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Abstract: We investigate the comprehensive geodesic structure of a spherically symmetric, static
charged regular Ayón-Beato and García black hole (BH). We derive the equation of innermost stable
circular orbit (ISCO), marginally bound circular orbit (MBCO) and circular photon orbit (CPO) of
said BH, which are most relevant to BH accretion disk theory. Using time-like geodesic properties,
we derive Paczyński-Witta potential form for this BH which are very relevant to determine the general
relativistic effects on the accretion disk. We show that at a certain radius (For example in case of
Reissner-Nordstrøm (RN) BH, r∗ = Q2

M ), there exists zero angular momentum (ZAM) orbits due to the
repulsive gravity. We also show that in the eikonal approximation, the real and imaginary parts of the
quasi normal modes (QNM) of the regular BHs can be expressed as in terms of the frequency of the
BH and the instability time scale of the unstable null circular geodesics. Moreover, we study the Bañados,
Silk and West effect for this BH. We show that the center-of-mass (CM) energy of colliding neutral test
particles near the infinite red-shift surface of the regular BHs have the finite energy. In the Appendix
section, we have discussed the possibility of a regular ABG BH can act as particle accelerators when
two charged test particles of different energies are colliding and approaching to the horizon of the
BH provided that one of charged test particle has a critical value of charge.

Keywords: ISCO; CPO; MBCO; QNM; ABG BH; Paczyński-Witta potential; BSW effect

1. Introduction

Geodesic motion of test particles (both timelike and lightlike) for various BHs spacetime namely
Schwarzschild BH, RN BH, Kerr BH, Kerr-Newman BH have been studied by various authors in
different way [1–7]. This is the only method of experimental verification of gravitaional fields of
compact object like BHs. They are the most fascinating compact objects in the universe. They predicted
different types of observable effects in the general relativity that can be tested in our solar system.
For example, the gravitational redshift, the gravitational bending of light, gravitational time-delay or
Shapiro time-delay, Perihelion precession of light, gravitational lensing and Lense-Thirring effect, etc.
all are the physical effects which are directly connected to the study of geodesic structure of the BH.
Therefore, it is very crucial to study the geodesic properties of the BH spacetime.

In order to understand the geodesic motion for masive particles of a given spacetime it is necessary
to know the timelike geodesic equation which can be written as

d2xα

dτ2 + Γα
βγ

dxβ

dτ

dxγ

dτ
= 0. (1)

where Γα
βγ is Christoffel symbols.
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Similarly for massless particles, the geodesic equation is given by

d2xα

dλ2 + Γα
βγ

dxβ

dλ

dxγ

dλ
= 0. (2)

where λ is affine parameter.
Among different kind of geodesics, circular geodesics, particularly ISCOs, are more interesting.

Circular geodesic motion in the equatorial plane is of fundamental interest in BH physics as well as
in accretion disk physics to determine the important features of the spacetime. Circular orbits with
r > rISCO are stable, while those with r < rISCO are not. Keplerian circular orbits exist in the region
r > rph, with rph being the circular photon orbit. Bound circular orbits exist in the region r > rmb,
with rmb being the marginally bound circular orbit, and stable circular orbits exist for r > rISCO,
with rISCO. We have calculated these orbits for the above regular BHs. These orbits are very crucial
in BH physics as well as in astrophysics because they determine important information on the back
ground geometry.

The conventional BHs like Schwarzschild BH, RN BH, Kerr BH and Kerr-Newman BHs have
possessed a curvature singularity. Whereas the regular BH [8–15] does not have any curvature
singularity. This is the main differences between the conventional BH and the regular BH. On the
other hand, it is also important to understand the final state of gravitational collapse of initially
regular configurations of the BH, that’s why we need to study the global regularity of BH solutions.
Broadly speaking for conventional BHs, the curvature invariants R, RabRab, RabcdRabcd blows up at
r = 0 in the spacetime manifold, while for regular BHs the curvature invariants do not blow up
everywhere in the spacetime manifold including at r = 0. In this sense, it is said to be a “regular BH”
or “non-singular BH”.

We have considered here regular Ayón-Beato and García (ABG) BH [9]. The special features of
these BHs are they have satisfied the weak energy condition (WEC) and the energy-momentum tensor
should have the symmetry T00 = T11. Our goal here is to study the BSW effect for these BHs.

There are a number of references we would like to mention here which discuss some interesting
properties of the regular BHs. Firstly, Ansoldi [16] gave a good review of the regular BH. Balart [17]
studied the Brown-York quasi-local energy and Komar energy at the horizon which is called
Bose-Dadhich identity [18], and proved that this identity does not satisfied for the regular BHs.
In [19], the author showed that Smarr’s formula do not satisfied in case of the regular Bardeen and
ABG space-time. In [20], the authors have been studied the weak energy condition of the regular BH.
Recently, García et al. [21] have discussed the complete geodesic structure of ABG spacetime by using
Weierstrass elliptic functions. Finally, Eiroa et al. [22] have discussed the gravitational lensing effect of
the regular Bardeen BH (See also [23]). The QNM of test fields around different regular BHs have been
studied in [24].

However, in this work, we have studied the complete geodesic structure of neutral test particle
motion of a regular Ayón-Beato and García BH. We have derived the ISCO, MBCO and CPO of the said
BHs, which are most important to BH accretion disk physics. We have also derived Paczyński-Witta [25]
potential for ABG BH which is so called pseudo-Newtonian potential. Paczyński-Witta potential
could be used to describe the general relativistic effects on the accretion disk properties. Not only
that this potential could help us to determine the approximate solutions of the hydrodynamical
equations. The interesting feature of Paczyński-Witta potential is that it could help us to determine the
right positions of the ISCO and MBCO of the BH. For Schwarzschild BH, Paczyński-Witta was first
determined such features and for Kerr BH, this potential has derived by Mukhopadhyay [26]. In this
work, we have applied this method for ABG BH.

In addition to that we have computed the QNM frequency for the said regular BHs in the eikonal
limit. It has been shown that this frequency of the BH can be expressed in terms of the parameters of the
unstable null circular geodesics. Moreover, we have examined the Bañados, Silk and West (hereafter
BSW) [27] effect for this kind of BHs.



Universe 2018, 4, 55 3 of 23

Geodesic properties have been considered previously for the said BH first in the Ref. [21] by
using Weierstrass elliptic functions method. After that the geodesic properties considered for regular
Bardeen BH, ABG BH and Hayward BH extensively by using Chandrasekhar’s approach in [4].
Subsequently in [28], the authors considered the geodesic properties for ABG BH and Bardeen BH by
using the features of no-horizon structure of the BHs. From the author’s best of knowledge, previously
pseudo-Newtonian potential & QNM frequency for regular ABG BH in the eikonal limit have not been
considered in the literature.

The paper is organized as follows. In Section 2, we would describe the geodesic motion of neutral
test particles in the back ground of ABG space-time. In Section 3, we would study the QNMs of null
circular geodesics in the eikonal limit. In Section 4, we would study the BSW effect for regular ABG
BH and finally we summarize the results in Section 5. In the appendix section, we should examine
the possibility of a regular BH could be act as particle accelarators when two charged particles are
colliding near the vicinity of the horizon of the BH.

2. Equatorial Circular Orbits in ABG Space-Time

In this section, we will investigate the geodesic motion of neutral test particles for a ABG BH.
This space-time is also a regular BH space-time and singularity free solutions of the coupled system of
a non-linear electrodynamics and general relativity. The source is a nonlinear electrodynamic field
satisfying the WEC, which in the limit of weak field becomes the Maxwell field. We find the CM
energy for this space-time can be infinitely high when the BH is only extremal. Before computing the
CM energy we shall demonstrate shortly the geodesic structure of the ABG space-time.

The metric of the ABG space-time [9,13–15,21,29] is given by

ds2 = −G(r)dt2 +
dr2

G(r) + r2
(

dθ2 + sin2 θdφ2
)

. (3)

where the function G(r) is defined by

G(r) = 1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2 . (4)

where m is the mass of the BH and q is the monopole charge. The strength of the radial electric field Er

is given by

Er = qr4
(

r2 − 5q2

(r2 + q2)4 +
15
2

m
(r2 + q2)7/2

)
. (5)

We can see the behaviour of the function G(r) graphically in Figure 1.
This is also a first regular BH solution in general relativity. The source is a nonlinear electrodynamic

field satisfying the WEC, which in the limit of weak field becomes the Maxwell field.
It may also be noted that this metric function asymptotically behaves as the RN space-time [9] i.e.,

G(r) ∼ 1− 2m
r

+
q2

r2 + O(
1
r3 ),

Er ∼
q
r2 + O(

1
r3 ) . (6)

The ABG BH has an event horizon (r+) which occurs at G(r+) = 0. i.e.,

r8
+ + (6q2 − 4m2)r6

+ + (11q4 − 4m2q2)r4
+ + 6q6r2

+ + q8 = 0 . (7)
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Figure 1. The figure shows the variation of G(r) with r for different values of q.

The variation of radial horizon function for different values of q could be seen in Figure 2. In the
limit q → 0, we shall get the horizon of the Schwarzschild BH i.e., r+ = 2m. The ABG space-time
represents a regular BH when | q |≤ qc. The value of qc is qc ≈ 0.634m. When | q |≤ qc, there are
two horizons in the ABG space-time, we call it non-extremal ABG space-time as in the non-extremal
RN space-time.

When | q |= qc, the two horizons are coincident at r+ ∼ 1.005m, which corresponds to an extreme
ABG BH as in the RN BH. The Carter-Penrose diagram of ABG space-time is quite similar structure to
the RN BH.

To derive the complete geodesic structure of the Bardeen BH we shall follow the pioneering book
by S. Chandrasekhar [1] and J. B. Hartle [2]. To compute the geodesic motion of the test particle in the
equatorial plane we set θ̇ = 0 and θ = constant = π

2 . Since the space-time admits two Killing vectors
namely, ζ ≡ ∂t and χ ≡ ∂φ. Therefore the quantities E = −ζ · u and L ≡ χ · u are conserved along the
geodesics, uµ is the four velocity of the particle. Where E and L can be interpreted as conserved energy
and conserved angular momentum per unit mass respectively.

Thus, in this coordinate chart, E can be written as

E = −ζ · u = G(r) ut . (8)

and, L can be expressed as in terms of the metric

r2 uφ = L . (9)

From the normalization condition of the four velocity for massive particles we find

uµuµ = σ . (10)
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where σ = −1 for time-like geodesics, σ = 0 for light-like geodesics and σ = +1 for space-like geodesics.
The radial equation that governs the geodesic structure in the ABG space-time reads [4]

(ur)2 = ṙ2 = E2 − Ve f f = E2 −
(

L2

r2 − σ

)
G(r) . (11)

where the effective potential for the geodesic motion of the ABG space-time is given by

Ve f f =

(
L2

r2 − σ

)(
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

)
. (12)

Figure 2. The figure depicts the variation of y = r8 + (6q2 − 4m2)r6 + (11q4 − 4m2q2)r4 + 6q6r2 + q8

with r for different values of q.

2.1. Particle Orbits

(i) The Effective Potential

The effective potential for time-like geodesics can be written as using the Equation (11) by setting
σ = −1

Ve f f =

(
1 +

L2

r2

)(
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

)
. (13)

Analogously, for zero angular momentum geodesics the effective potential becomes

Vze f f =

(
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

)
. (14)
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The trajectories of the test particle in the zero angular momentum potential well can be seen from
the Figure 3.

Figure 3. The figure depicts the variation of Vze f f with r for various values of q. Here m = 1.

Similarly, the geodesic motion of neutral test particles can be studied by using the effective
potential diagram which is plotted in Figure 4.

Figure 4. The figure shows the variation of Ve f f with r for ABG BH.

Similarly, to derive the circular geodesic motion of the test particle in ABG space-time, we must
use the condition ṙ = 0 at r = r0. From Equation (11), one gets

Ve f f = E2 . (15)
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and

dVe f f

dr
= 0 . (16)

Thus one can obtain the energy and angular momentum per unit mass of the test particle along
the circular orbits [4]

E2
0 =

[
(r2

0 + q2)2 − 2mr2
0

√
r2

0 + q2 + q2r2
0

]2

(r2
0 + q2)

[
(r2

0 + q2)3 − 3mr4
0

√
r2

0 + q2 + 2q2r4
0

] . (17)

and,

L2
0 =

r4
0

[
m(r2

0 − 2q2)
√

r2
0 + q2 − q2(r2

0 − q2)
]

[
(r2

0 + q2)3 − 3mr4
0

√
r2

0 + q2 + 2q2r4
0

] . (18)

Circular motion of the test particle to be exists for ABG space-time when both energy and angular
momentum are real and finite. The 3D diagram of variation of energy and angular momentum along
circular orbits could be seen from Figure 5.

Figure 5. The figure shows the variation of E0 and L0 with r0.

Thus we get the inequality

(r2
0 + q2)3 − 3mr4

0

√
r2

0 + q2 + 2q2r4
0 > 0

and

r0 > q

√√√√√2m
√

r2
0 + q2 − q2

m
√

r2
0 + q2 − q2

.

Circular orbits do not exist for all values of r, so from Equations (17) and (18), we can see that the
denominator would be real only when

(r2
0 + q2)3 − 3mr4

0

√
r2

0 + q2 + 2q2r4
0 ≥ 0 (19)

or
r12

0 + (10q2 − 9m2)r10
0 − (9m2q2 − 31q4)r8

0 + 32q6r6
0 + 19q8r4

0 + 6q10r2
0 + q12 ≥ 0 (20)
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The limiting case of equality indicates a circular orbit with diverging energy per unit rest mass i.e.,
a photon orbit. This photon orbit is the inner most boundary of the circular orbits for time-like particles.

It could be expected that the ZAM orbit exists due to the repulsive gravity at the radius r0 = r∗ =

q
√

2m
√

r2∗+q2−q2

m
√

r2∗+q2−q2
where L(r∗) = 0 for ABG BH as we have seen in case of Bardeen spacetime. Due to

the mathematical difficulty we could not determine the exact radius r∗ but we could say that it
is a polynomial equation of sixth order. Whereas this orbit exists for RN BH at the static radius
r∗ = Q2

M [5,30] which has been mentioned earlier in the abstract.
The equation of MBCO [4] for ABG space-time looks like

m2r10
0 − (16m4 − 3m2q2)r8

0 + (99m2q4 − 32m4q2)r6
0−

(16m4q4 − 23m2q6 − 9q8)r4
0 + (72m2q8 − 12q10)r2

0 + (16m2q10 − 4q12) = 0 . (21)

Let r0 = rmb be the solution of the equation which gives the radius of MBCO close to the BH.
The ISCO equation could be obtain from the second derivative of the effective potential of time-like

case i.e.,

d2Ve f f

dr2 = 0 (22)

Thus one may get the ISCO equation [4] for the ABG space-time as

m2r18
0 − (36m4 − 39m2q2 + 4q4)r16

0 +

(97m2q4 − 72m4q2 + 40q6)r14
0 − (36m4q4 − 97m2q6 + 52q8)r12

0

−(89m2q8 + 216q10)r10
0 − (357m2q10 + 272q12)r8

0−

(292m2q12 + 104q14)r6
0 + (16m2q14 + 12q16)r4

0+

(144m2q16 + 24q18)r2
0 + 4q18(16m2 − q2) = 0 . (23)

Let r0 = rISCO be the real solution of Equation (23) which gives the radius of the ISCO of ABG
space-time. In the limit q → 0, we obtain the radius of ISCO for Schwarzschild BH which occurs at
rISCO = 6m.

(ii) The Paczyński-Witta Potential

Here we should derive the pseudo-Newtonian potential for ABG following the Ref. [26].
This pseudo-Newtonian potential is often called Paczyński-Witta (PW) Potential for Schwarzschild BH
because PW first derived this potential for Schwarzschild BH. This potential is useful tool for studying
BH astrophysics. Although the charge is not considered in realistic astrophysical situations we have
derived this potential for ABG BH purely from theoretical point of view. This is the motivation behind
to derive this potential. It should be noted that this potential has been derived in the equatorial plane.
The interesting features of this potential is that it could be used to determine the locations of the ISCO
and MBCO of BH. To derive it first we should calculate the Keplerian angular distribution following
the Ref. [26]

ΩK = r2
0

√
r2

0 + q2

√
m(r2

0 − 2q2)
√

r2
0 + q2 − q2(r2

0 − q2)[
(r2

0 + q2)2 − 2mr2
0

√
r2

0 + q2 + q2r2
0

] . (24)
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Now we introduce the variables x = r0
q and m∗ = m

q then one could write the corresponding
centrifugal force for ABG BH

Ω2
K

x3 = q2
x(x2 + 1)

[
m∗(x2 − 2)

√
x2 + 1 + (1− x2)

]
[
(x2 + 1)2 − 2m∗x2

√
x2 + 1 + x2

]2 = Fx . (25)

The above equation indicates that Fx could be treated as gravitational force of the ABG BH at
the Keplerian orbit. Therefore, we prescribed that Equation (25) is the most general form of the
gravitational force (See Figure 6 ) similar to the pseudo-potential of the accretion disk around the BH.

Figure 6. The figure depicts the variation of Fx with x and q for ABG BH.

The general form of the pseudo-potential evaluated from the following integral

Vx = q2
∫ x(x2 + 1)

[
m∗(x2 − 2)

√
x2 + 1 + (1− x2)

]
[
(x2 + 1)2 − 2m∗x2

√
x2 + 1 + x2

]2 dx . (26)

After integration one obtains

Vx =
q2

2
x2[1− 2m∗

√
x2 + 1]

[x4 + (3− 2m∗
√

x2 + 1)x2 + 1]
. (27)

The variation of this pseudo-Newtonial potential could be seen from Figures 7 and 8.
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Figure 7. The figure depicts the variation of Vx with x and q for ABG BH.

Figure 8. The figure depicts the variation of Vx with x and q for ABG BH.
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(iii) The Geodesics using variable u = 1
r

The relevant equations for time-like geodesics are(
dr
dτ

)2
+

(
1 +

L2

r2

)(
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

)
= E2 . (28)

and

dφ

dτ
=

L
r2 . (29)

Now using these equations, one can derive the relevant equation in the r− φ plane(
dr
dφ

)2
=

(E2 − 1)
L2 r4 +

2mr6

L2(r2 + q2)
3
2
− q2r6

L2(r2 + q2)2 − r2 +
2mr4

(r2 + q2)
3
2
− q2r4

(r2 + q2)2 . (30)

Let us introduce the variable u = 1
r , as we do in case of Keplerian orbit in the Newtonian theory,

one derives the fundamental equation in the u− φ plane(
du
dφ

)2
=

(E2 − 1)
L2 +

2mu

L2(1 + q2u2)
3
2
− q2u2

L2(1 + q2u2)2 − u2 +
2mu3

(1 + q2u2)
3
2
− q2u4

(1 + q2u2)2 . (31)

The above equation governs the geodesic structure in the invariant plane. If it could have been
solved for u(φ), the solution could be direct quadratures of the following equations

dτ

dφ
=

1
Lu2 . (32)

and

dt
dφ

=
E

Lu2
[

1− 2mu

(1+q2u2)
3
2
+ q2u2

(1+q2u2)2

] . (33)

Using Equation (31), one could differentiate two class of orbits i.e., bound orbit and unbound
orbits. When E2 < 1, one obtains bound orbit and E2 > 1, one obtains unbound orbits. First we should
discuss the bound orbits i.e., E2 < 1. These orbits are determined by the equation(

du
dφ

)2
= H(u) , (34)

where

H(u) =
(E2 − 1)

L2 +
2mu

L2(1 + q2u2)
3
2
− q2u2

L2(1 + q2u2)2 − u2 +
2mu3

(1 + q2u2)
3
2
− q2u4

(1 + q2u2)2 (35)

The functionH(u) has been plotted for various values of E in Figure 9.
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Figure 9. The figure demonstrates the variation ofH(u) with u for ABG BH.

2.2. Photon Orbits

(i) The Effective Potential for Photon

For null geodesics [4], the effective potential becomes

Ue f f =
L2

r2 G(r)

=
L2

r2

(
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

)
(36)

Analogously, the geodesic motion of neutral test particles for photon could be studied by using
the effective potential diagram which is plotted in Figure 10.

For circular null geodesics at r = rc, one obtains

Ue f f = E2 (37)

and

dUe f f

dr
= 0 (38)
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Thus one could obtain the ratio of energy and angular momentum of the test particle evaluated at
r = rc for CPO [4]

Ec

Lc
= ±

√√√√ 1
r2

c

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

)
(39)

and,

r12
c + (10q2 − 9m2)r10

c − (9m2q2 − 31q4)r8
c + 32q6r6

c + 19q8r4
c + 6q10r2

c + q12 = 0. (40)

Let Dc =
Lc
Ec

be the impact parameter for null circular geodesics then

1
Dc

=
Ec

Lc
=

√√√√ 1
r2

c

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

)
(41)

Let rc = rph be the solution of Equation (40) which gives the radius of the photon orbit of the ABG
space-time. In the limit q→ 0, we recover the CPO of Schwarzschild BH which is rph = 3m.

Figure 10. The figure depicts the variation of Ue f f with r for ABG BH.

(ii) The Null Geodesics using variable u =
1
r

For null geodesics the radial equation becomes(
dr
dλ

)2
+

L2

r2

[
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

]
= E2 . (42)
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At the same time, we also consider the other relevant equations are(
dt
dλ

)[
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

]
= E . (43)

and

dφ

dλ
=

L
r2 . (44)

Similarly, by considering r as a function of φ, one derives the following equation(
dr
dφ

)2
=

E2

L2 r4 − r2 +
2mr4

(r2 + q2)
3
2
− q2r4

(r2 + q2)2 . (45)

Now putting r by a new independent variable u = 1
r , one obtains(

du
dφ

)2
=

1
b2 − u2 +

2mu3

(1 + q2u2)
3
2
− q2u4

(1 + q2u2)2 = Y(u) . (46)

where b denotes the impact parameter. Differentiating this equation, one gets

d2u
dφ2 + u =

3mu2

(1 + q2u2)
3
2
− 3mq2u4

(1 + q2u2)
5
2
− 2q2u3

(1 + q2u2)2 +
2q4u5

(1 + q2u2)3 . (47)

which governs the light rays in ABG spacetime. Now the roots of Equation (46) could be determined
by imposing the following condition

Y(u) =
1
b2 − u2 +

2mu3

(1 + q2u2)
3
2
− q2u4

(1 + q2u2)2 = 0 . (48)

At u = uc, Y(u) = 0 therefore we find the impact parameter as

b =
1

uc

√[
1− 2muc

(1+q2u2
c )

3
2
+ q2u2

c
(1+q2u2

c )2

] . (49)

When q = 0, one obtains the result of Schwarzschild BH when the root of uc could be obtained by
solving the equation i.e., Y ′(u) = 0

1− 3muc

(1 + q2u2
c )

3
2
+

3mqu4
c

(1 + q2u2
c )

5
2
+

2q2u2
c

(1 + q2u2
c )

2 −
2q4u4

c
(1 + q2u2

c )
3 = 0 . (50)

After solving this equation, we get the root uc. It is very easy to see the root of the Schwarzschild
BH (uc =

1
3m ) when q = 0.

The light deflection could be calculated by using Equation (45). First we calculate the distance of
closest approach by setting the condition dr

dφ |r=r0 which gives the value of b. Now substituting this
values we get

dφ

dr
= ± 1

r2

[
1
r2

0

{
1−

2mr2
0

(r2
0 + q2)

3
2
+

q2r2
0

(r2
0 + q2)2

}
− 1

r2

{
1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

}]
. (51)

It implies that the deflection of light depends upon the charge parameter.
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(iii) The Radial Null Geodesics

Analogously, the radial null geodesics are derived to be(
dr
dλ

)
= ±E . (52)

and

dt
dλ

=
E[

1− 2mr2

(r2+q2)
3
2
+ q2r2

(r2+q2)2

] . (53)

Thus one could find the following equation

dr
dt

= ±
[

1− 2mr2

(r2 + q2)
3
2
+

q2r2

(r2 + q2)2

]
. (54)

Therefore the coordinate time is given by the following integral

t = ±
∫ dr[

1− 2mr2

(r2+q2)
3
2
+ q2r2

(r2+q2)2

] . (55)

It implies that when r → r+, the coordinate time goes to infinity as is expected. Now integrating
Equation (52), one could get relation between the affine parameter time and the radial coordinates

λ = ± r
E
+ constant± . (56)

This indicates that the affine parameter time is finite when the coordinate time is infinite.

3. Null Circular Geodesics and QNM for ABG Spacetime in the Eikonal Limit

In this section, we compute the QNM frequency for spherically symmetric ABG BH in the eikonal
limit using the concept of Lyapunov exponent. It has been shown by Cardoso et al. [31] that there is
a valid relation between null circular geodesics and QNM in the eikonal limit. Before proceed it we
would shortly describe what is the QNM frequency? When a BH is perturbed it oscillates with a certain
frequency, this frequency is called QNM frequency. It should be noted that unstable null circular
geodesics could be used as a useful tool to describe the characteristic modes of a BH, which is so called
the QNMs [32] frequency. In [33], we computed the QNM frequency for RN BH and Schwarzschild
BH in the eikonal limit. To derive the QNM frequency for regular BH, We have borrowed the formula
that has been derived by Cardoso et al. in [31] as

ωQNM = `Ωc − i
(

n +
1
2

)
λc . (57)

where n is denoted as the overtone number, ` is denoted as the angular momentum of the perturbation,
Ωc is denoted as the angular frequency measured by the asymptotic observers and λc is denoted the
coordinate time Lyapunov exponent for null circular geodesics which may be defined as in terms of
the effective potential for null circular geodesics

λc =

√
−
U ′′e f f

2ṫ2 . (58)
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and

Ωc =
φ̇

ṫ
=

1
Dc

. (59)

For ABG BH the values of Ωc and λc are

Ωc =
1
rc

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

) 1
2

. (60)

and

λc =
1
rc

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

) 1
2

×

[
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2 +

mr2
c
(
r4

c − 11q2r2
c + 2q4)

(r2
c + q2)

7
2

−
q2r2

c
(
3r4

c − 8q2r2
c + q4)

(r2
c + q2)4

] 1
2

. (61)

Using these values and with Equation (59) one obtains the QNM frequency for ABG BH in the
eikonal limit

ωQNM =
`

rc

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

) 1
2

−i

(
n + 1

2

)
rc

(
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2

) 1
2

×

[
1− 2mr2

c

(r2
c + q2)

3
2
+

q2r2
c

(r2
c + q2)2 +

mr2
c
(
r4

c − 11q2r2
c + 2q4)

(r2
c + q2)

7
2

−
q2r2

c
(
3r4

c − 8q2r2
c + q4)

(r2
c + q2)4

] 1
2

. (62)

In the limit q = 0, one obtains the QNM frequency for Schwarzschild BH in the eikonal limit [33].
Similarly, it implies that the real and imaginary parts of the QNMs of regular ABG BH in the Eikonal
limit are given by the frequency and instability time scale of the unstable circular photon geodesics.
One could observe the variation of angular frequency and λ

Ω c with rc and q in Figures 11–13. It should
be noted that in the eikonal limit the relation between the null circular geodesics and QNMs frequency
get violated in case of higher curvature gravity i.e., Lovelock gravity [34] but for regular BHs this
relation does not violate at all as we have seen from our computation.

Figure 11. The figure shows the variation of Ωc with rc and q.
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Figure 12. The figure depitcs the variation of λ
Ωc

with rc and q for ABG BH.

Figure 13. The figure depitcs the variation of λ
Ωc

with rc and q for ABG BH.
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4. CM Energy of the Collision Near the Horizon of the Ayón-Beato and García Space-Time

Now let us compute the CM energy for the collision of two neutral particles of same rest mass
m0 but different energy coming from infinity with E1

m0
= E2

m0
= 1 and approaching the event horizon

(infinite red-shift surface) of the ABG BH with different angular momenta L1 and L2. Since our
background is curved, so we need to define the CM frame properly. BSW [27] have been first derived
the simple formula which is valid in both flat and curved spacetime(

Ecm√
2m0

)2
= 1− gµνuµ

(1)u
ν
(2) . (63)

where uµ

(1) and uµ

(2) are the four velocity of the particles, properly normalized by uµuµ = −1 (we have
used the signature in the meric is (−+++)). This formula is of course well known in special relativity
and in general relativity to ensure its validity.

Since the ABG space-time has also Killing symmetries followed by the Killing vector field thus
energy (E) and angular momentum (L) are conserved quantities as we have defined in case of Bardeen
space-time. Therefore for massive particles of ABG space-time, the components of the four velocity are

ut =
E
G(r) (64)

ur = ±

√
E2 − G(r)

(
1 +

L2

r2

)
(65)

uθ = 0 (66)

uφ =
L
r2 . (67)

and,

uµ

(1) =

(
E1

G(r) , −Y1, 0,
L1

r2

)
. (68)

uµ

(2) =

(
E2

G(r) , −Y2, 0,
L2

r2

)
. (69)

where

Y1 =

√√√√E2
1 − G(r)

(
1 +

L2
1

r2

)
(70)

Y2 =

√√√√E2
2 − G(r)

(
1 +

L2
2

r2

)
(71)

Substituting this in (63), we get the CM energy for ABG space-time(
Ecm√
2m0

)2
= 1 +

E1E2

G(r) −
Y1Y2

G(r) −
L1L2

r2 . (72)

For simplicity, E1 = E2 = 1 and putting the value of G(r), we obtain the CM energy near the
event horizon (r+) of the ABG space-time

Ecm |r→r+ =
√

2m0

√
4r2

+ + (L1 − L2)2

2r2
+

. (73)

where r+ is the root of the given equation in (7) .
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When we set r+ = 2m, we get the CM energy of the Schwarzschild BH [35]

Ecm =
√

2m0

√
16m2 + (L1 − L2)2

8m2 . (74)

Since the spacetime is spherically symmetric therefore in this case the CM energy is finite in the
region r ≥ r+ of the BH such that the angular momenta L1 and L2 of colliding particles are finite.
This BH can acts as particle accelerators when two test charged particles approaching the horizon
and provided that one of the test charge particle has critical value. This is discussed briefly in the
Appendix section.

5. Summary and Conclusions

In this work, we examined the complete geodesic structure of a spherically symmetric, static
charged Ayón-Beato and García BH. We also studied the properties of equatorial circular geodesic
motion of neutral test particle by extremization of the effective potential for time-like circular orbits
and null circular orbits. We particularly emphasized on the ISCO, MBCO and CPO of these regular
BHs. These orbits are useful to extract the information about the back ground geometry and they are
also relevant to the different kind of astrophysical procecess. We also studied an important feature of
regular BHs that at a particular radius (say for RN BH, r∗ = Q2

M ), there exist zero angular momentum
orbits due to the repulsive gravity. Using the geodesic properties of time-like particle, we derived the
pseudo-Newtonian potential so called Paczyński-Witta Potential for ABG BH which are very important
tools for analyzing the accretion-disk properties.

Next we computed the QNM frequency for these BHs by introducing the idea of Lyapunov
exponent. By computing Lyapunov exponent we showed the QNM frequency of the regular BH can
be expressed in terms of the parameters of the null CPO. We also showed that the real and imaginary
parts of the QNM frequency of these regular BH could be expressed in terms of the instability time
scale of the null CPO.

Moreover, we demonstrated that the collision of two neutral test particles falling freely from
rest at infinity in the background of the regular ABG BH which is a regular BH space-time and
singularity free solutions of the coupled system of a non-linear electrodynamics and general relativity.
We have seen that the CM energy is finite and depends upon the fine tuning condition of the angular
momentum parameter.

In the Appendix section, we investigated the collision of two charged test particles of different
energy falling freely from rest at infinity in the background of the regular BHs and approaching to the
horizon of the BH. Then there may be a possibility of this BH acts as particle accelerators while one of
the charged test particle has critical value.

Conflicts of Interest: The authors declare not have any conflict of interest.

Appendix A

In this appendix section, we shall show the possibility of the CM energy is arbitrarily large for
a regular BH when two charged particles of different energies are colliding and approaching to the
horizon of the BH. We know the motion of a test particle of charge ε per unit mass describes in the BH
geometry can be determined by the Lagrangian [1]

2L = gab
dxa

dτ

dxb

dτ
+ 2εAaxa . (A1)
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where Aa is the electromagnetic gauge field1 and τ is the proper time. For example, we have considered
the ABG metric in the equatorial plane then the Lagrangian becomes

2L = −G(r)ṫ2 +
ṙ2

G(r) + r2φ̇2 + 2εAt ṫ . (A2)

The equations of motion can be easily written down from the Lagrangian

pt ≡
∂L
∂ṫ

= −G(r) ṫ + εAt = −E . (A3)

pr ≡ ∂L
∂ṙ

=
ṙ
G(r) . (A4)

pφ ≡ ∂L
∂φ̇

= r2φ̇ = L . (A5)

and

ṙ2 +

(
L2

r2 + 1
)
G(r) = (E + εAt)

2 . (A6)

Taking these values and plugging back in Equation (63), one obtains the CM energy for ABG BH
for two charged particles having charges ε1 and ε2, and energies E1 and E2(

Ecm√
2m0

)2
= 1 +

(E1 + ε1 At) (E2 + ε2 At)

G(r) − L1L2

r2 −

√
(E1 + ε1 At)

2 −
(

L2
1

r2 + 1
)
G(r)

√
(E2 + ε2 At)

2 −
(

L2
2

r2 + 1
)
G(r)

G(r) . (A7)

Now near the horizon say r = r+ = rH , the CM energy is calculated to be(
Ecm√
2m0

)2
= 1− L1L2

r2
H

+
1
2

[(
L2

1
r2

H
+ 1

)(
E2 + ε2 At

E1 + ε1 At

)
+

(
L2

2
r2

H
+ 1

)(
E1 + ε1 At

E2 + ε2 At

)]
. (A8)

Case I: When L1 = L2 = 0, one obtains the CM energy

Ecm =
√

2m0

√√√√√1 +
1
2


(

ε2 +
E2
At

)
(

ε1 +
E1
At

) +

(
ε1 +

E1
At

)
(

ε2 +
E2
At

)
 . (A9)

There is a possibility of the CM energy to be infinite when one of the charge particle has critical value

εc = −
Ei
At

. (A10)

where i = 1, 2. For Reissner Nordström BH, this was derived by Zaslavskii [37].
Case II: When L1 = 0 and L2 6= 0, one obtains the CM energy in the following form

1 The gauge field has the form Aa = −φ(r)δt
a. φ(r) corresponds to the electric potential of regular BHs [36].



Universe 2018, 4, 55 21 of 23

Ecm =
√

2m0

√√√√√1 +
1
2


(

ε2 +
E2
At

)
(

ε1 +
E1
At

) +

(
ε1 +

E1
At

)
(

ε2 +
E2
At

) +
L2

2
r2

H

(
ε1 +

E1
At

)
(

ε2 +
E2
At

)
 . (A11)

In this case, ECM → ∞ when one of the charge particle has critical value

εc = −
Ei
At

. (A12)

Case III: When L1 6= 0 and L2 = 0, one finds the CM energy

Ecm =
√

2m0

√√√√√1 +
1
2


(

ε2 +
E2
At

)
(

ε1 +
E1
At

) +

(
ε1 +

E1
At

)
(

ε2 +
E2
At

) +
L2

1
r2

H

(
ε2 +

E2
At

)
(

ε1 +
E1
At

)
 . (A13)

In this case, also ECM → ∞ when one of the charge particle has critical value

εc = −
Ei
At

. (A14)

Case IV: When L1 6= 0 and L2 6= 0, one can obtain the CM energy

Ecm =
√

2m0

√√√√√1− L1L2

r2
H

+
1
2


(

ε2 +
E2
At

)
(

ε1 +
E1
At

) +

(
ε1 +

E1
At

)
(

ε2 +
E2
At

) +
L2

1
r2

H

(
ε2 +

E2
At

)
(

ε1 +
E1
At

) +
L2

2
r2

H

(
ε1 +

E1
At

)
(

ε2 +
E2
At

)
 .

Here also ECM → ∞, when one of the charge particle has critical value

εc = −
Ei
At

. (A15)

Example: (a) For Reissner Nordström BH, the electromagnetic gauge field is At = −φ(r) = −Q
r

therefore the critical charge is

εc =
EirH

Q
. (A16)

it was derived in [37].
(b) For ABG BH, the potential function is calculated to be

φ(rH) =
q
2

[
3(r4

H + q4) + 5r2
Hq2

r2
H(r

2
H + q2)

3
2

]
(A17)

and therefore the critical charge is computed to be

εc =
2Eir2

H(r
2
H + q2)

3
2

q[3(r4
H + q4) + 5r2

Hq2]
. (A18)

From the above calculation, we can conclude that the regular BH may act as particle accelerators
when one of the charge particle has a critical charge.
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