
universe

Article

Hamiltonian Dynamics of Doubly-Foliable
Space-Times

Cecília Gergely ID , Zoltán Keresztes and László Árpád Gergely * ID

Institute of Physics, University of Szeged, 6720 Szeged, Hungary; lawrencesterne92@gmail.com (C.G.);
zkeresztes.zk@gmail.com (Z.K.)
* Correspondence: laszlo.a.gergely@gmail.com; Tel.: +367-0202-0800

Received: 1 November 2017; Accepted: 18 December 2017; Published: 3 January 2018

Abstract: The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of
gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries.
Such an approach based on a perpendicular double foliation has been employed in the framework
of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion
of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however,
the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering
the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the
identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian
dynamics is then derived via Poisson brackets.

Keywords: space-time foliation; extrinsic curvature; normal fundamental form and scalar;
symmetries; geometrodynamics

1. Introduction

In the curved space-time of general relativity, gravitational waves propagate with the speed
of light (the velocity limit), correcting the Newtonian description of gravity. Whenever a reference
system is chosen, time needs to be singled out. In the 3 + 1 decomposition of space-time, known as
the Arnowitt–Deser–Misner (ADM) formalism of gravity [1], the constant time three-surfaces form
a foliation. While the time parameter is constant on each hypersurface, it changes monotonically
from one hypersurface to the other. The role of the four-dimensional metric g̃ab (with 10 independent
components) is taken by the metric induced on the three-dimensional hypersurfaces (six variables) and
their extrinsic curvature (six variables), which generate canonical pairs. Einstein equations are replaced
by the Hamiltonian evolution of these canonical pairs. Beside these, there are constraint equations to
be fulfilled in each instant (on each hypersurface). These are the Hamiltonian and diffeomorphism
constraints. In the generic case of the 3 + 1 decompositions, there is no preferred time; the formalism
has to be valid for any possible temporal choices (“many-fingered time” formalism [2–4]). Preferred
choices arise by either imposing coordinate conditions [5,6] or by filling space-time with an adequate
reference fluid [7,8]. Although the 3 + 1 decomposition breaks space-time covariance, a manifestly
covariant canonical formalism based on the hyperspace (defined by all space-like hypersurfaces) has
been also proposed [9–12]. The ADM decomposition has been generalized for some of the modified
gravity theories, as well, e.g., for the f (R) gravitational theories [13].

If in addition, a spatial direction plays a special role, the 2 + 1 + 1 decomposition of space-time
may prove useful. This special role can be provided by a Killing-symmetry, for example the radial
directions in either spherical or cylindrical symmetric space-times are such singled-out directions.
We do not explore however simplifications arising from the imposition of symmetries, as for example
applying mini-superspace or midi-superspace approaches [14,15]. The scenario we have in mind is
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to discuss generic perturbations of a background with certain symmetry. In the most generic case,
both singled-out directions have expansion, shear and vorticity [16]. The corresponding optical scalars
were explored in the discussion of perturbations of spherically-symmetric space-times [17], also for
the discussion of gravitational waves in anisotropic Kantowski–Sachs space-times [18].

In another, much simpler 2 + 1 + 1 decomposition formalism, the decomposition is made along
a perpendicular double foliation [19,20]. This formalism has been employed in the framework of
dark matter and dark energy-motivated scalar-tensor gravitational theories in the discussion of the
odd sector perturbations of spherically-symmetric gravity in the effective field theory approach [21].
The requirement of perpendicularity however consumes one gauge degree of freedom by fixing a
metric function to vanish. This has posed no problem in the discussion of the odd sector; however for
the even sector, it generates an arbitrary function in the solution, hampering the physical interpretation
of perturbations. Therefore, a modified 2 + 1 + 1 decomposition formalism would be desirable,
which keeps the relative simplicity of the formalism of [19,20] (as compared to the formalism exploring
optical scalars [16]), but employs 10 metric functions instead of nine, hence becoming suitable for
the discussion of the even sector. Such a formalism could be worked out at the price of relaxing the
perpendicularity requirement [22].

In this conference report, we summarize the main feature of this new formalism and sketch the
derivation of the Hamiltonian formalism, without insisting on the involved computational details and
related proofs of the statements, which are given in [22] together with additional details.

Latin indices denote four-dimensional space-time indices. Boldface lower-case (as i) or uppercase
(as A) Latin letters count two-dimensional or four-dimensional basis vectors.

2. The Nonorthogonal Double Foliation

We generalize the orthogonal 2 + 1 + 1 decomposition of [19,20] such that the hypersurfaces St

of constant t and Mχ of constant χ with normal vectors na and la, respectively, are nonorthogonal,
as presented in Figure 1.

Figure 1. The hypersurfaces of the nonorthogonal double foliation and the adapted bases.
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Their intersection is the surface Σtχ, with an adapted vector basis {Fi}. We introduce two
orthonormal bases adapted to the two foliations, as follows: fA = {n, m, Fi} and gA = {k, l, Fi}.
The four-dimensional metric can then be decomposed in both:

g̃ab = −nanb + mamb + gab , (1)

g̃ab = −kakb + lalb + gab . (2)

Here, gab is the metric induced on Σtχ.
The temporal and selected spatial evolution vectors in the fA basis are:(

∂

∂t

)a
= Nna + Na +Nma , (3)(

∂

∂χ

)a
= Mma + Ma +Mna . (4)

They define a coordinate-basis, the duality relations of which imply [22]:

M = 0 , (5)

making manifest that ∂/∂χ is tangent to St. The shift componentN arises due to the non-orthogonality
of the foliations and generates all new terms arising as compared to the formalism presented in
References [19,20], where N = 0 was imposed. With the introduction of a nonvanishing N , full
gauge freedom is re-established, with 10 metric components in the formalism (three for gab, two
for Ma and Na each, one for each of the lapses N, M and shift component N ). At times, it will be
convenient to parametrize this 10th metric function as N = N tanh φ and also employ the notations
s = sinh φ, c = cosh φ. This is especially convenient in proving [22] that the two bases are related by a
Lorentz rotation: (

ka

la

)
=

(
c s

s c

)(
na

ma

)
(6)

also to derive the decomposition of the evolution vectors in the basis gA:(
∂

∂t

)a
=

N
c

ka + Na , (7)(
∂

∂χ

)a
= M (−ska + cla) + Ma . (8)

Note that ∂/∂t is manifestly tangent to the hypersurface Mχ.
Finally, in the basis fA, it is straightforward to check:[

m, Fj
]a na = 0 , (9)

reassuring (due to the Frobenius theorem) that na is hypersurface-orthogonal and:

[
n, Fj

]a ma =
M
N

∂j

(
N
M

)
, (10)

implying that the vector ma has vorticity. Similarly, in the basis gA, we find that la is
hypersurface-orthogonal and ka has vorticity:[

k, Fj
]a la = 0 , (11)[

l, Fj
]a ka =

N
c2M

∂j

(
scM

N

)
. (12)
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Hence the 10th metric function N bears a double interpretation: (1) it gives the angle of the
Lorentz rotation between the two bases and, (2) generates the vorticity of the complementary basis
vectors ma and ka. More details of these interpretations are presented in [22].

3. The 2 + 1 + 1 Decomposition of Covariant Derivatives

The projected covariant derivative of any tensor Ta1...ar
b1...br

defined on Σtχ arises by projecting in all

indices with gb
a:

DaTa1...ar
b1...bq

≡ gc
aga1

c1 ...gar
cr gd1

b1
...g

dq
bq
∇̃cTc1...cr

d1...dq
. (13)

The D-derivative obtained in this way is related to the connection compatible with the two-metric
due to the property:

Dagbc = 0 . (14)

It will be of particular importance to 2 + 1 + 1 decompose the covariant derivatives of the basis
vectors. We found:

∇̃anb = Kab + 2m(aKb) + mambK− na (ab −mbL∗) , (15)

∇̃amb = L∗ab + naL∗b + nbKa + nanbL∗ + ma (b
∗
b + nbK) , (16)

∇̃akb = K∗ab + laK∗b + lbLa + lalbK∗ − ka (a
∗
b − lbL) , (17)

∇̃alb = Lab + 2k(aLb) + kakbL+ la (bb + kbK∗) , (18)

where Kab = gc
agd

b∇̃cnd, L∗ab = gc
agd

b∇̃cmd, K∗ab = gc
agd

b∇̃ckd and Lab = gc
agd

b∇̃cld are extrinsic
curvatures of the surface Σtχ; Ka = gc

amd∇̃cnd and La = −gc
akd∇̃cld are normal fundamental

forms; K = mdmc∇̃cnd, L∗ = ncnd∇̃cmd, K∗ = ldlc∇̃ckd and L = kdkc∇̃cld are normal fundamental
scalars [23]. The quantities L∗a = −gd

a nc∇̃cmd and K∗a = gd
a lc∇̃ckd are defined similarly to the normal

fundamental forms, but they also contain the contributions of the vorticities of the corresponding
vectors. Finally aa = gd

a nc∇̃cnd, b∗a = gi
amb∇̃bmi, a∗a = gi

akb∇̃bki and ba = gd
a lc∇̃cld are the projections

onto Σtχ of the nongravitational accelerations of the respective observers (among which those moving
along na and ka are physical).

The set of above quantities is not independent. As shown in detail in [22], it is enough to select
the sets (Kab, Ka, K),

(
L∗ab, L∗

)
, (aa, b∗a) and N in order to express all the others. In particular, for

orthogonal foliations, all starry quantities reduce to non-starred ones. Beside, the set (Kab, Ka, K) is
related to time derivatives of the metric variables:

Kab =
1
N

[
1
2

∂tgab − D(aNb)

]
− s

Mc

[
1
2

∂χgab − D(a Mb)

]
, (19)

Ka =
1

2MN

(
∂t Ma − ∂χNa − NbDb Ma + MbDbNa

)
(20)

− M
2N

Da
(
N
M

)
,

K =
1

MN
[∂t M− ∂χN − NaDa M + MaDaN ] , (21)

while the set
(

L∗ab, L∗
)

is connected to their χ-derivatives only:

L∗ab =
1
M

[
1
2

∂χgab − D(a Mb)

]
, (22)

L∗ = − 1
M

[∂χ (ln N)−MaDa (ln N)] . (23)
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Moreover, the accelerations can be expressed as D-derivatives of the lapses:

ab = Db (ln N) , (24)

b∗b = −Db (ln M) (25)

4. Hamiltonian Dynamics

The Einstein–Hilbert action:
SEH =

∫
d4x
√
−g̃R̃ (26)

can be rewritten by employing the twice contracted Gauss identity [22] and the decomposition√
−g̃ = NM

√
g as:

SEH = SEH
[
{gab, Ma, M} ; {Kab,Ka,K} ;

{
L∗ab,L∗

}
; {N, Na,N}

]
=

∫
dt
∫

dχ
∫

Σtχ
d2xNM

√
g
{

R + KabKab − K2 − 2KK+ 2KaKa

−L∗abL∗ab + L∗2 − 2L∗L∗ + 2 (NM)−1 Da MDaN

−2∇̃a [αa − β∗a − naK + maL∗]
}

,

(27)

which besides scalars contains only tensors and vectors defined on Σtχ. The total covariant divergence
is not yet decomposed; however upon decomposition, it will generate only boundary terms. The set of
variables (gab, Ma, M) comprises the generalized coordinates, (Kab,Ka,K) the generalized velocities,
while

(
L∗ab,L∗

)
can be perceived as shorthand notations for the χ-derivatives of the generalized

coordinates. Similarly to the 3 + 1 decomposition, time derivatives of (N, Na, N ) do not emerge in
the action. The generalized momenta arise as derivatives with respect to the time derivatives of the
generalized coordinates as:

πab =
√

gM
[
Kab − gab (K +K)

]
, (28)

pa = 2
√

gKa , (29)

p = −2
√

gK . (30)

Then, the action can be rewritten in an already Hamiltonian form as [22]:

SEH =
∫

dt
∫

dχ
∫

Σtχ
d2x

[
πab ġab + pa Ṁa + pṀ

−NHG
⊥ − NaHG

a −NHG
N + Q

] (31)

where Q is a sum of boundary terms, given explicitly in [22], while:

HG
⊥ =

√
g
[
−M

(
R + 3L∗abL∗ab − L∗2

)
+ 2gab∂χL∗ab

−2
(

McDcL∗ + 2L∗abDa Mb
)
+ 2DaDa M

+ M√
g

[
1

M2

(
πabπab − π2

2

)
+ 1

2 pa pa + 1
8 p2 − πp

2M

] (32)

is the Hamiltonian constraint,

HG
a = −2Dbπb

a + pDa M− ∂χ pa + paDb Mb + MbDb pa + pbDa Mb , (33)

and:
HG
N = 2L∗abπab − 2paDa M−MDa pa − ∂χ p + Da (pMa) (34)
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are the diffeomorphism constraints. Note that as expected, (N, Na, N ) only appear as
Lagrange-multipliers.

The evolution equations for the generalized coordinates and momenta then emerge as the
Hamiltonian equations written for the gravitational Hamiltonian density:

HG = NHG
⊥ + NaHG

a +NHG
N . (35)

They are explicitly worked out in [22].

5. Conclusions

We generalized the formalism of [19,20] by allowing for nonorthogonal foliations. As the main
benefit, this led to the reestablishment of the full gauge freedom, allowing a generic discussion of
perturbations. We gave a two-fold geometrical interpretation the 10th metric variable as the angle of
the Lorentz rotation of the basis vectors and the measure of the vorticity of the basis vectors.

In the ADM formalism, the induced metric and extrinsic curvature of the hypersurface play the
role of Hamiltonian coordinates and momenta. In the new formalism, we identified those geometrical
quantities characterizing the embedding, which bear a dynamical role (they contain time derivatives).
Non-dynamical geometrical quantities appear only in the basis fA; hence, we employed that for
the 2 + 1 + 1 decomposition of the Einstein–Hilbert action. From among the geometric variables,
we identified those that combine into canonical pairs and proceeded with performing the Hamiltonian
analysis. We identified the 2 + 1 + 1 decomposed gravitational Hamiltonian, as well as the Hamiltonian
and momentum constraints in terms of canonical coordinates and momenta.

We intend to apply this formalism both for the discussion of the even sector of perturbations
of spherically-symmetric gravity in the effective field theories of gravity and for the Hamiltonian
treatment of canonically-quantizable cylindrical gravitational waves. The first of these has the
potential to address the stability of dark matter halo models in scalar-tensor gravity. Furthermore,
for the discussion of gravitational waves in space-times with particular symmetries, the 2 + 1 + 1
decomposition of the Weyl-tensor would be an asset.
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