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Abstract: We consider the propagation of light along a 3D nanophotonic structure with the spatial
shape of a spacetime containing a traversable wormhole. We show that waves experience significant
changes of phase and group velocities when propagating along this curved space. This experiment
can be realized with state-of-the-art nanophotonics technology.
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1. Introduction

Optical metamaterials with non-trivial spatial dependences in the refractive index can be designed
with nanophotonic structures [1–3]. An important application is the design of nanophotonic devices
where the propagation of electromagnetic fields in the visible regime mimics propagation on curved
spacetime [4], thus enabling the study of general relativity properties in the laboratory [5,6]. A recent
development [7] has been the experimental design of a 3D nanophotonic material emulating Flamm’s
paraboloid, which is a 2D spatial cut of the Schwarzschild spacetime metric embedded as a revolution
surface in a 3D space. While, of course, this metric is perhaps the most paradigmatic example of curved
spacetime due to its applications in the analysis of black holes, embedding techniques are a standard
tool in general relativity and can be used to describe other spacetimes of interest [8].

An interesting example of curved spacetime is Ellis metric [9], which describes a spacetime
containing a traversable wormhole. Unlike Einstein-Rosen bridges appearing for some observers
in Schwarzschild metric -which are non-traversable- the topological shortcut of the Ellis metric can
be physically travelled through [10]. So far, we do not have any experimental evidence of their
existence and observational-based bounds on their abundance can be inferred [11]. The theoretical
implications of the existence of traversable wormholes would entail a challenge to our understanding
of causality [10,12–14]. Indeed, Hawking posed a “chronology protection conjecture” [13] within
the semiclassical formalism of quantum field theory in curved spacetime, according to which
quantum effects would prevent the appearance of closed timelike curves in spacetimes similar to
Ellis, thus preventing the creation of a “time machine”. This conjecture cannot be totally confirmed or
refuted in the absence of a full quantum theory of gravity. Classically, traversable wormholes require
exotic energy sources violating the weak energy condition [12] and there are also tight constraints in
the form of “quantum inequalities” [15]. However, as unlikely as their existence might look like it
cannot be completely ruled out on theoretical grounds. On the other hand, it has been shown that
typical phenomena commonly attributed to black holes can be perfectly mimicked by Ellis wormholes
and other exotic objects. In particular, if wormholes exist even the actual identity of the objects in
the center of the galaxies might be questioned [16] as well as the source of the observed gravitational
waves [17,18]. Moreover, the existence of closed timelike curves would have a significant impact in
the theory of classical and quantum computing [19], not to mention that wormholes play a key role in
Maldacena’s “EPR-ER” conjecture [20]. For all these reasons, among others, there is a growing interest
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both in the theoretical description of wormholes [21–23] and in their detection by classical means
such as gravitational lensing [24,25], and others [26], including quantum metrology techniques [27].
Alternatively, classical simulators [28–30] and quantum simulators of 1+1 dimensional reductions
of Ellis and related wormhole geometries have been proposed, for instance in superconducting
circuits [31], Bose-Einstein condensates [32] and trapped ions [23].

In this work, we propose a classical simulation of the spatial structure of a wormhole by analyzing
the propagation of electromagnetic waves in the optical regime along a 3D nanophotonic structure
with the shape of the embedding diagram of a traversable wormhole Ellis spacetime [12]. As in the
Schwarzschild case, the embedding diagram is a 2D spacelike cut of the full spacetime embedded as
a surface of revolution in 3D space. The construction of this structure would require similar technology
as the Flamm’s paraboloid, which has been recently build up in the laboratory [7]. By considering
realistic experimental parameters, we show that the phase and group velocities of waves propagating
along the wormhole structure are significantly modified.

2. Traversable Wormhole Spacetimes

Let us start by introducing the family of spacetime metrics considered in this work. A traversable
wormhole spacetime can be characterised by [12]:

ds2 = −c2 e2Φ(r)dt2 +
1

1− b(r)
r

dr2 + r2(dθ2 + sin2 θdφ2) (1)

where the redshift function Φ(r) and the shape function b(r) are functions of the radius r only. There
is a value b0 of r at which b (r = b0) = r = b0, which determines the position of the wormhole’s
throat. Then, the proper radial distance to the throat is defined by [12] l = ±

∫ r
b0

dr′(1− b(r′)/r′)−1/2,
defining two different “Universes” or regions within the same Universe for l > 0 (as r goes from
∞ to b0) and l < 0 (as the non-monotonic r goes back from b0 to ∞). Thus, as r → ∞ we have two
asymptotically flat spacetime regions l → ±∞ connected by the wormhole throat at l = 0 (r = b0).

In this work, we will consider for simplicity that Φ(r) = 0 (massless wormhole). The properties of
the wormhole will depend on the form of the shape function b(r). In particular, as shown in Ref. [12]
the parameters of this function can be adjusted in order to make traversability possible and convenient.
We will consider some particular shape function later.

3. Embedding Wormhole Surfaces

We now use standard embedding techniques to obtain the shape of the embedding of a wormhole
slice. Let us consider a particular instant of time and θ = π/2 -note the spherical symmetry of the
spacetime. Then we have:

ds2 = − 1

1− b(r)
r

dr2 + r2dφ2 (2)

This 2D spatial cut can be embedded in a 3D space as a revolution surface, given by a certain
function Z(r). Thus, in cylindrical coordinates the metric of the embedding would be:

ds2 = (1 + (∂rZ(r))2)dr2 + r2dφ2 (3)

Comparting Equations (2) and (3), we get:

1 + (∂rZ(r))2 =
1

1− b(r)
r

(4)
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which leads to:

∂rZ =

√
b(r)

r− b(r)
. (5)

Now, we can particularize to the paradigmatic Ellis wormhole [12]:

b(r) =
b2

0
r

(6)

Plugging Equation (6) into Equation (5) and integrating, we get:

Z(r) = b0

∫ r

b0

1√
r2 − b2

0

dr = b0 log

(
r
b0

+

√
r2

b2
0
− 1

)
= b0 arccosh

r
b0

(7)

where in the last step we have used the trigonometric identity log
(

x +
√

x2 − 1
)

= arccosh x.
Then, finally:

r
b0

= cosh
(

Z
b0

)
(8)

4. Surfaces of Revolution in the Laboratory

As shown in [7], there are always coordinates (z, x) such that the metric of the revolution surface
can be written as:

ds2 = dz2 + γ(z)dx2 (9)

where x = Rφ, R being the radius of the surface at z = 0 in our case R = b0 and

γ(z) =
(

α(z)
R

)2

(10)

where γ(z) is given by the parametrization of the surface:

(α(z) cos φ, α(z) sin φ, β(z)) (11)

The idea is to identify z with the axis of symmetry of the surface. Therefore, from Equation (8):(
b0 cosh

(
z
b0

)
cos φ, b0 cosh

(
z
b0

)
sin φ, z

)
(12)

Comparing Equation (11) and Equation (12) we get:

α(z) = b0 cosh
(

z
b0

)
(13)

and finally, using Equation (10):

γ(z) = cosh2
(

z
b0

)
(14)

In Figure 1, we compare this surface with Flamm paraboloid, which is the embedding surface of
the Schwarzschild black-hole metric and has already been implemented in the lab [7]. We see that the
new surface does not seem to entail a significant additional challenge from the experimental viewpoint.
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a) Flamm paraboloid

b) Ellis wormhole embedding surface

Figure 1. (a) Flamm paraboloid corresponding to Schwarzschild black-hole metric. (b) Embedding
surface of Ellis traversable-wormhole metric. Schwarzschild radius in (a) is equal to wormhole’s throat
radius in (b) b0 = 30 µm. Notice the similarity between both figures. (b) does not seem to entail
additional experimental challenges.

5. Wave Equations

Now, we follow the mathematical analysis in Ref. [7]. In the coordinate system we are
considering, the transverse electric modes do not have z component and, if we write the x component
as Ex = φ(x, z)ξ(h), where h is a coordinate normal to the surface, then separation of variables in the
corresponding curved-space Maxwell equation for Ex yields [7]:

1
γ

∂2
xφ + ∂2

zφ +
∂z
√

γ
√

γ
∂zφ = 0

−∂2
hξ − k2n2ξ = −q2ξ (15)

where n = c/v is the refractive index, k is the wavenumber k = nω/c-ω being the frequency of the
wave- and q plays the role of the propagation constant. Finally, using again separation of variables and
the k-space representation of the x-part, we write φ(x, z) = 1

γ1/4 ψ(z)
∫

f (kx)eikx xdkx and plug it into
(15), to get an equation which describes propagation along the surface axis [7]:

ψzz = −
1

16γ2

(
16q2γ2 + 3(∂zγ)2 − 4γ

(
4k2

x + ∂zzγ
))

ψ (16)
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Please note that k2 = q2 + k2
x + k2

z.

6. Results

Now plugging Equation (14) and its derivatives ∂zγ = 2/b0 cosh z/b0 sinh z/b0, ∂zz =

2/b2
0(sinh2 (z/b0) + cosh2 (z/b0)) into Equation (16), and making use of hyperbolic trigonometric

identities, such as cosh2 x− sinh2 x = 1 and 1− tanh2 x = sech2 x, we get the equation for ψ, describing
propagation along the wormhole surface:

ψzz = −
1
4

(
4q2 − 1

b2
0
−
(

1
b2

0
+ 4k2

x

)
sech2

(
z
b0

))
ψ, (17)

which, under the WKB approximation has the solution:

ψ(z) ' 1

4

√
1
4

(
4q2 − 1

b2
0
− ( 1

b2
0
+ 4k2

x) sech2
(

z
b0

)) e
±i
∫ √ 1

4

(
4q2− 1

b2
0
−
(

1
b2
0
+4k2

x

)
sech2

(
z

b0

))
dz

(18)

Thus, we have:

kz =

√√√√1
4

(
4q2 − 1

b2
0
−
(

1
b2

0
+ 4k2

x

)
sech2

(
z
b0

))
(19)

and we can obtain the phase and group velocities from their definition vph = ω/kz, vg = dω
dkz

:

vph =
2ck

n

√(
4q2 − 1

b2
0
− ( 1

b2
0
+ 4k2

x) sech2
(

z
b0

))

vg =

√(
4q2 − 1

b2
0
− ( 1

b2
0
+ 4k2

x) sech2
(

z
b0

))
2b0kn

(20)

In Figures 2 and 3, we see the behavior of the phase and group velocities for the same values
of q and kx considered in ref [7]. We have considered realistic values of 100µm for the length
of the surface—centered around the wormhole’s throat at z = 0 and 30µm for its minimum
radius—corresponding to the radius of the wormhole throat b0- and a wavelength in the optical
regime λ = 780 nm.

To check that the WKB approximation is valid, the following condition must be verified:

1
2

∣∣∣∣∣ f ′

f
3
2

∣∣∣∣∣ << 1 (21)

where

f =
1
4

(
4q2 − 1

b2
0
− (

1
b2

0
+ 4k2

x) sech2
(

z
b0

))
(22)

Then, we have:

2
b0

∣∣∣∣∣∣∣∣∣∣∣∣
sinh

(
z
b0

)
√

1
b2

0
+ 4k2

x

(
4q2− 1

b2
0

1
b2
0
+4k2

x
cosh2

(
z
b0

)
− 1

) 3
2

∣∣∣∣∣∣∣∣∣∣∣∣
<< 1 (23)
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Figure 2. Group velocity vg/c vs the spatial coordinate z for b0 = 30 µm, k0 = 2π/λ, λ = 780 nm,
n0 = 1.5, q = 5.9 · 106 m−1 and the values of kx indicated. The group velocity can significantly decrease
near the wormhole throat at z = 0.
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Figure 3. Phase velocity vph/c vs the spatial coordinate z for b0 = 30 µm, k0 = 2π/λ, λ = 780 nm,
n0 = 1.5, q = 5.9 · 106 m−1 and the values of kx indicated. The phase velocity increases and can become
superluminal near the throat.

In Figure 4, we show that the condition in Equation (23) is actually well verified for the values of
the parameters that we are considering here. As can be seen in Figure 4, the approximation is worse as
kx increases. Therefore it would break down for higher values of kx.
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Figure 4. Validity of the WKB approximation 1/2| f ′/ f 3/2| << 1 vs the spatial coordinate z for
b0 = 30 µm, q = 5.9 · 106 m−1 and the values of kx indicated. All the values are the same as in
Figures 2 and 3.

7. Conclusions

Figures 2 and 3 display a significant degree of variation of both the group and phase velocities for
realistic experimental parameters. The qualitative features are similar to the results in Ref. [7], with the
radius of the wormhole throat playing the role of the Schwarzschild radius: group velocity diminishes
near the throat, while the phase velocity increases and becomes superluminal. Therefore we show that
these features are not a peculiarity of the Schwarzschild geometry, but can be extended to other metrics
with different physical interpretation. On the other hand, typical proposals of wormhole simulators
are restricted to a one-dimensional section of the spacetime, while here we are considering the full
spatial structure. We think that this can be a useful complementary approach to the simulation of
wormholes.

In summary, we have considered light propagation through a 3D nanophotonic structure with
the spatial shape of a spacetime containing a traversable wormhole. We show that waves experience
significant changes of phase and group velocities when propagating along this particular curved
space, in agreement with previous results in Schwarzschild spacetime. We have shown that this
proposal of experiment seems to be fully within reach of state-of-the-art nanonphotonics technology.
Similar experimental techniques as in Ref. [7] would be required, and it does not seem that the
embedding surface of the Ellis wormhole entails additional experimental challenges as compared to the
Flamm paraboloid of the Schwarzschild metric. Therefore, we conclude that the experimental platform
of Ref. [7] would be suitable to test our results. However, different nanophotonic platforms [1–3] with
the capability of manipulating the refractive index could be considered. Our results enablee as well the
interesting possibility of comparing in the laboratory the propagation of light in wormholes and black
holes in order to analyse the potential of propagation features as a means of discriminating between
them, which have important consequences in gravitational-wave astronomy [16–18]. Moreover,
we foresee that the techniques explained here could be used as well in other spacetimes of interest,
for instance spacetimes with exotic properties [33].
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