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Abstract: We propose the notion of (q, σ, τ)-differential graded algebra, which generalizes the
notions of (σ, τ)-differential graded algebra and q-differential graded algebra. We construct two
examples of (q, σ, τ)-differential graded algebra, where the first one is constructed by means of
the generalized Clifford algebra with two generators (reduced quantum plane), where we use a
(σ, τ)-twisted graded q-commutator. In order to construct the second example, we introduce the
notion of (σ, τ)-pre-cosimplicial algebra.
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1. Introduction

Skew-derivations or σ-derivations are generalized derivations obtained by twisting the Leibniz
rule by means of an algebra map. They have been considered by physicists to study quantum groups
and to obtain q-deformations of algebra of vector fields like Virasoro algebra and also Heisenberg
algebras (oscillator algebras); see [1–5]. The main example is given by the Jackson derivative and
leads for example to q-deformation of sl2, Witt algebra, and Virasoro algebra. A natural generalization
consists of (σ, τ)-derivations involving two twist maps [6]. It turns out that when using σ-derivations,
the commutator bracket no longer satisfies the Jacobi condition. This was a starting point of studying
hom-type algebras, where the usual identities are twisted by homomorphisms [7,8]. Later development
in the field of research of hom-Lie algebras led to the introduction of the notion of (σ, τ)-differential
graded algebra [9], which generalizes the notion of differential graded algebra.

It is well known that the concept of differential graded algebra is based on the equation d2 = 0,
where d is a differential of differential graded algebra. In order to generalize the concept of differential
graded algebra, one can consider instead of d2 = 0 a more general equation dN = 0, where N is an
integer greater than or equal to two. This generalization was proposed and studied in [10]. We would
like to mention that equation dN = 0 leads to generalized cohomologies, which can be applied in the
quantum Wess–Zumino–Novikov–Witten (WZNW) model for the realization of the space of physical
states [11]. Later, an algebraic structure, based on the equation dN = 0, was developed in [12], where
the authors proposed the notion of q-differential graded algebra, where q is a primitive Nth root of
unity. It is worth mentioning that particularly in the case of q = −1 (primitive square root of unity,
N = 2), the definition of q-differential graded algebra gives the definition of differential graded algebra.
Later, it was shown that q-differential graded algebras can be applied in the field theories [13] and in
noncommutative geometry to develop a generalization of the notion of connection [14].
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In this paper, we propose and study the notion of (q, σ, τ)-differential algebra, where q is the
primitive Nth root of unity and σ, τ two degree zero endomorphisms of a graded algebra. This notion
generalizes the notion of (σ, τ)-differential graded algebra, introduced in [9], as well as the notion
of q-differential graded algebra, which was studied in [15–17]. We construct several examples of
(q, σ, τ)-differential graded algebras by means of the generalized Clifford algebra with two generators
(also called a reduced quantum plane) and by means of pre-cosimplicial algebra.

2. First Order (σ, τ)-Differential Calculus with Right Partial Derivatives

Let A be an associative unital algebra over K, where K is either the field of real R or complex
numbers C. Let σ, τ be two algebra endomorphisms of A.

Definition 1. A first order (σ, τ)-differential calculus over an algebra A is the triple (A, d,M), where M is an
(A,A)-bimodule and d : A→M is a linear mapping, which satisfies the (σ, τ)-Leibniz rule:

d(uv) = d(u) τ(v) + σ(u) d(v). (1)

In particular, if σ, τ are the identity transformations of algebra A, i.e., σ = τ = idA, then the
notion of first order (σ, τ)-differential calculus amounts to the notion of first order differential calculus
over an associative unital algebra.

Now, we assume that (A, d,M) is a first order (σ, τ)-differential calculus, where M is a free finite
right A-module of rank r with a basis e1, e2, . . . , er, i.e., any element u of M can be uniquely written as:

u =
r

∑
i=1

ei ui, ui ∈ A.

Then, a structure of the (A,A)-bimodule of M is uniquely determined by the
commutation relations:

v ei =
r

∑
j=1

ej Ri
j(v), (2)

where the linear mappings Ri
j : A→ A satisfy:

Ri
j(uv) = Rk

j (u) Ri
k(v). (3)

It is useful to compose the rth order square matrix R = (Ri
j) such that a linear mapping Ri

j is

its entry at the intersection of the ith column and jth row. Then, (3) can be written in matrix form as
follows R(uv) = R(u) R(v). Hence, the linear mapping R : A→ Mr(A), where Mr(A) is the algebra of
rth order matrices over an algebra A, is the algebra homomorphism. Define the right partial derivatives
∂i : A→ A (in a basis ei) by the formula:

du = ∑
i

ei ∂i(u). (4)

Proposition 1. If (A, d,M) is a first order (σ, τ)-differential calculus over an algebra A and M is a free finite
right A-module with a basis e1, e2, . . . , en, whose (A,A)-bimodule structure is determined by the commutation
relations (2), then the right partial derivatives, defined in (4), satisfy:

∂i(uv) = ∂i(u) τ(v) + ∑
j

Rj
i(σ(u)) ∂j(v). (5)
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Proof. According to the definition of right partial derivatives, we can write:

d(uv) = ∑
i

ei∂i(uv).

On the other hand, making use of the (σ, τ)-Leibniz rule, we get:

d(uv) = d(u) τ(v) + σ(u) d(v) = ∑
i
(ei ∂i(u)) τ(v) + σ(u) ∑

j
ej ∂j(v)

= ∑
i
(ei ∂i(u)) τ(v) + ∑

i,j
ei Rj

i(σ(u)) ∂j(v) = ∑
i

ei (∂i(u)) τ(v) + Rj
i(σ(u)) ∂j(v)).

A first order (σ, τ)-differential calculus (A, d,M), where M is a free right A-module of rank r,
whose (A,A)-bimodule structure is determined by the commutation rule (2) and the right derivatives
are defined by (4), will be referred to as a first order (σ, τ)-differential calculus with right partial
derivatives. If (A, d,M) is a first order (σ, τ)-differential calculus with right partial derivatives,
an algebra A is generated by variables x1, x2, . . . , xr, and dx1, dx2, . . . , dxr are the basis for a free right
A-module M, then this first order (σ, τ)-differential calculus will be referred to as a coordinate first
order (σ, τ)-differential calculus with right partial derivatives.

3. (q, σ, τ)-Differential Graded Algebra

Let A = ⊕nAn be a graded associative unital algebra and σ, τ be degree zero endomorphisms
of A. The degree of a homogeneous element u will be denoted by |u|. In what follows, q will be a
primitive Nth root of unity, where N ≥ 2. For instance, we can take q = exp (2πi/N). We give the
following definition:

Definition 2. A is said to be a (q, σ, τ)-differential graded algebra if A is endowed with a degree one linear
mapping d : An → An+1 such that it satisfies the following conditions:

(a) d commutes with endomorphisms σ, τ, i.e., σ ◦ d = d ◦ σ, τ ◦ d = d ◦ τ,
(b) d satisfies the (q, σ, τ)-Leibniz rule:

d(uv) = d(u) τ(v) + q|u| σ(u) d(v),

(c) dN(u) = 0 for any element u ∈ A.

In particular, if we choose in the above definition q = −1(N = 2) and σ = τ = idA, then we get
the definition of differential graded algebra. If we fix σ = τ = idA, but N is an arbitrary integer greater
than two, then the notion of (q, σ, τ)-differential graded algebra gives the notion of q-differential
graded algebra [12–18]. If we put N = 2 (then q = −1) and σ, τ are different from idA, then the
definition of (q, σ, τ)-differential graded algebra gives the definition of (σ, τ)-differential algebra [9].
An Nth root of unity q determines a graded structure of (q, σ, τ)-differential graded algebra, and when
it increases (then q→ 1), a graded structure of (q, σ, τ)-differential graded algebra differs more and
more from the classical Z2-graded structure of differential graded algebra, because there appear more
and more subspaces of different degrees, which can be labeled by integers 0, 1, . . . , N − 1.

Let A = ⊕nAn be a (q, σ, τ)-differential graded algebra. Obviously, A0 ⊂ A is the subalgebra of
A. Next, it is easy to see that every subspace of homogeneous elements An can be considered as an
(A0,A0)-bimodule, where the left (right) A0-module structure of An is determined by the left (right)
multiplication by degree zero elements, i.e.,

(u, v) ∈ A0 ×An → u v ∈ An, (v, u) ∈ An ×A0 → v u ∈ An.
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Hence, the triple (A0, d,A1) is the first order (σ, τ)-differential calculus, because A1 is the
(A0,A0)-bimodule and d : A0 → A1 satisfies in this case the (σ, τ)-Leibniz rule:

d(uv) = d(u) τ(v) + σ(u) d(v), u, v ∈ A0.

4. Construction of (q, σ, τ)-Differential Graded Algebra by Means of the Graded q-Commutator

In this section, we show that given an associative unital graded algebra, one can construct a
(q, σ, τ)-differential graded algebra with the help of the graded q-commutator, where q is a primitive
Nth root of unity.

Let A = ⊕nAn be a graded algebra over C, 1 be its unit element, and σ, τ be two degree zero
endomorphisms of A.

Theorem 1. Let ξ ∈ A1 be an element of degree one. Define the degree one linear mapping d : An → An+1 by
the following formula:

d(u) = ξ τ(u)− q|u|σ(u) ξ. (6)

If:

(a) q is a primitive Nth root of unity,
(b) ξN = λ 1, where λ is a non-zero complex number,
(c) σ(ξ) = τ(ξ) = ξ, σ ◦ τ = τ ◦ σ, σN = τN ,

then a graded algebraA endowed with the degree one linear mapping d is the (q, σ, τ)-differential graded algebra.

Proof. First we prove σ ◦ d = d ◦ σ. For any homogeneous u ∈ A, we have:

σ ◦ d(u) = σ
(
ξ τ(u)− q|u|σ(u) ξ

)
= σ(ξ) σ ◦ τ(u)− q|u| σ2(u) σ(ξ)

= ξ τ ◦ σ(u)− q|u|σ2(u) ξ = d ◦ σ(u).

Analogously, we can prove τ ◦ d = d ◦ τ. Starting with the right-hand side of the (q, σ, τ)-Leibniz
rule (Definition 2), we get:

d(u) τ(v) + q|u| σ(u) d(v) =
(
ξ τ(u)− q|u|σ(u) ξ

)
τ(v) + q|u| σ(u)

(
ξ τ(v)− q|v| σ(v) ξ

)
= ξ τ(uv)− q|u|σ(u) ξ τ(v) + q|u|σ(u) ξ τ(v)− q|u|+|v|σ(uv) ξ = d(uv),

and the (q, σ, τ)-Leibniz rule is proven. For the Nth power of d, we have the following power expansion
(see [15]):

dN(u) =
N

∑
i=0

(−1)i pi

[
N
i

]
q

ξN−i τN−i ◦ σi(u) ξ i, (7)

where pi = qi|u|+µ(i) and µ(i) = i(i−1)
2 . According to the assumption, q is a primitive Nth root of unity,

which implies for the quantum Newton binomial coefficients:[
N
i

]
q

= 0, i = 1, 2, . . . , N − 1,

and the terms in the power expansion (7) labeled by i = 1, 2, . . . , N − 1 vanish. Thus, there are only
two non-trivial terms in (7):

dN(u) = λ
(
τN(u) + (−1)N qN(N−1)/2σN(u)

)
.
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If N is an odd positive integer, then:

dN(u) = λ
(
τN(u)− (qN)

N−1
2 σN(u)

)
= λ

(
τN(u)− σN(u)

)
= 0.

If N is an even positive integer, then:

dN(u) = λ
(
τN(u) + (q

N
2 )N−1) = λ

(
τN(u) + (−1)N−1σN(u)

)
= λ

(
τN(u)− σN(u)

)
= 0.

In order to construct a matrix example of (q, σ, τ)-differential graded algebra, we apply Theorem 1
to the generalized Clifford algebra. We recall you that the generalized Clifford algebra is an associative
unital algebra over C generated by variables x1, x2, . . . , xn, which are subjected to the relations:

xi xj = q xj xi (i < j), (xi)N = 1, i, j = 1, 2, . . . , n, (8)

where q is a primitive Nth root of unity and 1 is the unit element of the generalized Clifford algebra.
The generalized Clifford algebra will be denoted by CN

n , where n, N are independent integers, n is the
number of generators, and N ≥ 2 is an exponent at which the Nth power of every generator equals the
identity element 1.

We consider the generalized Clifford algebra CN
2 with two generators x = x1, ξ = x2. Then, from

the relations (8), it follows:
x ξ = q ξ x, xN = ξN = 1. (9)

The associative unital algebra generated by two variables x, ξ, which are subjected to the
relations (9), is also called the algebra of functions on a reduced quantum plane. This algebra has the
matrix representation by Nth order complex matrices. Indeed, we can identify the generators x, ξ with
the Weyl pair, i.e., two Nth order matrices:

x =


1 0 0 . . . 0
0 q−1 0 . . . 0
0 0 q−2 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . q−(N−1)

 , ξ =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0

 . (10)

Since the Weyl pair satisfies the relations (9), it provides the matrix representation for the
generalized Clifford algebra with two generators. It is worth mentioning that the matrices (10)
generate the whole algebra of Nth order complex matrices MN(C), and they are widely used in
quantum information processing theory [19].

In order to define a structure of graded algebra on CN
2 , we attribute degree zero to the unit element

1 and the generator x, degree one to the generator ξ, and extend this degree to any product of the
generators x, ξ by defining the degree of a product as the sum of degrees of its cofactors. Then, the
whole algebra CN

2 splits into the direct sum of subspaces of homogeneous elements, and a subspace
of elements of degree k will be denoted by CN,k

2 , where k runs over the residue classes modulo N,
i.e., k = 0, 1, . . . , N − 1. Obviously, the subalgebra of elements of degree zero CN,0

2 will be generated by
the generator x, i.e., CN,0

2 is the algebra of polynomials of x. We consider the generator x as an analog
of the coordinate function of one-dimensional space. Thus, the algebra of “functions” is the algebra of
polynomials of x. In order to emphasize that we consider the elements of CN,0

2 as analogs of functions,
we will denote the elements of CN,0

2 by f (x), g(x), h(x).
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Let σ, τ be two degree zero endomorphisms of the generalized Clifford algebra CN
2 such that they

commute, σ(ξ) = τ(ξ) = ξ, σN = τN , and τ(x)− q σ(x) is the invertible element of CN,0
2 . According

to Theorem 1, we define the differential dξ : CN,k
2 → CN,k+1

2 by the formula:

dξ(u) = ξ τ(u)− q|u| σ(u) ξ, (11)

where u is a homogeneous element of the generalized Clifford algebra CN
2 and |u| is its degree. Since

all the assumptions of Theorem 1 are fulfilled, the algebra of Nth order complex matrices MN(C)
endowed with the structure of ZN-graded algebra, which is based on |x| = 0, |ξ| = 1, and with the
differential dξ is the (q, σ, τ)-differential graded algebra.

We conclude this section by considering the structure of the first order differential calculus of
matrix (q, σ, τ)-differential graded algebra CN

2 . It is easy to show that (CN,0
2 , dξ ,CN,1

2 ) is the coordinate
first order (σ, τ)-differential calculus with right derivative. Indeed, we have:

dξ(x) = ξ τ(x)− σ(x)ξ = ξ
(
τ(x)− q σ(x)

)
.

Because we assume that τ(x)− q σ(x) is an invertible element of CN,0
2 , the differential dξ(x) of

coordinate function x can serve as the basis for the right CN,1
2 -module. The commutation relation,

which determines the CN,0
2 -bimodule structure of CN,1

2 , has the form:

f (x) dx = dx R( f (x)),

where R : f (x) ∈ CN,0
2 → f (qx) ∈ CN,0

2 is the automorphism of the algebra. Thus, according to (4),
the differential dξ induces the right derivative:

dξ f (x) = dξ x
d f (x)

dx
, (12)

where f is a polynomial of x. According to Proposition 1, this derivative satisfies:

d
dx

( f (x)g(x)) =
d f (x)

dx
τ(g(x)) + σ( f (qx))

dg(x)
dx

. (13)

Since σ, τ are linear mappings, the left-hand side of (12) can be written as:

dξ f (x) = ξ τ( f (x))− σ( f (x)) ξ = ξ
(

f (τ(x))− f (σ(qx))
)

= ξ
(
τ(x)− q σ(x)

) f (τ(x))− f (σ(qx))
τ(x)− σ(qx)

= dξ x
f (τ(x))− f (σ(qx))

τ(x)− σ(qx)
,

where: (
τ(x)− σ(qx)

)−1
=

1
τ(x)− σ(qx)

is the inverse of τ(x)− σ(qx). From this, it follows:

d f (x)
dx

=
f (τ(x))− f (σ(qx))

τ(x)− σ(qx)
. (14)

The derivative (14) is called the (σ, τ)-twisted Jackson q-derivative [7]. Thus, the differential dξ ,
defined in (11), determines the coordinate first order (σ, τ)-differential calculus with the (σ, τ)-twisted
Jackson type q-derivative.
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5. Construction of (q, σ, τ)-Differential Graded Algebra by Means of (σ, τ)-Pre-
Cosimplicial Algebra

In this section, we introduce the notion of (σ, τ)-pre-cosimplicial algebra and show that a
(q, σ, τ)-differential algebra can be constructed with the help of a (σ, τ)-pre-cosimplicial algebra.

First, we recall the notion of a pre-cosimplicial vector space [20]. A pre-cosimplicial vector space
(A, fi) is a positive graded vector space A = ⊕n≥0A

n together with coface homomorphisms (linear
mappings of vector spaces) fi : An → An+1, where i runs from zero to n + 1, such that:

fj ◦ fi = fi ◦ fj−1, i < j. (15)

Thus, every pair of vector spaces An,An+1 is equipped with the n + 2 coface homomorphisms
f0, f1, . . . , fn+1, where fi : An → An+1. For example, in the case of vector spaces A1,A2, there are three
coface homomorphisms f0, f1, f2 : A1 → A2, which satisfy:

f1 ◦ f0 = f20, f2 ◦ f0 = f0 ◦ f1, f2 ◦ f1 = f21.

The following definition generalizes the notion of a pre-cosimplicial algebra, which can be found
in [18].

Definition 3. Let σ, τ be two degree zero endomorphisms of a pre-cosimplicial vector space (A, fi) such that
they commute with coface homomorphisms, i.e.,:

σ ◦ fi = fi ◦ σ, τ ◦ fi = fi ◦ τ.

A pre-cosimplicial vector space (A, fi) is said to be a (σ, τ)-pre-cosimplicial algebra if:

(1) A = ⊕n≥0A
n is a graded algebra,

(2) σ, τ are degree zero endomorphisms of a graded algebra A,
(3) for any homogeneous elements u, v ∈ A and any integer i ∈ {0, 1, . . . , |u|+ |v|+ 1}, we have:

fi(uv) =

{
fi(u) τ(v), if |u| ≥ i,

σ(u) fi−|u|(v), if 0 ≤ |u| < i,
f|u|+1(u)τ(v) = σ(u) f0(v). (16)

In particular, if we take σ = τ = idA, then the above definition reduces to the definition of a
pre-cosimplicial algebra.

Theorem 2. Let (A, fi) be a (σ, τ)-pre-cosimplicial algebra. Define the degree one linear mapping d : An →
An+1 by:

d =
n

∑
k=0

qk fk − qn fn+1, (17)

where q is a primitive Nth root of unity. Then, a (σ, τ)-pre-cosimplicial algebra A endowed with the degree one
linear mapping d is the (q, σ, τ)-differential graded algebra.

Proof. According to Definition 3, degree zero endomorphisms σ, τ of a positive graded vector space A

commute with coface homomorphisms fi, and this immediately implies that σ, τ commute with d. It is
proven in [16] that for any pre-cosimplicial vector space A, the degree one linear mapping d, defined
in (17), satisfies dN = 0, i.e., according to the terminology adopted in [16], d is N-differential. Since the
right-hand side of the formula for d does not depend on degree zero endomorphisms σ, τ, the same
result holds in the case of (σ, τ)-pre-cosimplicial algebra. Hence we only need to prove that d satisfies
the (q, σ, τ)-Leibniz rule.
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Let u ∈ Ak be a homogeneous element of degree k and v ∈ A. Our aim is to prove:

d(uv) = d(u) τ(v) + qk σ(u) d(v). (18)

Making use of Formulas (16) and (17), we can write the left-hand side of the (q, σ, τ)-Leibniz rule
as follows:

d(uv) = f0(uv) + q f1(uv) + . . . + qk fk(uv) + qk+1 fk+1(uv) + . . . + qn fn(uv)− qn fn+1(uv)

= f0(u) τ(v) + q f1(u) τ(v) + . . . + qk fk(u) τ(v) + qk+1σ(u)f1(v)

+ . . . + qn σ(u) fn−k(v)− qn σ(u) fn+1−k(v). (19)

The right-hand side of the same formula can be written in the form:

d(u) τ(v) + qk σ(u) d(v) = f0(u) τ(v) + q f1(u) τ(v) + . . . + qk fk(u) τ(v)−�������
qk fk+1(u)τ(v)

+������
qk σ(u)f0(v) + qk+1σ(u)f1(v) + . . . + qk+lσ(u)fn−k(v)− qk+lσ(u)fn+1−k(v), (20)

where the crossed out terms cancel each other because of the second relation in (16). Comparing (19)
with (20), we see that their left-hand sides are equal, and this ends the proof.

Let A be an associative unital algebra, whose unit element will be denoted by 1, and σ, τ be
two endomorphisms of A. The tensor algebra T(A) = ⊕n≥0T

n(A) is the graded algebra, where a
subspace of elements of degree n is the tensor product ⊗n+1A, i.e., Tn(A) = ⊗n+1A, and the algebra
multiplication (u, v)→ uv, where u = u0⊗ u1⊗ . . .⊗ un and v = v0⊗ v1⊗ . . .⊗ vm are homogeneous
elements of degree n and m, respectively, is defined by:

uv = u0 ⊗ u1 ⊗ . . .⊗ un−1 ⊗ unv0 ⊗ v1 ⊗ . . .⊗ vm. (21)

We extend endomorphisms σ, τ to the tensor algebra T(A) by:

σ(u) = σ(u0)⊗ σ(u1)⊗ . . .⊗ σ(un), τ(u) = τ(u0)⊗ τ(u1)⊗ . . .⊗ τ(un).

Obviously, σ, τ are degree zero endomorphisms of graded algebra T(A).

Theorem 3. For any u = u0 ⊗ u1 ⊗ . . .⊗ un ∈ Tn(A), define the linear mappings fk : Tn(A)→ Tn+1(A),
where k ∈ {0, 1, . . . , n + 1}, by:

f0(u) = 1⊗ τ(u0)⊗ τ(u1)⊗ . . .⊗ τ(un),

fk(u) = σ(u0)⊗ σ(u1)⊗ . . .⊗ σ(uk−1)⊗ 1⊗ τ(uk)⊗ . . .⊗ τ(un), k = 1, 2, . . . , n− 1, (22)

fn+1(u) = σ(u0)⊗ σ(u1)⊗ . . .⊗ σ(un)⊗ 1.

Then, (T(A), fk) is the (σ, τ)-pre-cosimplicial algebra, and fk are its coface homomorphisms. If we endow
the (σ, τ)-pre-cosimplicial algebra (T(A), fk) with the N-differential d, defined in (17), then (T(A), fk) becomes
the (q, σ, τ)-differential graded algebra.

Proof. Let u = u0 ⊗ u1 ⊗ . . .⊗ un, v = v0 ⊗ v1 ⊗ . . .⊗ vn be two homogeneous elements of tensor
algebra T(A). Then, their product:

uv = u0 ⊗ u1 ⊗ . . .⊗ un−1 ⊗ unv0 ⊗ v1 ⊗ . . .⊗ vm
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is the element of the subspace Tn+m+1(A), and consequently, we have f0, f1, . . . , fn+m+1 coface
homomorphisms from the subspace Tn+m(A) to the subspace Tn+m+1(A). For the coface
homomorphisms f0, f1, . . . , fn, we have to prove the formula:

fk(uv) = fk(u) τ(v), k = 0, 1, 2, . . . , n. (23)

According to the definition of coface homomorphisms, we can write the left-hand side as follows:

fk(uv) = σ(u0)⊗ . . .⊗ σ(uk−1)⊗ 1⊗ τ(uk)⊗ . . .⊗ τ(unv0)⊗ . . .⊗ τ(vm).

The right-hand side can be written as follows:

fk(u)τ(v) = σ(u0)⊗ . . . σ(uk−1)⊗ 1⊗ τ(uk)⊗ . . .⊗ τ(un)τ(v0)⊗ . . .⊗ τ(vm).

Since τ is an endomorphism of algebra, we have τ(unv0) = τ(un)τ(v0), and Formula (23) is
proven. For coface homomorphisms fn+1, . . . , fn+m+1, we have to prove:

fk(uv) = σ(u)fk−n(v), k = n + 1, . . . , n + m + 1. (24)

The proof of this formula is similar to the proof of (23). Finally, we have to prove the second
relation in (16), i.e.,

fn+1(u)τ(v) = σ(u)f0(v).

The left-hand side of this relation can be written as:

fn+1(u)τ(v) = σ(u0)⊗ σ(u1)⊗ . . .⊗ σ(un)⊗ 1 τ(v0)⊗ . . .⊗ τ(vm)),

and the right-hand side can be written as:

σ(u)f0(v) = σ(u0)⊗ σ(u1)⊗ . . .⊗ σ(un) 1⊗ τ(v0)⊗ . . .⊗ τ(vm)),

and we see that they are equal.
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