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Abstract: We analyse the conservation laws associated with large gauge transformations of massless
fields in Minkowski space. Our aim is to highlight the interplay between boundary conditions and
finiteness of the asymptotically conserved charges in any space-time dimension, both even and odd,
greater than or equal to three. After discussing nonlinear Yang–Mills theory and revisiting linearised
gravity, our investigation extends to cover the infrared behaviour of bosonic massless quanta of
any spin.
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1. Introduction

In a previous work [1], we investigated the asymptotic symmetries of massless bosons of spin
greater than two in four-dimensional Minkowski spacetime. We found that, upon assigning suitable
boundary conditions on the rank−s symmetric tensors ϕµ1 ··· µs , the asymptotic Killing equations for
the rank−(s− 1) gauge parameters ξµ1 ··· µs−1 admit an infinite-dimensional set of solutions providing
counterparts of the supertranslations emerging for spin-two fields in asymptotically flat spaces [2,3].
In particular, in strict analogy with the spin-two case [4,5]1, we found that Weinberg’s soft theorem for
any spin [7,8] could be derived as a consequence of the higher-spin supertranslation Ward identities.
In addition, we studied the full asymptotic Killing tensor equation in any space-time dimension D for
spin-three fields, finding in particular proper counterparts of superrotations in four dimensions [9,10].

In the present work, our goal is twofold: (1) to extend the analysis of asymptotic symmetries for
all spins to arbitrary values of the space-time dimension; and (2) to compute the resulting charges and
check their finiteness, thus proving the consistency of our choice of falloffs.

In order for our treatment to be as homogeneous as possible for any D, here we shall not make
use of the notion of conformal null infinity. Indeed, its construction was shown to be obstructed in
odd-dimensional spacetimes containing radiation because of singularities appearing in the components
of the Weyl tensor of the unphysical space [11,12]. Differently, focussing on the falloffs of the solutions
to the relevant equations of motion results in an exploration of null infinity that is devoid of such
issues and thus allows for the same type of analysis in all dimensions [13].

Our general procedure can be summarised as follows: for all spins, we assume a power-like
behaviour for the radial dependence of the field components keeping track of all possible subleading
contributions (with some subtleties for the case of Yang–Mills theory in D = 3, where logarithmic

1 See also [6] for a general review and more references.
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dependence is also taken into account). In addition, we fix our boundary data through a set of
Bondi-like conditions that can be interpreted as resulting from on-shell local gauge fixings. In this
framework, a difference emerges between even and odd dimensionalities: whenever D is odd and
greater than four, in order for both the radiation part and the Coulomb part of the solution to be
accounted for, one finds that the expansion in powers of r requires both integer and half-integer
exponents to be considered. Differently, only integer powers of r are needed whenever D is even.
Moreover, radiation and Coulombic contributions behave as r−(D−2)/2 and r3−D respectively, and thus
actually coincide in D = 4, thus justifying a separate analysis for dimensionalities higher than four on
the one hand, and lower or equal to four on the other. Leading and subleading falloffs are determined
by solving the equations of motion, while their consistency relies on checking that the energy flowing
to null infinity per unit of retarded time is indeed finite. Once the falloffs are determined, we proceed
to compute the asymptotic symmetries and the corresponding charges, while also checking finiteness
of the latter.

Proceeding along these lines, in Section 2 we provide a full analysis of the nonlinear Yang–Mills
theory in any dimension, starting from D = 3. The investigation of asymptotic symmetries and
related aspects in dimensions other than four (both for spin one and spin two) has been performed
in a number of works [14–19]. With respect to previous explorations of the Yang–Mills case in any
D [14,17], here we also add the explicit computation of the charges, while, for the three-dimensional
case already discussed in [16], we include the contribution of radiation. For the four-dimensional
analysis of the spin-one case, see also [20–27].

In Section 3, we revisit the case of asymptotically flat gravity, for which an analysis in any
dimension, both even and odd, can be found in [13]. Our review focusses on the linearised theory,
which is useful for us in order to set the stage for the ensuing generalisation to higher spins that
we first illustrate in Section 4 for the spin-three case. In particular, we complete the analysis in
arbitrary dimension presented in [1] by computing the charges corresponding to the asymptotic
symmetries. In Section 5, we pursue our exploration of the general spin−s case initiated in [1]. In this
respect, besides extending the study of large gauge transformations to higher space-time dimensions,
we determine explicitly the proper counterpart of superrotations for any spin in D = 4. In addition,
upon solving the equations of motion, we are led to a proposal for the boundary conditions eventually
leading to finite asymptotic charges, which is explicitly tested in examples where we illustrate the
on-shell cancellations of otherwise divergent terms.

The asymptotic symmetries that result from our analysis for all spins in D > 4 correspond to
the solution to the global Killing tensor equations, and thus do not display the infinite-dimensional
enhancement observed in D ≤ 4. While this result is in agreement with similar conclusions drawn for
spin two in previous works [28,29], it still leaves a number of questions unanswered, starting from the
ultimate origin of Weinberg’s soft theorem in D > 4.

While this work was in preparation, however, Ref. [19] appeared, with an alternative treatment
of boundary conditions allowing for infinite-dimensional symmetries for linearised gravity in any
even dimension, identified both as the origin of Weinberg’s result for D = 2k and as the sources of
even-dimensional counterparts of the memory effect. (see also [15,17,18,30] for earlier discussions on
the matter.)

The exploration of asymptotic symmetries for arbitrary-spin massless fields in any D, which we
started in [1] and in the present work, presents a number of open challenges on which we plan to focus
our attention in the future. Among the main ones, it ought to be stressed that our linearised analysis
does not allow one to get a concrete grasp on the properties of the putative non-Abelian algebra
underlying our findings, crucial to the issue of uncovering the physical meaning of such symmetries.
This is relevant in particular in order to assess the role of higher-spin asymptotic symmetries in the
high-energy regime of string scattering amplitudes (see e.g. [31–35]). In particular, in the latter respect,
although once again of general interest in itself, the investigation on the possible infinite-dimensional
enhancement of global asymptotic symmetries for all spins in D > 4 manifests special relevance.
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2. Yang–Mills Theory

In this section, we analyse the equations of motion for Yang–Mills theory in D-dimensional
Minkowski spacetime expanding their solutions in powers of 1/r, thereby identifying the data that
contribute to colour charge and to colour or energy flux at null infinity. In particular, we complement
the related discussions in [16,20–24,26,27] by providing a unified treatment of all spacetime dimensions,
and that in [14,17] by checking the finiteness of asymptotic charges in any dimension while also
including radiation for D = 3.

We adopt the retarded Bondi coordinates (xµ) = (u, r, xi), where xi, for i = 1, 2, . . . , n, denotes the
n := D− 2 angular coordinates on the sphere at null infinity. In these coordinates, the Minkowski
metric reads

ds2 = −du2 − 2dudr + r2γij dxidxj , (1)

where γij is the metric of the Euclidean n-sphere. The corresponding (flat) spacetime connection is
denoted by ∇µ, whose nonzero Christoffel symbols read

Γi
jr = r−1δi

j , Γu
ij = r γij = − Γr

ij , Γk
ij =

1
2

γkl
(

∂iγjl + ∂jγil − ∂lγij

)
. (2)

The Yang–Mills connection is denoted by Aµ := AA
µ TA , where the TA are the generators of

a compact Lie algebra g, whose gauge transformation is δεAµ = ∇µε +
[
Aµ, ε

]
. The corresponding

field strength is given by
Fµν = ∇µAν −∇νAµ +

[
Aµ,Aν

]
, (3)

while the field equations are
Gν := ∇µFµν +

[
Aµ,Fµν

]
= 0 . (4)

Furthermore, we enforce the radial gauge

Ar = 0 , (5)

which completely fixes the gauge in the bulk.

2.1. Boundary Conditions

For D > 3, we consider field configurations Aµ whose asymptotic null behaviour is captured by
an expansion2 in powers of 1/r, for r → ∞. More explicitly, we parameterise their leading-order terms
as follows:

Au(u, r, xi) = ra Au(u, xi) +O(ra−1) , Ai(u, r, xj) = rb Ai(u, xj) +O(rb−1) . (6)

In order to determine the leading falloffs, we begin our analysis by substituting the conditions (6)
into the u−component of the equations of motion, Gu = 0. To leading order:

− a ∂u Au ra−1 − ∂uDi Ai rb−2 + [∆Au + a(a + 1)Au] ra−2

− γij [Ai, ∂u Aj
]

r2b−2 +
(
−Di [Au, Ai] + γij [∂i Aj, Au

])
ra+b−2 + γij [Ai,

[
Aj, Au

]]
ra+2b−2 = 0 ,

(7)

where Di denotes the covariant derivative on the Euclidean n-sphere, while ∆ := DiDi.
Let us notice that, while the three linear terms in the first line are in principle independent, we can

combine them in pairs upon imposing either b = a + 1, or b = a. As we shall see, the different types
of solutions arising from these two options retain relevant physical meaning. Indeed, the first one

2 In the three-dimensional case (n = 1), to be discussed in Section 2.1.3, we shall also consider a logarithmic dependence in r.
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corresponds to radiation, with the familiar falloff3 Au ∼ r−n/2 of a spherical wave, which also carries
a finite amount of energy per unit time through null infinity. The latter, on the other hand, leads to
Coulomb-type solutions with the characteristic falloff Au ∼ r1−n of the Coulomb potential, hence giving
rise to a finite contribution to the colour charge.

Let us now discuss the asymptotic behaviour of colour and energy flux integrals. The definition
of conserved charges associated with gauge symmetries is a subtle issue and we shall provide more
details on the colour charge at null infinity in Section 2.2. Denoting the surface element of the n-sphere
with unit radius by dΩn, the A−th component of the colour charge at a given retarded time u is
expressed as the following integral over the sphere Su at a given value of u,

QA(u) = lim
r→∞

∫
Su

tr
(
FurTA

)
rndΩn . (8)

The energy flowing across Su per unit time, on the other hand, can be cast as4

P(u) = lim
r→∞

∫
Su

γij tr
(
Fui(Frj −Fuj)

)
rn−2dΩn . (9)

The request that this quantity be finite imposes that the fields must go to zero at infinity in order to
compensate for the factor of r n−2, namely

a < 0 , b < 0 , (10)

whenever D > 4. Due to this simplification, we restrict the present analysis to D > 4 and defer the
discussion of the special cases D = 3 and D = 4 to a dedicated section.

In order to stress the relevant piece of physical information following from our choices of the
falloffs, we first consider the leading-order terms in the equations of motion Gµ = 0 and analyse
the outcome for the two options b = a + 1 and b = a. As a result, in particular, a radiation solution
(b = a + 1) is characterised by

Au = Au r−n/2 , Ai = Ai r1−n/2 , (11)

where the r−independent components of the potential satisfy

Au =
2
n

Di Ai , (12)

while, on the other hand, a Coulomb-type solution (b = a) is such that

Au = Ãu r1−n , Ai = Ãi r1−n , (13)

and obeys

∂u Ãu = 0 , ∂u Ãi =
1
n

Di Ãu . (14)

Let us stress that the presence of two distinct “branches” of solutions, radiation and Coulombic,
is apparent only for D > 4, while in the four-dimensional case they effectively coincide. Notice also
that, thanks to the condition (10), the nonlinear terms do not appear in these leading-order equations

3 The D-dimensional wave equation −∂2
t f + r−n∂r(rn∂r f ) + ∆ f = 0, where t = u + r, admits spherically symmetric solutions

whose large-r behaviour is r−n/2 exp(iku).
4 The Yang–Mills Lagrangian for anti-Hermitian fields is L = 1

4 tr(FµνFµν), while the stress-energy tensor has the form
Tµν = − tr

(
FµαF α

ν

)
+ 1

4 gµνtr
(
FαβF αβ

)
. The energy flux across Su is then given by−

∫
Su

T r
u rndΩn =

∫
Su
(Tuu−Tur)rndΩn

as r → ∞.



Universe 2018, 4, 47 5 of 36

for D > 4. We are now in the position to further justify the names we gave to these two kinds of
solutions: a Coulomb solution has a generically non-zero colour charge at retarded time u,

QA(u) = (n− 1)
∫

Su
tr
(

ÃuTA
)

dΩn , (15)

whereas its energy flux across Su goes to zero, due to F ui ∼ r 1−n. On the other hand, a radiation
solution emits nonzero power at null infinity,

P(u) = −
∫

Su
γij tr

(
∂u Ai∂u Aj

)
dΩn . (16)

At this point, two general issues are in order. To begin with, it should be stressed that the
colour charge of a radiation solution diverges off-shell like rn/2−1 as r → ∞. However, employing
the relation (12) and recalling that the integral of any n-divergence Divi on Su is zero by Stokes’
theorem, we see that, at least to leading order, this potentially dangerous contribution vanishes
on-shell. Performing a more detailed analysis, in the next section, we will prove that these kinds of
cancellations ensure the finiteness of the colour charge to all orders.

In addition, one ought to study the behaviour of the colour flux for large r, namely the interplay
occurring between radiation and Coulomb solutions due to the nonlinear nature of the theory. To do so,
since the information on the colour charge is stored at order r1−n in the Au component, whereas
radiation contributes at order r−n/2 in the same component, we need to consider an expansion in 1/r
that bridges the gap between these asymptotic behaviours. Due to the appearance of a half-integer
exponent, the situation changes depending on the parity of the spacetime dimension, thus justifying to
differentiate the discussion into two sections.

2.1.1. Even Space-Time Dimension

When D > 4 is even, we can consider an expansion of the following type:

Au =
∞

∑
J=1

a(J)r1−n/2−J , Ai =
∞

∑
K=0

C(K)
i r1−n/2−K , (17)

where a(J) and C(K)
i are r-independent functions. On the basis of the previous discussion, we expect

a(1) = Au , C(0)
i = Ai , (18)

to play the role of radiation terms, and

a(n/2) = Ãu , C(n/2)
i = Ãi , (19)

to represent the Coulomb part of the solution. The components of the field strength are then given by:

Fur =
∞

∑
J=1

(n
2
− 1 + J

)
a(J)r−n/2−J ,

Fir =
∞

∑
K=0

(n
2
− J + K

)
C(K)

i r−n/2−K ,

Fui = ∂u Ai r1−n/2 +
∞

∑
J=1

(
∂uC(J)

i − Dia(J)
)

r1−n/2−J +
∞

∑
J=1

B(J)
ui r2−n−J ,

Fij =
∞

∑
K=0

(
DiC

(K)
j − DjC

(K)
i

)
r1−n/2−K +

∞

∑
K=0

B(K)
ij r2−n−K ,

(20)
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where B(J)
ui and B(K)

ij contain the nonlinear terms,

B(J)
ui :=

J

∑
L=1

[
a(L), C(J−L)

i

]
, B(K)

ij :=
K

∑
L=0

[
C(L)

i , C(K−L)
j

]
. (21)

We first substitute this expansion into the equation Gr = 0: denoting

G(J)
r :=

(n
2
− J
) (n

2
+ J − 1

)
a(J) −

(n
2
+ J − 2

)
DiC(J−1)

i , (22)

this yields

G(J)
r = 0 for J = 1, 2, . . . ,

n
2
− 1 , (23)

G(J)
r −

J−n/2

∑
L=0

(n
2
− 1 + L

)
γij
[
C(J+n/2−L)

i , C(L)
j

]
= 0 for J =

n
2

,
n
2
+ 1 . . . . (24)

Then, we insert our expansion into the equation Gu = 0: setting

G (J)
u :=

(n
2
+ J
)

∂uaJ+1 +
[(

J − n
2

) (n
2
− 1 + J

)
+ ∆

]
a(J) − DiC(J)

i , (25)

Ĝ (J)
u := DiB(J)

iu − γij
[
C(J)

i , ∂u Aj

]
(26)

−
J

∑
L=1

{(n
2
− 1 + L

) [
a(J+1−L), a(L)

]
+ γij

[
C(J−L)

i , ∂uC(L)
j − Dja(L)

]}
,

we obtain

n
2

∂u Au − Di Ai = 0 , (27)

G (J)
u = 0 , for J = 1, 2, . . . ,

n
2
− 2 , (28)

G (n/2−1)
u − γij[Ai, ∂u Aj] = 0 , (29)

G (J)
u + Ĝ (J−n/2+1)

u = 0 , for J =
n
2

,
n
2
+ 1, . . . , n− 2 , (30)

G (J)
u + Ĝ (J−n/2+1)

u,1 − γij
J−n+2

∑
L=1

[
C(J−n+2−L)

i , C(L)
j

]
= 0 , for J = n− 1, n, . . . , (31)

(when D = 6, Equation (28) reduces to (27)). It should be emphasised that the decoupling of the
nonlinear terms, namely the linearity of Equations (23), (27) and (28) is a direct consequence of
the assumptions (10) and only holds for D > 4. This asymptotic linearisation tells us that it is
consistent to choose as boundary conditions near null infinity the falloffs (17), constrained by the
linear Equations (23), (27) and (28). Indeed, this set of equations will allow us to then discuss the
behaviour of the charges, and its main features are the following. First, from Equation (23), we obtain
the constraints

a(J) =
2(n + 2J − 4)

(n− 2J)(n + 2J − 2)
DiC(J)

i for J = 1, 2, . . . ,
n
2
− 1 , (32)

namely that a(1)(= Au), a(2), . . . , a(n/2−1) are functions of the type Divi, i.e., n-divergences, whereas,
from Equation (24) evaluated for J = n/2, we note that Ãu = a(n/2) does not bear the same form.
Furthermore, Equations (27) and (28) together with (32) establish that ∂u Au, ∂ua(2), . . . , ∂ua(n/2−1) are
n-divergences as well. On the other hand, by (29) and (32),
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∂u Ãu =
1

n− 1
γij [Ai, ∂u Aj

]
+

1
n− 1

(
Di Ãi + (n− 2)a(n/2−1) − ∆a(n/2−1)

)
=

1
n− 1

γij [Ai, ∂u Aj
]
+ (n-divergence) .

(33)

This equation allows one to compute the evolution of the leading Coulomb term Ãu along the
u−direction in terms of the leading radiation terms Ai, and will therefore be at the basis of our colour
flux formula across Su.

2.1.2. Odd Space-Time Dimension

In the case of odd dimensions D > 4, we have to include two distinct expansions in 1/r in order
to capture both radiation and Coulombic terms:

Au =
∞

∑
J=1

a(J)r1−n/2−J +
∞

∑
K=0

ã(K)r1−n−K ,

Ai =
∞

∑
K=0

C(K)
i r1−n/2−K +

∞

∑
K=0

C̃(K)
i r1−n−K ,

(34)

where we identify
a(1) = Au , C(0)

i = Ai , (35)

and
ã(0) = Ãu , C̃(0)

i = Ãi . (36)

The relevant components of the field strength are then

Fur =
∞

∑
J=1

(n
2
− 1 + J

)
a(J)r−n/2−J +

∞

∑
K=0

(n− 1 + K) ã(K)r−n−K ,

Fir =
∞

∑
K=0

(n
2
− 1 + K

)
C(K)

i r−n/2−K +
∞

∑
K=0

(n− 1 + K) C̃(K)
i r−n−K .

(37)

Likewise, the equations of motion will also contain two expansions in 1/r: one in integer powers
and one in half-integer powers. Expanding the equation Gr = 0, we see that(n

2
− J
) (n

2
− 1 + J

)
a(J) −

(n
2
− 2 + J

)
DiC(J)

i = 0 for J = 1, 2, . . . , n− 1 , (38)

while the terms containing Ãu = ã(0) cancel out identically.
Thus, in particular, the functions a(1)(= Au), a(2), . . . , a(n−1)/2 are n-divergences. Finally, the r−n

order of the equation Gu = 0 provides us with the evolution of Ãu along the u direction for
large r, namely

(n− 1) ∂u Ãu = γij [Ai, ∂u Aj
]

. (39)

Thus, we see that the phenomenon of asymptotic linearisation of the equations of motion,
emphasised in the previous section for even-dimensional spacetimes, also occurs for odd dimensions
and allowed us to derive the relevant set of boundary conditions for the definition of charge and
energy flux integrals.

2.1.3. Three and Four Space-Time Dimensions

In D = 4, i.e., when n = 2, the leading radiation term and the Coulombic term coincide: indeed,
finiteness of the energy flux (9) requires that, to leading order, a radiation solution behave like

Ai(u, r, x1, x2) = Ai(u, x1, x2) +O(r−1) , (40)
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while, using b = a + 1, we see that

Au(u, r, x1, x2) =
Au

r
(u, x1, x2) +O(r−2) . (41)

This also gives generically a non-vanishing colour charge on the surface Su via Equation (8).
Using the leading terms in Equations (40) and (41), the only relevant dynamical information arises
from Gu = 0, which gives

∂u Au = ∂uDi Ai + γij [Ai, ∂u Aj
]

. (42)

The situation for D = 3 (n = 1) is rather different with respect to the previous cases,
mainly because of two features. First, the factor of r−1 in Equation (9) tells us that, in order to
produce a finite energy flux across Su, the field components need not necessarily decay at infinity;
consequently, one expects no clear distinction between radiation and Coulomb terms in the solution
because no asymptotic linearisation occurs in the equations of motion. Second, the expression (15),
and more specifically the factor of r, suggests that Au should behave as log 1

r in order to give a
non-vanishing colour charge. These considerations motivate the following leading-order ansatz in
three dimensions:

Au(u, r, φ) ∼ q log
1
r
+ p , Aφ(u, r, φ) ∼

√
r

log r
C , (43)

where q, p and C are r-independent functions. Indeed, with this choice, the colour flux and the energy
flux read

QA(u) =
∫

Su
qAdφ , P(u) = −

∫
Su

tr([q, C][q, C])dφ . (44)

Using this ansatz, we find that the equation Gr = 0 is identically satisfied at the leading order r−2,
whereas the equation Gu = 0 gives

∂uq = − [q, p] , (45)

at order r−1. This equation describes the u-evolution of q at null infinity and, hence, together with the
first formula in (44), will lead to a formula for the colour flux.

2.2. Asymptotic Symmetries and Charges

In this section, we would like to discuss the form (8) of the colour charge at null infinity in the
various dimensions. For related analyses, see [26,36–38]. To begin with, let us discuss which large
gauge symmetries are admissible at null infinity. The residual gauge symmetry within the radial gauge
is parameterised by an r-independent gauge parameter, since

0 = δε Ar = ∇r ε + [Ar, ε] (46)

but Ar = 0, hence ∇rε = 0. Then, we look for those parameters ε that preserve the leading
falloff conditions imposed on the field Aµ. In the spirit of our previous illustration, we proceed
by distinguishing the case of D > 4 from those of D = 4 and D = 3.

When D > 4, where radiation gives the dominant behaviour at infinity, we find, to leading order

r−n/2 δε Au = ∂uε + r−n/2[Au, ε] , (47)

which requires ∂uε = 0. Furthermore,

r 1−n/2 δε Ai = ∂iε + r1−n/2[Ai, ε] , (48)

but, since 1− n/2 < 0, this implies ∂iε = 0. This means that ε is simply a constant. Hence, in D > 4,
asymptotic symmetries coincide with the global part of the gauge group and the asymptotic charge
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is the ordinary colour charge computed via Equation (8). For even space-time dimensions, using
Equation (20)

QA(u) = lim
r→∞

∫
Su

tr(FurTA) rndΩn

= lim
r→∞

∞

∑
J=1

rn/2−J
(n

2
− 1 + J

) ∫
Su

tr(a(J)TA) dΩn ,
(49)

where for J < n/2 all terms are integrals of n-divergences thanks to the relation (32), while the terms
with J > n/2 go to zero as r → ∞, thus

QA(u) = (n− 1)
∫

Su
tr(ÃuTA) dΩn . (50)

For odd space-time dimensions,

QA(u) = lim
r→∞

∞

∑
J=1

rn/2−J
(n

2
− 1 + J

) ∫
Su

tr(a(J)TA) dΩn

+ lim
r→∞

∞

∑
K=0

r−K (n− 1 + K)
∫

Su
tr(ã(K)TA) dΩn ,

(51)

and, by the relation (38), the only nonzero contribution comes from the K = 0 term of the second series,
giving again the result (50). For D > 4, we thus obtained that the colour charge is indeed expressed as
an integral of the leading Coulombic component on Su. Furthermore, on account of Equations (33)
and (39), the colour flux is written as

d
du

QA(u) =
∫

Su
γij [Ai, ∂u Aj

]A dΩn . (52)

This is indeed consistent with the interpretation of Ai as the leading radiation term: this formula
describes how Yang–Mills radiation across null infinity induces a change in the total colour of the
space-time at successive retarded times u.

In D = 4, the gauge parameter must satisfy:

r−1 δε Au = ∂uε + r−1[Au, ε] ,

δε Ai = ∂iε + [Ai, ε] .
(53)

The first equation again enforces ∂uε = 0, whereas the second allows for an ε(x1, x2) with arbitrary
dependence on the angles on the celestial sphere. The corresponding asymptotic charge is therefore

Qε(u) = lim
r→∞

∫
Su

tr(Furε) r2dΩ2 =
∫

Su
tr(Auε) dΩ2 . (54)

Taking into account Equation (42),

d
du

Qε(u) =
∫

Su
tr
[(

∂uDi Ai + γij[Ai, ∂u Aj]
)
ε
]

dΩ2 . (55)

To complete the picture, let us now turn to the situation in D = 3. There, neither Au nor Aφ fall
off at infinity, and hence any ε(u, φ) generates an allowed gauge transformation (the same result,
in a slightly different setting, was already obtained in [16]). Thus, using the notation of the
previous section,

Qε(u) =
∫

Su
tr(qε)dφ ,

d
du

Qε(u) =
∫

Su
tr(q∂uε)dφ−

∫
Su

tr([q, p]ε)dφ .
(56)
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Let us observe that these charges indeed form a representation of the underlying algebra: for D ≥ 4,
since δε Au = [Au, ε],

[Qε1 , Qε2 ] = δε1 Qε2 =
∫

Su
tr([Au, ε1]ε2)dΩn =

∫
Su

tr(Au[ε1, ε2])dΩn = Q[ε1,ε2]
; (57)

the same result holds for D = 3, noting that δεq = [q, ε] and δε p = ∂uε, but p does not enter the
charge formula. While the identity (57) holds in any dimension, it should be stressed that, when
D > 4, the corresponding charge algebra coincides with g, whereas in D = 4 and D = 3, it is in
fact an infinite-dimensional Kac–Moody algebra, owing to the arbitrary gauge parameters ε(x1, x2)

and ε(u, φ). In particular, we note the absence of a central charge, which could however emerge by
performing the analysis for the linearised theory around a nontrivial background, as pointed out
in [38].

Let us conclude this section by presenting some general observations that, although of basic nature,
we found useful in order to frame the correctness of our procedure. For Yang–Mills theory,
the following quantity

Qε =
∫

∂Σ
dxµν tr (Fµνε) , (58)

where Σ is a generic Cauchy surface, provides both the conserved charge, as obtained by the Noether
algorithm, and the Hamiltonian generator of the gauge symmetry parameterised by ε on the space
tangent to the surface of solutions, as calculated via covariant phase space methods. Indeed, a generic
variation of the Yang–Mills Lagrangian, after integrating by parts, reads

δL = − tr
(
GµδAµ

)
+ ∂µtr (FµνδAν) =: −tr

(
GµδAµ

)
+ ∂µθµ(δA) , (59)

where we defined the symplectic potential θµ(δA) = tr (FµνδAν), while Gµ denotes the Euler–Lagrange
derivatives of L, given in Equation (4). The presymplectic form is then given by

ωµ(δ1 A, δ2 A) = δ[1θµ(δ2]A) , (60)

with square brackets denoting antisymmetrisation, and correspondingly the formal variation of the
Hamiltonian generator of the gauge symmetry Hε is

/δ Hε =
∫

Σ
dxµωµ(δA, δε A) = δ

∫
∂Σ

dxµνtr(Fµνε)−
∫

Σ
dxµtr(δGµε) . (61)

Noting that the last term is proportional to the linearised equations of motion, i.e., that it vanishes
on the space tangent to the surface of solutions, we can write

/δ Hε ≈ δQε ,

which explicitly shows that /δ Hε is integrable and that we may choose to set Hε = Qε by requiring
a flat connection to have zero colour charge. Furthermore, the Noether charge is simply∫

Σ
dxµ θµ(δε A) = Qε −

∫
Σ

dxµ tr(Gµε) ≈ Qε , (62)

so that the two approaches agree in this case. The definition of Qε is in principle subject to ambiguities
stemming from θµ 7→ θµ + ∂νλµν, where λµν = −λνµ, which does not alter the variation (59). In the
spirit of [39], we may choose to set to zero the corresponding additional terms, precisely because this
choice defines an integrable Hamiltonian, as shown above. Further motivation for the absence of these
terms is provided by the agreement with the general analysis of [37] and by the fact that they play no
role in the generation of Ward identities for residual gauge freedom [38].
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In order to finally make contact with Equation (8), we may then apply Equation (58) choosing as
a Cauchy surface

Σ = Σu ∪I +
<u ,

where Σu is any space-like hypersurface such that ∂Σu = Su while I +
<u is the portion of null infinity

up to the retarded time u. Then, using the general expression for the charge (58) and Stokes’ theorem,
we see that Qε can be expressed as a sum of the total charge at the retarded time u, as in Equation (8),
and the charge flown across I +

<u due to radiation.

3. Linearised Gravity

Boundary conditions giving finite energy and angular momentum at null infinity have been
first proposed for spacetimes of any even dimensions in [11] (see also [19,28,40]). The proposal has
been extended to encompass also odd space-time dimensions in [13,29]. We refer to these works
for a detailed analysis of asymptotic charges and fluxes at null infinity in nonlinear Einstein gravity.
Here, we revisit instead the problem within the linearised theory. In particular, we point out that
the boundary conditions discussed in previous works can be inferred by demanding finiteness of
the linearised asymptotic charges. In analogy with the Yang–Mills example, the fluxes of energy and
angular-momentum at null infinity are instead affected by interactions, so that they will be excluded
from our analysis. Besides its intrinsic interest, the ensuing discussion is also instrumental for us in
order to better frame the results that we will present for higher-spin fields in Sections 4 and 5.

3.1. Boundary Conditions

We parameterise the Minkowski background with the retarded Bondi coordinates (1),
and we analyse the linearised metric fluctuations in the “Bondi gauge”

hrµ = 0 , γijhij = 0 ⇒ gµνhµν = 0 . (63)

Differently from the spin-one radial gauge (5), these conditions cannot be reached by means of an
off-shell gauge fixing, but the number of constraints is the same as in the transverse-traceless gauge.
We therefore assume that they can be imposed on shell.5

When Equation (63) holds, the linearised vacuum Einstein equations reduce to

Rµν = �hµν −∇(µ∇ · hν) = 0 . (64)

In the following, we will solve these equations assuming that the metric fluctuations admit
an expansion in powers of 1/r around null infinity. The main idea, suggested by the Yang–Mills
example, is that asymptotically the interactions deform the linearised solutions only starting from
a subleading order in their expansion in powers of 1/r. The conditions (63) imply Rrr = 0 identically,
while the other equations of motion read6

Rru =
1
r2

{(
r2∂2

r + n r∂r

)
huu − ∂rD · hu

}
= 0 , (65)

Rri =
1
r2

(
r2∂2

r + (n− 2) r∂r − 2(n− 1)
)

hui −
1
r3 (r∂r − 2) D · hi = 0 , (66)

5 With hindsight, our choice is legitimated, e.g., by the agreement between the charges and asymptotic symmetries derived in
this framework and those obtained by assuming only suitable falloff conditions on the components of the metric that cannot
be set to zero with an off-shell gauge fixing (compare e.g. the conditions (63) with Equation (8) of [11]).

6 From now on, we shall often denote a derivative with respect to u with a dot, i.e., ∂u f = ḟ .
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Rij = − 1
r (2 r∂r + n− 4) ḣij +

1
r

{
(r∂r + n− 2) D(ihj)u + 2 γijD · hu

}
+ 1

r2

{(
∆ + r2∂2

r + (n− 4) r∂r − 2(n− 2)
)

hij − D(iD · hj)

}
−2 γij (r∂r + n− 1) huu = 0 .

(67)

When the previous equations are satisfied, the following ones are satisfied as well at almost all
orders in an expansion in powers of 1/r (see Section 5 for more details):

Ruu =
n
r

ḣuu −
2
r2 D · ḣu +

1
r2

(
∆ + r2∂2

r + n r∂r

)
huu = 0 , (68)

Rui = − 1
r (r∂r − 2) ḣui − 1

r2 D · ḣi +
1
r (r∂r + n− 2) ∂ihuu

+ 1
r2

{(
∆ + r2∂2

r + (n− 2) r∂r − n + 1
)

hui − DiD · hu
}
= 0 .

(69)

As for the Yang–Mills case, the only exception is given by the leading order of a stationary solution.
By substituting a power-law ansatz,

huu = raB(u, xk) +O(ra−1) , hui = rbUi(u, xk) +O(rb−1) , hij = rcCij(u, xk) +O(rc−1) , (70)

Equations (65)–(67) turn into

Rru = ra−2a(a + n− 1)B− rb−3b D ·U + · · · = 0 , (71)

Rri = rb−2(b− 2)(b + n− 1)Ui − rc−3(c− 2)D · Ci + · · · = 0 , (72)

Rij = − rc−1(2c + n− 4) Ċij + rb−1
{
(b + n− 2)D(iUj) + 2 γijD ·U

}
−2 ra(a + n− 1)γijB + · · · = 0 ,

(73)

where the dots stand for subleading terms. Imposing b = a + 1 and c = b + 1 allows one to mutually
cancel the addenda in Equations (71) and (72), while Equation (73) is solved to leading order provided
that the coefficient of rc−1 vanishes. This is the analogue of the choice that gives the radiation solution
in the Yang–Mills case: it does not impose any constraint on Cij while, for D > 3, it fixes the leading
exponents as follows:

a = − n
2

, b = − n
2
+ 1 , c = − n

2
+ 2 . (74)

Besides this formal analogy, one can verify that a solution of this type carries a finite amount of
energy per unit of retarded time through null infinity, 7

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 γi2 j2 Ċi1i2 Ċj1 j2 dΩn , (75)

and can therefore be interpreted as a gravitational wave propagating on the Minkowski background,
thus providing a convincing justification for the falloffs (74). In Section 3.2, we shall also show that a
solution of the Einstein equations with these leading falloffs is endowed with finite energy and angular
momentum charges at null infinity.

7 The massless Fierz–Pauli Lagrangian L = 1
2 hµν(�hµν −∇(µ∇ · hν) +∇µ∇νhα

α − ηµν(�hα
α −∇ · ∇ · h)) gives rise, in Bondi

gauge, to the canonical stress-energy tensor

Tαβ = ∇αhµν∇βhµν − 2∇ · hµ∇βhαµ + ηαβL .

While in our linearised setup one cannot capture the flux of energy associated with the self-interactions of the gravitational
field, it still makes sense to evaluate the flux pertaining to an eternal radiating source in the interior, which is constant over u.
Indeed, this is a quantity that is well defined also in the linearised theory and is given by (75).
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The charges actually depend on the subleading (for D > 3) terms in the expansion in powers of r
with exponents

a = b = c = 1− n . (76)

When n is even, these contributions are actually “integration constants” (they anyway admit
a dependence on xi) in the radiation solution with leading falloffs (74), while when n is odd they
appear as the leading order of a companion solution with its own expansion in powers of 1/r. For this
reason, we treat separately the two cases, while discussing the peculiarities of the n = 1 and n = 2
instances in Section 3.1.3.

3.1.1. Even Space-Time Dimension

When D = n− 2 is even, we consider the following ansatz for the linearised fluctuations in Bondi
gauge (63):

huu =
∞

∑
k = 0

r−
n
2−kB(k)(u, xm) , hui =

∞

∑
k = 0

r−
n
2−k+1U(k)

i (u, xm) , hij =
∞

∑
k = 0

r−
n
2−k+2C(k)

ij (u, xm) , (77)

with γijC(k)
ij = 0. As discussed above, the leading falloffs have been chosen such that the linearised

solution carries a finite amount of energy per unit time at null infinity. From Equation (65), one can
then compute the coefficients of huu,

B(k) =


2(n+2k−2)

(n+2k)(n−2k−2) D ·U(k) for k 6= n−2
2

2 mB for k = n−2
2

, (78)

while Equation (66) fixes hui as

U(k)
i =


2(n+2k)

(n+2k+2)(n−2k) D · C(k)
i for k 6= n

2

Ni for k = n
2

. (79)

The quantities mB and Ni do not contribute to Equations (65) and (66) thanks to the cancellation
of the coefficients in front of the corresponding B(k) and U(k)

i . Their dependence on the retarded time
u is however fixed by Equations (68) and (69) that, when n > 2, read

ṁB =
3− n

4n(n− 1)
(∆− n + 2) D · D · C( n−4

2 ) , (80a)

Ṅi =
1

n + 1

{
2 ∂imB −

n− 1
n

(∆− 1) D · C( n−2
2 )

i

}
, (80b)

where ∆ = DiDi. These equations are solved by

mB(u, xj) =M(xj)− n− 3
4(n− 1)n

∫ u

−∞
du′ (∆− n + 2) D · D · C( n−4

2 )(u′, xj) , (81a)

Ni(u, xj) = Ni(xj) +
2 u

n + 1
∂iM(xj)− n− 1

n(n + 1)

∫ u

−∞
du′ (∆− 1) D · Ci

( n−2
2 )(u′, xj)

− n− 3
2(n− 1)n(n + 1)

∫ u

−∞
du′
∫ u′

−∞
du′′ Di (∆− n + 2) D · D · C( n−4

2 )(u′′, xj) .
(81b)

Note that the expressions for mB and Ni (which are the linearised counterparts of the Bondi mass
and angular momentum aspects) contain two types of contributions: one depends on the “integration
constants”M and Ni, which enter in combinations with a fixed dependence on u, while the other
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depends on the integrals over u of certain combinations of the tensors C(k)
ij . We anticipate that in

Section 3.2 we shall show that, for n 6= 2, the integration constants M and Ni completely specify
the asymptotic linearised charges, while the integral terms, which are not even present when the
dimension of spacetime is odd, do not contribute to them.

The tensors in the expansion of hij are instead fixed recursively in terms of Cij
(0)—whose

u-derivative is the linearised analogue of the Bondi news—up to an arbitrary function of xi for
each term of the expansion. Equation (67) indeed implies

Ċ(k+1)
ij = − 1

2(k + 1)

{ [
∆− n(n− 2)

4
+ k(k + 1)− 2

]
C(k)

ij

− 4
(n + 2k + 2)(n− 2k)

[
n D(iD · Cj)

(k) − 2 γijD · D · C(k)
] }

∀ k 6= n
2

.
(82)

The value of k excluded from this expression shows that from k = n+2
2 onwards the tensors also

depend on Ni:

Ċ( n+2
2 )

ij =
1

n + 2

{
D(i Nj) −

2
n

γijD · N − (∆ + n− 2)C( n
2 )

ij + D
(i D · C( n

2 )

j)

}
. (83)

These terms in the expansion (77), anyway, do not contribute to the linearised charges and,
generically, they receive nonlinear corrections in Einstein gravity [13,29].

For the values of k that do not impose any constraints on B(k) and Ui
(k), Equations (65) and (66)

imply instead

(n− 2)(n− 1) D · D · C( n−2
2 )

= 0 , D · C( n
2 )

i = 0 . (84)

These conditions do not constrain C(0) because they are compatible with the divergences of
Equation (82). For instance, it implies

D · D · Ċ(k+1) = − (n + 2k− 2)(n− 2k− 4)
2(k + 1)(n + 2k + 2)(n− 2k)

[
∆− (n + 2k)(n− 2k− 2)

4

]
D · D · C(k) (85)

and, for n > 2, the r.h.s. vanishes for k + 1 = n−2
2 . Similarly, Equations (68) and (69) reduce to

divergences of Equation (82) for all values of k aside from those that fix the u−dependence (81) of the
Bondi mass and angular momentum aspects.

3.1.2. Odd Space-Time Dimension

When n is odd and greater than one, in order to obtain non-zero asymptotic charges at null
infinity, one has to complement the ansatz (77), that in this case contains half-integer powers of r,
with a companion expansion including integer powers of the radial coordinate. We therefore consider
the ansatz

huu =
∞

∑
k = 0

r−
n
2−kB(k)(u, xm) +

∞

∑
k = 0

r1−n−k B̃(k)(u, xm) , (86a)

hui =
∞

∑
k = 0

r−
n
2−k+1U(k)

i (u, xm) +
∞

∑
k = 0

r1−n−kŨ(k)
i (u, xm) , (86b)

hij =
∞

∑
k = 0

r−
n
2−k+2C(k)

ij (u, xm) +
∞

∑
k = 0

r1−n−kC̃(k)
ij (u, xm) , (86c)

with γijC(k)
ij = γijC̃(k)

ij = 0. Since n is odd, the factors entering the expansion of Equations (65) and (66)
in powers of

√
r are always different from zero. As a result, for any k one has again
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B(k) =
2(n + 2k− 2)

(n + 2k)(n− 2k− 2)
D ·U(k) , U(k)

i =
2(n + 2k)

(n + 2k + 2)(n− 2k)
D · C(k)

i , (87)

while the tensors C(k) satisfy (82). These conditions imply that the Equations (68) and (69) are identically
satisfied. In Section 3.2, we shall see that the relations (87) guarantee that the radiation solution does
not contribute to the asymptotic charges. Equations (68) and (69) fix instead the u-evolution of the
leading terms in the Coulomb-type solution as

mB(u, xj) :=
B̃(0)

2
=M(xj) , (88a)

Ni(u, xj) := Ũi
(0) = Ni(xj) +

2 u
n + 1

∂iM(xj) . (88b)

The subleading terms in the expansion in powers of r are fixed by the analogues of the relations (82)
and (87). For instance,

B̃(l+1) = − n + l − 1
(l + 1)(n + l)

D · Ũ(l) , Ũ(l)
i = − n + l + 1

(l + 1)(n + l + 2)
D · C̃(l)

i , (89)

while the C̃(l) are fixed recursively by an equation with the same form as (82) with shifted coefficients
k→ k− n/2− 1 (see also the general analysis in Section 5 for more details). At any rate, these relations
will be irrelevant for the computation of the charges in Section 3.2 and, in general, will receive nonlinear
corrections in Einstein gravity as shown by the comparison of our analysis with [13,29].

3.1.3. Three and Four Space-Time Dimensions

In three and four space-time dimensions, i.e., when n = 1 or n = 2, the previous analysis has to
be amended for some details, which however introduce significant physical consequences. We begin
by considering the peculiarities that emerge in four dimensions: in this case, inserting our ansatz (77)
in the equations of motion (65) and (66) leads to

huu =
2
r

mB +O(r−2) , hui =
1
2

D · Ci +
1
r

Ni +O(r−2) , hij = r Cij +O(1) , (90)

where, for brevity, we defined Cij := Cij
(0), while we used the same notation as in the previous

subsections for the leading terms of the Coulomb-like solution. Note that in the component huu the
leading order of the radiation and Coulomb-like solutions coincide. Moreover, Equation (65) does not
impose any constraint on the double divergence of Cij (the factor in front of it vanishes when n = 2 as
we recalled in Equation (84)), while D · Ci

(1) = 0 as for generic n. Since Cij has now a non-vanishing
double divergence, the equations fixing the dependence on u of mB and Ni have to be modified as
follows (cf. (80)):

ṁB =
1
4

∂uD · D · C , (91a)

Ṅi =
2
3

∂imB −
1
6
{(∆− 1) D · Ci − DiD · D · C } . (91b)

Consequently, the leading terms of the Coulomb-like branch depend on the radiation solution
and on the usual set of integration constants as
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mB(u, xj) =M(xj) +
1
4

D · D · C(u, xj) , (92a)

Ni(u, xj) = Ni(xj) +
2 u
3

∂iM(xj)− 1
6

∫ u

−∞
du′ [(∆− 1) D · Ci − 2 DiD · D · C ](u′, xj) . (92b)

The dependence on Cij in mB and Ni will be crucial in Section 3.2, where we shall compute the
asymptotic charges.

When n = 1, in the component huu the radiation branch becomes subleading with respect to the
Coulomb-type one. Given that in three space-time dimensions fields of spin two do not propagate any
local degrees of freedom, it is therefore natural to ignore the radiation branch altogether and work
with boundary conditions that only encompass Coulomb-type solutions of the equations of motion:

huu = 2M(φ) +O(r−1) , huφ = N (φ) + u ∂φM(φ) +O(r−1) , hφφ = 0 , (93)

where φ denotes the angular coordinate on the circle at null infinity while we already displayed
the constraints on the leading terms imposed by the equations of motion. Notice that we set to
zero the component hφφ, consistently with our choice of boundary conditions in any D according to
which the tensor h ij is traceless (and thus identically zero if n = 1). Alternatively, one can consider
hφφ = rC(φ) +O(1) [41]. Our choice is not restrictive, however, as it still allows for an enhancement
of the asymptotic symmetry algebra from Poincaré to bms3.

3.2. Asymptotic Symmetries and Charges

We can now identify the gauge transformations preserving the form of the linearised solutions,
which are the asymptotic symmetries of the system. These determine the asymptotic charges, which
play the dual role of being conserved quantities labelled by the parameters of asymptotic symmetries
and of generating the latter via the Poisson bracket derived from the action. In the Bondi gauge (63),
the asymptotic symmetries must satisfy

δhrµ = 0 , δhuu = O(r−
n
2 ) , δhui = O(r−

n
2 +1) , δhij = O(r−

n
2 +2) , (94)

where the variations are given by linearised diffeomorphisms δhµν = ∇(µξν) that leave (64) invariant.
These conditions are appropriate for spacetimes of both even and odd dimensions, since the differences
highlighted in Sections 3.1.1 and 3.1.2 only affect subleading terms in the expansion of the solutions.8

Equations (94) are solved by

ξr = −
(

T +
u
n

D · v
)

, (95a)

ξu =
r
n

D · v− 1
n
(∆ + n) T , (95b)

ξi = r2 vi + r Diξr , (95c)

where T and vi only depend on the angular coordinates xi and, when n > 2, are constrained by the
following differential conditions:

8 The exception is given by n = 1. Accordingly with the discussion in Section 3.1.3, in three dimensions, the conditions (94)
are substituted by

δhuu = O(1) , δhuφ = O(1) , δhφφ = 0 , δhrµ = 0 .
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D(ivj) −
2
n

γijD · v = 0 , (96)

D(iDj)T −
2
n

γij∆T = 0 . (97)

Equation (96), which states that vi is a conformal Killing vector on the sphere at null infinity,
actually holds in any space-time dimension, while T has to satisfy (97) only when n 6= 2 (when n = 2
the variations of the field components which are proportional to the combination (97) are of the same
order as the falloffs (90)). When n > 2, these conditions imply that the ξµ of the form (95) are Killing
vectors of the Minkowski background, while for n ≤ 2 (i.e. D ≤ 4) a larger residual symmetry is
allowed. When n = 2, the constraint (97) is indeed absent, so that supertranslations generated by
an arbitrary T(xi) are allowed. Moreover, in this case, Equation (96) admits locally infinitely many
independent solutions, which generate superrotations. To analyse the n = 1 case, note that both (96)
and (97) are traceless combinations: as a result, they vanish identically when n = 1, so that both vφ(φ)

and T(φ) are arbitrary functions.
The asymptotically conserved charges corresponding to the previous residual symmetries are

given by

Q(u) = lim
r→∞

rn−1
∫

Su
dΩn

{
huu (r∂r + n) ξr +

1
r

γij [ ξi ∂r huj − hui ∂r ξ j − ξrDihuj
]}

, (98)

where the parameters ξµ are understood to satisfy Equations (95) and (96) (together with (97) when
n > 2). The integral is evaluated over the sphere Su at constant retarded time on null infinity as, e.g.,
in Equation (8) (see Appendix A for more details). When n is even, thanks to the limit r → ∞, for fields
satisfying the ansatz (77) Q(u) reduces to

Q(u) = −∑
n−2

2
k = 0 r

n−2k
2
∫

Su
dΩn

{
n+2k+2

2 viU(k)
i +

(
T + u

n D · v
)[

nB(k−1) + n+2k−2
2 r2 D ·U(k)

]}
−
∫

Su
dΩn

{
2n mB

(
T + u

n D · v
)
+ (n + 1) γijvi Nj

}
.

(99)

When n is odd, the only difference is that the extremum of the sum becomes n−3
2 , so that the

following considerations apply verbatim also to this case. As we shall see, at the linearised level,
the u−dependence of the charges will turn out to be fictitious when n 6= 2. This is actually expected on
general grounds whenever the charges are computed on exact Killing vectors of the background [37],
as recalled in Appendix A.

The integrals in the first line must vanish in order to have finite asymptotic charges and this is
indeed the case if one considers the relations imposed by the equations of motion. From the form (79)
of the solutions, after integration by parts, one finds that, for each value of k, the first term in the charge
formula (99) contains a contribution proportional to

C(k)
ij D(ivj) = C(k)

ij

(
D(ivj) − 2

n
γijD · v

)
, (100)

where the trace condition γijC(k)
ij = 0 was also used. Similarly, by the relation (78), the second term

in (99), absent when n = 2, gives contributions than can be cast in the form

C(k)
ij D(iDj)

(
T +

u
n

D · v
)
= C(k)

ij

(
D(iDj)T − 2

n
γij∆T

)
+

u
n

C(k)
ij D(iDj)D · v . (101)

This implies that the combination (100) vanishes in any space-time dimension (including n = 2).
The contribution in T in (101) vanishes instead only when n > 2, but this does not cause any problem
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since the whole expression is actually absent when n = 2. The last term in Equation (101) vanishes as
well when n > 2, since the divergence of the conformal Killing Equation (96) implies

∆vi =
2− n

n
DiD · v− (n− 1) vi . (102)

Acting with the Laplacian operator on Equation (96) and substituting this identity, one eventually
obtains

(n− 2) D(iDj)D · v + 2 γij (∆ + 2) D · v = 0 , (103)

which implies C(k)
ij D(iDj)D · v = 0 for a traceless C(k)

ij (when n > 2).
Similar arguments allow one to prove that the integral terms in Equation (81) (which are absent

when n is odd—cf. (88)) do not contribute as well to the charges when n > 2. In evaluating the last
line of the charge formula (99), one eventually has to take into account the precise u dependence of Ni
dictated by (81b). For n 6= 2, this gives

Q = −
∫

Sn
dΩn

{
2n TM+ (n + 1) viNi

}
, (104)

where the dependence on u in the gauge parameter and in the field precisely cancels. The linearised
Poincaré charges (104) depend on the “integration constants” that specify the Coulomb-type branch of
the solutions of the equations of motion.9 Each integration constant, in its turn, is conjugated in (104)
to one of generators of the asymptotic symmetries. Let us also notice that these asymptotic charges,
due to their constancy in u, should correspond in particular to the charges that one can measure
at spatial infinity. A dependence on the retarded time, reflecting the changes in the total energy of
the system induced by the flux of energy carried by the gravitational radiation, is reinstated when
considering interactions [11,13,28,29,40].

The four-dimensional (n = 2) case requires instead a separate analysis. As we have seen, the linear
divergence in r that appears in the charge (99) in this case vanishes on account of the identity (101) as for
generic n. By substituting the expansions (92) into the second line of Equation (99), one obtains instead

Q(u) = −
∫

Su
dΩn

{
T (4M+ D · D · C) + vi

(
3Ni −

u
2

DiD · D · C + Di

∫ u

−∞
du′D · D · C

)}
. (105)

The terms that appear for generic n are reproduced, cf. (104), but there is a sharp difference
with respect to n = 2: the charges now depend also on the boundary data of the radiation part of
the solution, and this brings back a dependence on the retarded time. The charges associated with
ordinary Poincaré transformations, however, still take the same form as in Equation (104). For a
translation, Equation (97) indeed holds also in four dimensions. Similarly, for a Lorentz transformation,
one actually has D(iDj)D · v = 0 also when n = 2. These conditions are instead not satisfied by
the T and vi generating supertranslations and superrotations, respectively (see e.g. [43]). In the
latter case, in particular, in order for the charges to be well defined, one should impose in addition
suitable boundary conditions on DiD · D · C at the past boundary of null infinity. The corresponding
dependence on Cij in the asymptotic charges is instrumental in deriving Weinberg’s soft graviton
theorem from the Ward identities of the supertranslation symmetry [5].10

9 The same expression for the charges holds also when the dimension of spacetime is equal to three, and it corresponds
to the natural presentation of Q that one obtains in the Chern–Simons formulation of three-dimensional gravity (see e.g.
Section 4.2 of [42]). The only difference is that when n = 1 T and vi are arbitrary functions of the angular coordinate φ on
the circle at null infinity.

10 While this work was under completion, analogous, u-dependent asymptotic charges, associated with infinite-dimensional
asymptotic symmetries in any even space-time dimension, were presented in [19]. In addition, in this case, the arbitrary
function on the sphere generating the residual symmetry is conjugated to the boundary data of the radiation branch.
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4. Spin 3

We now consider a single spin-3 field on a Minkowski background and we prove that the boundary
conditions at null infinity proposed in [1] give finite higher-spin charges in any space-time dimension.
We work in the linearised theory, postponing to future work an analysis of the possible effects of the
known cubic vertices11 on the asymptotic charges and their canonical algebra.

4.1. Boundary Conditions

Following [1], we bound the spin-three field to satisfy the “Bondi-like gauge”

ϕrµν = 0 , γij ϕijµ = 0 , ⇒ gµν ϕµνρ = 0 , (106)

which is a natural generalisation of the Bondi gauge (63) that we used in the analysis of linearised
gravity. As in the latter case, the conditions (106) cannot be reached with an off-shell gauge fixing,
but the number of constraints is the same as in the transverse-traceless gauge. We therefore assume that
they can be imposed in a neighbourhood of null infinity and consider the reduced Fronsdal equations12

Fµνρ = �ϕµνρ −∇(µ∇ · ϕνρ) = 0 . (107)

The expansion of (107) in Bondi coordinates has been presented in Appendix A of [1], and can be
extracted from the general spin-s expressions presented below in Equations (140) and (141). Following
the same logic as in the previous section, one can substitute a power-law ansatz in the equations of
motion and realise that they are satisfied at the leading order provided that

ϕuuu = O(r−
n
2 ) , ϕuui = O(r−

n
2 +1) , ϕuij = O(r−

n
2 +2) , ϕijk = O(r−

n
2 +3) . (108)

These are the fall-off conditions that have been proposed in [1]; in the following, we shall exhibit
the full solution of the linear equations of motion with these falloffs and we prove that it carries
finite and non-trivial conserved spin-three charges at null infinity. As for gravity, the charges actually
depend on the subleading terms at order r1−n. We shall analyse separately even and odd space-time
dimensions also in this case, while discussing in a dedicated subsection the main peculiarities emerging
in three and four dimensions.

4.1.1. Even Space-Time Dimension

When n is even, we then consider the following ansatz for the fields in the Bondi gauge (106):

ϕuuu =
∞

∑
l = 0

r−
n
2−l B(l)(u, xm) , ϕuui =

∞

∑
l = 0

r−
n
2−l+1U(l)

i (u, xm) , (109a)

ϕuij =
∞

∑
l = 0

r−
n
2−l+2V(l)

ij (u, xm) , ϕijk =
∞

∑
l = 0

r−
n
2−l+3C(l)

ijk (u, xm) , (109b)

with γijV(l)
ij = γijC(l)

ijk = 0. This choice is further motivated by the observation that, in complete
analogy with the lower-spin cases, a solution of this type gives rise to a generically non-zero energy
flux through null infinity:

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 γi2 j2 γi3 j3 Ċ(0)

i1i2i3
Ċ(0)

j1 j2 j3
dΩn , (110)

11 For recent works and extensive references, see [44–49].
12 Actually Equation (107), as well as its counterpart (139) for spin s, follows from the Lagrangian equations of an alternative

formulation for massless particles of any spin [50–52].
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where Tµν denotes the energy-momentum tensor of the solution (see Section 5 for more details). It can
be therefore interpreted as a spin-three wave reaching null infinity.

Substituting the ansatz (109) in the equations Frµν = 0, one obtains

B(k) =
2(n + 2k− 2)

(n + 2k)(n− 2k− 2)
D ·U(k) for k 6= n− 2

2
, (111a)

U(k)
i =

2(n + 2k)
(n + 2k + 2)(n− 2k)

D ·V(k)
i for k 6= n

2
, (111b)

V(k)
ij =

2(n + 2k + 2)
(n + 2k + 4)(n− 2k + 2)

D · C(k)
ij for k 6= n + 2

2
. (111c)

In the cases excluded from the previous formulae, the coefficients in front of, respectively, B( n−2
2 ),

U( n
2 ) and V( n+2

2 ) vanish and the equations of motion imply instead

(n− 2) D · D · D · C( n−2
2 )

= 0 , D · D · C( n
2 )

i = 0 , D · C( n+2
2 )

ij = 0 . (112)

The factor (n − 2) in the first constraint shows that C(0) remains arbitrary even when n = 2.
Substituting the same ansatz in the equation Fijk = 0, one obtains, for l 6= n+2

2 ,

Ċ(l+1)
ijk = − 1

2(l + 1)

{ [
∆− n(n− 2)

4
+ l(l + 1)− 3

]
C(l)

ijk

− 4
(n + 2l + 4)(n− 2l + 2)

[
(n + 2) D(iD · Cjk)

(l) − 2 γ(ijD · D · Ck)
(l)
] }

.
(113)

The value of l excluded from this expression shows that from there on the tensors C(l) also depend
on V( n+2

2 ),

Ċ( n+4
2 )

ijk =
1

n + 4

{
D
(i V

( n+2
2 )

jk) − 2
n + 2

γ
(ij D ·V( n+2

2 )

k) − (∆ + 2n− 1)C( n+2
2 )

ijk

}
, (114)

although—as for gravity—these terms will not play any role in the analysis of the linearised charges.
The u-evolution of B( n−2

2 ), U( n
2 ) and V( n+2

2 ) is fixed instead by the equations Fuµν = 0 (with µ, ν 6= r) as

B( n−2
2 ) =M− n− 3

6(n + 1)n

∫ u

−∞
du′(∆− n + 2) D · D · D · C( n−4

2 ), (115a)

U( n
2 )

i = Ni +
u

n + 2
∂iM−

n− 1
2(n + 1)(n + 2)

∫ u

−∞
du′(∆− 1) D · D · C( n−2

2 )
i

− n− 3
6n(n + 1)(n + 2)

∫ u

−∞
du′
∫ u′

−∞
du′′ Di (∆− n + 2) D · D · D · C( n−4

2 ) , (115b)

V( n+2
2 )

ij = Pij +
u

n + 3

(
D(iNj) −

2
n

γijD · N
)
+

u2

2(n + 2)(n + 3)

(
D(iDj)M−

2
n

γij ∆M
)

− n + 1
(n + 2)(n + 3)

∫ u

−∞
du′(∆ + n− 2) D · C( n

2 )
ij + · · · . (115c)

The omitted terms in the last equation correspond to the multiple integrals in the retarded time
that one obtains by integrating the differential equation

V̇( n+2
2 )

ij =
1

n + 3

{
D
(iU

( n
2 )

j) −
2
n

γij D ·U( n
2 ) − n + 1

n + 2
(∆ + n− 2) D · C( n

2 )
ij

}
(116)
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given by the equation Fuij = 0. At any rate, in Section 4.2, we shall show that all integrals in these
expressions do not contribute to the linearised charges, provided that one impose suitable regularity
conditions that make them finite.

The relevant terms to determine the charges are therefore those depending on the “integration
constants”M, Ni and Pij, which actually admit an arbitrary dependence on the coordinates xm on
the sphere at null infinity. They all appear at order rn−1 in the expansions (109) and enter (115) in
combinations with a fixed polynomial dependence on the retarded time u. For all other powers
of 1/r, the equations Fuµν = 0 (with µ, ν 6= r) reduce to divergences of Equation (113) and are
therefore identically satisfied (see (151) below for more details). As in the examples with lower spin,
the divergences of Equation (113) also imply the constraints (112) (to be more precise their derivative
in u). As a result, the latter do not impose any further condition on the C(l) with lower values of l.
Let us stress that some of the considerations above are valid only for n > 2; see Section 4.1.3 for a
discussion of the four- and three-dimensional cases.

4.1.2. Odd Space-Time Dimension

In complete analogy with linearised gravity, when n is odd, one has to add further terms to the
ansatz (109) in order to obtain non-trivial asymptotic charges at null infinity. We therefore consider
the ansatz

ϕuuu = ϕuuu[B] +
∞

∑
l = 0

r1−n−l B̃(l)(u, xm) , ϕuui = ϕuui[U] +
∞

∑
l = 0

r1−n−lŨ(l)
i (u, xm) , (117a)

ϕuij = ϕuij[V] +
∞

∑
l = 0

r1−n−lṼ(l)
ij (u, xm) , ϕijk = ϕijk[C] +

∞

∑
l = 0

r1−n−lC̃(l)
ijk (u, xm) , (117b)

where ϕuuu[B], etc. denote the terms introduced in the expansions (109), which are still necessary if
one desires to describe radiation, that is if one wishes to have a non-vanishing energy flux through
null infinity (which is still given by Equation (110)). The new contributions to the expansion of the
field components satisfy γijṼ(l)

ij = γijC̃(l)
ijk = 0. Since n is odd, all factors entering the expansion of the

equations of motion in powers of
√

r are different from zero. As a result, the tensors B(l), U(l) and V(l)

satisfy the same conditions as in (111), but without any constraint on the allowed values of l. Similarly,
the tensors C(l) satisfy Equation (113) for any l. The tensors appearing at the leading order of the new,
Coulomb-like branch of our ansatz must satisfy

B̃(0) =M , Ũ(0)
i = Ni +

u
n + 2

∂iM , (118a)

Ṽ(0)
ij = Pij +

u
n + 3

(
D(iNj) −

2
n

γijD · N
)
+

u2

2(n + 2)(n + 3)

(
D(iDj)M−

2
n

γij ∆M
)

, (118b)

on account of the equations of motion Fuµν = 0 (with µ, ν 6= r). Notice the similarity with
Equation (115): the only difference is that, when n is odd, there is no contribution from the data
of the solution that encode radiation (here stored in the

√
r branch). As we shall see below, the latter

terms anyway do not contribute to the linearised charges. The subleading O(r−n) terms in our ansatz
do not contribute as well to the linearised charges. For this reason, we refrain from displaying here the
relations that they have to satisfy in order to solve the equations of motion. The interested reader can
extract them from the general expression (156) presented in Section 5.

4.1.3. Three and Four Space-Time Dimensions

When n = 1 or n = 2, the previous analysis has to be modified, in complete analogy with what
we have seen for spin two. We begin by revisiting the four-dimensional case, where, in the component
ϕuuu, the leading order of the radiation and of the Coulomb-like solutions now coincide. Moreover,
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the equation Fruu = 0 does not impose any constraint on the triple divergence of C(0). As a result,
the equations fixing the dependence on u of B(0), U(1) and V(2) are slightly modified as follows:

B(0) =M+
1
6

D · D · D · C(0) , (119a)

Ui
(1) = Ni +

u
4

∂iM−
1
24

∫ u

−∞
du′
[
(∆− 1) D · D · Ci

(0) − 2 DiD · D · D · C(0)
]

, (119b)

Vij
(2) = Pij +

u
5

(
D(iNj) − γijD · N

)
+

u2

40

(
D(iDj)M− γij ∆M

)
+ · · · . (119c)

M,Ni and Pij are arbitrary functions of xi as in Equation (115) while in (119c) we omitted the integrals
that are obtained by the substitution of the previous formulae in the differential Equation (116),
which is not modified even when n = 2. In analogy with the spin-two case, the additional
terms in D · D · D · C(0) will be instrumental in building the charges associated with the spin-three
generalisations of supertranslations and superrotations identified in [1].

When n = 1, the radiation branch becomes again subleading with respect to the Coulomb-type
one in ϕuuu. Moreover, fields of spin greater than one do not propagate local degrees of freedom in three
dimensions. It is therefore natural to ignore the radiation branch and work with boundary conditions
that only encompass Coulomb-type solutions of the equations of motion. The only non-vanishing
components of the field in the Bondi gauge (106) are

ϕuuu =M(φ) +O(r−1) , ϕuuφ = N (φ) +
u
3

∂φM(φ) +O(r−1) , (120)

where φ denotes again the angular coordinate on the circle at null infinity and we already included the
constraints on the leading terms imposed by the equations of motion. The same conditions on the field
ϕµνρ have been previously obtained in [53,54] by translating boundary conditions proposed in the
Chern–Simons formulation of three-dimensional spin-three gravity. The latter were designed to obtain
asymptotic symmetries given by a contraction of theW3 ⊕W3 algebra of asymptotic symmetries of
spin-three gravity in AdS3 [55]. In analogy with the metric-like analysis performed in AdS3 in [56],
in the following we will recover the same infinite dimensional symmetries within our setup.

4.2. Asymptotic Symmetries and Charges

We now recall the key features of gauge transformations preserving the fall-off conditions (108),
which have been identified in [1]. Our current goal is to prove that the linearised charges associated
with these asymptotic symmetries are finite. In Appendix A, we show that, in the Bondi gauge (106),
the charges are expressed in terms of the fields and the parameters of asymptotic symmetries as

Q(u) = − lim
r→∞

rn−1

2

∫
Su

dΩn

{
r ϕuuu ∂r ξrr + ξrr (r∂r + 2n) ϕuuu −

2
r

ξrrD · ϕuu

− 2
r2 γij

[
ϕuui (r∂r + n) ξrj −

1
r

ξriD · ϕuj

]
+

1
r3 γikγjl [ ϕuij ∂r ξkl − ξij ∂r ϕukl

] }
.

(121)

As we shall see, also in this case at the linearised level the u−dependence of the charges will turn
out to be fictitious when n 6= 2. (For n > 2, this is due to the fact that the only symmetries are exact
symmetries of the background.) As far as the computation of charges is concerned, the only relevant
components of the gauge parameters generating the residual gauge symmetry are
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ξrr = T − 2u
n + 1

D · ρ +
u2

(n + 1)(n + 2)
D · D · K , (122a)

ξri = r2
(

ρi −
u

n + 2
D · Ki

)
+

r
2

Diξrr , (122b)

ξij = r4 Kij + r
(

D(iξ j)r −
2

n + 1
γij D · ξr

)
− r2

4

(
D(iDj)ξrr −

2(n + 3)
(n + 1)(n + 2)

γij

(
∆ +

2(n + 1)
n + 3

)
ξrr

)
.

(122c)

Here, Kij, ρi and T are tensors defined on the sphere at null infinity, which generalise the vector vi
and the function T that characterised the asymptotic symmetries of linearised gravity in Equation (95).
They thus depend only on the coordinates xm, while all dependence on u is explicit in the expressions
above, which have been determined assuming an expansion in powers of r and u. The remaining
components ξuu, ξur and ξui are also non-vanishing and depend on Kij, ρi and T. We refer to [1] for
their explicit expressions.

The tensors Kij, ρi and T that characterise the asymptotic symmetries are not arbitrary: for n > 2,
they are bound to satisfy the differential equations

Kijk ≡ D(iKjk) −
2

n + 2
γ(ijD · Kk) = 0 , γijKij = 0 , (123)

Rijk ≡ D(iDjρk) −
2

n + 2

(
γ(ij∆ρk) + γ(ij

{
Dk), Dl

}
ρl
)
= 0 , (124)

Tijk ≡ D(iDjDk)T −
2

n + 2

(
γ(ij∆Dk)T + γ(ij

{
Dk), Dl

}
DlT

)
= 0 . (125)

When the dimension of spacetime is equal to four, i.e., when n = 2, the last condition does
not apply and the function T(xm) is instead arbitrary [1]. In this case, the corresponding symmetry
is the analogue of gravitational supertranslations. Equation (123) generalises the conformal Killing
Equation (96) and states that Kij is a conformal (traceless) Killing tensor of rank-two on the celestial
sphere (see e.g. [57]). For n > 2, this equation admits a finite number of solutions, while, when n = 2,
locally there are infinitely many solutions, generalising gravitational superrotations. The same is
true for the less familiar Equation (124) satisfied by ρi: when n > 2, it admits a finite number of
solutions, while, for n = 2, locally one can build infinitely many independent solutions. For the details,
we refer again to [1]. All combinations above are traceless: as a result, they vanish identically when the
dimension of spacetime is equal to three, i.e., when n = 1. This implies that, in three dimensions, T(φ)
and ρ(φ) are arbitrary functions, while the symmetry generated by the traceless Kij is actually absent.

Substituting the gauge parameters (122) into the expression for the charges (121), one obtains

Q(u) = lim
r→∞

rn−1

2

∫
Su

dΩn

{
χ

(
T − 2u

n + 1
D · ρ +

u2

(n + 1)(n + 2)
D · D · K

)
+ χi

(
ρi −

u
n + 2

D · Ki

)
+ χijKij

}
,

(126)
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with

χ = − (r∂r + 2n) ϕuuu −
n− 1

r
D · ϕuu +

1
2r

∂rD · D · ϕu , (127a)

χi = 2(n + 2) ϕuui −
2
r
(r∂r − 2) D · ϕui , (127b)

χij = (r∂r − 4) ϕuij . (127c)

The next task is to evaluate the charge (126) on the solutions of the equations of motion discussed
above. For n even and greater than two Equations (111), (112) and (115) lead to

χ = −
n−4

2

∑
k = 0

r−
n
2−k n + 2k− 2

2(n− 2k− 2)
D · D · D · C(k) − r1−n(n + 1)M

+ r1−n n− 3
6n

∫ u

−∞
du′(∆− n + 2) D · D · D · C( n−4

2 ) + o(r1−n) , (128a)

χi =

n−2
2

∑
k = 0

r−
n
2−k+1 2(n + 2k)

n− 2k
D · D · Ci

(k) + 2 r1−n
{
(n + 2)Ni + u ∂iM

}
+ o(r1−n)

− r1−n

n + 1

∫ u

−∞
du′
{
(n− 1) (∆− 1) D · D · Ci

( n−2
2 ) +

n− 3
3n

∫ u′

−∞
du′′Di(∆− n + 2) (D·)3C( n−4

2 )
}

, (128b)

χij = −
n
2

∑
k = 0

r−
n
2−k+2 n + 2k + 2

n− 2k + 2
D · Cij

(k) (128c)

− r1−n
{
(n + 3)Pij + u

(
D(iNj) −

2
n

γijD · N
)
+

u2

2(n + 2)

(
D(iDj)M−

2
n

γij ∆M
)}

+ · · · ,

where, in (128c), besides the terms o(r1−n), we also omitted the integrals in the retarded time that
one obtains by substituting (115c). For n = 2, the first two expressions are modified as follows:

χ = −1
r

{
3M+

1
2

D · D · D · C(0)
}
+O(r−2) , (129a)

χi = 2 D · D · Ci
(0) +

2
r

{
4Ni + u ∂iM+

1
6

∫ u

−∞
du′
[
(∆− 1) D · D · Ci

(0) − 2 DiD · D · D · C(0)
]}

+O(r−2) . (129b)

The correct χij is instead obtained by setting n = 2 in (128c) and by correcting the integral terms
according to (119c). For n odd, the extrema of the sums become, respectively, n−3

2 , n−1
2 and n+1

2 ,
while the terms in the second lines of Equations (128) are absent.

Looking only at the r-dependence, the sums in the previous formulae would give a divergent
contribution to the charges. These vanish, however, thanks to the differential constraints on the
parameters in (123), (124) and, when, n > 2, (125). Let us begin by exhibiting this mechanism in the
simplest case: the term χijKij in the charge (126) contains divergent contributions that, integrating by
parts, can be cast in the form

C(l)
ijk D(iK jk) = C(l)

ijk

{
2

n + 2
γ(ijD · Kk) −Kijk

}
= 0 , (130)

where we recall that Kijk is the shortcut introduced in (123) to denote the differential equation satisfied
by Kij. This cancellation is the analogue of the one involving the conformal Killing equation in linearised
gravity: it holds because the conformal Killing tensor equation allows for substituting the symmetrised
gradient with a term in γij and the tensors C(l) are traceless. The next cancellation is slightly more
involved: integrating by parts one obtains
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∫
Su

dΩn χi
(

ρi −
u

n + 2
D · Ki

)
∼ ∑

[
n− 1

2
]

l = 0 r
−

n
2
−l∫

Su
dΩn C(l)

ijk

(
D(iDjρk) − u

n + 2
D(iDjD · Kk)

)
+ · · · . (131)

To cancel the contribution in ρi, one can use Equation (124), which again allows one to substitute
the symmetrised gradient with a term in γij. To cancel the contribution in Kij, one can instead use the
following consequence of the conformal Killing tensor Equation (123):

D(iDjD · Kk) = − 2 γ(ijD · Kk) +
3

n + 1
γ(ijDk)D · D · K

− n + 2
n

{
∆Kijk − D(iD · Kjk) +

1
n + 1

γ(ijD · D · Kk) + (n− 3)Kijk

}
.

(132)

Similar considerations apply to the integral terms in the second line of (128b). The remaining
contribution in the charge formula (126) contains three addenda whose divergent parts can be cast in
the following form by integrating by parts:

C(l)
ijk D(iDjDk)T , C(l)

ijk D(iDjDk)D · ρ , C(l)
ijk D(iDjDk)D · D · K . (133)

These terms are actually absent when n = 2. For n > 2, the first contribution vanishes thanks
to the differential constraint (125). The other two types of terms vanish thanks to the following
consequences of the equations satisfied by ρi and Kij:

D(iDjDk)D · ρ =
2

n + 2
γ(ijDk) (3∆ + 2(n− 1)) D · ρ + terms inRijk , (134a)

D(iDjDk)D · D · K = − 8 γ(ijDk)D · D · K + terms in Kijk . (134b)

The precise form of the omitted terms is displayed in Equations (B.8) and (B.9) of [1].
We have therefore proven that, in the Bondi gauge (106), a spin-three field with the falloffs (108)

at null infinity given in [1] and satisfying the Fronsdal equations up to the contributions of order rn−1

to its components admits finite asymptotic linearised charges. For any n > 2, these depend on the
“integration constants” specifying the solution as

Q = −1
2

∫
Sn

dΩn

{
(n + 1) TM− 2(n + 2) ρiNi + (n + 3)KijPij

}
, (135)

whereM,Ni and Pij are the tensors on the sphere at null infinity introduced in Equation (115) (cf. (118)
for n odd). As anticipated, the charges are constant along null infinity when the dimension of spacetime
is greater than four. The same is true also in three dimensions: in this case, both Kij and Pij are not
present and the asymptotic charges take the form

Q = −
∫

dφ
{

T(φ)M(φ)− 3 ρ(φ)N (φ)
}

, (136)

in agreement with the result derived in the Chern–Simons formulation [53,54]. When the dimension
of spacetime is equal to three or bigger than four, with our boundary conditions, the spin-three
charges thus display a structure very similar to that of the corresponding charges computed on anti de
Sitter backgrounds in [58]. The latter, indeed, in the limit of vanishing cosmological constant should
reproduce the flat-space charges at spatial infinity.
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When n = 2, the modifications in the dependence on u of the leading terms in the
Coulomb-type solution recalled in Equation (119) (and (129)) lead to the following expression for the
asymptotic charges:

Q(u) = −1
2

∫
Su

dΩn

{
3 T
(
M+

1
6

D · D · D · C(0)
)
− 8 ρiNi + 5 KijPij + · · ·

}
. (137)

In this formula, we omitted other u–dependent terms in C(0), whose form is not particularly
illuminating and can be readily obtained by substituting (129) in (126). The main information is
anyway that in four dimensions a dependence on the retarded time appears already in the linearised
theory, thanks to the contribution to the charges of the radiation solution. As shown in [1], where the
terms in T in the charge (137) have been actually already presented, the dependence on radiation data
is instrumental in deriving Weinberg’s theorem for spin-three soft quanta from the Ward identities of
the supertranslation symmetry generated by the arbitrary function T(xi).

5. Arbitrary Spin

In this section, we first extend to arbitrary values of the spin the analysis of the linearised equations
of motion displayed in Sections 3 and 4 for fields of spin two and three. We then perform a preliminary
study of the residual gauge symmetry preserving the form of the solutions. In particular, we fix the
structure of asymptotic symmetries to leading order in an expansion in powers of r. This allows us
both to exhibit some examples of on-shell cancellations of divergent contributions to the charges and
to propose a general expression for their finite part in terms of the integration constants, arising after
integration over u, which specify the solutions. This allows us to motivate a proposal for boundary
conditions giving finite asymptotic spin-s charges in Minkowski backgrounds of any dimension.

5.1. Boundary Conditions

In the retarded Bondi coordinates (1), we study Fronsdal’s equations in the “Bondi gauge”
defined by

ϕrµ1···µs−1 = 0 , γij ϕijµ1···µs−2 = 0 . (138)

These constraints imply that the fields are traceless, so that Fronsdal’s tensor take the Maxwell-like
form [51]

Fµs = �ϕµs −∇µ∇ · ϕµs−1 . (139)

Here and in the following, groups of symmetrised indices are denoted by a single Greek letter
with a label indicating the total number of indices, so that, e.g., ϕµ1···µs→ ϕµs ; repeated indices denote
instead a symmetrisation involving the minimum number of terms needed and without any overall
factor, so that, e.g., AµBµ ≡ Aµ1 Bµ2 + Aµ2 Bµ1 . For more details, see [59]. As before, we also assume
that their solutions can be expanded in (half-integer) powers of r−1 in a neighbourhood of null infinity.

Equation (138) also implies that all components of the Fronsdal tensor with at least two radial
indices vanish identically. The components with a single radial index read instead

Fr us−k−1ik =
1
r2

{
r2∂2

r + (n− 2k) r∂r − 2k(n− 1)
}

ϕus−k ik −
1
r3 (r∂r − 2k) D · ϕus−k−1ik . (140)

The remaining components, without any radial index, are

Fus−k ik =
1
r
{(s− k− 2) r∂r + n(s− k− 1) + 2k} ϕ̇us−k ik −

s− k
r2 D · ϕ̇us−k−1ik

+
1
r2

{[
∆ + r2∂2

r + (n− 2k) r∂r − k(n− k)
]

ϕus−k ik − DiD · ϕus−k ik−1

}
+

1
r

{
(r∂r + n− 2) Di ϕus−k+1ik−1

+ 2 γiiD · ϕus−k+1ik−2

}
− 2 (r∂r + n− 1) γii ϕus−k+2ik−2

.

(141)
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We begin by studying the previous equations for n even. In this case, we employ the ansatz

ϕus−k ik =
∞

∑
l = 0

r−
n
2 +k−lCik

(k,l)(u, xm) . (142)

As in the previous examples, the leading behaviour of our ansatz is designed to give a finite flux
of energy per unit time across the sphere Su at fixed u, a feature that we interpret as radiation crossing
null infinity. The canonical energy-momentum tensor of the Fronsdal Lagrangian in Bondi gauge,

L =
1
2

ϕµs
(
�ϕµs −∇µ∇ · ϕµs−1 + ηµµ∇ · ∇ · ϕµs−2

)
, (143)

reads indeed
Tαβ = ∇α ϕµs∇β ϕµs − s∇ · ϕµs−1∇β ϕαµs−1 + ηαβL . (144)

The corresponding power flowing through null infinity is then

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 · · · γis js Ċ(s,0)

i1···is Ċ
(s,0)
j1···js dΩn . (145)

When substituting the ansatz (142), the components Frµs−1 of the Fronsdal tensor vanish
provided that

Cik
(k,l) =

2 [n + 2(k + l − 1)]
[n + 2(k + l)] [n + 2(k− l − 1)]

D · Cik
(k+1,l) for l 6= n

2
+ k− 1 , (146)

while, for l = n/2 + k− 1, the equations of motion imply

(n + 2k− 2)D · Cik
(k+1, n

2 +k−1) = 0 . (147)

In the formula above, we exhibited the factor emerging in the computation that vanishes when
n = 2 and k = 0. This anticipates that the peculiarities of the four-dimensional case that we encountered
before persist for arbitrary values of the spin. At any rate, Equation (146) shows that, for all even
values of n, the tensors entering the ansatz (142) are fixed in terms of the C(s,l), with the exception of

Cik
(k, n

2 +k−1) ≡ Qik
(k) for k < s . (148)

The tensors C(s,l) are then determined (up to integrations constants) in terms of an arbitrary tensor
C(s,0)(u, xm) via the equation Fis = 0, which gives

Ċis
(s,l+1) = − 1

2(l + 1)

{ [
∆− n(n− 2)

4
+ l(l + 1)− s

]
Cis

(s,l)

− 4(n + 2s− 4)
[n + 2(s + l − 1)][n + 2(s− l − 2)]

[
DiD · Cis−1

(s,l) − 2
n + 2s− 4

γiiD · D · Cis−2
(s,l)
]}

.
(149)

The remaining components of the equations of motion fix the u-evolution of the tensors Q(k)

defined in Equation (148). To this end, it is convenient to expand the Fronsdal tensor in powers of r−1.
When the ansatz (142) holds, one has

Fus−k ik [C] =
∞

∑
l = 0

r−
n
2 +k−l−1Fik

(k,l)(u, xm) (150)

and, when the equations Frµs−1 = 0 are satisfied, one can recast the expansion in the following form:
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Fus−k ik =
∞

∑
l = 0

l 6= n
2 +k−2

2 r−
n
2 +k−l−2

n + 2(k− l − 2)
D · Fik

(k+1,l+1)

+ r−n
{
(n + s + k− 2)Q̇ik

(k) − DiQik−1
(k−1) +

2
n + 2k− 4

γiiD · Qik−2
(k−1)

+
n + 2k− 3

(s− k)!(n + s + k− 3)
[∆ + k(k− 4) + n(k− 1) + 2] (D·)s−kC(s, n

2 +k−2)
}

.

(151)

This implies that, on shell, the Q(k) are n-divergences as the other C(k,l), however up to a set of
integrations constantsM(k)(xm). The second line of Equation (151) actually dictates thatQ(k) depends
on the integrations constants of all Q(l) with l < k with a precise polynomial dependence on u. As we
have seen in the previous examples, this is instrumental in making the independence on the retarded
time of the asymptotic charges explicit. Concretely, the Q(k) depend on the integrations constants as

Qik
(k) =

k

∑
l = 0

(n + s + k− l − 2)!
l!(n + s + k− 2)!

ul Di · · ·Di︸ ︷︷ ︸
l terms

Mik−l
(k−l) + · · · . (152)

In this formula, we omitted both the terms inM(k−l) that make the expression above traceless
and the terms in the C(k,l) resulting from the integration of Equation (151). Both types of contributions
anyway will not contribute to the asymptotic charges when n > 2. When n = 2, Equation (151) has to
be modified in analogy with the discussions in Sections 3.1.3 and 4.1.3, since (D·)sC(0) does not vanish
anymore.

When n is odd, one has to consider an ansatz containing both integer and half-integer powers of r.
For n > 1, we set

ϕus−k ik =
∞

∑
l = 0

r−
n
2−l+kC(k,l)(u, xm) +

∞

∑
l = 0

r1−n−lC̃(k,l)(u, xm) , (153)

so that the leading order has the same form as in the ansatz (142). Equation (145) thus guarantees
that we have a finite flux of energy per unit time across Su in this case too. When n = 1, consistently
with the absence of propagating degrees of freedom for fields of spin s > 1 in three dimensions,
the radiation branch of the solution becomes subleading in the field component with only u indices
and we will ignore it as in the examples with spin two and three. Notice that, due to the trace constraint
in (138), in this case, the only non-vanishing components of the field are

ϕus =M(s)(φ) +O(r−1) , ϕus−1φ = N (s)(φ) +
u
s

∂φM(s)(φ) +O(r−1) . (154)

The boundary conditions therefore contain only two arbitrary functions for each value of the spin,
in analogy with what happens in AdS3 [55,56,60–62].

The equations Frµs−1 = 0 imply the relations (146) also when n is odd and greater than one, but
without any limitation on the allowed values of k. The leading order of the Coulomb branch is instead
not constrained by these equations, so that we can define

C̃(k,0) ≡ Q(k) for k < s . (155)

The remaining C̃(k,l) are again fixed in terms of the C̃(s,l) by Equation (146), provided that one
identifies C̃(k,l) = C(k, n

2 +k+l−1), which is

C̃(k,l+1) = − n + 2k + l − 1
(l + 1)(n + 2k + l)

D · C̃(k+1,l) . (156)



Universe 2018, 4, 47 29 of 36

Performing the same substitution in Equation (149) gives the relation fixing all C̃(s,l) in terms of an
arbitrary C̃(s,0)(u, xm) (again up to integration constants).

Expanding the contributions to the Fronsdal tensor of the terms with integer powers of r as

Fus−k ik [C̃] =
∞

∑
l=0

r−n−lF̃(k,l)(u, xm) , (157)

one eventually obtains

Fus−k ik =
∞

∑
l = 0

2 r−
n
2 +k−l−2

n + 2(k− l − 2)
D · Fik

(k+1,l+1) −
∞

∑
l = 0

r−n−l−1

l + 1
D · F̃ik

(k+1,l)

+ r−n
{
(n + s + k− 2)Q̇ik

(k) − DiQik−1
(k−1) +

2
n + 2k− 4

γiiD · Qik−2
(k−1)

}
.

(158)

As a result, when n is odd, the Q(k) satisfy a relation analogous to Equation (152), where the
omitted terms, which anyway do not contribute to the charges, are actually absent.

By analogy with the examples of spin two and three, one is led to conclude that, in the Bondi
gauge (138), the boundary conditions to be imposed on a spin-s field in order to obtain finite asymptotic
charges for any D, even or odd, are the following:

ϕus−k ik =
[ n+1

2 ]+k−2

∑
l = 0

r−
n
2 +k−l 2s−k(n + 2(k− l − 2))!!(n + 2(k + l − 1))

(n + 2(s− l − 2))!!(n + 2(s + l − 1))
(D·)s−kCik

(s,l)

+ r1−nQik
(k) +O(r−

n
2−[

n
2 ]) ,

(159)

where the C(k,l) satisfy (146), while the Q(k) satisfy (152). In this work, we do not perform a complete
analysis of the asymptotic symmetries for fields of arbitrary spin. Still, we can provide support to the
correctness of the boundary conditions (159) by showing that they lead to the cancellation of some of
the potentially divergent contributions to the linearised charges, while also proving that the Q(k) give
a finite contribution to them. This is the goal of the next section.

5.2. Asymptotic Symmetries and Charges

In order to preserve the boundary conditions (159), the variations of the field components in
Bondi coordinates,

δϕrs−k−lul ik = l ξ̇rs−k−lul−1ik +
s− k− l

r
(r∂r − 2k) ξrs−k−l−1ul ik

+ Diξrs−k−l ul ik−1
− 2r γiiξrs−k−lul+1ik−2

+ 2r γiiξrs−k−l+1ul ik−2
,

(160)

must satisfy (for n ≥ 2)
δϕrµs−1 = 0 , δϕus−k ik = O(r

− n
2 +k) . (161)

When n = 1, one should have instead δϕus = O(1) and δϕus−1φ = O(1), while all other variations
must vanish.

From the examples discussed in the previous sections, we are led to consider the ansatz

ξrs−k−l−1ul ik = r2k+lλik
(k,l)(u, xm) +O(r2k+l−1) . (162)

Under these conditions, the terms in the second line of the variations (160) become subleading for
l > 0, while the first line gives a first-order differential equation in u which fixes the u-dependence of
the λ(k,l). To proceed, one can notice that the gauge parameters generating the residual symmetry must
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be both divergenceless and traceless. These constraints are indeed necessary to leave the gauge-fixed
version (139) of the equations of motion invariant. They imply

∇ · ξrs−k−l−1ul−1ik = − ξ̇rs−k−lul−1ik −
1
r
(r∂r + n) ξrs−k−l−1ul ik +

1
r2 D · ξrs−k−l−1ul−1ik

− s− k− l − 1
r3 ξ ′rs−k−l−2ul−1ik +

1
r
(r∂r + n) ξrs−k−lul−1ik = 0 ,

(163)

and
ξrs−k−l ul−1ik − 2 ξrs−k−l−1ul ik +

1
r2 ξ ′rs−k−l−2ul−1ik = 0 , (164)

where we denoted with a prime a contraction with the n-dimensional metric γij. Combining this
information with the requirement that the variations (160) vanish at leading order, one obtains

λ̇ik
(k,l) +

s− k− l − 1
n + s + k− 2

D · λik
(k+1,l) = 0 , (165)

which, as anticipated, fixes the u-dependence of the leading order in the expansion in powers of r.
From now on, we focus on the components of the gauge parameter that are relevant to the

computation of asymptotic charges. In Appendix A, we shall show that, in the Bondi gauge (138), they
can be expressed in terms of the non-vanishing field components as

Q(u) = − lim
r→∞

∫
Su

rn−1dΩn

(s− 1)!

s−1

∑
p= 0

(
s− 1

p

){
ϕus−pip (r∂r + n + 2p) ξus−p−1ip

+ ξus−p−1ip

[
(s− p− 2) (r∂r + n) ϕus−pip −

s− p− 1
r

D · ϕus−p−1ip

]}
.

(166)

Therefore, they only depend on the components ξrs−k−1ik = (−1)s−k−1ξus−k−1 ik of the gauge
parameters of asymptotic symmetries. According to Equations (162) and (165), these satisfy

ξrs−k−1ik = r2k

(
Kik

(k) +
s−k−1

∑
m= 1

(−1)mum

(n + s + k− 2)m

(
s− k− 1

m

)
(D·)mKik

(k+m)

)
+O(r2k−1) , (167)

where the tensors K(k)(xm) only depend on the coordinates on the n-dimensional sphere at null infinity,
while (a)n ≡ a(a + 1) · · · (a + n− 1) is the Pochhammer symbol. Moreover, at the leading order in r,
Equation (164) implies that the K(k) are traceless (with respect to contractions with γij). This implies
that, in three dimensions, only K(0) and K(1) are actually present, in analogy with the corresponding
reduction in the number of integration constants.

The tensors K(k) must also satisfy suitable differential constraints, which generalise those
displayed in Equations (123) and (124) for the spin-three case. To identify them, it is convenient
to focus on the variations of the field components without any u index. The absence of u-derivatives
indeed allows one to study the resulting equations order by order in an expansion in powers of u.
We can thus introduce the following expansion of the relevant components of the gauge parameter:13

ξrs−k−1ik =
k

∑
l = 0

r2k−l Aik
(k,l)(xm) + terms in u , (168)

ξrs−k−2uik =
k+1

∑
l = 0

r2k−l+1Bik
(k,l)(xm) + terms in u , (169)

13 We already encoded the information on the minimum power of r entering the decomposition that can be extracted starting
from the inspection of the equation δϕrs = 0 and substituting the result in the other variations of the form δϕrs−k ik .
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where A(k,0) ≡ K(k) as dictated by Equation (167). Substituting this decomposition in the variations
(160) gives

δϕrs−k−1ik+1
=

k

∑
l = 0

r2k−l
{
− (l + 1)(s− k− 1) Aik+1

(k+1,l+1) + Di Aik
(k,l)

− 2 γiiBik−1
(k−1,l) + 2 γii Aik−1

(k−1,l−1)
}
+ terms in u .

(170)

Preserving the boundary conditions (161) thus requires, for all k < s− 1,

Aik
(k,l) =

1
l(s− k)

Di Aik−1
(k−1,l−1) + γii (· · · ) ⇒ Ais−1

(s−1,l) =
1

(l!)2 (Di)
lKis−l−1

(s−l−1) + γii (· · · ) . (171)

Notice that, for any value of l, the omitted combination in the A(s−1,l) tensor contains at least
one new tensor of the B(k,l) family with respect to those appearing for lower values of l. As a result,
by substituting back in Equation (160) (with k = s− 1), one obtains the condition

δϕis =
s−1

∑
l = 0

r2s−l−2

(l!)2

{
(Di)

l+1Kis−l−1
(s−l−1) + γii Ξ is−2

(s−l−1)
}
+ terms in u = O(r−

n
2 +s) , (172)

where the tensors Ξ(k) can be considered as independent.14

If the space-time dimension is greater than four, i.e., if n > 2, the traceless tensors K(k) defined in
Equation (167) must therefore satisfy the differential constraints

Di · · ·Di︸ ︷︷ ︸
s−k

Kik
(k) + γii Ξ is−2

(k) = 0 , γmnK(k)
ik−2mn , 0 ≤ k ≤ s− 1 , (173)

which, in particular, imply that the (s− k)th trace of Ξ(k) vanishes. Actually, these tensors can be
eliminated by computing successive traces of Equations (173). For instance, for k = s− 1, we obtained
the conformal Killing tensor equation on the sphere (see e.g. [57]); one can eliminate the tensor Ξ(s−1)

by computing a trace of (173) to obtain

DiKis−1
(s−1) − 2

n + 2s− 4
γiiD · Kis−2

(s−1) = 0 , γklK (s−1)
is−3kl = 0 , (174)

which is the formulation that we used in Equations (96) and (123) for fields of spin two and three,
respectively.

When n = 2, the last term in the sum (172) does not have to vanish in order to preserve the
boundary conditions. As a result, the function on the sphere denoted by K(0)(xm) is completely
arbitrary, as already pointed out in [1]. This infinite-dimensional enhancement of the asymptotic
symmetries, generalising BMS supertranslations, is accompanied by a local infinite-dimensional
enhancement of the symmetries generated by the tensors K(s−1)(xm). The conformal Killing tensor
Equation (174) admits in general 1

s+1 (
n+s+1

n+1 )(n+s
n ) independent globally defined solutions for n ≥ 2 [57].

When n = 2, in addition, one also finds the further, local solutions

K(s−1)
z···z = K(z) , K(s−1)

z̄···z̄ = K̃(z̄) , K(s−1)
z···z z̄···z̄ = 0 , (175)

where z = eix1
cot x2

2 together with its conjugate provide complex coordinates on the celestial sphere.
These local solutions provide an extension to arbitrary values of the spin of superrotations [9,10].

14 For instance, the dependence of the Ξ(k) on the K(k) tensors can be eliminated by redefining B(k,l) → B(k,l) + A(k,l−1) in (169).
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Moreover, for s = 3, in [1], we have shown that the equation for the tensor K(s−2) also admits locally
infinitely many solutions. We defer to future work a complete analysis of Equation (173), but it is
tempting to conjecture that all these equations admit infinitely-many solutions when the dimension of
space-time is equal to four, that is when n = 2.

When n = 1, the equations for the surviving tensors K(0)(φ) and K(1)(φ) trivialise. As a result,
for each spin-s field, the asymptotic symmetries are generated by two arbitrary functions of the angular
coordinate on the circle at null infinity, in analogy with the spin-three case [53,54]. The number of free
functions in the asymptotic symmetries is also the same as in AdS3 higher-spin theories [55,56,60–62].

Before moving to the actual evaluation of the linearised charges, let us mention that one should
complete our preliminary analysis of the asymptotic symmetries by studying the cancellation of the
subleading orders in the gauge transformations (160), as we did for s = 3 in [1]. Nevertheless,
we stress that the resulting (naively overdetermined) system of equations admits at least the
solutions corresponding to rank-(s− 1) traceless and divergenceless Killing tensors of the Minkowski
background. They indeed generate spin-s gauge transformations leaving the Minkowski background
invariant, so that they obviously satisfy the weaker conditions (161). Consequently, in analogy with
the spin-three example, besides the differential constraints (173), we do not expect any additional
constraint on the tensors K(k) that fully characterises the asymptotic symmetries.

We now return to the expression (166) for the asymptotic charges, aiming to make manifest
their u−independence for n 6= 2. While performing this analysis, one first has to keep track of the
cancellation of all potentially divergent terms in the limit r → ∞. As we have seen in the previous
sections, these usually occur after integrations by parts; for instance, the coefficient of the leading
power in r is of the form∫

Su
dΩn K(s−1)

is−1
D · C(s,0) is−1 =

∫
Su

dΩn Di K(s−1)
is−1

C(s,0) is , (176)

and hence vanishes because K(s−1) satisfies the conformal Killing tensor Equation (174) and C(s,0)

is traceless. Although we do not perform here an exhaustive inspection of these cancellations,
the systematics suggested by the examples of spin one, two and three leads us to expect that they hold
in general. Assuming that this is indeed the case, the finite contribution to the charges is determined
by the Coulomb-like terms Q(k) in the boundary conditions (159). Substituting them into the charge
formula (166), while taking into account their dependence on the integration constants in (152), one
obtains after integration by parts

Q(u) =
∫

Su

dΩn

(s− 1)!

s−1

∑
p=0

s−p−1

∑
m=0

p

∑
l=0

(
s− 1

p

)(
s− p− 1

m

)(
p
l

)
(s + p + n− 2)(s + n + p− l − 2)!
(s + n + p− 2)m(s + n + p− 2)!

× (−1)s+m+p+l ul+mM(p−l)
ip−l

(D·)l+mK(m+p) ip−l (177)

=
∫

Su
∑
k,q

dΩn (−1)s+k(s + n + q− 2)!
(s− 1)!(s + n + k + q− 3)!

[
s−1

∑
p=0

(−1)p
(

s− 1
p

)(
s− p− 1
k + q− p

)(
p
q

)]
ukM(q)

iq (D·)kK(k+q) iq .

The final expression has been obtained by introducing the new labels k = l + m and q = p− l
and by swapping the sums, whose ranges precisely correspond to the values of the labels for which
the integrand does not vanish (with the convention (N

n ) = 0 for n < 0 or n > N). One can eventually
verify that the sum within square brackets in the second line of Equation (177) vanishes for any k > 0,
thus providing, via the disappearance of the u−dependence, a good consistency check of our formulae
for any value of the spin. The u-independent contribution then reads

Q =
∫

Sn

dΩn

(s− 1)!

s−1

∑
q= 0

(−1)s+q(s + n + q− 2)
(

s− 1
q

)
K(q)

iq M
(q) iq , (178)
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in full analogy with the result that we presented for s = 3 in Equation (135).15

When the dimension of spacetime is equal to three, similar considerations apply, with the
additional simplification that the tensors K(k) with k ≥ 2 and the integration constantsM(k) with
k ≥ 2 are actually absent. By defining K(0) ≡ T,M(0) =M and K(1)

φ ≡ v(φ),M(1)
φ ≡ N (φ), in this

case the charge (178) becomes

Q =
(−1)s

(s− 2)!

∫
dφ
{

T(φ)M(φ)− s ρ(φ)N (φ)
}

(179)

for any value of spin. In four dimensions, additional terms in u, depending on the data of the radiation
solution, do appear. In particular, in agreement with the discussion in sect. 3.2 of [1], the charge
formula (178) receives the following additional contribution in the supertranslation sector:

Q(u) =
(−1)ss
(s− 1)!

∫
Su

dΩn K(0)
(
M(0) +

1
s!
(D·)sC(0)

)
+ · · · . (180)

The contributions of the radiation data to the terms involving (generalised) superrotations can be
determined following the same steps as in Section 4.2.
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Appendix A. Spin-s Charges in Bondi Gauge

In this appendix, we consider the linearised charges at null infinity associated with bosonic gauge
fields of arbitrary spin. We work in generic space-time dimension and we express the charges in terms
of the non-vanishing components of the fields in the Bondi gauge (138).

Appendix A.1. On-Shell Closed Two-Form for Arbitrary Spin

We begin from the following on-shell closed two-form, which gives the spin-s linearised charges
upon integration on a codimension-two surface [63]:

k[αβ] =

√−g
(s− 1)!

{
∇[α ϕβ]

µs−1 ξµs−1 + ϕµs−1
[α∇β]ξµs−1 + (s− 1)∇ · ϕµs−2

[αξβ]µs−2

+ (s− 1) ξµs−2[α∇β]ϕµs−2 +
s− 1

2

(
ϕµs−2∇[αξβ]µs−2 −∇µ ϕµs−3

[αξβ]µs−2
)}

.
(A1)

As in Section 5, groups of symmetrised indices have been denoted by a single Greek letter with
a label denoting the total number of indices, while repeated indices denote a symmetrisation involving
the minimum number of terms needed and without any overall factor. Furthermore, omitted indices
denote a trace, that is ϕµs−2 = gαβ ϕαβµs−2 . Equation (A1) has been obtained by eliminating the triplet
auxiliary fields from Equation (48) of [63] and it applies to any space-time dimension D. If the field

15 In order to compare with the spin-two charge (104), one should take into account the factor of 2 introduced by the definition
of the Bondi mass aspect (see e.g. (78)) and that T = −K(0) as dictated by Equation (95).
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satisfies Fronsdal’s equations of motion and the gauge parameter satisfies the Killing tensor equation
∇µξµs−1 = 0, then ∇αk[αβ] = 0.

We are interested in the charges at null infinity, which are defined as an integral over the sphere of
dimension n = D− 2 at each point u, which we denote by Su. As a result, in the Bondi coordinates (1),
they involve only a specific component of the two-form (A1) and they are defined as

Q(u) = lim
r→∞

∫
Su

kur[ϕ, ξ] dx1 · · · dxn . (A2)

Appendix A.2. Rewriting in Bondi Gauge

We now wish to manifest the simplifications of Equation (A1) that are induced by the
conditions (138) defining the Bondi gauge. First of all, the terms in its second line involve the trace of
the field and therefore vanish in Bondi gauge. Since the only non-vanishing Christoffel symbols are
those displayed in Equation (2) and the non-vanishing components of the inverse metric are

gur = −1 , grr = 1 , gij = r−2γij , (A3)

these conditions also imply

∇u ϕrµs−1 = ∇r ϕrµs−1 = γij∇i ϕrjµs−2 = 0 . (A4)

As a result, in the “Bondi gauge”, the relevant component of the two-form (A1) reads

kur =
rn√γ

(s− 1)!
{

ξρs−1∇r ϕuρs−1 − ϕuρs−1∇r ξρs−1 + (s− 1) ξuρs−2∇ · ϕuρs−2

}
. (A5)

Using Equations (2) and (138), one can see that the covariant derivatives that are relevant for
Equation (A5) are

∇r ϕus−pip =
1
r
(r∂r − p) ϕus−pip , (A6a)

∇rξus−p−1ip =
1
r
(r∂r + p) ξus−p−1ip , (A6b)

∇ · ϕus−p−1ip = − 1
r
(r∂r + n) ϕus−pip +

1
r2 D · ϕus−p−1ip , (A6c)

where we recall that Di denotes the Levi–Civita connection for the metric γij on the sphere at
null infinity. All in all, by expanding Equation (A5) in components, one eventually gets:

kur =
rn−1√γ

(s− 1)!

{
ξ is−1 (r∂r − s + 1) ϕu is−1 − ϕu is−1 (r∂r + s− 1) ξ is−1

−
s−2

∑
p=0

(
s− 1

p

)[
(s− p− 2) ξus−p−1ip (r∂r + n) ϕus−pip

+ ϕus−pip (r∂r + n + 2p) ξus−p−1ip − s− p− 1
r

ξus−p−1ip D · ϕus−p−1ip

]}
.

(A7)
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