for vanishing mixing angles no neutrino
oscillations occur.

As we show below, there is also a third necessary condition for the oscillations of neutrino flavours
to happen: at least one of the ρfi 6= 0, otherwise the oscillation amplitude A vanishes.
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To find explicit expressions we first study how the Pauli matrices are transformed from mass to
flavour space. The transformation in the other direction is obtained by θ → −θ. This allows us to fix
the constants Aq and φq. In the following we drop the explicit indication of the q-dependence; we find:

A =
√
[cos(2θ)ρf1(xini) + sin(2θ)ρf3(xini)]2 + ρf2(xini)2, (19)

and:

φ = −xini + arctan
(

−ρf2(xini)

cos(2θ)ρf1(xini) + sin(2θ)ρf3(xini)

)
. (20)

Finally, at x > xini, we may express the most general solution in flavour space as:

ρf0(x) =
1
2

, (21)

ρf1(x) = cos(2θ)A cos(x + φ) + sin2(2θ)ρf1(xini)− sin(2θ) cos(2θ)ρf3(xini), (22)

ρf2(x) = −A sin(x + φ), (23)

ρf3(x) = sin(2θ)A cos(x + φ)− sin(2θ) cos(2θ)ρf1(xini) + cos2(2θ)ρf3(xini). (24)

It is interesting to check that indeed:

trρ2 =
1
2
+ 2[ρ2

f1(xini) + ρ2
f2(xini) + ρ2

f3(xini)], (25)

is a preserved quantity. As trρ2 ≤ 1 for any physical state, we find that the initial conditions must
satisfy the constraint:

ρ2
f1(xini) + ρ2

f2(xini) + ρ2
f3(xini) ≤

1
4

. (26)

Since the components ρi are real, it follows that all individual components must come from
the interval [−1/2,+1/2], for any initial conditions including arbitrary lepton-flavour asymmetries.
Thus, we also see that trρ2 ≥ 1/2.

For the special case of maximal mixing, given by θ = π/4, we find:

ρf0(x) =
1
2

, (27)

ρf1(x) = ρf1(xini), (28)

ρf2(x) = −A sin(x− φ), (29)

ρf3(x) = A cos(x− φ). (30)

with:

A =
√

ρ2
f3 + ρ2

f2, φ = −xini + arctan
(
−ρf2(xini)

ρf3(xini)

)
. (31)

2.2. Initial Conditions

If at the initial time all neutrinos are in one of the two flavour states, we have:

ρf(xini) =
1
2

(
1 + δ 0

0 1− δ

)
, (32)

with δ = δ(q) ∈ [−1, 1] describing the asymmetry of the initial flavours. This means we assume
that nature does not produce flavour-entangled (mixed) states at neutrino decoupling. Expanding in
Pauli matrices:

ρf0(xini) =
1
2

, ρf1(xini) = 0, ρf2(xini) = 0, ρf3(xini) =
δ

2
, (33)
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and replacing in (19) and (20), we have:

A =
δ

2
sin(2θ), φ = −xini, (34)

and finally:

ρf0(x) =
1
2

, (35)

ρf1(x) =
δ

2
[sin(2θ) cos(2θ) cos(x− xini)− sin(2θ) cos(2θ)], (36)

ρf2(x) = − δ

2
sin(2θ) sin(x− xini), (37)

ρf3(x) =
δ

2
[sin2(2θ) cos(x− xini) + cos2(2θ)]. (38)

In the following we choose xini = 0, without restriction of generality.

2.3. Decoherence

To describe the decoherence of a system of two neutrino flavours in vacuum in an expanding
Universe, we make use of a single Lindblad operator [35] and decompose it in Pauli matrices:

L = l0 I + ∑
i

liσi , (39)

where we have in principle four amplitudes li. Any Lindblad operator La must be Hermitian (L† = L)
to guarantee a monotonic increase of the von Neumann entropy and it must commute with the
Hamiltonian ([Hm,L] = 0) to conserve the statistical average energy

(
d
dt tr(HmρL) = 0

)
. Commutation

with the diagonal Hamiltonian (in the mass basis in vacuum) requires that l1 = l2 = 0, resulting in the
decoherence operator: [

L,
[
ρL,L

]]
= −4l2

3(σ1ρL
1 + σ2ρL

2 ) . (40)

Without restriction of generality we put l0 = 0, as it does not show up in the Lindblad equation.
Thus, the components of the master equation with the Lindblad operator L become:

DρL
0 = 0, DρL

1 = −2H3ρL
2 − 4l2

3ρL
1 , DρL

2 = 2H3ρL
1 − 4l2

3ρL
2 , DρL

3 = 0, (41)

whose solution in mass basis can also be found analytically (using dt = −dx/2H3):

ρL
0 (x) =

1
2

, (42)

ρL
1 (x) =

δ

2
sin(2θ) cos(x) exp

[
2
∫ l2

3
H3

dx

]
, (43)

ρL
2 (x) = − δ

2
sin(2θ) sin(x) exp

[
2
∫ l2

3
H3

dx

]
, (44)

ρL
3 (x) =

δ

2
cos(2θ), (45)
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and are easily rotated to the flavour basis:

ρL
f0(x) =

1
2

, (46)

ρL
f1(x) = − δ

2
sin(2θ) cos(2θ)

(
1− cos(x) exp

[
2
∫ l2

3
H3

dx

])
, (47)

ρL
f2(x) = − δ

2
sin(2θ) sin(x) exp

[
2
∫ l2

3
H3

dx

]
, (48)

ρL
f3(x) =

δ

2

(
cos2(2θ) + sin2(2θ) cos(x) exp

[
2
∫ l2

3
H3

dx

])
. (49)

Please note that l3 can be an arbitrary real function of xq. The integral in the exponent is negative
definite if l3 6= 0 and thus gives rise to a damping of all non-diagonal components in the mass basis.
We interpret the function l3(x) as the influence of the environment, the expanding cosmos, that leads
to the decoherence of neutrino states.

2.4. Averaging

The time averaging of (35) and (38) produces the same asymptotic result as the decoherence
process by the Lindblad operator. The final effect is the suppression of terms with time dependence.
For time averaging the fast oscillations terms take asymptotic values (〈cos(x)〉 = 〈sin(x)〉 → 0 and
〈sin2(x)〉 = 〈cos2(x)〉 → 1/2). Using Lindblad operators, one can see that the terms which have a time
dependence in the mass basis, Equations (43) and (44), are exponentially suppressed once decoherence
starts, extinguishing the off-diagonal contributions corresponding to mixed states. In the flavour basis,
the off-diagonal terms are driven to a constant value. We use the effect of the Lindblad operator to
describe decoherence, setting to zero the contributions from ρ1 and ρ2 in the mass basis and then rotate
to the flavour basis:

ρ̄f0 =
1
2

, (50)

ρ̄f1 = − sin(2θ) cos(2θ)
δ

2
, (51)

ρ̄f2 = 0, (52)

ρ̄f3 = cos2(2θ)
δ

2
. (53)

For this averaged system we have trρ̄2 = 1
2 [1 + δ2 cos2(2θ)], which is independent of time

or oscillation phase since we performed averaging and it depends on the mixing angle because it
undergoes mixing. The result is numerically equivalent to a system that lost all coherence. For the exact,
non-averaged solution we have trρ2 = 1

2 (1 + δ2), which is independent of mixing angles and time,
as one expects for a system that undergoes unitary (deterministic) time evolution. The difference of the
traces of the squared matrices, a measure for the difference of coherence of averaged and microscopic
states, is then trρ̄2 − trρ2 = − 1

2 δ2 sin2(2θ).
For maximal mixing (θ = π/4), the time-averaged solution with arbitrary initial

condition becomes:
ρ̄f0 = 1/2, ρ̄f1 = ρf1(xini), ρ̄f2 = 0, ρ̄f3 = 0. (54)

Thus, the density matrix of maximally mixing neutrinos does not depend on the mixing of the
initial flavour distortion. The probabilities to find a neutrino in the first or second flavour state are
equal, and the amount of mixing is constant. For initial conditions in which the neutrinos are in
pure flavour states (ρf1(xi) = 0), the time-averaged density matrix is proportional to the unit matrix,
as one would expect.
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2.5. Relation of Lindblad Formalism and Averages

We observe that the expressions (50) and (53) are identical to the expressions (46) and (49)
asymptotically (ρL

fi ' ρ̄fi), i.e., if the oscillation phase x is large enough then decoherence has happened.
The averaged density matrix agrees with the microscopic density matrix after decoherence. It might
be tempting to conclude that decoherence and averaging over time (or perhaps momenta) would
be equivalent. This has actually be proposed in previous literature, see e.g., [35]. However, a closer
investigation reveals that this is not the case.

Let us apply our calculation to experiments which test solar, reactor or atmospheric neutrinos,
to revisit the arguments given in [35]. The neutrinos of interest in oscillation experiments are relativistic,
i.e., q ≈ E and thus ∆(a, q) ≈ ∆m2/2E (with energy E), and propagate in non-expanding space
[(1/H)d ln a = dt, a = 1]. We find the oscillation phase (17) becomes:

xq =
∫ ∆(a, q)

H(a)
d ln a ≈

∫ ∆m2

2E
dt =

∆m2

2E
L, (55)

where the distance L is the distance traveled by neutrinos at the speed of light. The decoherence
term becomes:

exp

(
4
∫ L/c

0

l2
3

2H3
dx

)
= exp(−4

∫ L/c

0
l2
3dt) . (56)

For the analysis of neutrino-oscillation experiments, one usually measures the number of
neutrinos that were emitted in one flavour and are detected in either the same or the other flavour.
This corresponds to a maximal initial distortion (e.g., δ = 1 corresponds to ρ(xini) = |ν1〉〈ν1|).
The well-known result, including a decoherence term, for the probability to measure the second
flavour is now easily recovered, P1→2(L, E) = tr[|ν2〉〈ν2| ρ(x)]):

P1→2(L, E) =
1
2

sin2(2θ)

[
1− exp(−4

∫ L/c

0
l2
3dt) cos

(
∆m2

2E
L
)]

. (57)

Let us compare this result with the probability obtained in a description in which wave packets
instead of Lindblad operators (i.e., l3 = 0) are considered to describe the process of decoherence [26,35].
The distribution of the oscillation phase x is often assumed to be a Gaussian, the phase averaged
probability of flavour oscillations is then given by:

〈P1→2〉 =
∫

P1→2(x)
[

1
σ
√

2π
exp

(
− (x− 〈x〉)2

2σ2

)]
dx , (58)

where the phase width of the wave packet is σ =
√
〈(x− 〈x〉)2〉. The integral gives:

〈P1→2〉 =
1
2

sin2(2θ)

(
1− exp

(
−σ2

2

)
cos(〈x〉)

)
, (59)

with 〈x〉 = (∆m2/2)〈L/E〉. Comparing the equation above with Equation (57), it has been argued that
they have the same structure once we identify the decoherence term with the wave packet dispersion:

4
∫ L/c

0
l2
3dt =

σ2

2
. (60)

This result is the basis of the argued equivalence between Lindblad decoherence and Gaussian
averaging [35].

However, this argument is inconsistent already at the level of mathematical assumptions.
To go from (58) to (59), σ was assumed to be a constant, i.e., independent of the phase x. However,
the identification (60) suggests that either σ = σ(L), inconsistent with the assumption, or the integral
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on the l.h.s. should be constant. To make that integral a constant we can assume that l2
3 is proportional

to a Dirac-delta distribution on the time interval [0, L/c], which would correspond to a sudden,
but incomplete decoherence, i.e., the asymptotic state remains to show (damped) neutrino oscillations.
We conclude that the two mechanisms, decoherence and phase (or time or momentum) averaging are
not physically equivalent.

3. Neutrino Oscillations: Three-Flavour Case

For the three flavour case the space of Hermitian matrices is spanned by the unit matrix and the
Gell-Mann matrices λi [43] where the index i runs from 1 to 8. In this case, Equation (3) becomes:

Dρ0 = Dρ3 = Dρ8 = 0, Dρk = 2 fi3kρiH3 + 2 fi8kρiH8 , (61)

where fijk are the usual structure constants of the Lie algebra su(3). By unitarity, we mandatorily
have ρ0 = 1/3.

In the mass basis the Hamiltonian is diagonal and is given by:

Hm = H0 I +H3λ3 +H8λ8, (62)

with:

H0 =
1
3

(√
m2

1 +
q2

a2 +

√
m2

2 +
q2

a2 +

√
m2

3 +
q2

a2

)
, (63)

H3 =
1
2

(√
m2

1 +
q2

a2 −
√

m2
2 +

q2

a2

)
, (64)

H8 =
1

2
√

3

(√
m2

1 +
q2

a2 +

√
m2

2 +
q2

a2 − 2

√
m2

3 +
q2

a2

)
. (65)

Without restriction of generality we assume that 0 ≤ m1 < m2 < m3 for normal hierarchy and
0 ≤ m3 < m1 < m2 for inverted hierarchy. Once again, for equal or vanishing masses the Hamiltonian
is proportional to the identity matrix.

The flavour mixing matrix is now a three-dimensional rotation (U†U = I) and can be written as:

U =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 , (66)

where cij = cos θij, sij = sin θij and δCP is a Dirac charge-parity (CP) violating phase. In the main
body of this work we assume vanishing CP-violation and include some results for a non-vanishing
value in the Appendix A. Both Majorana phases are irrelevant for the aspects discussed in this work.
The Hamiltonian in flavour space is obtained as in Equation (12).

3.1. Exact Solution

While the initial states and the states observable by means of a particle physics detector are
given in flavour basis, the von Neumann equation and its solution is most suitable formulated in the
mass basis. This approach simplifies the system of equations since the Hamiltonian is diagonal in the
mass basis:

Dρ0 = 0, Dρ1 = −2H3ρ2, Dρ2 = 2H3ρ1,

Dρ3 = 0, Dρ4 = −
(
H3 +

√
3H8

)
ρ5, Dρ5 =

(
H3 +

√
3H8

)
ρ4, (67)

Dρ6 = −
(
−H3 +

√
3H8

)
ρ7, Dρ7 =

(
−H3 +

√
3H8

)
ρ6, Dρ8 = 0.
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The diagonal components of the density matrix (ρ0, ρ3 and ρ8) are constant. The remaining
off-diagonal components give rise to oscillating solutions. The oscillation frequency is determined
by: combinations of the asymmetric terms of the Hamiltonian (H3 andH8). There are six equations,
forming three independent harmonic oscillators of two levels each, where their frequency is given by:

∆(a, q)21 = −2H3 =

(√
m2

2 +
q2

a2 −
√

m2
1 +

q2

a2

)
, (68)

∆(a, q)31 = −(H3 +
√

3H8) =

(√
m2

3 +
q2

a2 −
√

m2
1 +

q2

a2

)
, (69)

∆(a, q)32 = −(−H3 +
√

3H8) =

(√
m2

3 +
q2

a2 −
√

m2
2 +

q2

a2

)
, (70)

for simplicity, we define three different oscillation phases to account for the three sectors of oscillation:

dxij =
∆(a, q)ij

H(a)
d ln a , (71)

where the only three independent combinations are ij = 21, 31, 32. We find the exact solutions:

ρ1(x21) = +A cos(x21 + φ12), ρ2(x21) = −A sin(x21 + φ12),

ρ4(x31) = +B cos(x31 + φ45), ρ5(x31) = −B sin(x31 + φ45),

ρ6(x32) = +C cos(x32 + φ67), ρ7(x32) = −C sin(x32 + φ67). (72)

The amplitudes A, B and C and phases φ12, φ45 and φ67 are fixed by the initial conditions.
For arbitrary initial conditions, we find trρ2 = 1/3 + 2(ρ2

3 + ρ2
8 + A2 + B2 + C2).

During the radiation dominated epoch all three neutrinos are relativistic and the oscillation
phase can be approximated by xij ≈ 1/(

√
ΩradH0)∆m2

ij/[q(1 + z)2]. When the neutrinos become
non-relativistic, the oscillation phases start to evolve differently with redshift. In Figure 1 we show
how the three different oscillation phases start to deviate from the phase evolution of relativistic
neutrinos during the matter dominated epoch. Thus, we compare to the redshift dependence of the
relativistic case, xij ≈ 1/(

√
ΩmH0) ∆m2

ij/[3q(1 + z)3/2]. As can be clearly seen in the figure, at the
moment when the most massive neutrino becomes non-relativistic, which happens at z ∼ 100 for the
cases considered, the phases start to evolve quite differently, until they evolve again in parallel in the
non-relativistic regime. It is worth noting that the heavier the neutrinos are, the earlier the transition
to the non-relativistic regime happens. In Figure 1 we adopted the lightest mass state to be massless.
Thus, one can infer that the transition happens at redshifts z & 100.

The Gell-Mann matrices are transformed from mass to flavour space according to UλiU†. Instead
of presenting the most general solution, we restrict our attention to initial states relevant to cosmology.

3.2. Initial Conditions

Just before neutrino decoupling muon and tau neutrinos interact via neutral currents only, while
electron neutrinos also experience charge current interactions. Thus, the muon and tau neutrinos
are expected to decouple slightly before the electron neutrinos [21,44]. Neutrino oscillations started
in the early Universe slightly before their decoupling (defined as the moment when the interaction
rate equals the Hubble expansion rate) from the primordial plasma. Non-instantaneous decoupling
and quantum electro-dynamical corrections lead to spectral distortions. At this stage, the universe
was filled with free electrons and positrons but not anymore with muons or taus, which had long
annihilated or decayed to lighter leptons or photons. Thus, electron neutrinos end up with a different
distortion of momentum and total number density than the other two active flavours. Later, during
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electron-positron annihilation, extra distortions are produced and again with different branching ratios
for electron neutrinos and muon/tau neutrinos.
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x32
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x21
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/2

x32

x3�
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Figure 1. Evolution of the neutrino-oscillation phases (x21, x31 and x32) as a function of cosmological
redshift z for the three Gell-Mann blocks for normal (left) and inverted (right) hierarchy with the
lightest mass state assumed to be massless, shown for neutrinos at the peak of their thermal distribution
(q = 3.15Tν). The mass-squared differences are inferred from the global analysis of neutrino-oscillation
data [40].

We assume that electron neutrinos are created with a distortion in the density matrix denoted by
δ(q) and that muon and tau neutrinos can be described by the same distortion, −δ(q)/2. We further
allow for a difference in the spectral distortion of muon and tau neutrinos described by β = β(q).
Without primordial lepton-flavour asymmetry we would expect that β = 0.

Without loss of generality we start to count oscillations at the moment when we set the initial
conditions and thus have x21(tini) = x31(tini) = x32(tini) = 0. The assumption of pure initial flavour
states gives then φ21 = φ31 = φ32 = 0. The initial conditions are:

ρf(0) =
1
3

 1 + δ 0 0
0 1− δ/2 + β 0
0 0 1− δ/2− β

 , (73)

with δ ∈ [−1, 2], β ∈ [−α, α], with α =
√

3− 3δ2/4 from the condition trρ2 ≤ 1. Setting the off-diagonal
initial condition null is equivalent to assume that nature does not produce flavour-entangled states,
which is an approximation since neutrinos decoupling is not instantaneous.

Using the above initial conditions in Equation (68), we are left with the following initial values for
the density matrix in flavour basis (spanned by Gell-Mann matrices):

ρf0(0) =
1
3

, ρf3(0) =
1

12
(3δ− 2β), ρf8(0) =

1
4
√

3
(δ + 2β) , (74)

where unshown entries are null. Rotating to the mass basis, we obtain an exact solution of the von
Neumann equation for the Gell-Mann coefficients of the density matrix:

ρ0 =
1
3

, (75)

ρ1(x21) =
δ

4
sin(2θ12) cos2 θ13 cos(x21)

+
β

12
[sin(2θ12)(cos(2θ13)− 3) cos(2θ23)− 4 cos(2θ12) sin θ13 sin(2θ23)] cos(x21), (76)
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ρ2(x21) = −
1
4

δ sin(2θ12) cos2 θ13 sin(x21)

− β

12
[sin(2θ12)(cos(2θ13)− 3) cos(2θ23)− 4 cos(2θ12) sin θ13 sin(2θ23)] sin(x21), (77)

ρ3 =
δ

4
cos(2θ12) cos2 θ13

+
β

12
[cos(2θ12)(cos(2θ13)− 3) cos(2θ23) + 4 sin(2θ12) sin θ13 sin(2θ23)] , (78)

ρ4(x31) =
δ

4
cos θ12 sin(2θ13) cos(x31)

+
β

6
[cos θ12 sin(2θ13) cos(2θ23)− 2 sin θ12 cos θ13 sin(2θ23)] cos(x31), (79)

ρ5(x31) = −
δ

4
cos θ12 sin(2θ13) sin(x31)

− β

6
[cos θ12 sin(2θ13) cos(2θ23)− 2 sin θ12 cos θ13 sin(2θ23)] sin(x31), (80)

ρ6(x32) = +
δ

4
sin θ12 sin(2θ13) cos(x32)

+
β

6
[sin θ12 sin(2θ13) cos(2θ23) + 2 cos θ12 cos θ13 sin(2θ23)] cos(x32), (81)

ρ7(x32) = −
δ

4
sin θ12 sin(2θ13) sin(x32)

− β

6
[sin θ12 sin(2θ13) cos(2θ23) + 2 cos θ12 cos θ13 sin(2θ23)] sin(x32), (82)

ρ8 = +
δ

8
√

3
(3 cos(2θ13)− 1) +

β

2
√

3
cos2(θ13) cos(2θ23), (83)

where the coefficients ρ0, ρ3 and ρ8 are time-independent. The corresponding result including
non-vanishing CP-violation phase is shown in the appendix.

We do not present the general expressions in the flavour basis because they are lengthy and
for the purpose of calculating solutions after decoherence, the solution in mass basis is all we need.
Instead we restrict our presentation to the case of the normal neutrino hierarchy with vanishing Dirac
CP-violation phase and for the best-fit values of the mixing angles from neutrino-oscillation data:

ρf0(xij) = 1/3, (84)

ρf1(xij) = δ[−0.08223 + 0.02458 cos(x21) + 0.03569 cos(x31) + 0.02198 cos(x32)] +

β[−0.02451 + 0.00191 cos(x21)− 0.10673 cos(x31) + 0.12933 cos(x32)], (85)

ρf2(xij) = δ[−0.13978 sin(x21)− 0.04476 sin(x31)− 0.01588 sin(x32)] +

β[−0.01086 sin(x21) + 0.13389 sin(x31)− 0.09345 sin(x32)], (86)

ρf3(xij) = δ[0.08141 + 0.14924 cos(x21) + 0.03054 cos(x31)− 0.01119 cos(x32)] +

β[−0.02108 + 0.01159 cos(x21)− 0.09134 cos(x31)− 0.06584 cos(x32)], (87)

ρf4(xij) = δ[0.03797− 0.08378 cos(x21) + 0.03559 cos(x31) + 0.01022 cos(x32)] +

β[0.05279− 0.00651 cos(x21)− 0.10645 cos(x31) + 0.06016 cos(x32)], (88)

ρf5(xij) = δ[0.17592 sin(x21)− 0.02833 sin(x31)− 0.01986 sin(x32)] +

β[0.01366 sin(x21) + 0.08473 sin(x31)− 0.11685 sin(x32)], (89)

ρf6(xij) = δ[−0.09714 + 0.10882 cos(x21)− 0.00012 cos(x31)− 0.01180 cos(x32)] +

β[0.06137 + 0.00845 cos(x21)− 0.00035 cos(x31)− 0.06947 cos(x32)], (90)
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ρf7(xij) = δ[−0.03569 sin(x21) + 0.03568 sin(x31)− 0.03568 sin(x32)] +

β[−0.00277 sin(x21)− 0.10673 sin(x31)− 0.20999 sin(x32)], (91)

ρf8(xij) = δ[0.03621 + 0.10009 cos(x21)− 0.02463 cos(x31) + 0.03268 cos(x32)] +

β[0.01492 + 0.00777 cos(x21) + 0.07368 cos(x31) + 0.19230 cos(x32)]. (92)

3.3. Decoherence

As with the two-flavour case, the Lindblad operator for the three-flavour case has contributions
from the the same basis elements as the Hamiltonian ([Hm,L] = 0), therefore its form in Gell-Mann
matrices is:

L = l0 I + l3λ3 + l8λ8. (93)

Consequently, the decoherence term reads:

[L, [ρL,L]] = −4l2
3(ρ

L
1 λ1 + ρL

2 λ2)− (l3 +
√

3l8)2(ρL
4 λ4 + ρL

5 λ5)

−(l3 −
√

3l8)2(ρL
6 λ6 + ρL

7 λ7). (94)

Apparently, there is no contribution of the Lindblad term to the evolution equations of ρ0, ρ3 and
ρ8, which thus remain constant in the mass basis. As above, we set l0 = 0. The Lindblad Equation (68)
can be written as:

DρL
0 = 0,

DρL
1 = −2H3ρL

2 − 4l2
3ρL

1 ,

DρL
2 = 2H3ρL

1 − 4l2
3ρL

2 ,

DρL
3 = 0,

DρL
4 = −

(
H3 +

√
3H8

)
ρL

5 − (l3 +
√

3l8)2ρL
4 ,

DρL
5 =

(
H3 +

√
3H8

)
ρL

4 − (l3 +
√

3l8)2ρL
5 , (95)

DρL
6 = −

(
−H3 +

√
3H8

)
ρL

7 − (l3 −
√

3l8)2ρL
6 ,

DρL
7 =

(
−H3 +

√
3H8

)
ρL

6 − (l3 −
√

3l8)2ρL
7 ,

DρL
8 = 0.

Its solution in mass basis acquires the following decaying modes:

ρL
1 (x21) = ρ1(x21) exp

[
4
∫ l2

3
2H3

dx21

]
, (96)

ρL
2 (x21) = ρ2(x21) exp

[
4
∫ l2

3
2H3

dx21

]
, (97)

ρL
4 (x31) = ρ4(x31) exp

[∫
(l3 +

√
3l8)2

H3 +
√

3H8
dx31

]
, (98)

ρL
5 (x31) = ρ5(x31) exp

[∫
(l3 +

√
3l8)2

H3 +
√

3H8
dx31

]
, (99)

ρL
6 (x32) = ρ6(x32) exp

[∫
(l3 −

√
3l8)2

−H3 +
√

3H8
dx32

]
, (100)

ρL
7 (x32) = ρ7(x32) exp

[∫
(l3 −

√
3l8)2

−H3 +
√

3H8
dx32

]
, (101)
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where the first terms on the right side are identical to the solutions without the Lindblad operator,
as in Equations (76) and (82). The terms ρ0, ρ3 and ρ8 are constants and equal to their initial condition
given by Equations (75), (79) and (83).

3.4. Averaging

The procedure to obtain time-averaged solutions is identical to the two-flavour case. We consider
that the Lindblad operator acts on the solutions in mass basis, suppressing the time-dependent terms
of the density matrix (i.e. ρ1, ρ2, ρ4, ρ5, ρ6, ρ7 → 0). Then the averaged density matrix in flavour basis is
obtained by rotating the remaining time-independent terms (i.e. ρ0, ρ3, ρ8) to obtain expressions similar
to (50) and (53).

Applying the Lindblad operator simplifies the solution in the mass basis, but the rotation to the
most general flavour basis generates solutions that are again too lengthy to include here. However,
we can show simple solutions using the best-fit values for the mixing angles in normal hierarchy and
vanishing CP-violation:

ρ̄f0 = 1/3, (102)

ρ̄f1 = −0.08223δ− 0.02451β, (103)

ρ̄f2 = 0, (104)

ρ̄f3 = 0.08141δ− 0.02108β, (105)

ρ̄f4 = 0.03797δ + 0.05279β, (106)

ρ̄f5 = 0, (107)

ρ̄f6 = −0.09714δ + 0.06137β, (108)

ρ̄f7 = 0, (109)

ρ̄f8 = 0.03621δ + 0.01492β. (110)

This allows us to obtain the probability Pαα to find a neutrino of the CNB in flavour state α:

Pee = ρ̄f0 + ρ̄f3 +
1√
3

ρ̄f3 =
1
3
+ 0.1023δ− 0.0125β, (111)

Pµµ = ρ̄f0 − ρ̄f3 +
1√
3

ρ̄f3 =
1
3
− 0.0605δ + 0.0297β, (112)

Pττ = ρ̄f0 −
2√
3

ρ̄f3 =
1
3
− 0.0418δ− 0.0172β. (113)

A graphical illustration of this result is provided in Figure 2. It shows that today’s CNB does
not necessarily have a 1:1:1 mix of the three active neutrino flavours. In fact, the expected mix of
neutrino flavours depends on the initial values of the spectral distortions δ(q) and β(q). In the
standard (minimal) scenario with vanishing lepton-flavour asymmetries we have β� δ = O(10−4)

and deviations from flavour equality are tiny.
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Figure 2. Probabilities to find cosmological neutrinos at different flavour states before (dotted) and
after (solid) decoherence as a function of the initial distortions δ = δ(q) (left, β fixed to zero) and
β = β(q) (right, δ fixed to zero). The initial distortion for electron neutrinos is δ/3, for muon neutrinos
−δ/6 + β/3, and for tau neutrinos −δ/6− β/3. The mixing angles are given by the global fit to
neutrino-oscillation data [40] for the normal hierarchy and we assume a vanishing CP-violation phase.

3.5. Discussion

The Lindblad operator introduces two degrees of freedom for the rate of decoherence (l3 and l8)
but the formalism itself does not indicate when the operator should start to act. To better understand
the evolution of the three-flavour system, we present the increase of the oscillation phase as a function
or redshift in Figure 1. We see that the phases evolve in the same way as long as the neutrinos
are effectively relativistic. This may give a first hint that the decoherence of cosmological neutrinos
should start when the heaviest neutrino becomes non-relativistic, as already discussed for the case of
two neutrino flavours.

We have learned from the discussion of the two-flavour case that decoherence via a (in general
time and momentum dependent) Lindblad operator and averaging lead to the same asymptotic density
matrix. The propagation speed of a wave packet is given by the respective group velocity. In the case
of three neutrino masses we have three different group velocities, which are functions of redshift:

vgi(z) =
q(1 + z)√

m2
i + q2(1 + z)2

. (114)

In Figure 3 we plot the difference of these group velocities for pairs of neutrino mass states for
q = 3.15Tν. We observe that the group velocities are identical as long as all neutrinos are relativistic.
They differ when the heaviest neutrino becomes non-relativistic. Again, this suggests that coherent
neutrino oscillations, as described by the von Neumann equation, take place during the relativistic
neutrino propagation. Without decoherence that statement would hold until today.

One could argue that neutrino oscillations can be averaged shortly after neutrino decoupling and
thus decoherence takes place in the early Universe; however, it seems that there is no justification for
that as neutrinos do not scatter at T < 1 MeV and after the annihilation of positrons and electrons the
number of potential scattering partners of neutrinos drops by another factor of 109. The fact that the
oscillating phase assumes high values does not necessarily mean that averaging is due automatically,
since in principle one could still recover its exact value and obtain the corresponding microscopic state
and trace it back to the initial state. A mechanism able to distinguish the mass states is still necessary.
We suggest here that it is the transition from the relativistic to the non-relativistic evolution that induces
decoherence of cosmological neutrinos and it is the difference in the inertial mass of the different
neutrino states that “couple” in a different way to space-time. In a perfectly isotropic and homogeneous
space-time, the different phase and group velocities would lead to a different world lines for the three
mass states, but instead of evolving as independent “classical” states, they would evolve as entangled
states. We think that situation must be different when we consider that the space-time is homogeneous
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and isotropic in a statistical sense only. We suggest that in such a situation the entanglement of the
states will probably be lost due to their (gravitational) interaction with the environment.
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Figure 3. Difference of group velocities of neutrinos mass states for normal (left) and inverted (right)
hierarchy (mlightest = 0), shown for neutrinos at the peak of their thermal distribution (q = 3.15Tν).
The vertical lines mark the time of transition to the non-relativistic regime for the two massive
neutrino states.

4. Entropy Evolution

4.1. Two-Flavour Case

Let us now have a closer look at the family entropy of the system. For density matrices
with |ρi| � 1/2, we approximate the von Neumann entropy, such that the logarithm can be
Taylor expanded:

S = −tr
[(

1
2

I + ρiσi

)
ln
(

1
2

I + ρjσj

)]
= ln 2− 1

2
tr
[
(I + 2ρiσi) ln

(
I + 2ρjσj

)]
= ln 2− 2

3

∑
i=1

ρ2
i +O(4), (115)

where we use the well-known properties of Pauli matrices, trσi = 0 and trσiσj = 2δij. The allowed
range of initial conditions gives ln 2− 1

2 ≤ S ≤ ln 2 at the leading order. Presumably, higher order
corrections change that into 0 ≤ S ≤ ln 2.

We can also obtain an exact expression for the family entropy. In the flavour basis:

S = ln 2− 1
2
(1− δ) ln[1− δ]− 1

2
(1 + δ) ln[1 + δ] . (116)

For small initial spectral distortions, |δ| � 1, we find:

S(x) = ln 2− δ2

2
+O(4). (117)

Thus, the family entropy is constant as quantum coherence persists as long as the neutrino
oscillations are determined by the von Neumann equation.

Decoherence due to whatever reason leads to the increase of entropy. If we calculate the family
entropy from the asymptotic solutions to the Lindblad equation, we find:

S = ln 2− 1
2
(1− δ cos(2θ)) ln[1− δ cos(2θ)]− 1

2
(1 + δ cos(2θ)) ln[1 + δ cos(2θ)], (118)
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while for small distortions:

S = ln 2− cos2(2θ)
δ2

2
+O

(
[cos(2θ)δ]4

)
. (119)

Therefore, the increase in family entropy caused by decoherence is:

∆S = Sdecoherent − Scoherent = sin2(2θ)
δ2

2
+O(δ4). (120)

It is maximal for maximal mixing, which also results in the maximum entropy state. For maximal
mixing and an expected spectral distortion δ of order 10−4, we find an increase of family entropy of
the order of 10−8.

Let us note that the time average of the entropy without decoherence does not change, as the
calculation of entropy and averaging do not commute. Thus, the mathematical identity of the
time-averaged density matrix and the asymptotic density matrix after decoherence does not correspond
to a physical equivalence of decoherence and time averaging. Nevertheless, this mathematical identity
can be useful in the calculation and is exploited in this work.

4.2. Three-Flavour Case

The entropy for three neutrino flavours and small spectral distortions can be Taylor expanded:

S = −tr
[(

1
3

I + ρiλi

)
ln
(

1
3

I + ρjλj

)]
= ln 3− 3

8

∑
i=1

ρ2
i +O(4), (121)

where we made use of trλi = 0 and trλiλj = 2δij. For the initial conditions specified in the previous
section, we find the simple result:

S = ln 3− δ2

4
− β2

3
+O(4). (122)

We can now calculate the increase of entropy due to decoherence. It is possible to obtain an
analytical result, dependent on the mixing angles θ12, θ13, θ23 and the initial flavour distortions δ and β.
For vanishing distortion between muon and tau neutrinos (β→ 0) there is no dependence on the angle
θ23 or in the CP-violation phase (complete result in the Appendix A). This second degree of freedom
(β) is responsible for distinguishing the third-level state, without it the system becomes identical to
a two-level system, when mixing between second and third state is irrelevant, and it is not possible to
develop CP-violation.

To calculate the increase in flavour entropy of the neutrino due to decoherence, we make use of
the fact that the von Neumann entropy does not depend on the basis in which the density matrix is
given; tr[ρa ln(ρa)] = tr[ρb ln(ρb)], where (a, b) are different bases. We choose the most suitable basis
to calculate the entropy difference of the initial (coherent) states and the final (decoherent) states:

∆S = Sdecoherent − Scoherent = −tr[ρ̄ ln(ρ̄)] + tr[ρf(xini) ln(ρf(xini))] . (123)

The initial and final entropy is calculated using the flavour and mass basis, respectively, for both
the density matrix is diagonal in the suitable basis. Here we exploit the mathematical identity of
the asymptotic solutions for the density matrix from the Lindblad equation and the time-averaged
solutions of the von Neumann equation.

Although it is possible to obtain an exact solution, we choose to present an approximation for
small distortions:
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∆S = 3δ2

64 cos2 θ13 [9− cos(4θ12)− (7 + cos(4θ12)) cos(2θ13)]

+ β2

192
[
64− cos2(2θ23)

(
2 cos(4θ12)(cos(2θ13)− 3)2 + 12 cos(2θ13) + 7 cos(4θ13) + 37

)]
− β2

3 sin2(2θ12) sin2 θ13 sin2(2θ23)

− β2

48 sin(4θ12)[sin(3θ13)− 7 sin θ13] sin(4θ23)

+ βδ
16 cos2 θ13 cos(2θ23) [5− (cos(4θ12) + 7) cos(2θ13) + 3 cos(4θ12)]

− βδ
4 cos2 θ13 sin(4θ12) sin θ13 sin(2θ23) +O(4) . (124)

This is an excellent approximation up to δ ∼ 0.5 and, contrary to the exact solution, shows a
simple dependence on the parameters.

For vanishing primordial lepton-flavour asymmetries, the special case of identical distortion for
muon and tau neutrinos is theoretically well motivated. Asymmetries between these two flavours are
not expected when the spectral distortions were produced. The combination of the expected initial
distortion (δ = 4.45× 10−4, β = 0) [21] with the measured mixing angles [40] gives rise to an increase
of flavour entropy, ∆S = 3.43× 10−8. In Figure 4 we present an interesting non-trivial case, when each
flavour has a different distortion and we show the dependence on the only mildly constrained mixing
angle θ23. We find that the latter affects the cosmological predictions only weakly.

Figure 4. Family entropy increase for a system of three mixed neutrino states as functions of the
initial spectral distortions δ and β (left). The values for the mixing angles are taken from the global
fit to neutrino-oscillation data [40], assuming a normal neutrino hierarchy and a vanishing Dirac
CP-violation phase. In the right panel the distortion δ is set to 10−4 and the mildly constrained mixing
angle θ23 is allowed to vary (shaded area is the allowed 3σ region).

5. Conclusions

In this work we have studied cosmological aspects of the decoherence of mixed neutrino states.
We have described decoherence phenomena via Lindblad operators in the von Neumann Equation (6).

The evolution of the family composition of the cosmic neutrino background, from the time when
neutrinos are decoupled until today, has been investigated in Section 3. We obtain the expected flavour
composition of the CNB as a function of arbitrary initial spectral distortions, mixing angles and Dirac
CP-violation phase. The net effect on the current flavour composition is shown in Figure 2, where we
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see that neutrino oscillations and the effect of decoherence tend to equilibrate the initial flavour
composition. For the measured mixing angles, the equilibration is not perfect and a small residual
flavour imbalance is expected. The remnant (in general momentum dependent) spectral distortion
of electron neutrinos is expected to be of the order of 10−4 in the minimal scenario (no primeval
lepton-flavour asymmetry).

The PTOLEMY experiment [5] is a proposal to detect cosmological neutrinos by looking for
electron kinetic energies beyond the end point of the tritium β-decay spectrum [4]. According to
our result, the fraction of electron neutrinos in the CNB carries information on the initial spectral
distortion after e±-annihilation and consequently about the state of the universe at that time. One could
even speculate about futuristic detectors with such an exquisite sensitivity that even CNB intensity
anisotropies [45], similar to the cosmic microwave temperature anisotropies, would be detected.
The residual imbalance of neutrino flavours in the minimal scenario is one order of magnitude larger
than the expected CNB anisotropies (apart from the dipole). The flavour imbalance would be increased
for a lepton-flavour asymmetric universe.

We obtained exact solutions for the time-dependent Wigner density matrix, valid for any mass
and momentum in a homogeneous and isotropic universe. The use of Lindblad operators results in
a similar phenomenology as time-averaging for the asymptotic density matrices. We demonstrated
that explicitly in Section 2 for a two-flavour example.

While it is interesting that Lindblad operators and averaging give rise to the same asymptotic
results for the density matrix, the time of decoherence and the details of its mechanism are not provided
by the formalism used. In the three-flavour case we are left with two unknown, non-trivial and real
functions, l3(x) and l8(x). To obtain physical intuition, we also studied the behavior of the oscillation
phase and the group velocities and their differences in Figures 1 and 3. We found that the group
velocities start to differ significantly once the heaviest neutrino mass state becomes non-relativistic.
This suggests that the transition to the non-relativistic regime might trigger decoherence in the
mass basis via the stochastic inhomogeneities of space-time, which are experienced differently by
the different mass states. Subsequently neutrinos would propagate in non-degenerate mass states,
which means that they are in a frozen mix of flavour states.

The problem of identifying the decoherence time can also be approached from an experimental
perspective by looking for observables related to the decoherence process. Recently, a similar idea has
been proposed by Weinberg [37], where he suggested that decoherence of an atomic three-level system
in the context of atomic clocks could provide enough information on the time scale of decoherence
that one could measure or at least constrain the Lindblad coefficients. Likewise, decoherence of
cosmological neutrinos could produce a traceable observable signal by the increase of CNB entropy
that immediately follows the decoherence process.

Such an entropy increase of neutrinos due to decoherence of mixed states was pointed out for
supernova neutrinos [29] and for cosmological neutrinos [33] previously. The latter work assumed
a fixed initial distortion proportional to the cross-section of each neutrino at the time when the
oscillations started. We went beyond and considered arbitrary spectral distortions and mixing angles.
To the best of our knowledge, the entropy increase with its dependence on the initial spectral distortions,
mixing angles and CP-violation phase in the cosmological context is obtained for the first time.
This result is valid regardless the time of when the decoherence process happens. Therefore, if we
could track the CNB entropy as a function of time, we would determine the moment of neutrino
decoherence observationally.

It remains to figure out how the CNB entropy could actually be measured: Since the CNB is
isotropic, any increase in entropy could only manifest itself macroscopically as an induced dissipative
pressure (bulk viscosity [46,47]). Thus, an entropy increase due to decoherence would affect the cosmic
neutrino equation of state. Any change of the equation of state gives rise to a contribution to the
integrated Sachs-Wolfe (ISW) effect. It is thus interesting to ask if such an effect could be large enough
to be observable. If decoherence happens when the neutrinos become non-relativistic, i.e., when
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neutrinos develop different group velocities as shown in Figure 3, then the decoherence contribution
to the ISW effect would show up at z & 100. However, we expect the effect to be tiny, since it is
not only suppressed by δ2 ∼ 10−8, but also by the ratio of neutrino density to matter density at
z & 100. Together this gives an effect of order 10−10 in the temperature anisotropies. A lepton-flavour
asymmetric universe might however give rise to a larger entropy increase (see Figure 4).

In this work we focused on the minimal scenario and proposed a small residual flavour imbalance
of the CNB and a tiny increase of neutrino entropy at z ∼ 100. A more detailed investigation of
lepton-flavour asymmetric models might reveal useful constraints on the primeval flavour composition
of the Universe.
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Appendix A. Contribution of the CP-violation Phase

In this appendix we explore results with non-vanishing CP-violation phase. The results are given
in resemblance with the previous section for the three-flavour case. There is no change in the dynamics,
solely in the mixing matrix. We consider the same initial conditions as in Equation (73) and use the
same differential Equation (68) to obtain the results in mass basis. First, we show the solutions for each
Gell-Mann block. The blocks λ0, λ3 and λ8 are still constant:

ρ0 =
1
3

, (A1)

ρ3 = +
δ

4
cos(2θ12) cos2 θ13

+
β

12
cos(2θ12)(cos(2θ13)− 3) cos(2θ23)

+
β

3
sin(2θ12) sin θ13 sin(2θ23) cos(δCP), (A2)

ρ8 = +
δ

8
√

3
(3 cos(2θ13)− 1)

+
β

2
√

3
cos2(θ13) cos(2θ23), (A3)

while the other blocks are time dependent, but now with dependence on the phase δCP:

ρ1(x21) = +
δ

4
sin(2θ12) cos2 θ13 cos(x21)

− β

3
cos(δCP) cos(2θ12) sin θ13 sin(2θ23) cos(x21)

+
β

12
sin(2θ12)(cos(2θ13)− 3) cos(2θ23) cos(x21)

− β

3
sin(δCP) sin θ13 sin(2θ23) sin(x21), (A4)
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ρ2(x21) = −1
4

δ sin(2θ12) cos2 θ13 sin(x21)

+
β

3
cos(δCP) cos(2θ12) sin θ13 sin(2θ23) sin(x21)

− β

12
sin(2θ12)(cos(2θ13)− 3) cos(2θ23) sin(x21)

− β

3
sin(δCP) sin θ13 sin(2θ23) cos(x21), (A5)

ρ4(x31) = +
δ

4
cos θ12 sin(2θ13) cos(x31 − δCP)

+
β

6
cos θ12 sin(2θ13) cos(2θ23) cos(x31 − δCP)

− β

3
sin θ12 cos θ13 sin(2θ23) cos(x31), (A6)

ρ5(x31) = − δ

4
cos θ12 sin(2θ13) sin(x31 − δCP)

− β

6
cos θ12 sin(2θ13) cos(2θ23) sin(x31 − δCP)

+
β

3
cos θ13 sin θ12 sin(2θ23) sin(x31), (A7)

ρ6(x32) = +
δ

4
sin θ12 sin(2θ13) cos(x32 − δCP)

+
β

6
sin θ12 sin(2θ13) cos(2θ23) cos(x32 − δCP)

+
β

3
cos θ13 cos θ12 sin(2θ23) cos(x32), (A8)

ρ7(x32) = − δ

4
sin θ12 sin(2θ13) sin(x32 − δCP)

− β

6
sin θ12 sin(2θ13) cos(2θ23) sin(x32 − δCP)

− β

3
cos θ13 cos θ12 sin(2θ23) sin(x32). (A9)

We observe that the phase δCP introduces a difference of phase for each solution as long as the
initial distortion β is non-vanishing, otherwise it becomes a global phase that can be absorbed in the
initial phase.

For non-vanishing CP-violation phase, the difference between probabilities for neutrinos and
anti-neutrinos in non-trivial. In the case of the transition from electron to muon neutrinos it is given by:

Peµ − Pēµ̄ = sin(2θ12) sin(2θ23) cos2(θ13) sin(θ13) sin(δCP)

×
[

sin(x21) exp

(
4
∫ l2

3
2H3

dx21

)

− sin(x31) exp

(∫
(l3 +

√
3l8)2

H3 +
√

3H8
dx31

)

+ sin(x32) exp

(∫
(l3 −

√
3l8)2

−H3 +
√

3H8
dx32

)]
, (A10)

which is consistent with the literature [48]. In order to stress the role of coherence in this particular
result, we use the Gell-Mann coefficients for the solutions contained in Equations (96) and (101).
We note that differences between neutrinos and anti-neutrinos for any transition probability vanish in
the limit of completed decoherence.
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We obtain the limit after decoherence is completed of Equations (A1) and (A9) and then rotate to
the flavour basis. For simplicity we replace the mixing angles for the best-fit in the global analysis [40]
for normal neutrino hierarchy:

ρ̄f0 = 1/3, (A11)

ρ̄f1 = −δ[0.05032 + 0.03192 cos(δCP)]

−β[0.00900 + 0.01447 cos(δCP) + 0.00104 cos(2δCP)], (A12)

ρ̄f2 = −0.03192δ sin(δCP) + β[0.01276 sin(δCP)− 0.00104 sin(2δCP)], (A13)

ρ̄f3 = δ[0.08767− 0.00626 cos(δCP)]

−β[0.02992− 0.01053 cos(δCP) + 0.00169 cos(2δCP)], (A14)

ρ̄f4 = δ[0.06333− 0.02536 cos(δCP)]

+β[0.00920 + 0.04442 cos(δCP)− 0.00082 cos(2δCP)], (A15)

ρ̄f5 = −0.02536δ sin(δCP)

−β[0.01014 sin(δCP) + 0.00082 sin(2δCP)], (A16)

ρ̄f6 = +δ[0.09423 + 0.00290 cos(δCP)]

+β[0.05407 + 0.00808 cos(δCP)− 0.00079 cos(2δCP)] (A17)

ρ̄f7 = 0.00551β sin(δCP) + 0.01285δ sin(δCP), (A18)

ρ̄f8 = δ[0.02539 + 0.01084 cos(δCP)]

+β[0.00133 + 0.01065 cos(δCP) + 0.00293 cos(2δCP)], (A19)

which are consistent with the solution for vanishing CP-violation phase present in
Equations (102) and (110).

Using the averaged solution in mass basis for simplicity, we can calculate the change in the von
Neumann entropy using Equation (5):

∆S = 3δ2

64 cos2 θ13 [9− cos(4θ12)− (7 + cos(4θ12)) cos(2θ13)]

+ β2

192
[
64− cos2(2θ23)

(
2 cos(4θ12)(cos(2θ13)− 3)2 + 12 cos(2θ13) + 7 cos(4θ13) + 37

)]
− β2

3 cos2(δCP) sin2(2θ12) sin2 θ13 sin2(2θ23)

− β2

48 cos(δCP) sin(4θ12)[sin(3θ13)− 7 sin θ13] sin(4θ23)

+ βδ
16 cos2 θ13 cos(2θ23) [5− (cos(4θ12) + 7) cos(2θ13) + 3 cos(4θ12)]

− βδ
4 cos(δCP) cos2 θ13 sin(4θ12) sin θ13 sin(2θ23) +O(4) . (A20)

The change in entropy is also consistent with the case of a vanishing CP-violation phase
in Equation (124), and identical for vanishing initial difference between muon and tau (β = 0).
In Figure A1 we show the probability to find a cosmological neutrino in a specified flavour state
in the averaged limit as well as the expected change in the entropy, both as functions of the
CP-violation phase.
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Figure A1. Change in entropy (left) and flavour imbalance (right) after decoherence as a function of
CP-violation phase. Initial spectral distortions δ and β are both fixed to the value 10−4. The values for
the mixing angles are given by the global fit of neutrino oscillation data [40] for normal hierarchy.
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