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Abstract

:

On extending the Standard Model (SM) Lagrangian, through a non-linear Born–Infeld (BI) hypercharge term with a parameter β (of dimensions of [mass]2), a finite energy monopole solution was claimed by Arunasalam and Kobakhidze. We report on a new class of solutions within this framework that was missed in the earlier analysis. This new class was discovered on performing consistent analytic asymptotic analyses of the nonlinear differential equations describing the model; the shooting method used in numerical solutions to boundary value problems for ordinary differential equations is replaced in our approach by a method that uses diagonal Padé approximants. Our work uses the ansatz proposed by Cho and Maison to generate a static and spherically-symmetric monopole with finite energy and differs from that used in the solution of Arunasalam and Kobakhidze. Estimates of the total energy of the monopole are given, and detection prospects at colliders are briefly discussed.
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1. Introduction


It is a curious fact that Maxwell initially wrote as one of his eponymous equations:


curlA→=μH→.



(1)







The magnetic field is denoted by H→; A→ is the electromagnetic vector potential; and μ is the magnetic permeability. If A→ is a non-singular vector, then:


∇→·H→=0.



(2)







In 1931, Dirac [1] considered a singular A→ field. If n→ is a constant unit vector in the z-direction, then the vector potential has the form:


A→r→=gmr→×n→rr−r→·n→,



(3)




with gm the magnetic charge [1], which has a singularity along the positive z-axis known as a Dirac string.1 On calculating curlA→, we find a magnetic field of a monopole:


B→r→=gmr→r3



(4)




except along the string. In classical physics, the string should play no role in the dynamics of particles because of its infinitesimal nature. In quantum theory, the situation is different since the wave function Ψ of a non-relativistic particle with charge e and mass m in a monopole background satisfies:


i∂∂tΨ=−∇→−ieA→22mΨ



(5)




which has the stationary solution:


Ψr→=Ψ0r→expie∫0r→dx→.A→x→.



(6)







The wave function Ψr→ is single valued, and so, there should be no change in Ψr→ for a small circuit C around the string. The change in the argument of the exponential in Equation (6) along C should be of the form 2nπi, where n is an integer. This leads to the condition:


e∮Cdx→·A→x→=2πn.



(7)







Since the magnetic flux through the circuit C is 4πgm, from Equation (7), we deduce the celebrated Dirac charge quantisation condition [1]:


egm=n2,n∈Z,



(8)




or, equivalently:


gm=12αne=gDn,gD≡12α,n∈Z,



(9)




where α is the fine structure constant, which at low (strictly speaking, zero) energy has the value α≃1/137, and gD=68.5 is the fundamental Dirac charge.



The standard model of particle physics has been developed subsequent to the original work of Dirac. It describes the weak, electromagnetic, and strong interactions of leptons and hadrons. It is important to ascertain how monopoles may fit into the electro-weak sector of the SM, in part because of the possible detectability of electro-weak monopoles (of a mass of a few TeV) at colliders in the near future. The work of ‘t Hooft and Polyakov [2,3] provides a detailed paradigm on magnetic monopole soliton solutions, which arise in quantum field theories with simple gauge groups (such as SU(3) and grand unified groups SU(5)), under spontaneous symmetry breaking. In such solutions, Dirac’s quantisation arises as a topological property of mappings associated with the solution and not because of a Dirac string.



The SM does not have a simple group, as the gauge group of the electroweak sector is SU(2)×UY(1), with UY(1) the weak hypercharge gauge group. This was one of the arguments against any attempts to find a topological monopole solution within the SM. Nevertheless, Cho and Maison (CM) [4] presented a monopole solution within the SU(2)×UY(1) electroweak theory, by arguing that a non-trivial topology of the solutions was still possible due to an underlying CP1 structure. Specifically, Cho and Maison view the normalised Higgs doublet field of the SM in the symmetry broken phase as a CP1 field, which is known to have a non-trivial second homotopy Π2(CP1)=Z; it was argued [4] that this homotopy would lead to a charge quantisation of the monopole as in the ‘t Hooft–Polyakov case. In Ref. [4], the monopole and dyon solutions (characterised by both electric and magnetic charges) suffer, however, from ultraviolet infinities in their total energy. This casts serious doubts on the existence of consistent soliton solutions (which by definition have finite energy).



The considerations above suggest that the model needs a modification before any physical conclusions can be drawn. Examples of a modification of the theory beyond the SM are the inclusion of non-minimal couplings of the Higgs field with the hypercharge kinetic terms in the effective Lagrangian [5,6], or through higher derivative extensions, such as a non-linear Born–Infeld gauge field theory, which notably arises as a low energy field theory limit of strings [7,8]. Although in string theory, the full standard model gauge group admits such non-linear extensions, nonetheless, it suffices for our phenomenological purposes to restrict our attention only to the Born–Infeld extension of the hypercharge sector and seek monopole solutions of the CM type, following Arunasalam and Kobakhidze in Ref. [9] 2.



The finiteness of the monopole solution in Born–Infeld-type theories is an immediate consequence of the finiteness of the electromagnetic field energy density in Born–Infeld non-linear electrodynamics [11]. The identification of finite energy consistent monopole solutions in (extensions of) the SM represents not only an important theoretical advance, but also an important step towards a consistent phenomenology since one can provide estimates of the total energy/mass of monopoles and thus check the feasibility of their production at colliders [12]. Recently, experimental efforts to discover monopoles have redoubled [13,14,15]. In particular, searches for magnetic monopoles of lowest magnetic charge are ongoing in the ATLAS-LHC experiment [13]. In addition, the MoEDAL (“Monopole and Exotics Detector At the LHC”) experiment at the LHC [14,15] is geared toward the detection of highly-ionising particles, among which are magnetic monopoles, using a variety of experimental techniques, which allow for monopoles of high magnetic charge to be searched for the first time in an experiment. From the arguments of Dirac, the monopole magnetic charge would be an integer multiple of gD=68.5 (9). Consequently, magnetic monopoles interact strongly with photons and are highly ionising, making TeV mass monopoles candidates suitable for detection at MoEDAL [14,15]. However, as argued in Ref. [16], structured monopoles, such as the ones mentioned above (which arise as consistent solutions of specific quantum gauge field theories with spontaneous symmetry breaking), might exhibit extremely suppressed production cross-sections. This suppression would eliminate any prospect for the detection of structured monopoles. Dirac (structureless) monopoles do not suffer from suppressed production cross-sections. Nonetheless, finite-energy structured monopoles might be produced abundantly from the vacuum via a thermal version of the Schwinger pair production, as advocated in Ref. [17], and, hence, can still be of great relevance to heavy ion collisions at LHC. If they have sufficiently low mass, the monopoles can be potentially detected by the deployment of magnetic monopole trapping and nuclear track (NTD) detectors (of the type used in MoEDAL [14,15]) in such environments [18].



We now remark that the monopole solutions discussed in Ref. [9] and also in the previous literature of the electroweak monopole [4,5] (and its finite energy extensions [6]) are based on matching numerical solutions using shooting methods. Such solutions, however, appear not to be in agreement with next to leading order analytical solutions near the monopole centre. It is the purpose of this work to discuss a new class of solutions, which match an analytic asymptotic behaviour at both small and large distances from the monopole centre. The solutions are slightly different near the monopole centre from the standard electroweak monopole solutions appearing in the literature [4,5,6,9]. Nevertheless, as we demonstrate in the present article, the order of magnitude of the associated total energy (of crucial importance for their phenomenology) remains the same as in the standard CM-like case [9]. Current experimental lower bounds of the Born–Infeld mass parameter then imply monopole masses of at least 11 TeV, which makes such solutions relevant for potential detection only at future colliders [19], or at high-altitude monopole-searching experiments like SLIM (“Search for LIght magnetic Monopoles”) [20], or, say, cosmic upgrades of the MoEDAL experiment [21].



The structure of the article is as follows: in the next Section 2, we introduce the model and give the dynamical equations that will be associated with monopole solutions (but not dyon solutions). In the following section, Section 3, we discuss our new solutions, which have not appeared before in the literature. We discuss analytic forms of the solutions for short and large distances from the monopole centre and the associated interpolating functions, found by using Padé approximant methods [22,23]. Energy estimates and thus detection prospects are discussed in Section 4. Finally, our conclusions and outlook are presented in Section 5.




2. Born–Infeld Electroweak Monopole: The Setup


A string-inspired extension (ESM) of the SM, considered in Ref. [9] and used in the current work, arises when the standard kinetic energy of the hypercharge gauge field is replaced by a non-linear Born–Infeld term [11]. The resultant Lagrangian is:


LEW=−(DμH)†(DμH)−λ2H†H−μ2λ2−14FμνaFμν,a+β21−1+12β2BμνBμν−116β4(BμνB˜μν)2



(10)




where: Aμa and Bμ are the SU(2) and UY(1) gauge fields, respectively; Bμν is the UY(1) field strength tensor; B˜μν=12ϵμνρσBρσ (with ϵμνρσ being the covariant Levi–Civita fully-antisymmetric tensor); Fμν,a (a=1,2,3) is the SU(2) field strength tensor; Dμ=∂μ−ig2τaAμa−ig′2Bμ is the covariant derivative with τa, a=1,2,3, the Pauli 2×2 matrices; τa2, a=1,2,3 are the SU(2) generators; H is the electroweak Higgs doublet. The SU(2) and UY(1) couplings are given by g and g′, respectively, with:


g′=gtanθW,



(11)




where θW is the SM weak mixing angle. The Born–Infeld parameter β has dimensions of [mass]2. The ESM Lagrangian reduces formally to the SM Lagrangian for β→∞. In the context of microscopic string theory models, the parameter β∝Ms is the string mass scale. In our phenomenological approach here, we deviate from this restriction and treat β as a free parameter to be constrained by experiment, as we shall discuss in Section 4.



We shall be interested in finite energy classical monopole solutions of the Cho–Maison (CM) type [4], for the Euler–Lagrange equations of ESM for finite β. In the limit β→∞, one would recover the formal CM monopole solution with divergent energy. The equations of motion, stemming from Equation (10), read:


Dμ(DμH)=λH†H−μ2λH,



(12)






∂μFμν,a+gfabcAμbFμν,c=ig2H†τa(DνH)−(DνH)†τaH,



(13)






∂μBμν−14β2(BαβB˜αβ)B˜μν1+12β2BαβBαβ−116β4(BαβB˜αβ)2=ig′2H†(DνH)−(DνH)†H.



(14)







The following ansatz is used to determine the energy of the charged solutions to this Lagrangian [4]:


H=12ρ(r)ξAμa=1gA(r)∂μtϕ^a+1g(f(r)−1)ϵabcϕ^b(∂μϕ^c)Bμ=−1g′B(r)∂μt−1g′(1−cos(θ))∂μψ



(15)




where:


ξ=isin(θ/2)e−iψ−cos(θ/2).











Here, ra=(t,r,θ,ψ) are spherical polar coordinates (with 0≤θ≤π, 0≤ϕ<2π) and:


ϕ^a=ξ†τaξ=−r^a,








where the circumflex denotes unit vector.



The ansatz (15) is best physically understood if one performs a gauge rotation to the unitary gauge [4,5]:


ξ→Uξ=10,withU=cos(θ/2)sin(θ/2)e−iψ−sin(θ/2)eiψcos(θ/2),



(16)




under which the non-Abelian field transforms to 3:


A→μ=1g−f(r)sin(ψ)∂μθ+sin(θ)cos(ψ)∂μψf(r)cos(ψ)∂μθ−sin(θ)sin(ψ)∂μψA(r)∂μt−1−cos(θ)∂μψ.



(17)







The physical fields, the electromagnetic potential Aμem, and the neutral Zμ0 gauge boson field involve the weak mixing angle θW, and are given by Ref. [4]:


AμemZμ0=cos(θW)sin(θW)−sin(θW)cos(θW)BμAμ3=1g2+(g′)2gg′−g′gBμAμ3,



(18)




upon taking into account (11). In summary, the ansatz (15) yields the physical fields of the SM [4]:


Wμ±≡12Aμ1∓iAμ2=1g2∓ifr∂μθexp∓iψ+sin(θ)∂ψexp±iψAμem=e1g2A(r)+1(g′)2B(r)∂μt−1e1−cos(θ)∂μψ,Zμ0=eg′gA(r)−B(r)∂μt,



(19)




with:


e=gsin(θW)=gg′g2+(g′)2,



(20)




the electron charge. As can be seen from Equation (19), the spherically-symmetric (static) monopole solution of Ref. [4] is characterised by:


A(r)=B(r)=0.



(21)







In this case, the electromagnetic potential resembles a Dirac point-like monopole,


Aμem=−1e1−cos(θ)∂μψ,



(22)




but the magnetic charge gm is twice the fundamental Dirac charge; so:


gm=4πe=4πg2+(g′)2gg′,



(23)




where in the last equality, we used Equation (20).



If Equation (21) is valid, from Equation (19), the Zμ0 configuration vanishes,


Zμ0=0.



(24)




and moreover, the expressions (15) reduce to:


H=12ρ(r)ξAμa=1g(f(r)−1)ϵabcϕ^b(∂μϕ^c)Bμ=−1g′(1−cos(θ))∂μψ.



(25)




and the equation for the hypercharge gauge boson (14) is trivially satisfied. 4 From Equation (25), we also note that the hypercharge-sector “magnetic field” BiY=ϵijk∂jBk corresponding to Bμ assumes the following for the monopole solution:


BY→=4πg′2r→r3.



(31)







This has the same singular form (as r→0) as the monopole magnetic field (27), but with the magnetic charge being replaced by the ‘hypermagnetic charge gYm≡4πg′. We shall make use of Equation (31) when we evaluate the total energy of the Born–Infeld–Cho–Maison-like solution in Section 4.



From now on, we will concentrate on the equations of motion for the Higgs field and SU(2) gauge field, Equations (12) and (13), respectively; these equations coincide with those in the ordinary CM case [4]. Upon using Equation (25), these become:


ρ″+2rρ′−f22r2ρ=λρ22−μ2λρ



(32a)






f″−f2−1r2f=g24ρ2f,



(32b)






A″+2rA′−2f2r2A=g24ρ2A−B



(32c)




where the prime denotes differentiation with respect to r. For the monopole solution, for which (21) is valid, the third of the above equations is trivially satisfied, yielding zero on both sides. The trivial solution of the equations of motion (32), which yields the Dirac monopole, has no Wμ±-bosons, that is:


f(r)=0,andρ=ρ0=2μ2λ≠0,



(33)




with ρ0 the Higgs field vacuum expectation value (vev) in the broken symmetry phase.




3. New Solutions for Born–Infeld-Inspired Electroweak Dressed Magnetic Monopoles


We shall consider new solutions of Equation (32) where we still have Equation (21), but f(r) and ρ(r) are allowed to be non-trivial. Such solutions can be interpreted as Dirac monopoles dressed by Wμ±-bosons and have not been discussed so far in the literature.5 We seek solutions of Equation (32) for ρ(r) and f(r) that satisfy the following boundary conditions:


f(r=0)=1,ρ(r=0)=0,f(r=∞)=0,ρ(r=∞)=ρ0=2μ2λ≠0.



(34)







Before further analysis, we will rewrite Equation (32) in terms of dimensionless quantities:


ρ˜=ρρ0,










ε=g22λ,








and:


x=μr.











Hence, the dimensionless forms of the first two equations of (32) are6:


ρ˜″x+2xρ˜′x−f2x2x2ρ˜x=ρ˜xρ˜2x−1



(35)




and:


f″x−f2x−1x2fx=ερ˜2xfx



(36)




where ′ denotes ddx. The boundary conditions for ρ˜x are ρ˜(x=0)=0 and ρ˜(x=∞)=1. It is important to note that, from (35), f2x is determined in terms of ρ˜ and its derivatives.



The system of Equations (35) and (36) is usually solved numerically [4,9]; however, there is a delicate interplay in the small x behaviour of fx and ρ˜x, which purely numerical solutions can miss. Equations (34)–(36) represent a boundary value. Unlike initial value problems, boundary value problems are not guaranteed to have a unique solution; in some instances, there may be no solution at all. Coupled boundary value problems pose an additional challenge since approximations for ρ˜ and f cannot be made independently. We will first obtain asymptotic expansions as x→0 and as x→∞. From these asymptotic expansions and a smooth interpolating function, we can evaluate the energy of the monopole within ESM.



The matching of the asymptotic expansions for large and small x would result in an interpolating solution; this matching is, however, not straightforward. Consequently, we will take a different approach to determining a suitable interpolating function based on a Padé approximant for a small x asymptotic series. We take ε∼0.81, which is obtained from values of the parameters phenomenologically relevant for SM, namely g≃0.65 and λ≃0.26.



3.1. Large x Asymptotics


Respecting the boundary conditions (34), we write ρ˜x=1+δ˜x with δ˜x≪1. To leading order, then Equation (36) becomes:


f″x+fxx2=εfx.



(37)







Similarly, Equation (35) becomes:


δ˜″x+2xδ˜′x−2δ˜x=f2x2x2.



(38)







3.1.1. Behaviour of fx


The leading behaviour of Equation (37) is governed by:


f″x=εfx



(39)




and the solution compatible with the boundary conditions is fx=f1exp−εx. In order to include the subleading behaviour, we write fx=f1exp−εx+Δx where:


Δ″x−εΔx=−f1x2exp−εx.



(40)







A particular solution Δpx of this inhomogeneous second order differential equation (using the method of the variation of parameters) is:


Δpx=exp−εx2ε∫xdtf1t2−expεx2ε∫xdtf1t2exp−2εt



(41)




and the resultant f(x)=f∞(x) is:


f∞x∼exp−εxd1−f12εx1−12εx+O1x2.



(42)








3.1.2. Behaviour of δ˜x


We shall now consider the inhomogeneous Equation (38). In terms of:


Fx≡f∞2x2x2








a particular solution δ˜px of Equation (38) is given by:


δ˜px=122−exp−2x∫xtexp2tFtdt+exp2x∫xtexp−2tFtdt.



(43)







The asymptotic expansion of ρ˜(x) is then given by 1+δ˜px+d2exp−2xx where we have added a solution of the homogeneous equation and:


δ˜px=−d122xf12εexp−2εx+2f12ε−1+εd122ε2ε−1exp−22−εx.



(44)







The dominant exponential in Equation (44) as x→∞ is exp−22−εx.





3.2. Small x Asymptotics


We write fx=1+Δ0x with Δ0x→0 as x→0, and the leading behaviour in this limit is determined by:


Δ0″x−2x2Δ0x=ερ˜2x.



(45)







For our solution, it is important to note that ρ˜2x is not assumed to be small in comparison with Δ0x. The remaining equation to be considered is:


ρ˜″x+2xρ˜′x+1−12x2ρ˜x=0



(46)




which has a solution ρ˜x∝jδx≡π2xJδ+12x where δ=3−12. From the power series for Bessel functions, we have:


jδx=π2xδ∑m=0∞−1mm!x/22mΓδ+m+3/2.











To low order in x:


ρ˜x≃c1xδ1−x222δ+3.



(47)







From Equations (45) and (47), we deduce that:


Δ0″x−2x2Δ0x=εc12x2δ1−x222δ+32.



(48)







The relevant particular solution Δ0px of Equation (48) is 7:


Δ0px=εc123x2+2δ32δ3+2δ−3x2215+31δ+20δ2+4δ3−1+Ox4.



(49)








3.3. Summary of Leading Asymptotic Solutions


We shall for convenience gather together the results of our asymptotic analysis.



For small x:


ρ˜x∼c1xδ1−x222δ+3,










fx∼1+εc122x2+2δ1δ3+2δ−x215+31δ+20δ2+4δ3+Ox4.



(50)







It is interesting to note that our asymptotic analysis has revealed a “bump” in fx for small x.



For large x:


fx∼exp−εxd1−f12εx1−12εx+12εx2,



(51)






ρx∼1+d2exp−2xx−122d1f12εxexp−2εx+exp−22−εxxd12f12ε−1+εd122ε2ε−1.



(52)








3.4. Higher Order Small x Asymptotic Analysis


The structure of the small x-behaviour for f and ρ found from the linearised asymptotic analysis for small x in Equation (50) suggests the following ansatz for the nonlinear analysis:


fx=1+∑m=1∞∑n=2∞amnx2m+nδ



(53)




and:


ρ˜x=∑m=0∞∑n=1∞bmnx2m+nδ.



(54)







We plug in the expressions (53) and (54) into the coupled differential Equations (35) and (36) and equate the coefficients for powers of x. We shall give algebraic expressions (in terms of δ) for some of the coefficients occurring in Equations (53) and (54). However, many coefficients become unwieldy and simplify upon putting δ=0.36602540378(≈0.4). The series in Equations (53) and (54) will be truncated at m=mu=6 and n=nu=6 and so will give a refined small x asymptotic analysis, which will form the basis for a Padé-style analysis8 The coefficients will be given in the Appendix A.



Because of the powers in y (y≡xδ) in Equations (53) and (54), a conventional Padé approximation (PA) is not possible. However, since δ≃25, it is possible to approximate y by y˜≡x25. For convenience, let us introduce z≡x2(=y˜5). From Equation (54), we can write down the following small x-approximation for:


ρ˜x≃b01y+zb11y+b13y3+z2b21y+b23y3+b25y5+z3b31y+b33y3+b35y5+z4b41y+b43y3+b45y5.



(56)







Before we find a PA, we will substitute y with y˜ (and replace z by y˜5). The PA will be in the variable y˜. We shall construct a diagonal PA in order to be able to satisfy ρ˜(y˜=∞)=1. It is straightforward to show that the (5,5) PA, ρP(y˜), has the form:


ρP(y˜)=b01b132y˜5b112−b01b13y˜3b11+b01y˜−b11y˜5b01+b132y˜4b112−b13y˜2b11+1.



(57)







Clearly, ρP(∞)=−b012b132b113, and by requiring this to be one, we obtain b01≈0.725704. With this value of b01, ρP(y) will have the correct small x behaviour and the correct constant asymptotic value. However, a PA (generically) cannot accurately reproduce the exponential fall off in Equation (52). Since our aim is to find an interpolating solution, which correctly reproduces both the leading asymptotic behaviour for small and for large x, we will construct the interpolating function ρ˜I to be:


ρIx=ρPyexp−22−εy1δtanhy1δ.



(58)







Clearly, this modifying factor has the correct large y exponential decay and also for small y does not affect the leading small y behaviour. The Padé approximant should determine the correct behaviour of ρ at intermediate values of y.



The corresponding interpolating function fI(x) for f(x) is determined by Equation (35):


fI2x=2x2ρ′I′xρIx+4xρI′xρIx−2x2ρ2Ix−1.



(59)








3.5. Interpolating Functions


Equations (58) and (59) are the primary interpolating functions. They are in the form of explicit analytic expressions. However, for numerical estimation of the energy of the monopole, they are not efficient in terms of computer time. From the plots for the interpolating functions, it is clear that the range 0.1,12 for x is sufficient for the asymptotic values to have been essentially reached. It is numerically more efficient to consider a discrete set of points (x,ρ˜(x)) and (x,f(x)) at a spacing of 0.1 in x for the range 0.1,12. We can fit these discrete points with a polynomial and produce interpolating functions that are more efficient for the evaluation of the energy of the monopole.



We will now give the plots for the primary interpolating functions for fx and ρ˜x in Figure 1, Figure 2 and Figure 3.





4. Estimates of the (Finite) Monopole Energy


In this section, we estimate the energy of the monopole solution, as this is of importance for phenomenological searches. Form the theory (10), one may evaluate the stress tensor and from this the total energy of the monopole solution. The latter consists of two parts: the first E1 pertains to the kinetic energy of the electromagnetic field (associated with the hypercharge sector) in the non-linear Born–Infeld theory and the second E2 to the non-Abelian SU(2) gauge and Higgs sectors of the theory. In terms of our parametrisation (25), (32), and (33), one has [9]:


Etotalmono=E1+E2,E1=4πβ2∫0∞drr4+1(g′β)2−r2E2=4π∫0∞dr1g2(f2−1)22r2+12rdρdr2+1g2dfdr2+λr28ρ2−ρ022+14f2ρ2,



(60)




where we took into account that in the Born–Infeld hypercharge sector of the monopole solution, only the hypermagnetic field B→ is non-zero (31), implying a Born–Infeld energy E1=∫4πr2dr(β21+(BY)2β2−β2). The result of the integration in E1 can be done analytically by changing integration variable r=wg′β [10,11], and using elliptic integrals:


E1=4πβg′31/2∫0∞dww4+1−w2=4πβg′31/2(Γ(1/4))26π≃15.53βg′31/2.



(61)







From (61), we thus observe that E1 is finite for any β<∞, as a consequence of the non-linearities of the Born–Infeld sector [11]. It was this part that produced the infinities in the energy on the Cho–Maison monopole/dyon solutions [4]. Using the SM value g′=0.357, we then obtain:


E1≃72.81β.



(62)







The quantity E2 in Equation (60) is also finite and has been finite also in the CM case [4]. Using our parametrisation, this quantity can be written as:


E2=4πμ∫0∞dxf2−122g2x2+x2λρ˜′2+f′2g2+12λx2ρ˜2−12+12λf2ρ˜2,



(63)




where the ′ denotes ddx. By inserting our interpolating solutions into (63) and using the values of the parameters of the standard model, g′/g=tanθW(11),g′=0.357,sin2θW=0.2312,ρ0≃246.39 GeV, μ=88.39 GeV, and λ≃0.26, we obtain:


E2=7617GeV,



(64)




which is nearly double (but still of the same order of magnitude as) the value in the CM case [4,5,9]. The increase in the value of E2 is a consequence of the difference of our solution as compared to that of CM, as seen fro Figure 1 and Figure 3.



From Equations (62) and (64), then, we obtain for the total energy (60) of the monopole:


Etotalmono=(72.81β(GeV)2+7617)GeV



(65)







In Ref. [19], it was argued that the relatively recent measurements of light-by-light scattering by the ATLAS Collaboration [24,25], exploiting Pb-Pb collisions at LHC, impose a lower bound on the Born–Infeld parameter of the model (10):


β≥90GeV.



(66)







From Equations (65) and (66), then, we obtain the following lower bound for the Born–Infeld–Cho–Maison-like monopole mass (= total energy at rest):


Mmono≥14.17TeV.



(67)







Since monopoles are produced in pairs with antimonopoles in colliders, on account of (magnetic) charge conservation, our monopole lies out of the detection range of the LHC, but is of potential relevance to future colliders or high-altitude monopole-searching experiments, like SLIM [20], cosmic upgrades of the MoEDAL experiment, and other future cosmic searches [21,26].



At this stage, we stress that β is a phenomenological parameter, to be constrained by experiment. However, in the context of microscopic string theory models, though, where the Born–Infeld Lagrangian (10) is expected to arise naturally in the low-energy limit, the parameter β∼Ms2, where Ms is the string mass scale. The latter has been constrained by current collider experiments to be at least of O(10) TeV, thus making the term E1 (62) dominant over E2 in such a case, leading to a significant increase of the monopole mass Etotalmono≥728 TeV. Such monopoles could be of cosmological relevance and be potentially detectable in cosmic monopole searches [26] (for instance, in future cosmic versions of the MoEDAL experiment [21]). If the monopole masses are in the range 9.3·103TeV≤Mmono≤2.3·104TeV (with the upper bound associated with constraints on the monopole abundance imposed by Big Bang nucleosynthesis (BBN)), then according to the analysis in [9], such cosmic monopoles may have interesting consequences for the early universe, including dynamical generation of matter-antimatter asymmetry.




5. Conclusions and Outlook


In this article, we have discussed some novel semi-analytic (static) monopole solutions in the framework of the phenomenological Lagrangian (10), which constitutes an extension of the SM by a non-linear Born–Infeld Lagrangian for the hypercharge sector only. The solutions we found are consistent with asymptotic analysis for the functions f(x) and ρ˜(x) characterising the solution (25), but in contrast to the standard Cho–Maison-like [4] solutions in the literature [9], they do exhibit some non-monotonic behaviour for x values near x=0. This deviation from the standard numerical solutions though is relatively mild and does not affect the order of magnitude estimates for the total monopole energy and the associated phenomenology [19]. Nonetheless, from a mathematical point of view, our solution is a novel finite-energy monopole solution. Our solutions are analytic, but approximate, as they interpolate between known behaviour for small and large x regions (via appropriate Padé approximants). Establishing the existence of finite energy monopole solutions is important from the experimental point of view, since such solutions can be of relevance for future colliders (but not the current ones, due to the range of the induced monopole mass, which lies outside the capabilities of the LHC).



Our analysis in this work should be extended to include dyon solutions, carrying both magnetic and electric charge, following the formalism developed in Refs. [4,9]. Since the functions A(r) and B(r), characterising the solution (19), are non-zero, the analysis is much more involved than in the monopole case. We leave the study of the dyon case for future work.



Before closing, we would like to make an important remark, concerning the finite energy (54). In the context of the model (10), the Born–Infeld nature of the hypercharge sector decouples from the SU(2) and Higgs sectors, in the sense that the monopole solution is formally the same as that in the SM case of Cho and Maison [4]. It is only the non-linear nature of the Born–Infeld energy E1 that is finite and proportional to the parameter β, which becomes infinite only in the SM limit β→∞. Finite monopole (solitonic) solutions therefore exist for any value of β in this case. However, if one considers effective low-energy field theory models derived from phenomenologically-realistic microscopic string theories, then the Born–Infeld non-linear nature is expected to encompass the entire non-Abelian gauge group SU(2)×UY(1) and not only the hypercharge UY(1). In such cases, the gauge and Higgs sectors mix non-trivially with the hypercharge, and the resulting monopole/dyon solutions are much more complicated than then solutions considered here and in Ref. [9]. Moreover, as discussed in Ref. [27], in the context of SU(2) Born–Infeld gauge theories, the solitonic monopole/dyon (numerical) solutions exist only for values of the Born–Infeld parameter above a critical value, β≥βc, estimated numerically in Ref. [27], i.e., the energy diverges for β<βc. Although the analysis in Ref. [27] has been done for simple non-Abelian gauge groups SU(2), one expects the above feature to persist in the case where the Born–Infeld sector is extended to include the full standard model non-Abelian group SU(2)×UY(1). At present, such a (non-trivial) extension of the analysis of [27] is pending. In this respect, however, we should also mention for completeness the model considered in Ref. [28], according to which two independent Born–Infeld sectors, one for the SU(2) and one for the hypercharge UY(1), have been considered, with different parameters βi, i=1,2. In the analysis of Ref. [28], sufficiently large values of the parameter β2 for the non-Abelian Born–Infeld sector have been implicitly assumed, and in this sense, the existence of a critical value of β2c cannot be seen. Moreover, this is an effective field theory that is however different from the one in a string theory framework, where the two sectors cannot be separated, and they are both characterised by a common β. We hope to be able to study in detail monopole/dyon solutions in such realistic string-inspired SM extensions, using our semi-analytic methods, in the future.







Author Contributions


N.E.M. and S.S. contributed equally to this work.




Funding


This research was funded in part by STFC(U.K.) Research Grant ST/P000258/1.




Acknowledgments


We acknowledge discussions with Stephanie Baines. The authors also wish to thank the organisers of the International Conference of New Frontiers in Physics 2018 for their kind invitation and for organising such a high-level and stimulating event. N.E.M. acknowledges a scientific associateship (“Doctor Vinculado”) at IFIC-CSIC-Valencia University (Spain).




Conflicts of Interest


The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor or in the decision to publish the results.





Appendix A. Coefficients in Small-x Asymptotic Analysis


The b coefficients in (54):


b11=−2b0111+10δ+2δ2










b12=0=b14=b15=b16










b13=b0134δ2+6δ+ϵδ(2δ+3)18δ2+30δ+11










b21=4b012δ2+10δ+112δ2+18δ+39










b22=0=b24=b26










b23=2b013−ϵδ(2δ+3)2δ2+10δ+11−2ϵ2δ2+7δ+52δ2+10δ+11−2ϵ2δ(2δ+3)+118δ2+30δ+11−62δ2+10δ+1136δ2+18δ+13










b25=(0.00625575+0.00323926ϵ+0.00292336ϵ2)b01










b31=−8b012δ2+10δ+112δ2+18δ+392δ2+26δ+83










b32=0=b34=b36










b33=(0.0015303+0.00014715ϵ)b013










b35=(−0.00174278−0.00067203ϵ−0.000413624ϵ2)b015










b41=1.61775×10−6b01










b42=0=b44=b46










b43=(−0.0000986062−4.70038×10−6ϵ)b013










b45=(0.000248585+0.00007087280ϵ+0.000030011ε2)b015










b51=−1.37892×10−8b01










b52=0=b54=b56










b53=(4.64828×10−6+1.24034×10−7ϵ)b013










b55=(−0.0000239827−4.97425×10−6ϵ−1.5915×10−6ϵ2)b015










b61=8.368×10−11b01










b62=0=b64=b66










b63=−(1.67851×10−7+2.86179×10−9ϵ)b013










b65=(1.74488×10−6+2.5867×10−7ϵ+6.95189×10−8ϵ2)b015











We will now list the a coefficients in (53):


a12=ϵb012/(2δ(3+2δ))










a13=0=a14=a15=a16










a22=−2ϵb012/((5+7δ+2δ2)(11+10δ+2δ2))










a23=0=a25=a26










a24=(0.00732333ϵ+0.0369758ϵ2)b014










a32=0.000809972ϵb012










a33=0=a35=a36










a34=−(0.00115918ϵ+0.00361289ϵ2)b014










a42=−0.0000277424ϵb012










a43=0=a45










a44=(0.000105727ϵ+0.000261013ϵ2)b014










a46=−(0.0000845209ϵ+0.000354434ϵ2+0.000438062ϵ3)b016










a52=6.94301×10−7ϵb012










a53=0=a55










a54=−(6.89031×10−6ϵ+0.0000140244ϵ2)b014










a56=(0.0000114343ϵ+0.0000421252ϵ2+0.0000383327ϵ3)b016










a62=−1.31163×10−8ϵb012










a63=0=a65










a64=(3.4889×10−7ϵ+6.014×10−7ϵ2)b014










a66=−(1.0851×10−6ϵ+2.57347×10−6ϵ3+3.56687×10−6ϵ2)b016
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It is also useful to consider the expression for A→ in spherical polars (with the co-ordinates r,θ,ϕ):


A→r→=1+cosθieU−1∇→U








where U=exp−iegmϕ. U is a singular gauge transformation.



	
Prior to the work of Ref. [9], monopole solutions within the framework of Born–Infeld electrodynamics, but different from the CM case, had been discussed in Ref. [10].



	
We use the vector notation to denote the SU(2) gauge field.



	
The right-hand side (RHS) of (14), upon using (25), is the same as for the CM case [4,5] and vanishes on account of (21):


RHSof(14)=−(g′)24ρ(r)2A(r)−B(r)→(21)0.



(26)




The monopole solution is characterised by a zero electric field and a spherically-symmetric static, radial magnetic field,


Br(r)∝gmr2,Bθ=Bψ=0,



(27)




with gm the magnetic charge (23). Moreover, given (24), one obtains from (18) for the monopole solution:


A(r)μemmono=g2+(g′)2gB(r)μmono.



(28)




Equation (28), implies that only the spatial components of Bμν are non-zero and proportional to the magnetic field Bk: Bij∝ϵijkBk, with ϵijk the totally-antisymmetric Levi–Civita tensor. Moreover, since the electric field is zero in the monopole case, one has:


BαβBαβ∝+B→(r)2,BαβB˜αβ=0.



(29)




Hence, the left-hand side (LHS) of (14) involves the derivative of a static function that depends solely on the radial-coordinate r; the only potentially non-zero contribution should come when μ=r. From this, we obtain for the LHS of (14) (retaining only the potentially non-zero terms in the argument of the derivative):


LHSof(14)j∝∂iϵijkBk(r)1+12β2BαβBαβ→(27)0,



(30)




since, as already mentioned, the only potentially non-trivial component of the derivative is i=r. Thus, Equation (14) is trivially satisfied for the monopole solution with (21) in the Born–Infeld case (and the reader should recall that this is also what happens in the CM case [4,5]).



	
The case A(r)≠0,andB(r)≠0 leads to the CM dyon solution [4].



	
There is a slight abuse of notation since we still use the notation f and ρ˜ for functions of x.



	
Since ignoring the right-hand side of Equation (48) is not consistent, we need to just consider the particular solution. See the Appendix A.



	
The Padé approximation [23] consists of converting the formal power series ∑ncnxn to a sequence of rational functions:


PMNx=∑n=0NAnxn∑m=0MBmxm.



(55)




The advantage of constructing PMNx is that in many instances, PMNx is a convergent sequence as N,M→∞ even when ∑ncnxn is a divergent series.
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Figure 1. Interpolating function for f(x). 






Figure 1. Interpolating function for f(x).
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Figure 2. Interpolating function for f(x) with x small. 






Figure 2. Interpolating function for f(x) with x small.
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Figure 3. Interpolating function for ρ˜(x). 






Figure 3. Interpolating function for ρ˜(x).



[image: Universe 05 00008 g003]








© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
f(x)

1.000001 |

1.000000

0 0.00001 0.00002 0.00003 0.00004
X





nav.xhtml


  universe-05-00008


  
    		
      universe-05-00008
    


  




  





media/file0.png





media/file2.png
f(x)
1.2

1.0
0.8
0.6
0.4

0.2

T
o





media/file5.jpg
08

06

04

02

10

12





media/file6.png





media/file3.jpg
flx)

1.000001

0.00001 0.00002 0.00003 0.00004





media/file1.jpg
f(x)
12

1.0
08
06
04

02

10

12





