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Abstract: Universal hyperbolic geometry gives a purely algebraic approach to the subject that
connects naturally with Einstein’s special theory of relativity. In this paper, we give an overview
of some aspects of this theory relating to triangle geometry and in particular the remarkable new
analogues of midpoints called sydpoints. We also discuss how the generality allows us to consider
hyperbolic geometry over general fields, in particular over finite fields.
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1. Two Famous Questions and a Projective/Algebraic Look at Hyperbolic Geometry

While physicists have long pondered the question of the physical nature of the “continuum”,
mathematicians have struggled to similarly understand the corresponding mathematical structure.
In the last decade, we have seen the emergence of rational trigonometry [1,2] as a viable alternative to
traditional geometry, built not over a continuum of “real numbers”, but rather algebraically over a
general field, so also over the rational numbers, or over finite fields.

Universal hyperbolic geometry (UHG) extends this understanding to the projective setting,
yielding a new and broader approach to the Cayley–Klein framework (see [3]) for the remarkable
geometry discovered now almost two centuries ago by Bolyai, Gauss and Lobachevsky as in [4–6].
See also [7,8] for the classical and modern use of projective metrical structures in geometry. In this
paper, we will give an outline of this new approach, which connects naturally to the relativistic
geometry of Lorentz, Einstein and Minkowski and also allows us to consider hyperbolic geometries
over general fields, including finite fields.

To avoid technicalities and make the subject accessible to a wider audience, including physicists,
we aim to describe things both geometrically in a projective visual fashion, as well as algebraically in a
linear algebraic setting.

2. The Polarity of a Conic Discovered by Apollonius

We augment the projective plane, which we may regard as a two-dimensional affine plane and a
line at infinity, with a fixed conic. This conic is called the absolute in Cayley–Klein geometry. In this
universal hyperbolic geometry (UHG), developed in [9–12], we take it to be a circle, typically in blue,
and call it the null circle.

The polarity associated with a conic was investigated by Apollonius and gives a duality between
points a and lines A = a

⊥
in the space, which we also write as a = A

⊥
. Given a point a, consider any

two lines through a, which meet the conic at two points each as in Figure 1. The other two diagonal
points of this cyclic quadrilateral defines the dual line A. Remarkably, this construction does not
depend on the choice of lines through a, as Apollonius realized.

Universe 2018, 4, 3; doi:10.3390/universe4010003 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
http://www.mdpi.com/check_update/10.3390/universe4010003
http://dx.doi.org/10.3390/universe4010003
http://www.mdpi.com/journal/universe


Universe 2018, 4, 3 2 of 10

When a approaches the conic, the dual A approaches the tangent to the conic at that point. If b
lies on A = a

⊥
, then it turns out that a lies on B = b

⊥
.
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Figure 1. The dual of a point a is a line a = A⊥.

From this duality, we may define the perpendicularity, which lies at the core of hyperbolic
geometry. Two points are perpendicular when one lies on the dual of the other, and similarly two
lines are perpendicular when one passes through the dual of the other. We treat points and lines
symmetrically!

Hyperbolic geometry is then the study of those aspects of projective geometry that are determined
by the fixed conic, with isometries just those projective transformations, which fix the null circle.
This turns out to be essentially the relativistic group O (2, 1) , with coefficients in the base field, as we
shall see. However, to describe the actual metrical structure, we move beyond the usual hyperbolic
distance and angle found in the classical theory of Bolyai, Gauss and Lobachevsky; rather, we employ
hyperbolic analogues of the quadrance and spread of rational trigonometry.

3. Null Points, Lines and Light Cones

Null points are perpendicular to themselves; these are the points lying on the original null circle,
such as α and β in Figure 2. Null lines are also perpendicular to themselves; these are just duals of null
points or the tangents to the null circle, as shown in Figure 2. In classical hyperbolic geometry, only the
interior of the circle is usually considered, and the absolute circle is considered to be “infinitely far
away”. Here, we are interested in the entire projective plane, including also the null conic itself and its
exterior, including actually points at infinity.
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a

a

b
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Figure 2. Null points and null lines on the null conic.

This corresponds to considering a 2 + 1 relativistic space projectively: with the null conic
corresponding to the light cone; points inside the null conic to time-like directions; and points outside
the null conic to space-like directions. Like the physicist, we regard the entire space as of primary
interest, not just the interior of our light cone, even if this is our initial orientation!
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The usual geometry of special relativity in 2 + 1 dimensions, in a vector space with inner product:

(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 − z1z2 (1)

when looked at projectively, gives us UHG, with the null cone x2 + y2− z2 = 0. The usual hyperboloid
of two sheets x2 + y2 − z2 = −1, the top sheet of which classically corresponds to the hyperbolic
plane, is a Riemannian sub-manifold of the Lorentzian three-dimensional space. This variant of
Euclidean structure holds in the interior of the null conic, but outside, we are in a de Sitter-type space
as represented by the hyperboloid of one sheet x2 + y2 − z2 = 1. This kind of universal hyperbolic
geometry is no longer homogeneous, as points outside the null conic behave differently from points
inside the conic, and indeed over more general fields, the distinction between these two types of points
is considerably more subtle.

4. Triangle and Dual

To see, the importance and usefulness of considering both interior and exterior points, let us look
at a triangle a1a2a3 with sides the lines L1, L2, L3, and its dual triangle l1l2l3, with sides A1, A2 and
A3. These two triangles play now a symmetrical role: the duals of the points a1, a2, a3 are the lines
A1, A2, A3, while the duals of the points l1, l2, l3 are the lines L1, L2, L3.

The dual triangle plays a natural role in establishing the existence of an orthocenter of a general
triangle, which is a valid theorem in this form of hyperbolic geometry, although it is not in classical
hyperbolic geometry! In Figure 3, we see the three altitudes of the triangle a1a2a3 determined by lines
from vertices to dual vertices, meeting at the orthocenter h. The reason that this does not work in
general in classical hyperbolic geometry is that the meeting of the three altitudes may well be outside
the null conic even if all three points of the triangle are inside, and so it is invisible to the geometry
of Bolyai, Gauss and Lobachevsky! Since this anecdotally was one of Einstein’s favourite geometry
theorems, it is definitely worthwhile having it as part of the picture.

In fact, a similar discussion may be had for the circumcenter. This is all part of the rich and mostly
new subject of hyperbolic triangle geometry; see for example [11,13,14], which recently has also been
extended to include quadrilateral geometry in [15].
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Figure 3. The dual triangle and the orthocenter h.

5. Quadrance May Be Defined Algebraically

In classical hyperbolic geometry, the metrical structure is introduced using differential geometry
in the context of Riemannian metrics on smooth manifolds. In the more projective situation, as in [16],
the notions of projective quadrance and projective spread can be introduced using the fundamental
idea of a cross-ratio of four points on a line, as appreciated also by [17].
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If four collinear points have projective coordinates a, b, c and d, which can be either from the given
field or possibly have the value infinity (∞), then their cross-ratio may be defined as:

(a, b : c, d) ≡ (c− a) (d− b)
(c− b) (d− a)

.

Now, given two points a1 and a2 in the hyperbolic plane, they have dual lines A1 and A2,
which meet the line a1a2 in the conjugate points:

b1 ≡ A1 (a1a2) and b2 ≡ A2 (a1a2)

giving four collinear points a1, a2, b1 and b2. Then, the (projective) quadrance between a1 and a2 is
the cross-ratio:

q (a1, a2) ≡ (a1, b2 : a2, b1) .

In Figure 4, we see an example of a1 exterior and a2 interior, to emphasize the case that this
metrical notion applies very generally to all non-null points.
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Figure 4. Conjugate points make a cross-ratio.

Define the spread between lines dually, so that:

S (A1, A2) ≡ q (a1, a2) .

In this way, the relation between the points and lines metrically is completely symmetric. There is
a natural connection with the usual classical metrical notions in the Beltrami–Klein model (see [5])
when we restrict to interior points (inside the light cone or null conic) and lines that meet also at
interior points; in these cases:

q (a1, a2) = − sinh2 (d (a1, a2)) and S (L1, L2) = sin2 (θ (L1, L2)) .

6. The Algebraic Approach

Due to the modern familiarity with linear algebra, it may be useful to reframe the projective setup
above using homogeneous coordinates, where we follow: [9]. In a three-dimensional vector space
of row vectors (x, y, z), we may define a (hyperbolic) point a ≡ [x : y : z] to be a one-dimensional
subspace through a non-zero vector (x, y, z) . This corresponds to the planar point

[ x
z , y

z
]

if z 6= 0.
A (hyperbolic) line L ≡ (l : m : n) may be defined to be a two-dimensional subspace with equation

lx + my− nz = 0. The incidence between these points and lines is that the point a ≡ [x : y : z] lies on
the line L ≡ (l : m : n), or equivalently L passes through a, precisely when:

lx + my− nz = 0.
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In matrix terms, this is the relation:

(
x y z

)1 0 0
0 1 0
0 0 −1


 l

m
n

 = 0.

The point a ≡ [x : y : z] is then dual to the line L ≡ (l : m : n) precisely when:

x : y : z = l : m : n.

In this case, we write a⊥ = L or L⊥ = a. This algebraic structure ensures that these definitions
work over a general field.

The metrical structure comes about from the symmetric bilinear form (1) of Einstein, Lorentz and
Minkowski of the ambient three-dimensional space. It may be used to define a relation between
one-dimensional subspaces as follows: the quadrance between points a1 ≡ [x1 : y1 : z1] and
a2 ≡ [x2 : y2 : z2] is:

q (a1, a2) ≡ 1− (x1x2 + y1y2 − z1z2)
2(

x2
1 + y2

1 − z2
1
) (

x2
2 + y2

2 − z2
2
) .

Dually, the spread between lines L1 ≡ (l1 : m1 : n1) and L2 ≡ (l2 : m2 : n2) is:

S (L1, L2) ≡ 1− (l1l2 + m1m2 − n1n2)
2(

l2
1 + m2

1 − n2
1
) (

l2
2 + m2

2 − n2
2
) .

For three points a1, a2 and a3, the three quadrances will be:

q1 = q (a2, a3) q2 = q (a1, a3) q3 = q (a1, a2)

and for three lines L1, L2 and L3, the three spreads will be:

S1 = S (L2, L3) S2 = S (L1, L3) S3 = S (L1, L2) .

7. The Main Trigonometric Laws of UHG

Here are the main trigonometric laws in the subject, established first in [9]. We begin with
essentially the one-dimensional situations:

Theorem 1 (Triple quad formula). If a1, a2 and a3 are collinear points, then:

(q1 + q2 + q3)
2 = 2

(
q2

1 + q2
2 + q2

3

)
+ 4q1q2q3.

Theorem 2 (Triple spread formula). If L1, L2 and L3 are concurrent lines, then:

(S1 + S2 + S3)
2 = 2

(
S2

1 + S2
2 + S2

3

)
+ 4S1S2S3.

Now, for the quadrances and spreads of a triangle a1a2a3 as in Figure 5:
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Figure 5. Quadrance and spreads in a hyperbolic triangle.

Theorem 3 (Pythagoras). If L1 and L2 are perpendicular lines, then:

q3 = q1 + q2 − q1q2.

Theorem 4 (Pythagoras dual). If a1 and a2 are perpendicular points, then:

S3 = S1 + S2 − S1S2.

Theorem 5 (Spread law).
S1

q1
=

S2

q2
=

S3

q3
.

Theorem 6 (Spread dual law).
q1

S1
=

q2

S2
=

q3

S3
.

Theorem 7 (Cross law).

(q1q2S3 − (q1 + q2 + q3) + 2)2 = 4 (1− q1) (1− q2) (1− q3) .

Theorem 8 (Cross dual law).

(S1S2q3 − (S1 + S2 + S3) + 2)2 = 4 (1− S1) (1− S2) (1− S3) .

There are three symmetrical forms of Pythagoras’s theorem, the cross law and their duals, obtained
by rotating indices. These various laws replace the transcendental hyperbolic Pythagoras’ theorem,
the sine law and cosine law of both kinds. They work over a general field, both inside and outside the
null circle, and actually even with more general bilinear forms. They are arguably more natural and
convenient for physicists.

The quantity:
A ≡ q2q3S1 = q1q3S2 = q1q2S3

is the quadrea of the triangle a1a2a3 and is somewhat analogous to the hyperbolic area of the triangle,
but it is decidedly of a different character. It is a big step to make the transition from transcendental to
purely algebraic concepts here: computations can actually now be exhibited completely and clearly.

8. Circles, Midpoints and Circumcenters

A hyperbolic circle with centre a and quadrance k is the locus of points x, which satisfy q (a, x) = k.
This is a conic, which includes what in the classical literature are called “equi-distant curves” in the
case of an external centre.

A midpoint m of a side a1a2 is a point lying on the line a1a2 that satisfies q (a1, m) = q (a2, m).
Midpoints exist precisely when 1− q (a1, a2) is a square in the field. There are in general two midpoints
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if they exist at all, and they are perpendicular. A midline is the dual of a midpoint, or equivalently
a line through a midpoint perpendicular to the line joining the two original points; in other words,
the hyperbolic version of a perpendicular bisector. The following is illustrated in Figure 6.

Theorem 9 (Circumcenters). Assume that the six midpoints m of a triangle a1a2a3 exist. Then, they are
collinear three at a time, lying on four distinct circumlines C. The six midlines M of a1a2a3 are concurrent three
at a time, meeting at four distinct circumcenters c that are dual to the circumlines C. The circumcenters are the
centres of in general four hyperbolic circles that pass through the points of the triangle a1a2a3.

a
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m

m
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c

c

c
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M C

C

C

M

M

M

M

M
m

C

Figure 6. Circumcenters and circumlines of a triangle a1a2a3.

9. Sydpoints Augment Midpoints

While midpoints have been studied since the early days of the subject, an important related
notion was only introduced very recently in [12]. A sydpoint of a side a1a2 is a point s lying on a1a2

that satisfies q(a1, s) = −q(a2, s). Sydpoints exist precisely when q (a1, a2)− 1 is a square in the field.
There are in general two sydpoints, if they exist at all, but they are not perpendicular.

A construction of sydpoints r and s of ab may be deduced from Figure 7.
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c

Figure 7. Construction of sydpoints.
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First construct c = (ab)⊥, then the midpoints m and n of ac and then use the null points x and y
lying on bc as shown.

Sydpoints work with midpoints to extend triangle geometry to triangles with vertices both inside
and outside the null conic. In Figure 8, we see centroids g and circumlines C of such a triangle. For the
remarkable connection of the circumcenters c to circles through the three points, see [12].
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Figure 8. Centroids and circumlines of a triangle.

10. Sydpoints and the Parabola

In [18,19], we defined the hyperbolic parabola P0 to be the locus of a point p0 (actually a
conic) satisfying:

q(p0, f1) + q(p0, f2) = 1

for fixed points f1, f2 called the foci. Equivalently:

q (p0, f1) = q (p0, F2) or q (p0, f2) = q (p0, F1) ,

where F1 ≡ f⊥1 , F2 ≡ f⊥2 are the directrices. Note that the quadrance between a point and a line is
defined in terms of the perpendicular transversal. Such a parabola is shown in red in Figure 9.
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Figure 9. A parabola with foci f1 and f2.

In general, if we take duals of the tangents of a conic, we get a dual conic. It turns out that the
dual of a parabola P0 is another parabola: the twin parabola P0 whose foci f 1, f 2 are the sydpoints of
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the original foci pair f1, f2, shown in orange in Figure 10. Therefore, sydpoints appear prominently in
the geometry of the parabola!
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Figure 10. The twin parabola with foci f 1 and f 2.

11. UHG over Finite Fields

Can midpoints and sydpoints exist together? The conditions that 1− q (a, b) is a square and
q (a, b)− 1 is a square are not simultaneously satisfied over our usual number system, or over a field
Fp where p ≡ 3 mod 4. However, in the case of Fp where p ≡ 1 mod 4, then −1 is a square, so both
midpoints and sydpoints can exist together. This is an entirely new aspect of hyperbolic geometry that
is invisible to us usually. However, how can we visualize UHG over a finite field?

Fortunately, a new and powerful program being developed by Michael Reynolds at University of
New South Wales (UNSW) Sydney accomplishes exactly this. This program will hopefully be available
for public use in the near future.

In fact, hyperbolic geometry over finite fields has been considered previously; see [20,21].
With UHG, we get a novel approach that unifies all these geometries over arbitrary fields, so freeing us
from the reliance on a particular ideology with respect to the “continuum”.
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Abbreviations

The following abbreviations are used in this manuscript:

UHG Universal hyperbolic geometry

References

1. Wildberger, N.J. Divine Proportions: Rational Trigonometry to Universal Geometry; Wild Egg Books: Sydney,
Australia, 2005.

2. Wildberger, N.J. Affine and Projective Universal Geometry. arXiv 2006, arXiv:math/0612499.
3. Busemann, H.; Kelly, P.J. Projective Geometry and Projective Metrics; Dover Publications: New York, NY, USA,

2006; originally published by Academic Press: New York, NY, USA, 1956.
4. Coolidge, J.L. The Elements of Non-Euclidean Geometry; Oxford Clarendon Press: Oxford, UK, 1909.
5. Greenberg, M.J. Euclidean and Non-Euclidean Geometries: Development and History, 4th ed.; W. H. Freeman and Co.:

San Francisco, CA, USA, 2007.
6. Ramsay, A.; Richtmayer, R.D. Introduction to Hyperbolic Geometry; Springer: New York, NY, USA, 1995.
7. Bachmann, F. Aufbau der Geometrie aus dem Spiegelungsbegriff; Springer: New York, NY, USA, 1973.



Universe 2018, 4, 3 10 of 10

8. Molnár, E.; Prok, I.; Szirmai, J. On maximal homogeneous 3-geometries and their visualization. Universe
2017, 3, 83.

9. Wildberger, N.J. Universal Hyperbolic Geometry I: Trigonometry. Geom. Dedic. 2013, 163, 215–274.
10. Wildberger, N.J. Universal Hyperbolic Geometry II: A pictorial overview. KoG 2010, 14, 3–24.
11. Wildberger, N.J. Universal Hyperbolic Geometry III: First steps in projective triangle geometry. KoG 2011,

15, 25–49.
12. Wildberger, N.J.; Alkhaldi, A. Universal Hyperbolic Geometry IV: Sydpoints and Twin Circumcircles. KoG

2012, 16, 43–62.
13. Ungar, A.A. Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry.

Comput. Math. Appl. 2000, 40, 313–332.
14. Ungar, A. Hyperbolic Triangle Centers: The Special Relativistic Approach; Springer: New York, NY, USA, 2010.
15. Blefari, S.; Wildberger, N.J. Quadrangle centroids in universal hyperbolic geometry. KoG 2017, 20, 41–60.
16. Onishchik, A.L.; Sulanke, R. Projective and Cayley-Klein Geometries; Springer: New York, NY, USA, 2006.
17. Brauner, H. Geometrie Projektiver Räume I, II; Bibliographisches Institut: Mannheim, Germany, 1976.
18. Alkhaldi, A.; Wildberger, N.J. The Parabola in Universal Hyperbolic Geometry I. KoG 2013, 17, 14–42.
19. Alkhaldi, A.; Wildberger, N.J. The Parabola in Universal Hyperbolic Geometry II: Canonical points and the

Y-conic. J. Geom. Graph. 2016, 20, 1–11.
20. Angel, J. Finite upper half planes over finite fields. Finite Fields Appl. 1996, 2, 62–86.
21. Soto-Andrade, J. Geometrical Gel’fand models, tensor quotients, and Weil representations. Proc. Symp.

Pure Math. 1987, 47, 305–316.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Two Famous Questions and a Projective/Algebraic Look at Hyperbolic Geometry
	The Polarity of a Conic Discovered by Apollonius
	Null Points, Lines and Light Cones
	Triangle and Dual
	Quadrance May Be Defined Algebraically
	The Algebraic Approach
	The Main Trigonometric Laws of UHG
	Circles, Midpoints and Circumcenters
	Sydpoints Augment Midpoints
	Sydpoints and the Parabola
	UHG over Finite Fields
	References

