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Abstract: We consider the 6D Cascading DGP model, a braneworld model which is a promising
candidate to realize the phenomenon of the degravitation of vacuum energy. Focusing on a recently
proposed thin limit description of the model, we study solutions where the induced metric on the
codimension-2 brane is of the de Sitter form. While these solutions have already been recovered in
the literature imposing by hand the bulk to be flat, we show that it is possible to derive them without
making this assumption, by solving a suitably chosen subset of the bulk equations.
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1. Introduction

The Cosmological Constant (CC) problem [1,2] is one of the most striking puzzle in contemporary
physics. In a very basic sense, it stems from the fact that in General Relativity (GR) the gravitational
field is sensitive to energy and momentum themselves, and not just to the energy difference with respect
to a reference (“zero”) configuration. At semi-classical level, where the spacetime is held classical while
the matter fields are quantized, the geometry is expected to be sourced by the quantum expectation
value of the energy momentum operator, which is badly (quadratically) divergent. While this vacuum
energy could be renormalized, at the cosmological energy scale 10´3 eV, to the value inferred by
observations, it is not expected to remain small when we consider higher energy descriptions where
new particles enter in the effective Lagrangian. In other words, the smallness of the Cosmological
Constant is not technically natural (in a Wilsonian sense) [3].

It may however be that the correct question to ask is not why vacuum energy is so small,
but instead why it gravitates so little. The possible existence of extra dimensions opens a new avenue
in this direction, allowing vacuum energy being huge while producing substantial effects only in the
extra dimensions [4]. Particularly compelling in this sense are the braneworld models [5,6], where our
universe is a surface (brane) embedded in a higher dimensional spacetime. These apparently exotic
models are motivated by fundamental physics, since extra dimensions and branes are essential
ingredients in string theory.

From this perspective, the most promising realisation is that of codimension-2 branes.1 In this
case, placing vacuum energy (Λ) on the brane creates a conical singularity in the extra dimensions,
while the 4D universe remains flat independently of the value of Λ . To solve the CC problem, a desired
feature is that a generic configuration should dynamically relax towards one where the 4D universe
is flat, for example after a phase transition changes the value of vacuum energy on the brane. It was
shown that this mechanism, called self-tuning, cannot work when the extra dimensions are compact,
since a phase transition is followed by a runaway behaviour [7,8]. The reason for this behaviour is
intimately linked to the extra dimensions being compactified.

1 The codimension of a brane is defined as the difference between the dimension of the ambient spacetime and the dimension
of the brane.
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If the extra dimensions have infinite volume, on the other hand, it is necessary to include an
induced gravity term on the brane for gravity to look four dimensional [9]. The coexistence of these
two properties indeed permits circumventing the Weinberg’s no-go theorem [10], and, remarkably,
is central also to the degravitation approach to the CC problem [11], which advocates theories where
the strength of the gravitation interaction effectively depends on the characteristic length of the source.
To reproduce the successes of GR, a “high-pass filter” behaviour is invoked, in such a way that only
sources smooth on cosmological scales, such as vacuum energy, get degravitated.

2. The 6D Cascading DGP Model

In this paper, we focus on an interesting candidate to realize the self-tuning/degravitation
phenomenon, the Cascading DGP model [12], originally proposed to extend the DGP model [9]
to higher dimensions. In its minimal (6D) set-up, a codimension-2 brane is embedded inside a
codimension-1 brane, which in turn is embedded in an infinite-volume 6D spacetime (also called
“bulk”, B). Both branes are equipped with induced gravity terms. The model is schematically described
by the action

S “ M4
6

ż

B
d6X

a

´g R`M3
5

ż

C1

d5ξ
a

´g̃ R̃`
ż

C2

d4χ
a

´ḡ
´

M2
4 R̄`LM

¯

(1)

where g̃ and ḡ denote the determinant of the metrics induced respectively on the codimension-1 brane
C1 and on the codimension-2 brane C2. Moreover, R̃ and R̄ indicate the associated Ricci scalars, and LM

is the Lagrangian for matter, which is localized on the codimension-2 brane (our universe). Quantities
pertaining to C1 are indicated with a tilde, while quantities pertaining to C2 are indicated with an
overbar. While M´2

4 is fixed to be 8πG{c4 to reproduce the GR results on small scales, the model
has two free parameters m5 “ M3

5{M
2
4 and m6 “ M4

6{M
3
5, which control the relative strength of the

induced gravity terms and the Einstein–Hilbert term in the bulk.
In the past years, several interesting properties of the model were uncovered, such as a better

behaviour concerning ghost instabilities [12–14] than that of the pure codimension-2 set-up with
induced gravity [15] (see, however, [16]). Moreover, it was proposed that the codimension-1 brane acts
somehow as a regulator, rendering gravity finite at the codimension-2 brane even when its thickness
tends to zero [17,18]. However, a mathematically clean proof of these properties, as well as the general
investigation of exact solutions, were made impossible by the well-known issue that the thin limit of
a codimension-2 brane is not well-defined [19]. This implies that the action in Equation (1) provides
at best a schematic description, while to properly define the model one should specify in the action
the details of the internal structure of the branes. This is in fact a thorny point, since in general
there is no detailed notion of how the confining mechanism works, while we are mainly interested in
understanding how gravity behaves on scales much larger than the branes thicknesses.

This obstacle has been recently overcome, with the derivation of a thin limit description of the
model [20], valid for a large class of internal structures. In the thin description, the bulk metric obeys
the (6D) Einstein equations

GAB “ 0 (2)

while the Israel junction conditions [21]

2M4
6

´

K̃ab ´ K̃ g̃ab

¯

`M3
5 G̃ab “ 0 (3)

are imposed at the codimension-1 brane, which acts as a boundary for the bulk. The energy
momentum-tensor T̄µν localized on the codimension-2 brane causes the Einstein tensor G̃ab and
the extrinsic curvature K̃ab of the codimension-1 brane to be discontinuous at the codimension-2 brane,
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while leaving smooth the bulk geometry. This discontinuity is encoded in the codimension-2 junction
conditions

´M4
6 ∆ ḡµν ` 2M3

5

´

K̄µν ´ K̄ ḡµν

¯

`M2
4 Ḡµν “ T̄µν (4)

where ḡµν is the induced metric on the codimension-2 brane; Ḡµν and K̄µν are, respectively, the Einstein
tensor and the extrinsic curvature of the codimension-2 brane; and ∆ is the local deficit angle of the
configuration.

3. De Sitter Solutions

While the general study of exact cosmological solutions of the system in Equations (2)–(4) is under
way and will be published elsewhere, we want to show here how the self-accelerating solutions found
in Ref. [22] can be obtained in this description.

The aforementioned solutions are characterized by the bulk being flat and the induced geometry
on the codimension-2 brane being de Sitter, with the codimension-2 brane being empty and the
four-dimensional Hubble (constant) factor obeying the equation

H
2 m5

´

d

1´
16 m2

6
9H2 `

2 m6

3H
arctan

d

9H2

16 m2
6
´ 1 “ 0 (5)

In Ref. [20], Appendix G, we showed that these solutions can be recovered in the thin limit
description, imposing by hand the bulk to be flat. Actually, we found a slightly more general class
of solutions, describing both contracting and expanding universes in presence of a deficit or excess
angle. Equation (5) corresponds to the case of an expanding universe in presence of a deficit angle.
We want now to obtain these solutions in a more satisfactory way, by specifying only the symmetries
of the spacetime, and solving the equations of motion (bulk included) in a consistent way.

3.1. Symmetry Properties and Gauge Choice

Since the source term is highly symmetric (being actually vanishing), we consider the following
hypotheses about the bulk geometry:

1. The bulk can be foliated into 4D leaves, whose (pseudo-Riemannian) induced metric is spatially
homogeneous and isotropic.

2. The translations along the 3D spatial dimensions are a symmetry of the bulk metric.
3. There exists a smooth hypersurface Σ with respect to which the bulk is Z2-symmetric.

The codimension-2 brane coincides with the intersection of Σ and the codimension-1 brane.
4. The Z2-symmetry and the foliation into spatially homogeneous and isotropic leaves are

compatible.

Point 3 in particular implies that the total six-dimensional configuration is Z2 ˆZ2 symmetric.
This is not a general property in the formulation of the Cascading DGP model given in Ref. [20], but it
is an assumption which seems sensible for highly symmetric configurations such as the one we are
considering.

3.1.1. The Bulk

It is convenient to use the gauge freedom to reduce the number of unknown functions.
Considering Gaussian Normal Coordinates with respect to Σ , and calling y the coordinate normal to
the hypersurface, we obtain the following bulk line element

ds2 “ ´N2pt, y, zq dt2 ` A2pt, y, zq δij dxidxj ` 2 Fpt, y, zq dt dz` dy2 ` B2pt, y, zq dz2 (6)
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where Σ is identified by y “ 0 and N, A, F and B are even with respect to y. In particular, the last point
implies that

ByN
∣∣
y“0 “ By A

∣∣
y“0 “ ByF

∣∣
y“0 “ ByB

∣∣
y“0 “ 0 (7)

We can furthermore take advantage of the bulk gauge freedom associated to the coordinate choice
on Σ . Considering, inside Σ , Gaussian Normal coordinates with respect to the codimension-2 brane,
the latter is identified by z “ 0 and we have

Bpt, 0, zq “ 1, Fpt, 0, zq “ 0 (8)

Therefore, naively speaking, y is the coordinate orthogonal both to the codimension-2 brane and to
Σ , while z is the coordinate orthogonal to the codimension-2 brane and parallel to Σ . The coordinates
t, x1, x2 and x3 are instead parallel to the codimension-2 brane. A sketch of the configuration and of
the coordinate choice is given in Figure 1.

C1

C1

Σ
C2

y

z
t

Figure 1. Pictorial representation of the configuration and of the coordinate choice.

We can finally use the bulk gauge freedom associated to the coordinate choice on the
codimension-2 brane, which is now placed at y “ z “ 0 . Rescaling the time coordinate in a suitable
way we can set

Npt, 0, 0q “ 1 (9)

so that the induced line element on the codimension-2 brane reads

ds̄2 “ ´dt2 ` a2ptq δij dxidxj (10)

where we defined
aptq ” Apt, 0, 0q (11)

3.1.2. The Branes

Regarding the gauge choice for the branes, we closely follow Appendix G of Ref. [20]. On the
codimension-1 brane we choose Gaussian Normal coordinates with respect to the codimension-2 brane,
thus, indicating with ζ the coordinate orthogonal to the codimension-2 brane, we have

ĝζζpt ,~x , ζq “ 1, ĝζµpt ,~x , ζq “ 0 (12)
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where we adopt the notation of indicating codimension-1 quantities evaluated in this coordinate
system with an overhat. In this coordinate system, the codimension-2 brane therefore lies at ζ “ 0 ,
and we assume that the codimension-1 embedding is of the form

ϕ̂Apt ,~x , ζq “
´

t ,~x , ϕ̂ypt, ζq, ϕ̂zpt, ζq
¯

(13)

Since, in the bulk coordinates, the codimension-2 brane is placed at y “ z “ 0 , by consistency it
follows that

ϕ̂ypt , 0q “ 0 ϕ̂zpt , 0q “ 0 (14)

As we showed in Ref. [20], the condition in Equation (12) implies that the derivatives Bζ ϕ̂y and
Bζ ϕ̂z at the ζ “ 0` side of the codimension-2 brane can be written in terms of the local deficit angle
as follows

Bζ

∣∣∣
0`

ϕ̂yptq “ cos
∆ptq

4
Bζ

∣∣∣
0`

ϕ̂zptq “ sin
∆ptq

4
(15)

3.2. Degrees of Freedom and Flat Bulk Configurations

It is useful at this point to recognise which are the degrees of freedom that we are free to assign
to individuate the six-dimensional configuration in a neighbourhood of the codimension-2 brane.
Since the equations of motion are differential equations of second order, the degrees of freedom are to
be found among the embedding functions of the branes and the bulk metric components, and their
first derivatives.

Since the position of the codimension-2 brane is held fixed, both inside the codimension-1 brane
and in the bulk, the only degrees of freedom associated to the codimension-2 brane are the scale
factor aptq and the Hubble factor Hptq “ 9a{a . The configuration of the codimension-1 embedding in a
neighbourhood of ζ “ 0 , on the other hand, is determined by the local deficit angle ∆ptq only. Finally,
the bulk configuration in a neighbourhood of y “ z “ 0 is determined by the derivatives Bz A and BzN ,
since all other first order partial derivatives at y “ z “ 0 vanish (by symmetry or by gauge choice).
For future convenience, it is preferable to work with the quantity πptq “ Bz Apt, 0, 0q{a instead of with
Bz Apt, 0, 0q , and we indicate Npptq “ BzNpt, 0, 0q . Since the scale factor aptq can be rescaled without
affecting the equations of motion, we conclude that the degrees of freedom of the six-dimensional
configuration in a neighbourhood of the codimension-2 brane are Hptq , ∆ptq , πptq and Npptq .

Let us now identify which conditions on the degrees of freedom are imposed by the request of the
bulk geometry being flat. Note that the flat bulk configurations considered in Ref. [20], Appendix G
are a special subclass of the configurations in Equation (6), and are in fact those for which

Npt, y, zq “ 1` ε z
:a
9a

, Apt, y, zq “ a` ε z 9a , Fpt, y, zq “ 0 , Bpt, y, zq “ 1 (16)

where ε “ ˘1 and an overdot indicates derivation with respect to time. Incidentally, these expressions
are compatible with our gauge choices. In relation to the discussion of the previous paragraph,
we conclude that the flat bulk configurations are those for which the degrees of freedom H, π and Np
are linked by the relations

πptq “ ε H, Npptq “ π`
9π

H
(17)

If we restrict our attention to the de Sitter solutions, then these relations reduce to

π “ ε H, Np “ π (18)
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4. The Role of the Bulk Equations

It is worthwhile at this point to recall some relevant points about the analysis of Ref. [20], Appendix
G. The de Sitter solutions were found by using the codimension-2 junction conditions and the ζζ

and ζµ components of the codimension-1 (Israel) junction conditions evaluated at ζ “ 0 . The µν

components of the latter were not used since they are evolution equations for the codimension-1
embedding in the direction normal to the codimension-2 brane, and we were interested only on the
behaviour of the Hubble factor (i.e., on what happens on the codimension-2 brane). For the same
reason, the codimension-1 junction conditions away from ζ “ 0 were not used. Remarkably, imposing
the conditions in Equation (16) which ensure the bulk flatness, this restricted set of equations permits
to determine completely the solutions for the induced metric on the codimension-2 brane, and in
particular to derive Equation (5) for the solutions with H constant.

On the other hand, if the thin limit formulation in Equations (2)–(4) of the model is consistent,
one should be able to determine the solution on the codimension-2 brane without imposing any
condition on the bulk. That is, it should be possible to find the solution by specifying the source content
on the codimension-2 brane, solving (all) the equations of motion and imposing boundary conditions
at infinity in the extra dimensions. This is in general a formidable task, due to the complexity of the
equations. However, we show now that, in the highly symmetric case we are considering, it is indeed
possible to derive the relations in Equation (17) by solving the bulk equations, without making strong
a priori hypothesis on the bulk geometry.

4.1. Initial Value Analysis

The main idea of the analysis is to study the bulk equations from the point of view of the initial
value formulation with respect to the hypersurface Σ . It is well-known that solutions of the bulk
Einstein equations exist in a neighbourhood of Σ if the following constraint equations are satisfied

Gyy
∣∣
Σ “ 0 Gyz

∣∣
Σ “ 0 Gyµ

∣∣
Σ “ 0 (19)

Any choice of the induced metric on Σ and of Σ’s extrinsic curvature determine a unique local
solution of the bulk Einstein equations, provided the relations in Equation (19) are satisfied. It is not
difficult to see that, with our choice of the bulk metric, the equations Gyz|Σ “ 0 and Gyµ|Σ “ 0 are
identically satisfied. Therefore, the only non-trivial bulk constraint equation is Gyy|Σ “ 0 , to wit

pBz Aq2

A2 `
Bz A BzN

AN
`
B2

z A
A
`
B2

z N
3N

´
9A2

A2N2 `
9A 9N

AN3 ´
:A

AN2 “ 0 (20)

where it is understood that A “ Apt, 0, zq and N “ Npt, 0, zq . We refer to this equation as the bulk
constraint equation. Regarding the other components of the bulk equations, it is important to notice that
the equation G t

z “ 0 is the evolution equation for the off-diagonal metric component F, since

G t
z
∣∣
Σ “

3
N2

ˆ

B2
y F
6
`
Bz 9A

A
´

9A BzN
AN

˙

(21)

Reminding that F|Σ “ 0 by gauge choice and ByF|Σ “ 0 by symmetry, it follows that the bulk
metric is diagonal if and only if the following diagonality condition is satisfied

„

Bz 9A
A
´

9A BzN
AN



Σ
“ 0 (22)

since by Equation (21) it implies B2
y F|Σ “ 0 .
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4.2. Diagonal Solutions

Let us specialize to the configurations where the bulk metric in Equation (6) is diagonal. In this
case, the diagonality condition in Equation (22) can be integrated to give

Npt, zq “
9Apt, zq
9aptq

(23)

and defining for convenience

Apt, zq “
Apt, zq

aptq
(24)

the bulk constraint in Equation (20) can be written as

B2
zA
A `

1
3
B2

z
9A` H B2

zA
9A` HA

`
BzA
A

ˆ

BzA
A `

Bz 9A` H BzA
9A` HA

˙

´
H
A

ˆ

H
A `

9H ` H2

9A` HA

˙

“ 0 (25)

Note that, by definition, the quantity A on the codimension-2 brane obeys

Apt, 0q “ 1 BzApt, 0q “ πptq (26)

From what is said above, it follows that a unique solution of the bulk equations in a neighbourhood
of Σ is associated to each solution of Equation (25) which satisfies the boundary conditions in
Equation (26) at the codimension-2 brane and suitable boundary conditions at infinity in the
extra dimensions.

Regarding the latter boundary conditions, it is usually assumed that the gravitational field
decays at infinity in the extra dimensions, and that eventual radiation is purely outgoing (“nothing
enters from infinity in the extra dimensions”). Since we are not considering gravitational wave
solutions, we therefore impose the bulk Riemann tensor to tend to zero when y and/or z tend to
infinity. Remarkably, this requirement induces a restricted set of boundary conditions at infinity on Σ
(i.e., at z Ñ8with y “ 0), as a consequence of the fact that the components

Rtiti
∣∣

Σ
, Rtiiz

∣∣
Σ

, Rtztz
∣∣

Σ
, Rijij

∣∣
Σ

, Riziz
∣∣

Σ
(27)

involve only A , N and their derivatives with respect to t and z (since Equation (7) holds). Asking
the components in Equation (27) of the Riemann tensor at Σ to decay to zero when z Ñ8 gives the
following conditions

pBzAq2 ÝÝÝÑzÑ8
H2 B2

zA ÝÝÝÑ
zÑ8

0 (28)

4.3. De Sitter Solutions Again

Summing up, in Sections 4.1 and 4.2, we show that, restricting the analysis to diagonal
configurations, a unique solution of the Einstein equations in the bulk is associated to each solution of
Equation (25) subject to the boundary conditions in Equation (26) at the codimension-2 brane and to
the boundary conditions in Equation (28) at infinity on Σ .

The solution of such a problem is indeed very challenging, since for one thing Equation (25)
is non-linear. However, as long as we are interested in the de Sitter solutions, we can make the
simplifying assumption 9H “ 9π “ 0 . Taking into account the boundary conditions in Equations (26)
and (28), this implies that A and its z-derivative are independent of time at both boundaries z “ 0 and
z Ñ8 . Since the bulk equation is of second order in the derivatives with respect to z , it is natural to
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assume that A only depends on z . In this case, indicating derivatives with respect to z with a prime,
the bulk in Equation (25) becomes the ordinary differential equation

2
3
A2
A `

A1 2
A2 ´

H2

A2 “ 0 (29)

and a solution compatible with the boundary conditions in Equation (28) at infinity is clearly given by

A2pzq “ 0 A1 2pzq “ H2 (30)

Absorbing the sign ambiguity by introducing a constant ε “ ˘1 , we get A1 “ ε H . Taking then
into account the boundary conditions at the codimension-2 brane in Equation (26), we get

Apzq “ 1` ε z H, π “ ε H (31)

and evaluating the diagonality condition in Equation (22) at y “ z “ 0, we find

Np “ π (32)

We then reproduced the conditions in Equation (18), which were originally obtained by imposing
by hand the bulk to be flat, by solving the bulk equations and imposing suitable boundary conditions
at infinity.

An important question is whether Equation (31) is the only solution of Equation (29), and more in
general of Equation (25), compatible with the boundary conditions in Equations (26) and (28) when
9H “ 9π “ 0 . In particular, the argument leading to the assumption of A being time-independent

is somehow qualitative, and a thorough analysis of the boundary condition problem given by
Equation (25) and the conditions in Equations (26) and (28) would be needed to justify it properly.
We have no definitive answer to these questions at present, but we aim to consider the matter in detail
in a forthcoming publication.

5. Conclusions

We considered the 6D Cascading DGP model, a braneworld model which is a promising candidate
to realize the phenomenon of the degravitation of vacuum energy. Our main objective was to show that
the self-accelerating (de Sitter) solutions of Ref. [22] can be obtained in the thin limit formulation of
the model recently derived in Ref. [20], without imposing by hand the bulk to be flat. Making suitable
assumptions on the symmetry properties of the bulk, and restricting the analysis to configurations
where the bulk metric is diagonal, we identified a component of the bulk Einstein equations which can
be naturally and consistently equipped with boundary conditions at the codimension-2 brane and at
infinity in the extra dimensions. We showed that, when the Hubble factor on the codimension-2 brane
is time independent, solving the aforementioned bulk equation indeed permits obtaining the de Sitter
solutions without a priori imposing the bulk to be flat. A natural extension of this analysis would be
the study of diagonal cosmological solutions in this set-up. Work in this direction is under way.
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