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Abstract: First-order phase transitions, such as the liquid-gas transition, proceed via formation of
structures, such as bubbles and droplets. In strongly interacting compact star matter, at the crust-core
transition but also the hadron-quark transition in the core, these structures form different shapes
dubbed “pasta phases”. We describe two methods to obtain one-parameter families of hybrid equations
of state (EoS) substituting the Maxwell construction that mimic the thermodynamic behaviour of pasta
phase in between a low-density hadron and a high-density quark matter phase without explicitly
computing geometrical structures. Both methods reproduce the Maxwell construction as a limiting
case. The first method replaces the behaviour of pressure against chemical potential in a finite region
around the critical pressure of the Maxwell construction by a polynomial interpolation. The second
method uses extrapolations of the hadronic and quark matter EoS beyond the Maxwell point to define
a mixing of both with weight functions bounded by finite limits around the Maxwell point. We apply
both methods to the case of a hybrid EoS with a strong first order transition that entails the formation
of a third family of compact stars and the corresponding mass twin phenomenon. For both models, we
investigate the robustness of this phenomenon against variation of the single parameter: the pressure
increment at the critical chemical potential that quantifies the deviation from the Maxwell construction.
We also show sets of results for compact star observables other than mass and radius, namely the
moment of inertia and the baryon mass.

Keywords: quark-hadron phase transition; pasta phases; speed of sound; hybrid compact stars;
mass-radius relation; GW170817

1. Introduction

The understanding of the properties of dense matter in compact star interiors is a subject of
current research. Recently, great progress in this direction has been achieved by the detection of the
gravitational radiation that emerged from the inspiral phase of two coalescing compact stars, an event
named GW170817 [1]. Since it was observed in all other bands of the electromagnetic spectrum, it
marked the birth of multi-messenger astronomy. Among the various obtained results, GW170817
has shed light on the properties of the equation of state (EoS) of compact star matter, namely on its
stiffness, since through the constraints on the tidal deformability parameter λ [2] from the LIGO-Virgo
Collaboration (LVC) results one could estimate the maximum radius of a 1.4 M� compact star to
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R1.4,max = 13.6 km [3] and maximum mass of nonrotating compacts stars MTOV,max = 2.16 M� [4].
Of great scientific interest is the phenomenon of a phase transition from hadronic matter to a deconfined
quark phase in hybrid compact stars. Those stars are comprised of a deconfined quark matter core
surrounded by a hadronic mantle. The nature of the deconfinement transition is a matter of debate [5,6].
Whether it exhibits a jump in the thermodynamic variables or represents a crossover (1 is a question
that is addressed to both, laboratory experiments as well as compact star observations. The possibility
of a mixed phase in neutron stars arises. Standard approaches to describe such a domain of coexistence
of competing phases are: (i) the Maxwell construction (for just one chemical potential) which leads
to sharp phase boundaries due to constant pressure throughout the mixed phase; (ii) the Gibbs
construction (for several chemical potentials corresponding to different conserved quantities) [7],
where the pressure changes in the mixed phase which is quasi homogeneous due to the neglect
of surface tension effects; and (iii) the constructions with finite size structures of different shapes
(“pasta phases” [8]) due to surface tension and Coulomb effects that are mainly modeled with the
approximation of sharp surfaces and the surface tension as a free parameter. The adequate description
of the letter is a complicated problem where the geometrical properties of the structures, as well as
transitions between them, must be taken into account (different methodologies can be found in [9–15]).
In the case of the hadron-quark interface, the procedure is well explained in [16] (see also [15] for a
recent work); one models several geometrical structures and finds the energetically most favorable
ones in different density regions inside compact stars. The occurrence of structures introduces surfaces
separating the phases coexisting in the mixed phase. The value of the surface tension determines the
size of the structures and thus the amount of surface per volume that can optimally be afforded. While
for a vanishing surface tension the mixed phase becomes quasi homogeneous and ∆P is largest, a high
value of surface tension results in a single surface as for the Maxwell construction that corresponds
to ∆P = 0, see Figure 1. The quantitative relation between ∆P and the surface tension is under
investigation [17].
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Figure 1. Schematic representation of the interpolation function PM(µ) obtained from the mixed phase
constructions discussed in this work. For both interpolation methods discussed in the text it has to go
though three points: PH(µH), Pc + ∆P and PQ(µQ).

1 The word “crossover” is used generically for a transition that does not proceed like in a Maxwell construction at a strictly
constant pressure with a jump in (energy) density, but rather by a varying pressure in the transition region. It can thus be a
generic crossover transition like in ferromagnetic systens under external magnetic field, but also a first order transition for
several globally conserved charges which proceeds via formation of structures of different shapes (pasta phases).
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In this work we take a different route and introduce two types of phenomenological interpolations
which aim at mimicking the thermodynamic behaviour of those geometrical structures while
simultaneously exploring the whole corresponding density range in a unified way. A first realization
of the idea to describe the transition from the hadronic to the quark matter phase of matter in neutron
stars by an interpolation in order to model a crossover-like behaviour was carried out in [18] and
followed up in Refs. [19,20], where the jump of the EoS ε(P) was replaced by a smooth behaviour
using as an ansatz a tangens hyperbolicus function.

The mixed phase constructions in this work are developed exclusively for stellar matter where
the conditions of charge neutrality and beta equilibrium apply. These constraints allow to express the
other chemical potentials in terms of the baryon one. Therefore, only the baryon chemical potential µ

remains as the single independent thermodynamic variable. The pressure as a function of µ as shown
in Figure 1 can be viewed as a projection from a higher dimensional space spanned by the pressure
and several other chemical potentials onto the P− µ plane where the resulting function P(µ) is subject
to modeling within our simplified approach to mimic the effect of pasta structures in the mixed phase.

A systematic and thermodynamically consistent formulation was recently given in [21,22], where
a parabolic interpolation function was introduced to replace the behaviour of the hybrid EoS for a
Maxwell transition. We shall denote this procedure as the replacement interpolation method (RIM).
The resulting hybrid EoS was then used to study the effect of the mixed phase on the properties of
compact stars. A second realization of this concept has been worked out recently in [23], where instead
of replacing the hadronic and quark matter branches of the hybrid EoS in the limits µH < µ < µQ
(see Figure 1) a mixing of these branches is defined using switch functions and a bell-shaped function
for the pressure increment with an amplitude ∆P = ∆P Pc, where Pc = P(µc) is the critical pressure
of the Maxwell construction. This procedure is denoted as the mixing interpolation method (MIM)
in [23]. The free parameter ∆P occurs in both methods with an equivalent influence on the behaviour
of the EoS in the mixed phase region, in particular on its extension, see Figure 1. We would like to
note that in both methods a negative value of ∆P would signal that a Maxwell construction using both
input EoS PH(µ) for hadronic matter and PQ(µ) for quark matter would not make sense because it
would describe a transition from quark matter at low densities (where PQ(µ) is not trustworthy) to
hadronic matter at high densities (where PH(µ) is not trustworthy). For a discussion of this situation,
see Ref. [24].

In this work we present a comparative study of the RIM and MIM approaches to construct mixed
phases of the quark-hadron phase transition that mimic the thermodynamic behaviour of pasta phases.
We discuss the similarities and differences of these two approaches and apply them to obtain a hybrid
EoS under neutron star constraints for which we discuss the resulting hybrid star sequences and their
properties. While the first approach (RIM) is rather intuitive and simple to realise as its properties just
depend on the order of interpolating polynomial, the second approach (MIM) is based on a procedure
of “mixing” the EoS of the two phases in the coexistence region and reminds in its properties on the
physics of substitutional compounds as in the crust of compact stars, resulting in an intermediate
stiffening effect.

The paper is structured as follows. In Section 2 we start with the reference EOS for the present
study, for which a four-polytrope ansatz is employed which features a hadronic phase (first polytrope),
a constant pressure polytrope resembling a strong first order phase transition as described by a Maxwell
construction (second polytrope) and two polytropes for quark matter phases at high densities. Next,
in Section 3, we introduce the RIM and MIM approaches to construct mixed phases when two reference
EoS for the low-density (hadronic) and high-density (quark matter) phases are given. We discuss the
speed of sound cs as the key characterizing property of the family of obtained hybrid EoS. Subsequently,
in Section 4, we discuss the similarities and differences between the hybrid star EoS of both approaches
and show results for the macroscopic properties of compact stars. We motivate these results by the
feasibility of detection by multi-messenger astronomy. Consequently, future detections of gravitational
wave radiation emitted by of NS–NS or NS–BH mergers shall provide new constraints on both the
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star mass and radius. Moreover, the determination of the fate of the merger, whether it evolves via a
prompt or delayed collapse into a black hole, can be used as an independent estimate on the mass and
radius, as proposed in [25]. Up to now, tests for the current compact star models with the at present
still single compact star merger event have been performed, e.g., in [22,23,26].

2. Hybrid Star EoS with a Third Family and High-Mass Twins

Compact stars are traditionally divided into white dwarf (first family) and neutron star (second
family) branches. Hybrid stars whose equation of state undergoes a sufficiently strong first order phase
transition (large jump in energy density ∆ε) can populate a third family branch in the mass-radius
diagram, separated from the second one by a sequence of unstable configurations. As a consequence,
there appear so called mass twin configurations: the second and third family solutions overlap
within a certain range of masses while the radii of any two stars with the same mass (mass twins)
are very different. If the mass-twin phenomenon occurs at high masses ∼2 M� then one speaks of
high-mass twin (HMT) stars [27]. Depending on the critical pressure of the phase transition, the
mass-twin phenomenon can occur also at lower masses such as the typical binary radio pulsar mass of
∼1.35 M�, see [22,23,26], so that the corresponding twin star configuration become of relevance for
the interpretation of GW170817. In the latter case, a mass ratio q = m1/m2 = 1 of the merger would
not entail that the merging stars have the same radii and internal structure! Would the mass-twin
phenomenon (at whatever mass) be observed, this would entail that the QCD phase diagram has to
possess at least one critical endpoint since for the study of the cold region of the QCD phase diagram
the existence of a first order phase transition between hadron to quark matter had to be concluded.
Since the high temperature region of the QCD diagram is known to feature a crossover transition,
compact stars can serve as a probe of the existence of a critical end point [28] and provide insight into
the properties of matter in heavy ion collision conditions [29].

In order to study the effects of pasta phases at the hadron-quark matter interface in hybrid
star interiors, we consider a piecewise polytropic EoS as previously used in various works [3,30–33].
The polytropic representation used in the present work consists of four segments of matter at densities
higher than saturation density n0 = 0.15 fm−3 (n0 � n1 < n < n5).

P(n) = κi(n/n0)
Γi , ni < n < ni+1, i = 1 . . . 4, (1)

Each density region is labelled by i = 1 . . . 4 with prefactor κi and polytropic index Γi. HMT stars
require a rather stiff nucleonic EoS which here is represented by the first polytrope. The hadron-quark
matter first-order phase transition is described by the second polytrope with constant pressure Ptr = κ2

and vanishing polytropic index (Γ2 = 0). At higher densities the polytropes 3 and 4 represent a rather
stiff quark matter EoS. The parameters for this HMT realisation are given in Table 1.

Table 1. Parameters for the four-polytrope EoS of Ref. [33], called “ACB4” in Ref. [26]. The corresponding
description is presented in Equation (1) of the main text. The last column displays the maximum masses
Mmax on the hadronic (hybrid) branch corresponding to region i = 1 (i = 4). In addition, the minimal
mass Mmin in region i = 3 of the hybrid branch is displayed in that column.

ACB i Γi
κi ni m0,i Mmax/min

[MeV/fm3] [1/fm3] [MeV] [M�]

4 1 4.921 2.1680 0.1650 939.56 2.01
2 0.0 63.178 0.3174 939.56 –
3 4.000 0.5075 0.5344 1031.2 1.96
4 2.800 3.2401 0.7500 958.55 2.11
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For the present applications to thermodynamically consistent interpolating constructions we need
to convert the EoS (1) to the form [33]

P(µ) = κi

[
(µ−m0,i)

Γi − 1
κiΓi

]Γi/(Γi−1)
, (2)

valid for the respective regions (phases) i = 1 . . . 4, where for the constant pressure region i = 2 this
formula collapses to P(µ = µc) = Pc = κ2 because of Γ2 = 0. The masses m0,i represent the effective
masses of the constituent degrees of freedom in the phase i. For example, in the hadronic region,
m0,1 = m0, where m0 is the nucleon mass. At higher densities, this corresponds to effective quark
masses. For applying the MIM below, it will be important that the pressure of the hadronic phase
(i = 1) valid for µ < µc can be extrapolated to the neighbouring quark matter phase (i = 3) where
µ > µc and vice-versa.

HMT star EoS fulfil the Seidov conditions over quantity values at the phase transition [34]

∆ε

εc
≥ 1

2
+

3
2

Pc

εc
(3)

for the third family of compact stars to exist. These conditions determine the existence of a gap on
the mass-radius relation, therefore separating the third family of compact stars from the second one.
Once a small region of different matter appears in the centre of the star, the effect can be studied by
perturbation theory [34] or by linear response theory [35,36]. The result is that if the Seidov conditions
are satisfied, any increase in the central pressure will lead to an instability against oscillations precisely
of the same type that happens when the maximum mass is exceeded in the mass-radius relation.
The choice of parameters for this EoS corresponds to a sufficiently stiff high-density region in order
to prevent gravitational collapse while at the same time not violating the causality condition for the
speed of sound cs < c. See [33] for details.

3. Mixed Phase Constructions

In this section we present the details of the interpolation descriptions for the mixed phase between
the hadronic and quark matter phases. For this purpose we consider the chemical potential dependent
pressures of both the hadronic (i = 1) and the neighbouring quark matter (i = 3) phases: PH(µ), PQ(µ),
respectively. As mentioned above, our polytropic HMTs EoS features a first order phase transition
implemented in the form of a Maxwell construction at a critical chemical potential value µc where
pressures for both phases are equal:

PQ (µc) = PH (µc) = Pc, (4)

thus both phases are in thermodynamic equilibrium.

3.1. The Replacement Interpolation Method (RIM)

In this mixed phase approach the relevant regions of both, the hadronic and quark matter EoS
around the Maxwell critical point (µc, Pc) are replaced by a polynomial function defined as

PM (µ) =
N

∑
q=1

αq (µ− µc)
q + (1 + ∆P) Pc (5)

where ∆P is a free parameter representing additional pressure of the mixed phase at µc. Generally,
the ansatz (5) for the mixed phase pressure is an even order (N = 2k, k = 1,2, ...) polynomial and it
smoothly matches the EoS at µH and µQ up to the k-th derivative of the pressure,

PH (µH) = PM (µH) , PQ
(
µQ
)
= PM

(
µQ
)

(6)
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∂q

∂µq PH (µH) =
∂q

∂µq PM (µH) ,
∂q

∂µq PQ
(
µQ
)
=

∂q

∂µq PM
(
µQ
)

, q = 1, 2, . . . , k , (7)

where N + 2 parameter values (µH , µQ and αq, for q = 1, . . . , N) can be found by solving the above
system of equations, leaving one parameter (∆P) as a free parameter of this method.

The simplest case of the RIM is the parabolic model for N = 2 which has been first introduced
in [21,22],

PM (µ) = α2 (µ− µc)
2 + α1 (µ− µc) + (1 + ∆P) Pc (8)

As usual, the parameters α1, α2, µH and µQ are found from the following system of equations
involving quantities at the borders of the mixed phase,

PH (µH) = PM (µH) , PQ
(
µQ
)
= PM

(
µQ
)

(9)

nH (µH) = nM (µH) , nQ
(
µQ
)
= nM

(
µQ
)

. (10)

It is evident that the order of the interpolating function (5) will determine whether or not there
are discontinuities for the derivatives of the function PM(µ).

For instance, the square of the speed of sound,

c2
s =

∂P
∂ε

=
∂ ln µ

∂ ln n
, (11)

involves the second derivative of the pressure with respect to µ since n = ∂P/∂µ, see Figure 2.
The result is that for k = 1 the function (5) exhibits a clear discontinuity in the speed of sound at εc and
εc + ∆ε, whereas in between these borders, the speed of sound slightly increases relative to the case
of the Maxwell construction for which c2

s = 0 in the mixed phase region. For k = 2, the mixed phase
pressure (5) allows for a continuous speed of sound. However, it is connected at εc and εc + ∆ε to the
speed of sound outside these borders with a jump in its derivative. At the order k = 3 and higher the
speed of sound behaves smoothly without a jump in its derivative. However, the sharp change in the
speed of sound remains as a feature of matter around the transition points µH and µQ distinctive of a first
order phase transition. Moreover, the effect of taking into account the contribution of the higher order
polynomials is a softening at the transition that can be associated with crossover–type phase transitions.
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Figure 2. The squared speed of sound as a function of the chemical potential for the RIM construction
with k = 2 (left panel) and k = 3 (right panel).

3.2. The Mixing Interpolation Method (MIM)

This approach has recently been defined in Ref. [23], where the interpolation ansatz was based
on trigonometric functions. Here we will use instead a polynomial ansatz for the interpolation that
consists of a pair of functions foff and fon that will switch off and on the hadronic and quark parts
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of the equation of state, as well as an additional compensating function ∆ in order to eliminate
thermodynamic instabilities, see Figure 3. This interpolation is applied in the p− µ plane within the
range µH ≤ µ ≤ µQ.

µH µC µQ
0

0.5

1

fon
foff
∆

Figure 3. Polynomial switch functions foff/on(µ) as well as the function ∆(µ).

The pressure that interpolates between the hadron and quark phase at the phase transition reads

P(µ) = PH(µ) foff(µ) + PQ(µ) fon(µ) + ∆(µ)∆P. (12)

Even though foff and fon might be any switching functions, our choice of definition consists of
the following pair of left and right side polynomials:

f>,L = αL

(
µ− µH

µQ − µH

)2
+ βL

(
µ− µH

µQ − µH

)3
(13)

f<,R = αR

(
µQ − µ

µQ − µH

)2
+ βR

(
µQ − µ

µQ − µH

)3
(14)

that together with the complementary functions f>,R(µ) = 1− f<,R(µ) and f<,L(µ) = 1− f>,L(µ) will
complete the switch functions. The above coefficients αL , αR, βL and βR can be determined by the
following conditions

f≶,L(µ)
∣∣∣
µ=µc

= f≶,R(µ)
∣∣∣
µ=µc

= 1/2

∂ f≶,L(µ)

∂µ

∣∣∣
µ=µc

=
∂ f≶,R(µ)

∂µ

∣∣∣
µ=µc

∂2 f≶,L(µ)

∂µ2

∣∣∣
µ=µc

=
∂2 f≶,R(µ)

∂µ2

∣∣∣
µ=µc

(15)

where the value of 1/2 is chosen for symmetric convenience. Consequently, the switching functions
are defined as

fon(µ) =

{
0, µ < µH
f>,L, µH ≤ µ ≤ µc

(16)

foff(µ) =

{
f<,R, µc ≤ µ ≤ µQ
0, µ > µQ

(17)

and furthermore obey foff/on(µ) = 1− fon/off(µ).
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In order to construct a proper dimensionless function ∆(µ) we introduce

∆(µ) =


0 µ < µH

gL(µ) µH ≤ µ ≤ µC

gR(µ) µC ≤ µ ≤ µQ

0 µ > µQ

(18)

consisting of the functions

gL = δL

(
µ− µH

µC − µH

)2
+ γL

(
µ− µH

µC − µH

)3
(19)

gR = δR

(
µQ − µ

µQ − µC

)2
+ γR

(
µQ − µ

µQ − µC

)3
(20)

whose coefficients are determined by the conditions

gL(µ)
∣∣∣
µ=µC

= gR(µ)
∣∣∣
µ=µC

= 1

∂gL(µ)

∂µ

∣∣∣
µ=µC

=
∂gR(µ)

∂µ

∣∣∣
µ=µC

= 0 .
(21)

Regarding ∆P as the only free external parameter, up to this moment we have 10 unknowns and
eight independent equations which leave us with the possibility to fix the second order derivative of P
at µH and µQ in the following way:

∂2P
∂µ2

∣∣∣
µ=µH

=
∂2PH

∂µ2

∣∣∣
µ=µH

∂2P
∂µ2

∣∣∣
µ=µQ

=
∂2PQ

∂µ2

∣∣∣
µ=µQ .

(22)

4. Results

4.1. Hybrid Star EoS with Mixed Phases

The two interpolation methods presented above result in a thermodynamically consistent EoS.
Knowing that n = ∂P/∂µ, the thermodynamic identity used to derived all the needed variables at zero
temperature reads

ε = −p + µ n. (23)

Figure 4 shows the resulting mixed phase interpolations for both approaches characterised by the
dimensionless pressure increment ∆P = ∆P/Pc that ranges from 1 to 8%, where ∆P = 0% reproduces
the Maxwell construction. Figure 5 shows pressure values depending on energy density. The first
order phase transition via a Maxwell construction corresponds to the ∆P = 0% case with the pressure
being constant in the mixed phase region. Furthermore, Figure 6 shows the squared speed of sound for
both approaches where the difference between them becomes obvious: while the MIM shows a peak
in the mixed phase region the RIM shows a rather structureless behaviour in this region. This feature
is a direct consequence of the functional form of the interpolation implemented by the two methods.
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Figure 4. The EoS for pressure P vs. chemical potential µ for both MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel, k = 3) approaches to the mixed phase construction. Different
curves labelled by percentages correspond to values of ∆P = ∆P/Pc, where ∆P = 0 corresponds to the
Maxwell construction.
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Figure 5. The EoS for pressure P vs. energy density ε for both MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel, k = 3) approaches to the mixed phase construction. Different
curves labelled by percentages correspond to values of ∆P = ∆P/Pc, where ∆P = 0 corresponds to the
Maxwell construction. See [23] for an extended discussion on the MIM approach.
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Figure 6. The squared speed of sound c2
s against energy density ε for both MIM (left panel) and

RIM (right panel, k = 3) approaches to the mixed phase construction. Different curves labelled
by percentages correspond to values of ∆P = ∆P/Pc, where ∆P = 0 corresponds to the Maxwell
construction. A clear feature of the MIM that distinguishes it from the RIM is the intermediate
stiffening of the EoS, apparent by the peaked structure inside the mixed phase region. See [23] for an
extended discussion on the MIM approach.



Universe 2018, 4, 00 10 of 15

4.2. Compact Star Sequences

In order to compute the compact star internal pressure (energy density) profiles leading to
mass-radius relations, we solve the Tolman–Oppenheimer–Volkoff (TOV) equations [37,38] derived in
the framework of General Relativity for a static, spherically-symmetric compact star

dP(r)
dr

= −
G (ε(r) + P(r))

(
M(r) + 4πr3P(r)

)
r (r− 2GM(r))

,

dM(r)
dr = 4πr2ε(r)

(24)

with the boundary conditions P(r = R) = 0, M(0) = 0 and M(R) = M that serve to determine the
total stellar mass M and total stellar radius R once a central pressure P(0) = P(r = 0) (and with it
the central energy density because P(ε) is known) is given as input. By increasing the central energy
density values, a whole sequence of star configurations up to the one with the maximal mass can be
obtained, thus populating the mass-radius diagram. Figure 7 shows compact star sequences for all
models characterised by the ∆P value for both, the MIM and RIM approaches together with up-to-date
constraints from astrophysical measurements. We can notice that for the lower values of ∆P < 6% the
HMT phenomenon persists regardless which mixed phase interpolation method has been applied.
In Figure 8 we show the mass versus central energy density and the radius versus central pressure for
both interpolation methods. For the MIM one observes a trace of the intermediate stiffening effect in
the mass versus central energy density which is absent for the RIM.
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Figure 7. Mass-radius relations for both mixed phase approaches, MIM (left panel) and RIM for a sixth
order polynomial ansatz (right panel). Each curve corresponds to an EoS with a chosen ∆P value given
as a percentage of the critical Maxwell pressure Pc represented by alternating line-styles. The shaded
areas correspond to compact star measurements: The blue and red horizontal bands correspond to
mass measurements of PSR J1614-2230 [39] and PSR J0348+432 [40], respectively. The gray and orange
bands denoted by M1 and M2 are the compact star mass windows for the binary merger GW170817.
The green band corresponds to the 1.44± 0.07 M� mass of PSR J0437-4715 whose radius is expected
to be measured by NICER [41]. The hatched regions are excluded by GW170817: the star radius at
1.6 M� cannot be smaller than 10.68 km [25] and for a 1.4 M� the star has to have a radius smaller than
13.6km [3]. The maximum mass of compact stars is estimated to be lower than 2.16 M� [4].
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Figure 8. Upper panel: Mass as a function of central energy density for both mixed phase approaches,
MIM (left panel) and RIM (right panel). Lower panel: Radius as a function of central pressure for all
MIM (left panel) and RIM (right panel, k = 3) sequences. Each curve corresponds to an EoS with a
chosen ∆P value given as a percentage of the critical Maxwell pressure Pc represented by alternating
line-styles. The case ∆P = 0 corresponds to the Maxwell construction which produces a sharp edge in
the curves.

In addition, two other quantities of astrophysical interest are the total baryonic mass of the star
that results from integrating the following equation

dNB(r)
dr

= 4πr2(1− 2GM(r)
r

)−1/2n(r), (25)

and similarly, its moment of intertia [42]

I ' J
1 + 2GJ/R3c2 , J =

8π

3

∫ R

0
r4
(

ρ +
p
c2

)
Λdr, Λ =

1
1− 2Gm/rc2 , (26)

which are related to observational phenomena as well, like energetic emissions that might conserve
baryon mass or moment of inertia dependent pulsar glitches. For a detailed discussion of the moment of
inertia in the slow-rotation approximation, and for the hybrid star case see, e.g., [43–45], and references
therein. In Figure 9 we show the baryon mass versus radius and and the moment of inertia versus
gravitational mass for the compact star sequences obtained in this work with both interpolation
methods. When increasing the pressure increment from ∆P = 0 to 8%, the sharp edges which are
obtained for the Maxwell construction case get washed out. One observes no qualitative difference
between the MIM and the RIM in the patterns of these families of sequences. For ∆P > 5%, the second
and third family branches in the MB versus R diagrams get joined so that neutron star and hybrid star
configurations form a connected sequence and the HMT phenomenon get lost. This effect is reflected
in the I vs. M diagrams by the loss of multiple values (the lowest branch up to the maximum mass
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of 2.11 M� shall be ignored because it is unstable). From the MB versus R diagrams one can read off
which configuration on the hybrid star branch would be reached when the maximum mass neutron
star configuration would collapse under conservation of baryon number. Comparing the gravitational
masses of these two star configurations one can estimate the release of binding energy in this process,
see Ref. [45].
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Figure 9. Upper panel: Baryonic Mass versus radius for both mixed phase approaches, MIM (left panel)
and RIM (right panel, k = 3). Lower panel: Moment of inertia as a function of total mass for MIM
(left panel) and RIM (right panel, k = 3) approaches. Each curve corresponds to an EoS with a chosen
∆P value given as a percentage of the critical Maxwell pressure Pc represented by alternating line-style
values. The case ∆P = 0 corresponds to the Maxwell construction which produces a sharp edge in the
curves.

5. Conclusions

In this work we have introduced two interpolation approaches to a mixed phase at the
hadron-quark phase transition. An advantage of these two interpolation methods presented here over
the construction employing hyperbolic tangent functions [19,20] is the finite extension in chemical
potentials of the mixed phase between the hadronic and the quark EoS, whereas the latter strictly
converges only at infinity.

While each approach uses a different functional form, both fulfil the same conditions at the border
of the mixed phase. We have found that both methods can be distinguished by the behaviour of the
speed of sound that they predict. The MIM approach motivated by the analogy with sequential phase
transitions occurring for substitutional compounds in the neutron star crust finds an intermediate
stiffening of the mixed phase EoS. The RIM approach does not exhibit this feature. In the case of the
RIM approach, we have studied both a fourth and sixth order polynomial interpolation. We found
that the latter connects the hadron and quark EoS smoothly up to second derivatives, which is visible
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in the smooth behaviour of the speed of sound. However, the differences in the neutron star properties
for both polynomial orders are safely negligible.

The macroscopic properties of compact stars show, for both mixed phase constructions, a very
similar systematic behaviour as the pressure increment ∆P is increased: the mass-radius relation smooths
out, eliminating the gap between second and third branches, however, we have only considered the
highest values. Up to ∆P ∼ 5% the HMT phenomenon is robust against the mixed phase construction,
regardless whether the MIM or RIM approach is used. For the mass versus central energy density,
one observes a trace of the intermediate stiffening effect for the MIM which is absent for the RIM.
For the other compact star quantities evaluated here, the baryonic mass and the moment of inertia,
both interpolation methods display a similar type of behaviour when the pressure increment is varied.

The methods presented here can potentially be applied to the compact star crust-core transition
as well. Just like at the hadron-quark boundary, the transition at the bottom of the crust may proceed
via pasta phases dominated by Coulomb forces and surface tension effects [8]. Further astrophysical
aspects of mixed phases inside neutron stars include potentially observable effects such as the rotational
evolution, pulsar glitches, gravitational wave emission and cooling. They could be sufficiently sensible
to the nature of the phase transition, proceeding via pasta phases or not, and thus provide potential
signatures of the presence and extension of a mixed phase in compact stars.
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