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Abstract: Local gravitational theories with more than four derivatives can have remarkable quantum
properties. Namely, they can be super-renormalizable and may be unitary in the Lee-Wick sense, if the
massive poles of the propagator are complex. It is important, therefore, to also explore the classical
aspects of these theories. In this talk we present recent results in this direction. Specifically, we discuss
the effect that that higher-order terms can have on the Newtonian potential and related singularities.
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1. Introduction

Higher-derivative extensions of general relativity (GR) have, recently, been the object of intensive
investigation. The main motivations for this come from the possibility of softening the tension between
renormalizability and unitarity in the domain of perturbative quantum gravity. In fact, GR is not
perturbatively renormalizable, and fourth-order gravity contains a ghost in the spectrum; nonetheless
with six or more derivatives it is possible to restore the unitarity of the S-matrix if the ghost-like poles
in the propagator are complex (Lee-Wick gravity) [1,2]. Alternatively, ghosts can be avoided if the
original graviton propagator is modified by non-local factors which do not introduce any new pole in
the complex plane [3–7]. In addition, the theory can be (super-)renormalizable if the propagator has an
improved ultraviolet (UV) behavior [4,8,9].

In the present work we review some results (see Refs. [10–14]) on a classical aspect of these
higher-derivative gravity theories, namely the cancellation of the singularities in the linear regime.
Our focus is on general polynomial-derivative theories, defined by the action [9]

Sgrav =
1

4κ

∫
d4x
√
−g
{
− 2R + Rµν F1(2) Rµν + R F2(2) R

}
, (1)

where κ = 8πG and F1 and F2 are polynomial functions of the d’Alembertian, not necessarily of the
same degree. In the linear regime this is the most general local action with higher derivatives, and it
includes as particular case the Lee-Wick gravity.

Since the 1970s it is known that the case of trivial (constant non-null) polynomials yields a
renormalizable theory with a finite modified Newtonian potential [8,15]. Nonetheless, curvature
singularities are still present in both linear and non-linear regimes for static spherically symmetric
solutions coupled to a point-like source [15–17]. In what follows we summarize recent generalizations
of these results to the case of the polynomial-derivative theory (1) in the weak-field approximation.
The main conclusion is that all the models with at least six derivatives in the scalar and the tensor
sectors have not only a finite interparticle potential [10,11] but also regular curvature invariants [12,13].
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2. Field Generated by a Static Point-Like Mass

In the linear approximation one assumes the metric gµν = ηµν + hµν to be a fluctuation around
the Minkowski spacetime, and restricts considerations to the first order equations of motion for the
field hµν. For the action (1), supplemented by a matter action, the variational principle yields

f2(2) (2hµν − ∂ρ∂µhρ
ν − ∂ρ∂νhρ

µ) +
1
3 [2 f0(2) + f2(2)] (ηµν∂ρ∂ωhρω − ηµν2h + ∂µ∂νh)

+ 2
3 [ f2(2)− f0(2)]

1
2 ∂µ∂ν∂ρ∂ωhρω = −2κ Tµν,

(2)

where Tµν is the energy-momentum tensor sourcing the field and the functions f0 and f2 are defined via

f0(z) ≡ 1 + zF1(z) + 3zF2(z) , (3)

f2(z) ≡ 1− 1
2

zF1(z) . (4)

For a static point-like source, i.e., Tµν = ρ δ0
µ δ0

ν with ρ(r) = Mδ(r), the metric perturbation can be
written in isotropic coordinates as

hµν = diag(−2Φ,−2Ψ,−2Ψ,−2Ψ). (5)

Using the linearized equations of motion, it is possible to show that the metric potentials are given
by [12]

Φ =
1
3
(2χ2 + χ0) , Ψ =

1
3
(χ2 − χ0) . (6)

where χs (s = 0, 2) satisfies

fs(∆)∆χs = κs ρ , (7)

with κ0 = −κ/2, κ2 = κ.
As it was shown in [12], the solution for Equation (7) for a polynomial function fs(z) and a

delta-source reads

χs(r) = −
κs M
4πr

+
κs M

4π3/2

Ns

∑
i=1

n(s)i

∑
j=1

a(s)i,j
(j− 1)!

(
r

2m(s)i

)j− 3
2

Kj− 3
2
(m(s)ir) , (8)

where Kν is the modified Bessel function of the second kind. Also, z = −m2
(s)i is one of the Ns distinct

roots of the equation fs(−z) = 0, each of them with multiplicity n(s)i. Of course, if Ns is the degree
of fs(z), then ∑i n(s)i = Ns. The coefficient a(s)i,j follows from the partial fraction decomposition of
[z fs(−z)]−1:

− 1
z fs(−z)

= −1
z
+

Ns

∑
i=1

n(s)i

∑
j=1

a(s)i,j(
z + m2

(s)i

)j . (9)

We remark that these formulas hold also for the Lee-Wick gravity models, in which there are
complex massive quantities m(s)i. Moreover, they explicitly take into account the case of degenerate
roots, which are possible only in polynomial-derivative theories.
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3. Finiteness of the Metric Potentials

From the comparison of both sides of Equation (9) one can show that ∑i a(s)i,1 = 1 [12]. Since the
expansion of Equation (8) around r = 0 gives

χs(r) = −
κs M
4πr

[
1−

Ns

∑
i=1

a(s)i,1

]
+ const. + O(r) , (10)

it follows that χs is finite provided that Ns ≥ 1, i.e., if fs is a non-trivial polynomial. Therefore,
the (modified) Newtonian metric potentials Φ and Ψ are finite provided that the model contains at
least four derivatives both in the spin-2 and the spin-0 sectors. This result was previously obtained
for the case of super-renormalizable models with simple poles in [10]; and later is was extended
to general polynomial models in [11], where the identity ∑i a(s)i,1 = 1 was proved by means of a
different approach.

4. Curvature Regularity

In isotropic spherical coordinates, the non-zero components of the Riemann curvature tensor
associated with the metric perturbation (5) read

Rtrtr = Φ′′ , (11)

Rtθtθ = rΦ′ =
Rtφtφ

sin2 θ
, (12)

Rrθrθ = r(Ψ′ + rΨ′′) =
Rrφrφ

sin2 θ
, (13)

Rθφθφ = 2r3Ψ′ sin2 θ . (14)

In view of Equations (6) and (10) it follows that the finiteness of the potentials χ0 and χ2 imply
in the finiteness of the Riemann tensor. This is not enough; however, to guarantee the absence of
singularities in the curvature invariants—for instance, for the Kretschmann scalar one gets

R2
µναβ = 4(Φ′′2 + 2Ψ′′2) +

16
r

Ψ′Ψ′′ +
8
r2 (Φ

′2 + 3Ψ′2) . (15)

Hence, Φ′(0) = Ψ′(0) = 0 is a sufficient condition for having a regular Kretschmann invariant [18].
It turns out that this condition is a necessary one for the regularity of the whole set of curvature
invariants [12]. In fact,

R = 2(2Ψ′′ −Φ′′) +
4
r
(2Ψ′ −Φ′) , (16)

R2
µν = 2(Φ′′2 + 3Ψ′′2 − 2Φ′′Ψ′′) +

4
r
(Φ′Φ′′ + 5Ψ′Ψ′′ −Ψ′Φ′′ −Φ′Ψ′′)

+
2
r2 (3Φ′2 + 11Ψ′2 − 6Φ′Ψ′) , (17)

C2
µναβ =

4
3r2 [r(Φ

′′ + Ψ′′)− (Φ′ + Ψ′)]2 . (18)
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It is straightforward to verify that the condition Φ′(0) = Ψ′(0) = 0 also regularizes the
components of the Ricci and Weyl curvature tensors, whose non-zero components respectively read

Rtt = Φ′′ + 2
Φ′

r
, (19)

Rrr = 2Ψ′′ −Φ′′ + 2
Ψ′

r
, (20)

Rθθ = r(3Ψ′ −Φ′ + rΨ′′) =
Rφφ

sin2 θ
, (21)

and

Ctrtr =
1
3

(
Φ′′ + Ψ′′ − Φ′ + Ψ′

r

)
, (22)

Ctθtθ = Crθrθ =
Ctφtφ

sin2 θ
=

Crφrφ

sin2 θ
= −1

2
r2Ctrtr , (23)

Cθφθφ = −r4 sin2 θ Ctrtr . (24)

Proceeding the expansion (10) of the auxiliary potentials χs around r = 0 up to the linear term
one can show that [12]

χ′s(0) =
κs M
8π

(
Ns

∑
i=1

a(s)i,1m2
(s)i −

Ns

∑
i=1

a(s)i,2

)
. (25)

Moreover, from the definition of the coefficients a(s)i,j through the partial fraction
decomposition (9) one can prove that the quantity between parenthesis in Equation (25) above is
identically null if Ns > 1 (i.e., if the degree of fs(z) is at least two), and it is non-zero if Ns = 1 [12,13].
Therefore, it follows that the necessary and sufficient condition for having regular curvature invariants
in polynomial-derivative gravity is to have at least six derivatives both in the spin-2 and spin-0 sectors.

In this sense, fourth-derivative gravity would be the only local higher-derivative model which
always have curvature singularities when coupled to a delta-source. In higher-order theories this
can only happen for specific choices of parameters, namely, if F2 = const. or F2 = −3F1, see
Equations (3) and (4).

5. Higher Derivatives as Source Regularization

The regularization of the Newtonian singularities as one goes from 2 to 4 (potential singularity)
and then to six and more derivatives (curvature singularities) can be viewed as a regularization of the
effective source $s defined through

ρ(r) = fs(∆) $s(r). (26)

With this definition, (7) can be cast as a Poisson equation with the new source,

∆χs = κs $s . (27)

It is possible to show that if fs(z) is a linear polynomial then $s gets smeared but it still blows
up in the origin. Nonetheless, if fs(z) is at least of quadratic order, then the corresponding effective
source is regular, which regularizes the potential χs (i.e., it ensures that χ′s(0) = 0) [13]. In this spirit,
the complete regularization of the delta-source coincides with the avoidance of curvature singularities.
Qualitatively, the mechanisms by which the higher derivatives allow to eliminate the singularities
are the smearing and regularization of the effective delta-source. Ultimately, this is achieved by the
improved behavior of the propagator in the UV [13].
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Working with effective sources is useful for extending considerations to non-local ghost-free
models, in which the functions F1 and F2 in the action are non-polynomial ones. Indeed, in [13]
it was shown that the regularity of weak field limit solutions of the polynomial gravity implies
in the regularity of analogous solutions in a large class of non-local models (see, e.g., [18–23]).
Nonetheless, non-locality and/or ghost-free conditions do not ensure that the model is free from
curvature singularities, one example of this kind was presented in [13].

6. Conclusions

In the present work we reviewed recent results concerning the occurrence of regular solutions in
polynomial-derivative gravity. It is remarkable that, contrary to what one might expect considering
only the fourth-order gravity, the asymptotically flat, static spherically symmetric solutions in
linearized higher-derivative gravity are, in general, singularity-free. This fact is closely related to the
improved UV behavior of the propagator [13].

A natural question is whether the regularity of the solutions is preserved in the full non-linear
regime. In the case of fourth-order gravity it has been shown that the singularity is present in both
regimes [15–17]. On the other hand, the numerical search for static spherically symmetric solutions
in models with 6, 8 and 10 derivatives presented in [24] only found regular solutions. This subject
certainly deserves more investigation, also in the case of non-local gravities.

Finally, we mention that the regularity of the metric for collapsing spherical null shells in general
polynomial models was analyzed in [12], generalizing previous considerations of [18]. The results
are analogous to the Newtonian case. For thick null shells the curvature singularity is present only
for the theory with four derivatives, while the models with six or more derivatives have regular
curvature invariants. Other phenomenological applications of polynomial gravity can be found in,
e.g., Refs. [14,25].
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